ELAM-Verfahren für das Nexus 7000 M3-Modul

Inhalt

Einführung Topologie Bestimmen der Eingangs-Weiterleitungs-Engine Konfigurieren des Triggers Erfassen starten Interpretieren der Ergebnisse Zusätzliche Überprüfung

Einführung

Topologie

In diesem Dokument werden die Schritte zum Durchführen eines ELAM auf Cisco Nexus 7700 (N7700) M3-Modulen beschrieben, die relevantesten Ergebnisse erläutert und die Interpretation der Ergebnisse beschrieben.

Tipp: Eine Übersicht über ELAM finden Sie im ELAM-Übersichtsdokument.

In diesem Beispiel sendet ein Host im VLAN 2500 (10.0.5.101), Port Eth4/1 eine ICMP-Anfrage (Internet Control Message Protocol) an einen Host im VLAN 55 (10.0.3.101), Port Eth3/5. ELAM wird verwendet, um dieses einzelne Paket von 10.0.5.101 bis 10.0.3.101 zu erfassen. Es ist wichtig, sich zu erinnern, dass ELAM Ihnen die Erfassung eines einzelnen Frames ermöglicht.

Um ein ELAM auf dem N7K auszuführen, müssen Sie zunächst eine Verbindung mit dem entsprechenden Modul herstellen (hierfür ist die Netzwerk-Admin-Berechtigung erforderlich):

N7700# **attach module 4** Attaching to module 4 ... module-4#

Bestimmen der Eingangs-Weiterleitungs-Engine

Es wird erwartet, dass der Switch an Port **Eth4/1** eingeht. Wenn Sie die Module im System überprüfen, sehen Sie, dass **Modul 4** ein M3-Modul ist. Es ist wichtig zu beachten, dass das N7K vollständig verteilt ist und dass die Module, nicht der Supervisor, die Weiterleitungsentscheidungen für Datenverkehr auf der Datenebene treffen.

N7700)# show	module				
Mod	Ports	Module-Type	Model	Status		
1	12	100 Gbps Ethernet Module	N77-F312CK-26	ok		
3 48	1/10 Gł	ops Ethernet Module N77-M348XP-23L of	4 24 10/40	Gbps Ethernet Module		
N77-N	1324FQ-2	25L ok				
5	0	Supervisor Module-2	N77-SUP2E	active *		
6	0	Supervisor Module-2	N77-SUP2E	ha-standby		
7	24	10/40 Gbps Ethernet Module	N77-F324FQ-25	ok		
Mod	Sw	Hw				
1	7.3(0)1	DX(1) 1.1				
3 7.3	3(0)DX(2	L) 1.1 4 7.3(0)DX(1) 1.0 5 7.3(0)DX(1	1) 1.2 6 7.3(0)DX(1)	1.2 7 7.3(0)DX(1) 1.0		
	~			/=.		

Führen Sie bei Modulen der M-Serie das ELAM auf der Layer 2 (L2) Forwarding Engine (FE) mit dem internen Codenamen **F4 aus**. Beachten Sie, dass der L2 FE Data Bus (DBUS) die ursprünglichen Headerinformationen vor den L2- und L3-Suchläufen enthält, und der Result Bus (RBUS) die Ergebnisse nach L3- und L2-Suchläufen enthält.

N7K M3-Module können mehrere FEs für jedes Modul verwenden. Sie müssen also den **F4**-ASIC bestimmen, der für die FE an Port **Eth4/1** verwendet wird. Geben Sie diesen Befehl ein, um Folgendes zu überprüfen:

module-4# show	w hardware :	internal	dev-por	rt-map					
(some output o	omitted)								
							CARD_TYPE:	24 port 400	G >Front
Panel ports:24	1							Device	name Dev
role Abbr num_	_inst:							>	SLF L3
Driver DEV_LAY	YER_3_LOOKU	P L3LKP	4 > SLF	L2FWD dri	ver DEV	LAYER_	2_LOOKUP	L2LKP 4	
+							+		
+	++FRON'	T PANEL	PORT TO	ASIC INST	ANCE MA	AP+++	+		
+							+		
FP port PHY	rs Mac_0	RWR_0	L2LKP	L3LKP	QUEUE	SWICHF			
1	0	0	0	0	0	0,1			
2	0	0	0	0	0	0,1			
3	0	0	0	0	0	0,1			

In der Ausgabe sehen Sie, dass Port **Eth4/1** auf **F4 (L2LKP)** Instanz **0** liegt. Auf dem N77-M312CQ-26L-Modul gibt es **6** F4-ASICs mit 2 Ports in jeder Portgruppe. Auf dem N77-M324FQ-25L-Modul gibt es **4** F4-ASICs mit 6 Ports in jeder Portgruppe. Das N77-M348XP-23L-Modul verfügt über **2** F4-ASICs mit 12 Ports in jeder Portgruppe.

Hinweis: Wie bei Modulen der F-Serie verwendet die ELAM-Syntax des M3-Moduls 0basierte Werte. Dies ist bei M1- und M2-Modulen, die einstufige Werte verwenden, nicht der Fall.

module-4# elam asic f4 instance 0
module-4(f4-elam)# layer2
module-4(f4-l2-elam)#

Konfigurieren des Triggers

Der **F4**-ASIC unterstützt ELAM-Trigger für IPv4, IPv6 und andere. Der ELAM-Trigger muss dem Frametyp entsprechen. Wenn der Frame ein IPv4-Frame ist, muss der Trigger auch IPv4 sein. Ein IPv4-Frame wird nicht mit einem *anderen* Trigger erfasst. Dieselbe Logik gilt für IPv6.

Bei Nexus Operating Systems (NX-OS) können Sie das Fragezeichen verwenden, um den ELAM-Trigger zu trennen:

module-4(f4-l2-elam)# trigger dbus ipv4 ingress if ?
 (some output omitted)
 destination-index Destination-index
 destination-ipv4-address Destination ipv4 address
 destination-mac-address Destination mac address
 l4-protocol L4 protocol
 source-index Source-index
 source-ipv4-address Source ipv4 address
 source-ipv4-mask Source ipv4 mask
 source-mac-address Source mac address

In diesem Beispiel wird der Frame anhand der Quell- und Ziel-IPv4-Adressen erfasst, sodass nur diese Werte angegeben werden.

F4 erfordert separate Trigger für DBUS und RBUS.

Der DBUS-Trigger ist wie folgt:

```
module-4(f4-l2-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.0.5.101 destination-ipv4-address 10.0.3.101
```

Der folgende RBUS-Trigger:

module-4(f4-l2-elam)# trigger rbus ingress result if tr 1

Erfassen starten

Nachdem der Eingangs-FE ausgewählt und der Trigger konfiguriert wurde, können Sie die Erfassung starten:

module-4(f4-12-elam)# start Um den Status des ELAM zu überprüfen, geben Sie den Status-Befehl ein:

module-4(f4-12-elam)# status
ELAM Slot 4 instance 0: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Configured
ELAM Slot 4 instance 0: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Configured
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 EGR: Unconfigured

L2 PLI: Unconfigured L2 PLE: Unconfigured

Sobald der Frame, der zum Trigger passt, von der FE empfangen wird, wird der ELAM-Status als **Triggered** angezeigt:

module-4(f4-12-elam)# status
ELAM Slot 4 instance 1: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Triggered
ELAM Slot 4 instance 1: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Triggered
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 PLI: Unconfigured
L2 PLE: Unconfigured 7

Interpretieren der Ergebnisse

Um die ELAM-Ergebnisse anzuzeigen, geben Sie die Befehle **show dbus** und **show rbus ein**. Wenn ein hohes Datenverkehrsvolumen mit denselben Triggern übereinstimmt, können DBUS und RBUS bei verschiedenen Frames ausgelöst werden. Daher ist es wichtig, die internen Sequenznummern der DBUS- und RBUS-Daten zu überprüfen, um sicherzustellen, dass sie übereinstimmen:

module-4(f4-l2-elam)# show dbus | i seq
port-id : 0x0 sequence-number : 0x868
module-4(f4-l2-elam)# show rbus | i seq
de-bri-rslt-valid : 0x1 sequence-number : 0x868

Im Folgenden finden Sie den Auszug aus den ELAM-Daten, der für dieses Beispiel am relevantesten ist (einige Ausgabe wird weggelassen):

module-4(f4-12-elam)#	show dbus							
		LBD IPV4							
ttl destination-address source-address: 10 .	: : : 0.!	0xff 10.0.3.101 5.101	13-packet-length	:	0x54				
packet-length	:	0x66	vlan	:	0x9c4				
segid-lsb	:	0x0	source-index	:	0xe05				
destination-mac-ad	destination-mac-address : 8c60.4f07.ac65								
source-mac-address	:	8c60.4fb7.3dc2							
port-id	:	0x0	sequence-number	:	0x868				
module-4(f4-12-elam)#	show rbus							
		L2 RBUS RSLT C	AP DATA						
de-bri-rslt-valid	:	0x1	sequence-number	:	0x868				
vlan	:	0x37	rbh	:	0x65				
cos	:	0x0	destination-index	:	0x9ed				

Mithilfe der **DBUS-**Daten können Sie überprüfen, ob der Frame im VLAN 2500 mit einer Quell-MAC-Adresse von **8c60.4fb6.3dc2** und einer Ziel-MAC-Adresse von **8c60.4f07.ac65** empfangen wird. Sie können auch sehen, dass es sich um einen IPv4-Frame handelt, der von **10.0.5.101** stammt und für **10.0.3.101** bestimmt ist.

Tipp: In dieser Ausgabe sind mehrere andere nützliche Felder nicht enthalten, z. B. der Wert für den Type of Service (TOS), IP-Flags, die IP-Länge und die L2-Frame-Länge.

Um zu überprüfen, an welchem Port der Frame empfangen wird, geben Sie den Befehl **SRC_INDEX** (die Quelle Local Target Logic (LTL)) ein. Geben Sie diesen Befehl ein, um eine LTL einem Port oder einer Port-Gruppe für das N7K zuzuordnen:

N7700# show system internal pixm info ltl 0xe05

Member info -----Type LTL

PHY_PORT Eth4/1

FLOOD_W_FPOE 0xc031

Die Ausgabe zeigt, dass die SRC_INDEX von 0xe05 dem Port Eth4/1 zugeordnet ist. Damit wird bestätigt, dass der Frame an Port Eth4/1 empfangen wird.

Mithilfe der **RBUS-**Daten können Sie überprüfen, ob der Frame an VLAN 55 weitergeleitet wird. Beachten Sie, dass die TTL in den **DBUS-**Daten **als 0xff** beginnt. Zusätzlich können Sie den Ausgangsport von **DEST_INDEX** bestätigen (Ziel-LTL):

 N7K# show system internal pixm info ltl 0x9ed

 Member info

 Type

 LTL

 PHY_PORT

 Eth3/5

 FLOOD_W_FPOE
 0x8017

FLOOD_W_FPOE 0x8016

Die Ausgabe zeigt, dass der **DEST_INDEX** von **0x9ed** Port **Eth3/5** zugeordnet ist. Damit wird bestätigt, dass der Frame von Port **Eth3/5** gesendet wird.

Zusätzliche Überprüfung

Um zu überprüfen, wie der Switch den LTL-Pool zuweist, geben Sie den Befehl **show system internal pixm info Itl-region ein**. Die Ausgabe dieses Befehls ist nützlich, um den Zweck einer LTL zu verstehen, wenn sie nicht einem physischen Port zugeordnet wird. Ein gutes Beispiel hierfür ist ein **Drop LTL**:

LIBLTLMAP_LTL_TYPE_UCAST_VPC_VDC_SI 32 0xc40 0xc5f 0xc7f LIBLTLMAP_LTL_TYPE_UCAST_GENERIC 48 0xc80 0xc	LIBLTLM	AP_LTL_T	PE_EXCEPTION_SPAN 32 0xc60				
LIBLTLMAP_LTL_TYPE_UCAST_GENERIC_NOT_USED 0xcaf							
LIBLTLMAP_LTL_TYPE_DROP_DI_WO_HW_BITSET 0xcae LIBLTLMAP_LTL_TYPE_DROP_DI							
0xcad							
LIBLTLMAP_LTL_TYPE_SUP_DIAG_SI_V5	0xcac						
LIBLTLMAP_LTL_TYPE_RESERVED_ERSPAN_LTL	0xcab						
LIBLTLMAP_LTL_TYPE_LC_CPU	192	0xcb0	0xd6f				
LIBLTLMAP_LTL_TYPE_UCAST_RESERVED	144	0xd70	0xdff				
LIBLTLMAP_LTL_TYPE_PC	1536	0xe00	0x13ff				
LIBLTLMAP_LTL_TYPE_DYNAMIC_UCAST	5120	0x1400	0x27ff				
LIBLTLMAP_LTL_TYPE_MCAST_RESERVED	48	0x2800	0x282f				
LIBLTLMAP_LTL_TYPE_DYNAMIC_MCAST	38848	0x2830	0xbfef				
LIBLTLMAP_LTL_TYPE_SAC_FLOOD	16	0xbff0	0xbfff				
LIBLTLMAP_LTL_TYPE_FLOOD_WITH_FPOE	16384	0xc000	Oxfff				