使用OID通過SNMP監控Catalyst 9800 WLC

目錄

簡介 必要條件 需求 採用元件 SNMP與遙測 在WLC上設定SNMP 通過Web介面 通過命令列 對象名稱和對象ID(OID) 什麼是對象名稱和OID? MIB和Cisco WLC上所有對象名稱和ID的清單 使用OID監控WLC的狀態 通過Snmpwalk監控 通過Python3和Pysnmp庫進行監控 與第三方軟體(Grafana+Prometheus/PRTG網路監控器/SolarWinds)整合 與CUCM整合 最常見受監控OID的表 在HA中監控待命WLC <u>直接監控待命WLC</u> 透過作用中WLC監控待命WLC

簡介

本文說明如何設定簡易網路管理通訊協定(SNMP)以監控Cisco 9800無線LAN控制器(WLC)。

必要條件

需求

- 9800 WLC和SNMP通訊協定的基礎知識
- SNMP伺服器/工具

採用元件

所有測試均在MacOS 10.14和映像版本為17.5.1的9800-CL WLC上執行。本文中提到的一些OID在 舊映像版本中不存在。

本文中的資訊是根據特定實驗室環境內的裝置所建立。文中使用到的所有裝置皆從已清除(預設))的組態來啟動。如果您的網路運作中,請確保您瞭解任何指令可能造成的影響。

SNMP與遙測

舊版AireOS WLC依靠SNMP作為監控的主要通訊協定。大多數相關資訊(如客戶端計數、加入的 接入點數量、處理器和記憶體使用率)都可以通過監控工具中的SNMP查詢獲取到WLC。

在9800 WLC中,重點在於遙測。遙測在「推送」模式下工作,在該模式下WLC無需查詢即可向伺 服器傳送相關資訊。Catalyst 9800仍提供SNMP供舊版使用。某些資訊可以獨佔用於遙測,而以前 在AireOS上可用的一些OID在9800上尚不可用。

在WLC上設定SNMP

Cisco Catalyst 9800系列無線控制器支援Cisco IOS XE Bengaluru 17.6.1乙太網服務埠(管理介面 VRF/GigabitEthernet 0)。

在此版本之前,只能使用SNMP透過其無線管理介面或備援管理介面來監控Catalyst 9800 WLC(如果版本17.5.1及更高版本上的HA叢集中有待命WLC)。

通過Web介面

SNMPv2c是基於社群的SNMP版本,並且裝置之間的所有通訊都是明文的。SNMPv3是最安全的版本,它提供對資料包的消息完整性檢查、身份驗證和加密。SNMPv1已經非常過時,但仍能提供傳統軟體的相容性。這篇文章沒有提到這一點。

重要信息:預設情況下,SNMPv2c啟用,社群為「private」,具有讀+寫許可權,社群為「 public」,具有只讀許可權。建議刪除這些社群並使用其他名稱建立新社群。

登入9800 WLC的Web介面。在Administration > Management > SNMP下,確保全域性啟用 SNMP。在Community Strings下,將顯示所有當前配置的社群及其許可權級別:

Administratio	n 🍨 Manager	nent > SNMP				
SNMP Mode	ENABL	ED				
General	SNMP Views	Community Strings	V3 User Groups	V3 Users	Hosts	
+ Add	× Delete					
	Commu	unity Name		~	Access Mode	\checkmark
	private				Read/Write	
	public				Read Only	
H 4	1 ▶ ▶	10 🔻 items per page				1 - 2 of 2 items

建立SNMP V3使用者之前,需要定義SNMP V3組。要建立具有讀+寫許可權的使用者組,請將 Read View和Write View設定為v1default。只讀組需要將寫**檢視為**空

V3 User Groups				×
Group Name*	readwritegroup			
Security Level*	Auth	•		
Read View	v1default	•	0	
Write View	v1default	•		
Cancel				Apply to Device

在SNMP V3 Users頁籤下,您可以看到所有已配置的使用者、其許可權以及用於身份驗證和加密的 協定。 按鈕New允許建立新使用者。

有3種安全模式可用:

- 1. AuthPriv =郵件經過身份驗證和加密
- 2. AuthNoPriv =郵件經過身份驗證,但未加密
- 3. NoAuthNoPriv =未對郵件應用安全性

選擇SHA作為身份驗證協定,建議至少使用AES-128作為隱私協定。

V3 Users		×
User Name*	snmpAdmin	
Group Name*	ReadWriteGroup (🔻	+
Security Mode*	AuthPriv 🔻	0
Authentication Protocol	SHA 🔻	
Authentication Password*	•••••	
Privacy Protocol	AES128 V	
Privacy Password*	*****	
Cancel		Apply to Device

通過命令列

也可透過指令行介面(CLI)設定SNMP。CLI提供了其他配置引數,如為v2社群或v3使用者分配訪問 清單的功能。

v2讀+寫社群、v3讀+寫組以及屬於此組的v3使用者的配置示例:

snmp-server manager snmp-server community

僅允許IP地址192.168.10.10上的裝置查詢名為「ReadWriteCommunity」的WLC v2社群的訪問列 表示例:

ip access-list standard 50 10 permit 192.168.10.10 20 deny any snmp-server manager snmp-server community ReadWriteCommunity RW 50

附註: 撰寫本檔案時,系統僅支援標準型ACL。可以分配擴展ACL,但它們無法正常工作。

對象名稱和對象ID(OID)

什麼是對象名稱和OID?

對象ID(簡稱為OID)是表示特定變數或對象的唯一識別符號。例如,當前處理器使用情況被視為 變數,這些值可通過呼叫根據其對象ID進行檢索。每個OID都是唯一的,全世界沒有兩個OID可以相 同,非常類似於MAC地址。

這些識別符號遵循樹層次結構,每個OID都可以追溯到其根。每個供應商都有自己的分支機構,它 們具有共同的根。

一個類比可能是家庭地址,其根基是國家或州,後跟城市郵遞區號、街道以及最後的家庭號碼。

後跟一個點的數字表示到達樹或樹枝中某個點所需的每一步驟。

所有這些值都儲存在每台網路裝置的管理資訊庫(簡稱為MIB)中。每個識別符號都有名稱和定義 (可能值的範圍,型別……)。

要使用SNMP和查詢裝置,不需要在SNMP監控工具上載入MIB。

只要已知有效的OID,裝置就會使用儲存在OID所代表的變數中的值進行響應。但是,如果將MIB載 入到查詢工具中,則它提供了將對象名稱轉換為其ID的優勢,並允許瞭解其說明。 在本示例中,SNMP工具使用OID 1.3.6.1.2.1.1.1.0查詢裝置的SNMP代理的系統說明。

MIB和Cisco WLC上所有對象名稱和ID的清單

思科為9800 WLC提供管理資訊庫(MIB)。它不容易讀取,但MIB包含所有可用的對象名稱及其說明。

所有9800型號(9800-80、9800-40、9800-L、9800-CL、EWC)使用相同的MIB,該MIB可在此處下 載:<u>https://software.cisco.com/download/home/286322605/type/280775088/release/</u>。

最新版本是擁有最新日期的,而不是代碼版本名稱較高的。

已下載的存檔檔案包含多個.my文本檔案,可以匯入到任何第三方SNMP伺服器,也可以使用文本編 輯器開啟。為了查詢特定對象名稱的OID,首先需要找到包含該名稱的準確檔案。

例如,與監控裝置物理狀態相關的所有對象(例如CPU和記憶體)都位於名為CISCO-PROCESS-MIB.my的MIB中。

這裡,「cpmCPUMemoryUsed」是物件名稱,用於提供WLC使用的記憶體數量(以位元組為單位)。MIB檔案都遵循相似的語法。有關已用記憶體對象的資訊如下所示:

cpmCPUMemoryUsed OBJECT-TYPE SYNTAX Gauge32 UNITS "kilo-bytes" MAX-ACCESS read-only STATUS current DESCRIPTION "The overall CPU wide system memory which is currently under use." ::= { cpmCPUTotalEntry 12 }

大多數要監控的第三方軟體依賴於OID,而不是對象名稱。可以使用<u>Cisco SNMP object</u> <u>navigator</u>工具在對象名稱和對象ID<u>之間進行轉換</u>。

在搜尋欄中輸入對象名稱。輸出提供OID和簡短說明。 此外,可以使用相同的工具來查詢所提供的 OID的對象名稱。

Tools & Resources SNMP Object Navigator

HOME	TRANSLATE/BROWSE	SEARCH	DOWNLOAD MIBS	MIB SUPPORT - SW	Help H Feedback
SUPPORT	Translato Drowco Th	o Object Tree			Related Tools
TOOLS & RESOURCES	Indifsiate Drowse II	le Object free			Support Case Manager
SNMP Object Navigator					Cisco Community
					MIB LOCATOF

Translate OID into object name or object name into OID to receive object details

r OID or object name:	cpmCPUMemoryUsed	examples -
	Translate	Object Name: ifIndex

Object Information

Ente

Specific Object Information	tion
Object	cpmCPUMemoryUsed
OID	1.3.6.1.4.1.9.9.109.1.1.1.1.12
Туре	Gauge32
Permission	read-only
Status	current
Units	kilo-bytes
MIB	CISCO-PROCESS-MIB; - View Supporting Images d
Description	"The overall CPU wide system memory which is currently under use."

OID Tree

You are currently viewing your object with 2 v levels of hierarchy above your object.

. iso (1). org.(3). dod.(6). internet.(1). private (4). enterprises.(1). cisco.(9). ciscoMgmt.(9). ciscoProcessMIB.(109). ciscoProcessMIBObjects.(1). cpmCPU.(1)

- --- cpmCPUTotalTable (1)
- --- cpmCPUTotalEntry (1)
- cpmCPUTotalIndex (1)
- -- cpmCPUTotalPhysicalIndex (2)
- cpmCPUTotal5sec (3)
- cpmCPUTotal1min (4)
- cpmCPUTotal5min (5)
- cpmCPUTotal5secRev (6)
- -- cpmCPUTotal1minRev (7)
- cpmCPUTotal5minRev (8)
- cpmCPUMonInterval (9)
- cpmCPUTotalMonIntervalValue (10)
- cpmCPUInterruptMonIntervalValue (11)
- -- cpmCPUMemoryUsed (12) object Details

使用OID監控WLC的狀態

在獲取需要監控的對象的OID之後,可以執行第一個SNMP查詢。

本章中的範例示範如何為SNMPv2社群私人和SNMPv3使用者snmpadmin取得WLC自由記憶體(OID = 1.3.6.1.4.1.9.9.48.1.1.1.5),並將SHA身份驗證密碼**Cisco123#**和AES隱私密碼設定為 **Cisco123#**。控制器管理介面位於10.48.39.133上。

通過Snmpwalk監控

Snmpwalk是使用SNMP GETNEXT請求查詢網路實體以獲取資訊樹的SNMP應用程式。預設情況下 ,它存在於MacOS和大多數Linux發行版中。對於SNMPv2c,命令遵循語法:

snmpwalk -v2c -c **範例:**

VAPEROVI:~ vaperovi\$ snmpwalk -v2c -c private 10.48.39.133 1.3.6.1.4.1.9.9.109.1.1.1.1.12

SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.12.2 = **3783236** <------ Free Memory in Bytes **如果使用SNMPv3**,命令會遵循語法:

snmpwalk -v3 -l authPriv -u <username> -a [MD5|SHA] -A <auth_password> -x [AES|DES] -X
<priv_password> <WLC_management_interface_ip> <OID>

根據在控制器上建立SNMPv3使用者的方式,選擇MD5/SHA和AES/DES。

範例:

VAPEROVI:~ vaperovi\$ snmpwalk -v3 -l authPriv -u snmpadmin -a SHA -A Cisco123# -x AES -X Cisco123# 10.48.39.133 1.3.6.1.4.1.9.9.109.1.1.1.1.12 SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.12.2 = **3783236** <----- Free Memory in Bytes #snmpwalk output still shows v2 even though v3 is used

通過Python3和Pysnmp庫進行監控

為Python 3.9編寫代碼片段,並利用**pysnmp**模組(pip安裝pysnmp)對Catalyst 9800-CL WLC的記 憶體利用率進行SNMP查詢。這些示例使用在前面章節之一中建立的同一SNMPv2社群和 SNMPv3使用者。只需替換變數值並將代碼整合到您自己的自定義指令碼中即可。

SNMPv2示例:

from pysnmp.hlapi import * communityName = 'private' ipAddress = '10.48.39.133' OID =
'1.3.6.1.4.1.9.9.109.1.1.1.1.1.12' for (errorIndication, errorStatus, errorIndex, varBinds) in
nextCmd(SnmpEngine(), CommunityData(communityName), UdpTransportTarget((ipAddress, 161)),
ContextData(), ObjectType(ObjectIdentity(OID)), lexicographicMode=False): if errorIndication:
print(errorIndication) elif errorStatus: print('%s at %s' % (errorStatus.prettyPrint(),
errorIndex and varBinds[int(errorIndex) - 1][0] or '?')) else: for varBind in varBinds: print('
= '.join([x.prettyPrint() for x in varBind]))
輸出輸出:

SNMPv2-SMI::enterprises.9.9.109.1.1.1.1.1.2.2 = 3783236 SNMPv3示例:

from pysnmp.hlapi import * username = 'snmpadmin' ipAddress = '10.48.39.133' OID = '1.3.6.1.4.1.9.9.109.1.1.1.1.12' authKey = 'Ciscol23#' privKey = 'Ciscol23#' for (errorIndication, errorStatus, errorIndex, varBinds) in nextCmd(SnmpEngine(), UsmUserData(username, authKey, privKey, authProtocol=usmHMACSHAAuthProtocol, privProtocol=usmAesCfbl28Protocol), UdpTransportTarget((ipAddress, 161)), ContextData(), ObjectType(ObjectIdentity(OID)), lexicographicMode=False): if errorIndication: print(errorIndication) elif errorStatus: print('%s at %s' % (errorStatus.prettyPrint(), errorIndex and varBinds[int(errorIndex) - 1][0] or '?')) else: for varBind in varBinds: print(' = '.join([x.prettyPrint() for x in varBind]))

與第三方軟體(Grafana+Prometheus/PRTG網路監控器/SolarWinds)整合

Cisco Prime Infrastructure能夠輕鬆監控和設定多個網路裝置,包括無線控制器。

Prime Infrastructure已預先載入所有OID,且與WLC的整合僅包含將WLC憑證新增到Prime中。由 於9800個WLC,Prime主要依靠遙測技術收集WLC的大部分詳細資訊,而一小部分資訊是通過 SNMP獲得的。

另一方面,Cisco WLC還可以與多個第三方監控解決方案整合,只要已知的OID。

Grafana+Prometheus、PRTG Network monitor和SolarWinds伺服器等程式允許匯入MIB或OID並在 使用者友好的圖形中顯示值。

此整合可能需要在SNMP伺服器端進行一些調整。在此示例中,PRTG監控伺服器提供每核心 CPU使用率OID,OID返回字串「0%/1%、1%/1%、0%/1%、0%/1%」。PRTG需要整數值並引發 錯誤。

w	Sensor SNMP '0%/1%, 1%/1%, 0	Custom ^戸 ★★★ %/1%, 0%/1%' is not a v	슈슈 alid integer value					
	Overview	(•) Live Data	2 days	30 days	365 days	📥 Historic Data	🔳 Log	Settings
	Value							
			0 F					

與CUCM整合

Cisco Unified Communications Manager(CUCM)具有無線終端跟蹤功能,允許它根據客戶端所連線的AP大致跟蹤客戶端位置。若要使用此功能,CUCM必須通過SNMP查詢從WLC獲取資訊。

重要信息:許多CUCM版本受Cisco錯誤ID <u>CSCvv07486</u>的影響 — 由於SNMP請求過大,無 法在WLC中同步接入點。當CUCM運行受影響的版本並且WLC具有10個以上接入點時,會觸 發此問題。由於CUCM在單個批次請求中查詢大量OID的方式不正確,WLC拒絕應答或響應過 大而過。「過大」響應並非總是立即發出,而且可能會被延遲。WLC上的SNMP調試顯示「 SNMP:通過UDP從VIanXXSrParseV1SnmpMessage上的x.x.x.x接收的資料包: packlet過 大SrDoSnmp: ASN分析錯誤」。

最常見受監控OID的表

該表包括一些最常用的對象名稱及其OID,考慮了MIB以非使用者友好語法顯示資料:

附註: 命令「show snmp mib 「∣in <Object name>」可用於驗證9800 WLC上是否有可用的 特定對象名稱。

說明	對象名稱	OID	預期響應
總CPU使用率(以過 去5秒的百分比為單位	cpmCPUTotal5sec	1.3.6.1.4.1.9.9.109.1.1. 1.1.3	整數:5
) 過去1分鐘內CPU總使 用率(%)	cpmCPUTotal1min	1.3.6.1.4.1.9.9.109.1.1. 1.1.4	整數:5
過去5分鐘內CPU總使 用率(%)	cpmCPUTotal5min	1.3.6.1.4.1.9.9.109.1.1. 1.1.5	整數:5
當前使用的記憶體 (以位元組為單位)	cpmCPUMemoryUsed	1.3.6.1.4.1.9.9.109.1.1. 1.1.12	整數: 3783236
當前可用記憶體(以 位元組為單位)	cpmCPUMemoryFree	1.3.6.1.4.1.9.9.109.1.1. 1.1.13	整數: 4263578
自上次啟動以來可用 記憶體的最小量(以 位元組為單位)	cpmCPUMemoryLowest	1.3.6.1.4.1.9.9.109.1.1. 1.1.15	整數: 4251212
上次重新載入原因	為什麼重新載入	1.3.6.1.4.1.9.2.1.2	字串:「reload」
所有加入的AP的軟體 映像	bsnAPSsoftwareVersion	1.3.6.1.4.1.14179.2.2.1 .1.8	字串:「17.5.1.12」
所有加入的AP的型號	bsnAPModel	1.3.6.1.4.1.14179.2.2.1 .1.16	字串:「AIR-AP1840I-E-ł
客戶端數量	Х	Х	Х
加入的AP數量	Х	Х	Х
電源裝置狀態	Х	Х	Х
風扇狀態	Х	Х	Х

目前存在支援客戶端總數和加入的接入點數中的OID的增強請求:

Cisco錯誤ID CSCvu26309 - 9800上不存在客戶端計數的SNMP OID

Cisco錯誤ID CSCvv44330 - 9800上不存在AP的SNMP OID

在撰寫本文時,不支援電源單元(PSU)的狀態和風扇狀態。已開啟增強請求: 思科漏洞ID <u>CSCwa23598</u> - 9800 WLC增強功能/對PSU和風扇狀態SNMP OID(1.3.6.1.4.1.9.9.13)的支援

在HA中監控待命WLC

從<u>17.5</u>.1版開始,只能在高可用性<u>群集中監視備用</u>WLC。待命WLC可以直接透過RMI監控,也可以 透過作用中WLC的查詢來監控。

直接監控待命WLC

只有在RMI + RP HA型別中運行的WLC才能直接監控待命WLC。這是透過待命WLC的備援備援備 援管理介面(RMI)IP位址完成。 在此案例中,僅<u>正式支援**IF-MIB**</u>的OID,因此只能監控待命WLC上所有介面的狀態。9800-CL WLC的輸出範例:

說明	對象名稱	OID	預期響應
介面名稱	ifDescr	1.3.6.1.2.1.2.2.1.2	SNMPv2-SMI::mib-2.2.2.1.
			GigabitEthernet1
			SNMPv2-SMI::mib-2.2.2.1.
			GigabitEthernet2
			SNMPv2-SMI::mib-2.2.2.1.
			GigabitEthernet3
			SNMPv2-SMI::mib-2.2.2.1. VoIP-Null0
			SNMPv2-SMI::mib-2.2.2.1. Null0
			SNMPv2-SMI::mib-2.2.2.1. Vlan1
			SNMPv2-SMI::mib-2.2.2.1. Vlan39
介面運行狀態(1=up, 2=down)	ifOperStatus	1.3.6.1.2.1.2.2.1.8	SNMPv2-SMI::mib-2.2.2.1. 2
,			SNMPv2-SMI::mib-2.2.2.1. 2
			SNMPv2-SMI::mib-2.2.2.1. 1
			SNMPv2-SMI::mib-2.2.2.1. 2
			SNMPv2-SMI::mib-2.2.2.1. 2
			SNMPv2-SMI::mib-2.2.2.1. 1

注意:備用WLC Gig 2埠(用於流量交換的中繼埠)預計處於關閉狀態。發生故障切換後,備 用WLC上的Gig 2埠將啟動。9800物理裝置(9800-80、9800-40和9800-CL)上的 TenGigabit埠也存在類似情況。

透過作用中WLC監控待命WLC

也可透過對作用中WLC的查詢來監控待命WLC狀態。只有CISCO-LWAPP-HA-MIB和CISCO-PROCESS-MIB MIB才能得到官方支援。在查詢HA中的作用中WLC時,第一個回應代表作用中 WLC的值,而第二個回應代表待命WLC的值。

說明	對象名稱	OID	預期響應
總CPU使用率(以過	cpmCPUTotal5sec	1.3.6.1.4.1.9.9.109.1.1.	SNMPv2-
去5秒的百分比為單位		1.1.3	SMI::enterprises.9.9.109.1.
)			5 = 3
			SNMPv2-
			SMI::enterprises.9.9.109.1.
			6 = 7
過去1分鐘內CPU總使	cpmCPUTotal1min	1.3.6.1.4.1.9.9.109.1.1.	SNMPv2-
用率(%)		1.1.4	SMI::enterprises.9.9.109.1.
			5 = 8
			SNMPv2-

			SMI::enterprises.9.9.109.1.
			6 = 6
			SNMPv2-
			SMI::enterprises.9.9.109.1.
過去5分鐘內CPU總使	onmCDI ITotolEmin	1.3.6.1.4.1.9.9.109.1.1.	5 = 10
用率(%)	cpmCPOTotaismin	1.1.5	SNMPv2-
			SMI::enterprises.9.9.109.1.
			6 = 15
當前使用的記憶體	cpmCPUMemoryUsed	1.3.6.1.4.1.9.9.109.1.1.	SNMPv2-
(以位元組為單位)		1.1.12	SMI::enterprises.9.9.109.1.
			.5 = 4318980
			SNMPv2-
			SMI::enterprises.9.9.109.1.
			.6 = 3950332
			SNMPv2-
			SMI::enterprises.9.9.109.1.
當前可用記憶體(以	comCPUMemoryFree	1.3.6.1.4.1.9.9.109.1.1.	.5 = 4318739
位元組為單位)	opinion emiciniony ree	1.1.13	SNMPv2-
			SMI::enterprises.9.9.109.1.
			.6 = 3950738
目上次啟動以來可用	cpmCPUMemoryLowest	1.3.6.1.4.1.9.9.109.1.1.	SNMPv2-
記憶體的最小量(以		1.1.15	SMI::enterprises.9.9.109.1.
位元組為單位)			.5 = 3763868
			SNMPv2-
			SMI::enterprises.9.9.109.1.
			.6 = 4132588
待命WLC的狀態	cLHaPeerHotStandbyEvent	1.3.6.1.4.1.9.9.843.1.3.	SNMPv2-
(1=up , 0=down)		4	SMI::enterprises.9.9.843.1
			= 1

關於此翻譯

思科已使用電腦和人工技術翻譯本文件,讓全世界的使用者能夠以自己的語言理解支援內容。請注 意,即使是最佳機器翻譯,也不如專業譯者翻譯的內容準確。Cisco Systems, Inc. 對這些翻譯的準 確度概不負責,並建議一律查看原始英文文件(提供連結)。