Konfigurieren einer asynchronen Schnittstelle als Sicherung für eine serielle Leitung

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Hintergrundinformationen Konventionen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung Befehle zur Fehlerbehebung Zugehörige Informationen

Einführung

Es ist üblich, redundante Pfade für WAN-Verbindungen wie serielle, Leasingleitungen oder Frame-Relay mit DDR-Schaltungen (Dial-on-Demand) bereitzustellen. Asynchrone Modems und POTS-Leitungen (Circuit-Switched Plain Old Telefone Service) werden zur Sicherung von WAN-Schnittstellen verwendet. Bei der Planung von Szenarien für die Wählsicherung ist eine sorgfältige Planung erforderlich. Berücksichtigen Sie Faktoren wie Datenverkehr auf den Backup-Verbindungen, die Anzahl der ausfallanfälligen Verbindungen und die Port-Kapazitätsplanung zur Unterstützung von Backup-Schaltungen.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine besonderen Voraussetzungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf den unten stehenden Software- und Hardwareversionen.

- Eine Cisco Router-Plattform der Serie 2500.
- Cisco IOS® Software Release 12.1(2)T auf Router-Gain.

- Cisco IOS Software Release 12.0(7)T auf Router Sphinx.
- Externe Modems, die an den seriellen Port der Router angeschlossen sind.

Hinweis: Dieses Dokument kann zur Verwendung auf jedem Router mit asynchronen Schnittstellen (oder integrierten Modems) geändert werden. Die Konfiguration der Backup-Schnittstelle (Schnittstelle Serial 2 in diesem Beispiel) würde unter "Schnittstelle Async x" eingeschlossen.

Die in diesem Dokument enthaltenen Informationen wurden aus Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Sie in einem Live-Netzwerk arbeiten, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen, bevor Sie es verwenden.

Hintergrundinformationen

Es stehen drei gängige Methoden zur Sicherung einer WAN-Verbindung zur Verfügung:

- Backup-Schnittstellen Eine Backup-Schnittstelle verbleibt im Standby-Modus, bis die primäre Verbindung ausfällt. Die Backup-Verbindung wird aktiviert, und die Verbindung zwischen den beiden Standorten wird wiederhergestellt.
- Dialer-Uhren Eine Dialer-Uhr bietet eine zuverlässige Konnektivität, ohne sich allein auf die Definition von interessantem Datenverkehr zu verlassen, um ausgehende Anrufe auf dem zentralen Router auszulösen. Die Dialer-Uhr überwacht bestimmte Routen und, falls diese nicht erreichbar sind, wird die zweite Verbindung durch die Dialer-Uhr angezeigt.
- Floating-statische Routen Floating-statische Routen sind statische Routen, deren administrative Distanz größer ist als der administrative Abstand dynamischer Routen. Administrative Distanzen können auf einer statischen Route konfiguriert werden, sodass die statische Route weniger wünschenswert ist als eine dynamische Route. Daher wird die statische Route nicht verwendet, wenn die dynamische Route verfügbar ist. Wenn die dynamische Route jedoch verloren geht, kann die statische Route übernommen werden, und der Datenverkehr kann über diese alternative Route gesendet werden.

Dieses Szenario verwendet Backup Interface, um eine Sicherung durchzuführen. Weitere Informationen über die Verwendung der Backup-Schnittstelle finden Sie im Dokument <u>Evaluating</u> <u>Backup Interfaces, Floating Static Routes und Dialer Watch for DDR Backup</u>.

Weitere Informationen zum Konfigurieren von Backups finden Sie im Dokument Konfigurieren und <u>Beheben von DDR-Backups</u>. Das Dokument enthält Informationen zur Bestimmung der zu verwendenden Backup-Methode sowie weitere Konfigurationsinformationen.

Bitte lesen und verstehen Sie die beiden oben genannten Dokumente, bevor Sie mit dieser Konfiguration fortfahren.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u>.

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument

beschriebenen Funktionen.

Hinweis: Um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten, verwenden Sie das <u>Command Lookup Tool</u> (<u>nur registrierte</u> Kunden).

Netzwerkdiagramm

In diesem Dokument wird die im Diagramm unten dargestellte Netzwerkeinrichtung verwendet.

Konfigurationen

In dieser Konfiguration verwenden wir zwei Cisco Router (Gagin und Sphinx), die über ihre seriellen 0-Schnittstellen über eine Mietleitung verbunden sind. Die seriellen 2 Schnittstellen werden über async-Modems über eine PSTN-Leitung (Public Switched Telefone Network) verbunden und dienen als Backup für die geleasten Leitungen.

Hinweis: Diese Schnittstellen arbeiten standardmäßig im Synchronisierungsmodus, Sie müssen sie manuell konfigurieren (mit dem **ASYIC-**Befehl auf **physischer Ebene**), um im asynchronen Modus zu arbeiten.

Mit dem Befehl **show version** können Sie herausfinden, ob diese Schnittstellen auch im asynchronen Modus funktionieren. Die relevanten Informationen, die mit dem Befehl **show version** angezeigt werden, sind unten aufgeführt:

2 Low-speed serial(sync/async) network interfaces
! --- This means it can work in sync or async mode.

Es wird empfohlen, die Konfiguration abzuschließen und zu überprüfen, ob die Modemverbindung hergestellt werden kann. Sie können dies tun, indem Sie die Telnet-Verbindung zu den Modems rückgängig machen und die Nummer des Remote-Modems anrufen.

Hinweis: Je nach Modemtyp ist die Verwendung einer Modemkarte (Modemcap) obligatorisch. Weitere Informationen hierzu finden Sie im <u>Modem-Router-Verbindungsleitfaden.</u>

Gagin (Cisco 2500) - Calling Router
gaugin# show running-config Building configuration
Current configuration: hostname gaugin

username sphinx password 0 cisco !---Username and shared secret for CHAP authentication. ! chat-script CALLOUT "" "atdtT" TIMEOUT 60 CONNECT \c !--- Chat script used for dialout. modemcap entry usr:MSC=& FS0=1 & C1&D2;&H1;&R2;&B1;&W; !--- Modemcap for the external modem. !--- Refer to Modem-Router Connection Guide for more information. interface Loopback1 ip address 1.1.1.1 255.255.255.255 ! interface Serial0 !--- Primary link. ip address 3.3.3.1 255.255.255.0 !--- Remote peer serial interface is in same subnet. backup interface serial 2 !--- Designate interface serial 2 as the backup interface. ! interface Serial2 !--- Backup interface. This interface will be in "Standby" mode until the !--- line protocol on interface Serial 0 (the primary) goes down. physical-layer async !--- Permit async mode. ip unnumbered Loopback1 encapsulation ppp dialer in-band dialer map ip 2.2.2.1 name sphinx modem-script CALLOUT 8029 !--- Dialer map for the peer. !--- Note the ip address, the name (which matches the !--- authenticated username, the chat script used and the number to dial. dialer-group 1 !---Interesting traffic definition for dialout. async mode dedicated no peer default ip address !--- Do not provide the peer with an IP address. !--- It must have one configured. no fair-queue ppp authentication chap callin !--- Use one-way chap authentication. ! ip route 2.2.2.1 255.255.255.255 SerialO ip route 2.2.2.1 255.255.255.255 Serial2 ! -- Identical routes for the peer. !--- Note the IP address matches the dialer map ip. !--- When the primary is up, the backup in in Standby hence the route using !--- Serial 2 will not be used. When the backup is brought out of standby !--- it will get used and the serial 0 route is removed (since the link is down/down) !--- To create a route for other networks use !--- ip route

dialer-list 1 protocol ip permit !--- Interesting traffic definition. !--- Once the backup link is brought out of standby !--- dialout is ONLY initiaited after the router receives interesting traffic. line 2 !--- Line configuration for the modem on interface Serial 2. script dialer CALLOUT !--- Use script CALLOUT. modem InOut modem autoconfigure type usr !--- Use modemcap named "usr" configured earlier. transport input all speed 115200 !--- DTE-DCE speed. flowcontrol hardware

sphinx (Cisco 2500) - Angerufener Router

```
sphinx#show running-config
Building configuration...
```

Current configuration:

version 12.0 service timestamps debug uptime service timestamps log uptime

```
no service password-encryption
 hostname sphinx
username gaugin password 0 cisco
!--- Username and shared secret for CHAP authentication.
modemcap entry usr:MSC=& FS0=1 & C1&D2;&H1;&R2;&B1;&W; !
interface Loopback1 ip address 2.2.2.1 255.255.255.255
no ip directed-broadcast ! interface Serial0 !---
Primary interface !--- Note that this router does not
initiate the backup when the primary fails !--- it will
rely on the peer to initiate the connection. ip address
3.3.3.2 255.255.255.0 ! interface Serial2 !--- Interface
providing backup. !--- There is no dialer map/dialer
string since it is only accepting the call. !--- This
interface will be in Up/Up(Spoofing) mode when the
primary interface is up. !--- Later, configure a
floating static route to prevent packet loss. physical-
layer async ip unnumbered Loopback1 no ip directed-
broadcast encapsulation ppp dialer in-band dialer-group
1 async mode dedicated no peer default ip address no
fair-queue no cdp enable ppp authentication chap ip
route 1.1.1.1 255.255.255.255 Serial0 ip route 1.1.1.1
255.255.255.255 Serial2 2 !--- The 2 makes the route a
floating static route. !--- This is important since the
async interface will be in spoofing mode !--- (not in
standby mode) when the primary interface is up. !--- If
we do not use the 2 here, we lose half of the packets in
the return path !--- since the router will attempt to
load balance !--- across the 2 links (eventhough the
backup is down). !--- To create a route for other
networks use !--- ip route
line 2
 modem InOut
 modem autoconfigure type usr
 transport input all
 speed 115200
 flowcontrol hardware
```

<u>Überprüfen</u>

Dieser Abschnitt enthält Informationen, mit denen Sie überprüfen können, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

- show interface serial Zeigt Informationen über eine serielle Schnittstelle an.
- show ip route Zeigt den aktuellen Status der Routing-Tabelle an.
- show line Zeigt die Parameter einer Terminalleitung an.

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration.

Weitere Informationen zur Fehlerbehebung bei Backup-Schnittstellen finden Sie im Dokument Konfigurieren und Beheben von DDR-Backups.

Befehle zur Fehlerbehebung

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

Hinweis: Bevor Sie Debugbefehle ausgeben, lesen Sie <u>Wichtige Informationen über Debug-</u> Befehle.

- show dialer Zeigt Informationen über eine Dialer-Schnittstelle an.
- ping Testt die Verbindung.
- Debug-Modem Dient zur Beobachtung der Modemzeilenaktivität auf einem Zugriffsserver.
- debug ppp negotiation Zeigt Informationen über PPP-Datenverkehr und -Austausch während der Aushandlung der PPP-Komponenten, einschließlich Link Control Protocol (LCP), Authentifizierung und Network Control Protocol (NCP). Eine erfolgreiche PPP-Aushandlung öffnet zuerst den LCP-Status, dann Authenticate (Authentifizierung) und verhandelt schließlich NCP.
- debug ppp authentication Zeigt die PPP-Authentifizierungsprotokollmeldungen an, einschließlich CHAP-Paketaustausch (Challenge Authentication Protocol) und PAP-Austausch (Password Authentication Protocol). Wenn Sie einen Fehler feststellen, überprüfen Sie, ob Benutzername und Kennwort für chap korrekt konfiguriert sind.
- Debug-Chat Zeigt die Chat-Skriptaktivität an.
- **Debug Dialer** Zeigt Informationen zum DDR-Debuggen über die Pakete an, die auf einer Dialer-Schnittstelle empfangen wurden.

In der unten gezeigten Beispielausgabe sehen wir, dass die serielle Hauptverbindung (seriell 0) an Gagin (dem anrufenden Router) ein Problem aufweist und die Verbindung beendet. Die Backup-Schnittstelle (seriell 2) beginnt mit der Herstellung der Sicherungsverbindung. In diesem Beispiel haben wir das Kabel getrennt, um die Backup-Verbindung zu testen.

Hinweis: Wenn Sie den **shutdown-**Befehl für die primäre Schnittstelle ausgeben, **führt dies nicht** zu einer Wählverbindung für die Sicherung. Wenn Sie einen Befehl zum Herunterfahren ausgeben, um die primäre Verbindung herzustellen, wird von der Cisco IOS-Software nicht automatisch eine Sicherungsverbindung aktiviert. Sie müssen die primäre Verbindung physisch durch Abziehen von Kabeln oder eine gleichwertige Methode herabsetzen, um die Backup-Schnittstellen zu aktivieren.

gaugin#
*Mar 1 00:57:25.127: %LINK-3-UPDOWN: Interface Serial0, changed state to down
*Mar 1 00:57:26.127: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0,
changed state to down
!--- Primary Link is brought down. !--- This will cause the backup link (int Serial 2) to be

taken out of standby. *Mar 1 00:57:37.143: %LINK-3-UPDOWN: Interface Serial2, changed state to down

!--- The Backup link is changes from Standby to Down. *Mar 1 00:57:37.147: Se2 LCP: State is Closed.. *Mar 1 00:57:40.019: TTY2: restoring DTR *Mar 1 00:57:41.019: TTY2: autoconfigure probe started *Mar 1 00:57:52.147: Se2 DDR: re-enable timeout. *Mar 1 00:57:55.067: Se2 DDR: Dialing cause ip (s=1.1.1.1, d=2.2.2.1)

!--- Interesting traffic for the peer causes the dialout. *Mar 1 00:57:55.071: Se2 DDR:
Attempting to dial 8029 *Mar 1 00:57:55.071: CHAT2: Attempting async line dialer script *Mar 1
00:57:55.075: CHAT2: Dialing using Modem script: CALLOUT

& System script: none

!--- Chat-script named CALLOUT is used. *Mar 1 00:57:55.083: CHAT2: process started *Mar 1 00:57:55.083: CHAT2: Asserting DTR *Mar 1 00:57:55.087: CHAT2: Chat script CALLOUT started *Mar 1 00:57:55.087: CHAT2: Sending string: atdt\T<8029> *Mar 1 00:57:55.091: CHAT2: Expecting string: CONNECT...... *Mar 1 00:58:12.859: CHAT2: Completed match for expect: CONNECT *Mar 1 00:58:12.859: CHAT2: Sending string: \c *Mar 1 00:58:12.863: CHAT2: Chat script CALLOUT finished, status = Success *Mar 1 00:58:12.867: TTY2: no timer type 1 to destroy *Mar 1 00:58:12.867: TTY2: no timer type 0 to destroy *Mar 1 00:58:12.875: Se2 IPCP: Install route to 2.2.2.1. *Mar 1 00:58:14.871: %LINK-3-UPDOWN: Interface Serial2, changed state to up Dialer state change to up Serial2 Dialer call has been placed Serial2 *Mar 1 00:58:14.891: Se2 PPP: Treating connection as a callout !--- PPP LCP negotiation begins. *Mar 1 00:58:14.891: Se2 PPP: Phase is ESTABLISHING, Active Open *Mar 1 00:58:14.895: Se2 PPP: No remote authentication for call-out *Mar 1 00:58:14.899: Se2 LCP: O CONFREQ [Closed] id 10 len 20 *Mar 1 00:58:14.899: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) *Mar 1 00:58:14.903: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) *Mar 1 00:58:14.907: Se2 LCP: PFC (0x0702) *Mar 1 00:58:14.907: Se2 LCP: ACFC (0x0802). *Mar 1 00:58:16.895: Se2 LCP: TIMEout: State REQsent *Mar 1 00:58:16.899: Se2 LCP: 0 CONFREQ [REQsent] id 11 len 20 *Mar 1 00:58:16.899: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) *Mar 1 00:58:16.903: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) *Mar 1 00:58:16.907: Se2 LCP: PFC (0x0702) *Mar 1 00:58:16.907: Se2 LCP: ACFC (0x0802) *Mar 1 00:58:17.063: Se2 LCP: I CONFACK [REQsent] id 11 len 20 *Mar 1 00:58:17.067: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) *Mar 1 00:58:17.067: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) *Mar 1 00:58:17.071: Se2 LCP: PFC (0x0702) *Mar 1 00:58:17.075: Se2 LCP: ACFC (0x0802) *Mar 1 00:58:17.083: Se2 LCP: I CONFREQ [ACKrcvd] id 32 len 25 *Mar 1 00:58:17.083: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) *Mar 1 00:58:17.087: Se2 LCP: AuthProto CHAP (0x0305C22305) *Mar 1 00:58:17.091: Se2 LCP: MagicNumber 0xE05307CD (0x0506E05307CD) *Mar 1 00:58:17.095: Se2 LCP: PFC (0x0702) *Mar 1 00:58:17.095: Se2 LCP: ACFC (0x0802) *Mar 1 00:58:17.099: Se2 LCP: O CONFACK [ACKrcvd] id 32 len 25 *Mar 1 00:58:17.103: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) *Mar 1 00:58:17.103: Se2 LCP: AuthProto CHAP (0x0305C22305) *Mar 1 00:58:17.107: Se2 LCP: MagicNumber 0xE05307CD (0x0506E05307CD) *Mar 1 00:58:17.111: Se2 LCP: PFC (0x0702) *Mar 1 00:58:17.111: Se2 LCP: ACFC (0x0802) *Mar 1 00:58:17.115: Se2 LCP: State is Open

!--- LCP negotiation is complete. *Mar 1 00:58:17.115: Se2 PPP: Phase is AUTHENTICATING, by the peer *Mar 1 00:58:17.263: Se2 CHAP: I CHALLENGE id 4 len 27 from "sphinx" *Mar 1 00:58:17.271: Se2 CHAP: O RESPONSE id 4 len 27 from "gaugin" *Mar 1 00:58:17.391: Se2 CHAP: I SUCCESS id 4 len 4 *Mar 1 00:58:17.395: Se2 PPP: Phase is UP *Mar 1 00:58:17.399: Se2 IPCP: O CONFREQ [Closed] id 4 len 10 *Mar 1 00:58:17.399: Se2 IPCP: Address 1.1.1.1 (0x030601010101) *Mar 1 00:58:17.407: Se2 CDPCP: O CONFREQ [Closed] id 4 len 4 *Mar 1 00:58:17.411: Se2 IPCP: I CONFREQ [REQsent] id 5 len 10 *Mar 1.00:58:17.415: Se2 IPCP: Address 2.2.2.1 (0x030602020201) *Mar 1 00:58:17.419: Se2 IPCP: O CONFACK [REQsent] id 5 len 10 *Mar 1 00:58:17.423: Se2 IPCP: Address 2.2.2.1 (0x030602020201) *Mar 1 00:58:17.527: Se2 IPCP: I CONFACK [ACKsent] id 4 len 10 *Mar 1 00:58:17.531: Se2 IPCP: Address 1.1.1.1 (0x030601010101) *Mar 1 00:58:17.535: Se2 IPCP: State is Open *Mar 1 00:58:17.543: Se2 LCP: I PROTREJ [Open] id 33 len 10 protocol CDPCP (0x820701040004) *Mar 1 00:58:17.547: Se2 CDPCP: State is Closed *Mar 1 00:58:17.547: Se2 DDR: dialer protocol up *Mar 1 00:58:18.075: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2, changed state to up !--- Connection is successful. Backup link is now active. gaugin#show ip route 2.2.2.1

Routing entry for 2.2.2.1/32 Known via "connected", distance 0, metric 0 (connected, via interface) Routing Descriptor Blocks:

* directly connected, via Serial2

!--- The route for the peer uses the backup link. !--- Note the static route for primary link is
removed !--- (since the link is down/down). Route metric is 0, traffic share count is 1
gaugin#show dialer

Se2 - dialer type = IN-BAND ASYNC NO-PARITY Idle timer (120 secs), Fast idle timer (20 secs) Wait for carrier (30 secs), Re-enable (15 secs) Dialer state is data link layer up Dial reason: ip (s=1.1.1.1, d=2.2.2.1) Time until disconnect 108 secs Connected to 8029

Dial String Successes Failures Last DNIS Last status 8029 4 0 00:01:00 successful

gaugin#show interface serial 2

Serial2 is up, line protocol is up

!--- Backup link is verified to be up. Hardware is CD2430 in async mode Interface is unnumbered.
Using address of Loopback1 (1.1.1.1) MTU 1500 bytes, BW 115 Kbit, DLY 100000 usec,
gaugin#ping 2.2.2.1
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2.2.2.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 128/132/136 ms

Hier ist der gleiche Anruf aus der Perspektive von Sphinx, der den Anruf empfangen hat:

sphinx#

00:57:29: TTY2: DSR came up !--- Modem DSR is first changed to up, indicating an incoming call. 00:57:29: TTY2: destroy timer type 1 00:57:29: TTY2: destroy timer type 0 00:57:29: tty2: Modem: IDLE->(unknown) 00:57:31: Se2 LCP: I CONFREQ [Closed] id 10 len 20

!--- Begin LCP negotiation . 00:57:31: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:31: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) 00:57:31: Se2 LCP: PFC (0x0702) 00:57:31: Se2 LCP: ACFC (0x0802) 00:57:31: Se2 LCP: Lower layer not up, Fast Starting 00:57:31: Se2 PPP: Treating connection as a callin 00:57:31: Se2 PPP: Phase is ESTABLISHING, Passive Open 00:57:31: Se2 LCP: State is Listen 00:57:31: Se2 LCP: O CONFREQ [Listen] id 31 len 25 00:57:31: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:31: Se2 LCP: AuthProto CHAP (0x0305C22305) 00:57:31: Se2 LCP: MagicNumber 0xE05307CD (0x0506E05307CD) 00:57:31: Se2 LCP: PFC (0x0702) 00:57:31: Se2 LCP: ACFC (0x0802) 00:57:31: Se2 LCP: O CONFACK [Listen] id 10 len 20 00:57:31: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:31: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) 00:57:31: Se2 LCP: PFC (0x0702) 00:57:31: Se2 LCP: ACFC (0x0802) 00:57:31: %LINK-3-UPDOWN: Interface Serial2, changed state to upDialer statechange to up Serial2 00:57:31: Serial2 DDR: Dialer received incoming call from <unknown> 00:57:33: Se2 LCP: I CONFREQ [ACKsent] id 11 len 20 00:57:33: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:33: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) 00:57:33: Se2 LCP: PFC (0x0702) 00:57:33: Se2 LCP: ACFC (0x0802) 00:57:33: Se2 LCP: O CONFACK [ACKsent] id 11 len 20 00:57:33: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:33: Se2 LCP: MagicNumber 0x0041E7ED (0x05060041E7ED) 00:57:33: Se2 LCP: PFC (0x0702) 00:57:33: Se2 LCP: ACFC (0x0802) 00:57:33: Se2 LCP: TIMEout: State ACKsent 00:57:33: Se2 LCP: 0 CONFREQ [ACKsent] id 32 len 25 00:57:33: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:33: Se2 LCP: AuthProto CHAP (0x0305C22305) 00:57:33: Se2 LCP: MagicNumber 0xE05307CD (0x0506E05307CD) 00:57:33: Se2 LCP: PFC (0x0702) 00:57:33: Se2 LCP: ACFC (0x0802) 00:57:33: Se2 LCP: I CONFACK [ACKsent] id 32 len 25 00:57:33: Se2 LCP: ACCM 0x000A0000 (0x0206000A0000) 00:57:33: Se2 LCP: AuthProto CHAP (0x0305C22305) 00:57:33: Se2 LCP: MagicNumber 0xE05307CD (0x0506E05307CD) 00:57:33: Se2 LCP: PFC (0x0702) 0:57:33: Se2 LCP: ACFC (0x0802) 00:57:33: Se2 LCP: State is Open !--- LCP negotiation is complete. 00:57:33: Se2 PPP: Phase is AUTHENTICATING, by this end 00:57:33: Se2 CHAP: O CHALLENGE id 4 len 27 from "sphinx" 00:57:33: Se2 CHAP: I RESPONSE id 4 len 27 from "gaugin" 00:57:33: Se2 CHAP: O SUCCESS id 4 len 4 !--- CHAP authentication is successful. 00:57:33: Serial2 DDR: Authenticated host gaugin with no matching dialer map 00:57:33: Se2 PPP: Phase is UP 00:57:33: Se2 IPCP: O CONFREQ [Closed] id 5 len 10 00:57:33: Se2

IPCP: Address 2.2.2.1 (0x030602020201) 00:57:33: Se2 IPCP: I CONFREQ [REQsent] id 4 len 10 00:57:33: Se2 IPCP: Address 1.1.1.1 (0x03060101010) 00:57:33: Se2 IPCP: O CONFACK [REQsent] id 4 len 10 00:57:33: Se2 IPCP: Address 1.1.1.1 (0x03060101010) 00:57:33: Se2 CDPCP: I CONFREQ [Not negotiated] id 4 len 4 00:57:33: Se2 LCP: O PROTREJ [Open] id 33 len 10 protocol CDPCP (0x820701040004) 00:57:33: Se2 IPCP: I CONFACK [ACKsent] id 5 len 10 00:57:33: Se2 IPCP: Address 2.2.2.1 (0x030602020201) 00:57:33: Se2 IPCP: State is Open 00:57:33: Serial2 DDR: dialer protocol up 00:57:33: Se2 IPCP: Install route to 1.1.1.1

!--- A route to the peer is installed. 00:57:34: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Serial2, changed state to up !--- Backup link is up. sphinx#ping 1.1.1.1

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 132/142/152 ms

sphinx#show ip route 1.1.1.1

Routing entry for 1.1.1.1/32

Known via "connected", distance 0, metric 0 (connected, via interface)
Routing Descriptor Blocks:

* directly connected, via Serial2

!--- The floating static route is now installed. Route metric is 0, traffic share count is 1

sphinx#show dialer

```
Serial2 - dialer type = IN-BAND ASYNC NO-PARITY
Idle timer (120 secs), Fast idle timer (20 secs)
Wait for carrier (30 secs), Re-enable (15 secs)
Dialer state is data link layer up
Time until disconnect 119 secs (gaugin)
```

Schließen Sie nun das Kabel für die primäre Verbindung wieder an. Die primäre Verbindung wird in den Status Up/Up verschoben, und die Backup-Verbindung (Serial 2) wird in den Standby-Status auf Gagin umgewandelt (da sie über den Befehl **backup interface serial 2** verfügt). Dies führt dazu, dass die Modem-Verbindung unterbrochen wird und die Schnittstelle Serial 2 auf Sphinx ebenfalls ausfällt.

Das folgende Debuggen auf gagin zeigt diesen Prozess:

gaugin#
*Mar 1 00:59:38.859: %LINK-3-UPDOWN: Interface Serial0, changed state to up
*Mar 1 00:59:39.875: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0,
changed state to up
!--- Primary link is re-established. *Mar 1 00:59:59.315: TTY2: Async Int reset: Dropping DTR
*Mar 1 01:00:00.875: TTY2: DSR was dropped *Mar 1 01:00:00.875: tty2: Modem: READY->(unknown)
*Mar 1 01:00:01.315: %LINK-5-CHANGED: Interface Serial2,

changed state to standby mode

!--- the backup link is returned to standby mode. !--- The modem connection is terminated *Mar 1
01:00:01.331: Se2 IPCP: State is Closed *Mar 1 01:00:01.335: Se2 PPP: Phase is TERMINATING *Mar
1 01:00:01.343: Se2 LCP: State is Closed *Mar 1 01:00:01.339: Se2 PPP: Phase is DOWN *Mar 1
01:00:01.343: Se2 IPCP: Remove route to 2.2.2.1 *Mar 1 01:00:01.883: TTY2: dropping DTR, hanging
up *Mar 1 01:00:01.883: tty2: Modem: HANGUP->(unknown) *Mar 1 01:00:02.315: %LINEPROTO-5-UPDOWN:
Line protocol on Interface Serial2, changed state to down *Mar 1 01:00:02.899: TTY2: cleanup
pending. Delaying DTR *Mar 1 01:00:03.927: TTY2: cleanup pending. Delaying DTR *Mar 1
01:00:04.323: TTY2: no timer type 0 to destroy *Mar 1 01:00:04.323: TTY2: no timer type 1 to
destroy *Mar 1 01:00:04.327: TTY2: no timer type 3 to destroy *Mar 1 01:00:04.327: TTY2: no
timer type 4 to destroy *Mar 1 01:00:04.327: TTY2: no timer type 2 to destroy *Mar 1
01:00:04.331: Serial2: allowing modem_process to continue hangup!

Im folgenden **Debuggen** wird die gleiche Transaktion aus Sicht auf Sphinx angezeigt.

```
sphinx#
00:58:54: %LINK-3-UPDOWN: Interface Serial0, changed state to up
00:58:55: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Serial0, changed state
```

to up

!--- Primary link is brought up. 00:59:16: TTY2: DSR was dropped !--- Modem connection is terminated by the peer. 00:59:16: tty2: Modem: READY->(unknown) 00:59:17: TTY2: dropping DTR, hanging up 00:59:17: TTY2: Async Int reset: Dropping DTR 00:59:17: tty2: Modem: HANGUP->(unknown) 00:59:18: TTY2: cleanup pending. Delaying DTR 00:59:19: %LINK-5-CHANGED: Interface Serial2, changed state to reset

!--- The Backup Interface (serial 2)is reset. 00:59:19: Se2 IPCP: State is Closed 00:59:19: Se2 PPP: Phase is TERMINATING 00:59:19: Se2 LCP: State is Closed 00:59:19: Se2 PPP: Phase is DOWN 00:59:19: TTY2: cleanup pending. Delaying DTR 00:59:19: Se2 IPCP: Remove route to 1.1.1.1 !--- The route to 1.1.1.1 using Serial 2 is removed since !--- it is has a higher administrative distance of 2. 00:59:20: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2, changed state to down 00:59:20: TTY2: cleanup pending. Delaying DTR 00:59:21: TTY2: cleanup pending. Delaying DTR 00:59:22: TTY2: destroy timer type 0 00:59:22: TTY2: destroy timer type 1 00:59:22: TTY2: destroy timer type 3 00:59:22: TTY2: destroy timer type 4 00:59:22: TTY2: destroy timer type 2 00:59:22: Serial2: allowing modem_process to continue hangup 00:59:22: TTY2: restoring DTR 00:59:22: TTY2: autoconfigure probe started 00:59:24: %LINK-3-UPDOWN: Interface Serial2, changed state to down 00:59:24: Se2 LCP: State is Closed sphinx(config-if)#

Zugehörige Informationen

- Konfigurieren und Beheben von DDR-Backups
- Evaluierung von Backup-Schnittstellen, Floating Static Routes und Dialer Watch für DDR-Backup
- Konfigurieren der BRI-Backup-Schnittstelle mit Dialer-Profilen
- DDR-Sicherung mithilfe von BRIs und dem Befehl "backup interface"
- <u>Async-Sicherung mit Dialer-Profilen</u>
- Konfigurieren und Beheben von DDR-Backups
- <u>Technischer Support Cisco Systems</u>