配置為將生成樹從PVST+遷移到MST

目錄

<u>簡介</u>

本文提供在園區網路中將生成樹模式從PVST+遷移到多生成樹(MST)的配置示例。

<u>必要條件</u>

<u>需求</u>

設定MST之前,請先參閱<u>瞭解多生成樹通訊協定(802.1s)</u>。

下表顯示Catalyst交換器對MST的支援,以及支援所需的最低軟體。

Catalyst平台	含RSTP的MST
Catalyst 2900 XL和3500 XL	不可用
Catalyst 2950和3550	Cisco IOS [®] 12.1(9)EA1
Catalyst 3560	Cisco IOS 12.1(9)EA1
Catalyst 3750	Cisco IOS 12.1(14)EA1
Catalyst 2955	所有Cisco IOS版本
Catalyst 2948G-L3和 4908G-L3	不可用
Catalyst 4000、2948G和	7.1

2980G(Catalyst OS(CatOS))	
Catalyst 4000和 4500(Cisco IOS)	12.1(12c)EW
Catalyst 5000和5500	不可用
Catalyst 6000和 6500(CatOS)	7.1
Catalyst 6000和 6500(Cisco IOS)	12.1(11b)EX、12.1(13)E、 12.2(14)SX
Catalyst 8500	不可用

• Catalyst 3550/3560/3750:Cisco IOS版本12.2(25)SEC中的MST實施基於IEEE 802.1s標準。早期Cisco IOS版本中的MST實現是預先標準的。

• Catalyst 6500(IOS):Cisco IOS版本12.2(18)SXF中的MST實施基於IEEE 802.1s標準。早期 Cisco IOS版本中的MST實現是預先標準的。

<u>採用元件</u>

本文是使用Cisco IOS軟體版本12.2(25)和CatOS 8.5(8)建立的,但是此組態適用於表中提到的最低 IOS版本。

本文中的資訊是根據特定實驗室環境內的裝置所建立。文中使用到的所有裝置皆從已清除(預設))的組態來啟動。如果您的網路正在作用,請確保您已瞭解任何指令可能造成的影響。

<u>慣例</u>

請參閱思科技術提示慣例以瞭解更多有關文件慣例的資訊。

<u>背景資訊</u>

MST功能是IEEE 802.1s,是802.1Q的修正案。MST將802.1w快速生成樹(RST)演算法擴展到多個 生成樹。此擴展可在VLAN環境中實現快速收斂和負載平衡。PVST+和快速PVST+為每個VLAN運 行生成樹例項。在MST中,可以將VLAN分組到一個例項中。它使用橋接協定資料單元(BPDU)版本 3,該版本向後相容使用BPDU版本0的802.1D STP。

MSTP配置:配置包括區域名稱、修訂版號和MST VLAN到例項分配對映。您可以使用spanningtree mst configuration全域性配置命令為區域配置交換機。

MST區域:MST區域由具有相同MST配置的互連網橋組成。對網路中的MST區域數量沒有限制。

MST區域內的生成樹例項:例項只不過是在spanning-tree mst configuration命令中對映的一組 VLAN。預設情況下,所有VLAN都劃分為IST0,稱為內部生成樹(IST)。 您可以手動建立編號為1到 4094的例項,這些例項標籤為MSTn(n=1到4094),但該區域最多只能支援65個例項。某些版本 僅支援16個例項。請參閱適用於您的交換器平台的軟體組態設定指南。

IST/CST/CIST:IST是唯一可以在MST網路中傳送和接收BPDU的例項。MSTn例項是區域的本地例 項。不同區域的IST通過通用生成樹(CST)互連。 每個MST區域中的IST集合以及連線IST的CST稱 為通用和內部生成樹(CIST)。

向後相容性:MST向後相容PVST+、快速PVST+和準標準MST(MISTP)。MST交換機通過通用生成

樹(CST)連線到其他STP(PVST+和快速PVST+)交換機。 其他STP(PVST+和快速PVST+)交 換機將整個MST區域視為單個交換機。將預標準MST交換機與標準MST交換機連線時,需要在標準 MST交換機的介面中配置spanning-tree mst pre-standard。

<u>設定</u>

本示例包含兩節。第一部分顯示當前的PVST+配置。第二部分顯示從PVST+遷移到MST的配置。

註:使用Command Lookup Tool(僅供已註冊客戶使用)可獲取本節中使用的命令的詳細資訊。

網路圖表

本檔案會使用以下網路設定:

此圖包括以下交換機:

- 分佈層1和分佈層2
- 兩台稱為Access1(IOS)和Access2(CatOS)的接入層交換機
- 兩台稱為Services1和Services2的伺服器聚合交換機

VLAN 10、30和100傳輸資料流量。VLAN 20、40和200傳輸語音流量。

本檔案會使用以下設定:

- <u>PVST+配置</u>。
- <u>MST遷移</u>。

<u>PVST+配置</u>

交換機在PVST+中配置,以根據網路圖傳輸資料和語音流量。以下是組態簡短摘要:

- Distribution1交換機使用Distribution1(config)# spanning-tree vlan 10,30,100 root primary命令 配置為資料VLAN 10、30和100的主根網橋;語音VLAN 20、40和200的輔助根網橋使用 Distribution1(config)# spanning-tree vlan 20,40,200 root secondary命令。
- Distribution2交換機使用Distribution2(config)# spanning-tree vlan 20,40,200 root primary命令 配置為語音VLAN 20、40和200的主根橋,而資料VLAN 10、30和100的輔助根橋使用 Distribution2(config)# spanning-tree vlan 10,30,100 root secondary命令。
- 在所有交換機上配置spanning-tree backbonefast命令,以便在網路中出現間接鏈路故障時更快 地收斂STP。
- 在接入層交換機上配置spanning-tree uplinkfast命令,以便在直接上行鏈路出現故障時更快地收 斂STP。

分佈1

```
Distribution1#show running-config
Building configuration ...
spanning-tree mode pvst
spanning-tree extend system-id
spanning-tree backbonefast
spanning-tree vlan 10,30,100 priority 24576
spanning-tree vlan 20,40,200 priority 28672
!
vlan 10,20,30,40,100,200
!
interface FastEthernet1/0/1
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20
interface FastEthernet1/0/3
switchport trunk encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan 30,40
!
interface FastEthernet1/0/5
switchport trunk encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan 100,200
1
interface FastEthernet1/0/23
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20,30,40,100,200
interface FastEthernet1/0/24
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20,30,40,100,200
```

```
end
```

您可以看到連線埠Fa1/0/24已使用**spanning-tree vlan 20、40、200 port-priority 64命令設**定。 Distribution2是VLAN 20、40和200的已配置根。Distribution2具有兩條指向Distribution1的鏈路 :Fa1/0/23和Fa1/0/24。兩個埠都是VLAN 20、40和200的指定埠,因為Distribution2是這些 VLAN的根。兩個連線埠具有相同的優先順序128(預設值)。此外,這兩條鏈路在Distribution1中 的開銷相同:fa1/0/23和fa1/0/24。Distribution1選擇兩個埠中最小的埠號,以便將埠設定為轉發狀 態。最小埠號是Fa1/0/23,但根據網路圖,語音VLAN 20、40和200可以通過Fa1/0/24。您可以通 過以下方法完成此操作:

1. 降低Distribution1中的埠成本:Fa1/0/24。

2. 降低Distribution2中的埠優先順序: Fa1/0/24。

在本例中,埠優先順序降低以通過fa1/0/24轉發VLAN 20、40、200。

分佈2 Distribution2#show running-config Building configuration ... 1 spanning-tree mode pvst spanning-tree extend system-id spanning-tree backbonefast spanning-tree vlan 10,30,100 priority 28672 spanning-tree vlan 20,40,200 priority 24576 1 vlan 10,20,30,40,100,200 interface FastEthernet1/0/2 switchport trunk encapsulation dotlg switchport mode trunk switchport trunk allowed vlan 10,20 interface FastEthernet1/0/4 switchport trunk encapsulation dotlq switchport mode trunk switchport trunk allowed vlan 30,40 interface FastEthernet1/0/6 switchport trunk encapsulation dotlq switchport mode trunk switchport trunk allowed vlan 100,200 interface FastEthernet1/0/23 switchport trunk encapsulation dotlq switchport mode trunk switchport trunk allowed vlan 10,20,30,40,100,200 interface FastEthernet1/0/24 switchport trunk encapsulation dotlg switchport mode trunk spanning-tree vlan 20,40,200 port-priority 64 switchport trunk allowed vlan 10,20,30,40,100,200 end

您可以看到,Services1中的埠Fa0/5、Services2中的Fa0/6和Fa0/48都有生成樹埠開銷和埠優先順 序配置。這裡對STP進行了調整,以便Services1和Services2的VLAN 100和200可以通過它們之間 的中繼鏈路。如果未應用此配置,則Services1和2無法通過它們之間的中繼鏈路傳遞流量。而是選 擇通過Distribution1和Distribution2的路徑。 Services2看到兩條到達VLAN 100根(Distribution1)的等價路徑:一個通過Services1,另一個通過 Distribution2。STP按以下順序選擇最佳路徑(根埠):

- 1. 路徑開銷
- 2. 轉發交換機的網橋ID
- 3. 最低埠優先順序
- 4. 最小的內部埠號

在本範例中,兩條路徑的成本相同,但VLAN 100的Distribution2(24576)的優先順序低於 Services1(32768),因此Services2選擇Distribution2。在本範例中,Services1上的連線埠成本 :fa0/5設定為較低,以便Services2選擇Services1。路徑開銷將覆蓋轉發交換機優先順序編號。

服務1
Services1# show running-config
Building configuration
spanning-tree mode pvst
spanning-tree portfast bpduguard default
spanning-tree extend system-id
spanning-tree backbonefast
!
vlan 100,200
!
interface FastEthernet0/5
switchport trunk encapsulation dotlq
switchport mode trunk
spanning-tree vlan 100 cost 18
switchport trunk allowed vlan 100,200
!
interface FastEthernet0/47
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
!
interface FastEthernet0/48
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
!
!
end

同樣的概念也適用於Services1選擇Services2轉發VLAN 200。在降低Services2中VLAN 200的成本 — fa0/6後,Services1選擇fa0/47轉發VLAN 200。這裡的要求是通過fa0/48轉發VLAN 200。您可以 使用以下兩種方法完成此操作:

- 1. 降低Services1中的埠成本:Fa0/48。
- 2. 降低Services2中的埠優先順序:Fa0/48。

在本例中,Services2中的埠優先順序降低為通過fa0/48轉發VLAN 200。

服務2
Services2# show running-config
Building configuration
spanning-tree mode pvst
spanning-tree portfast bpduguard default
spanning-tree extend system-id
spanning-tree backbonefast

```
vlan 100,200
interface FastEthernet0/6
 switchport trunk encapsulation dotlq
 switchport mode trunk
 spanning-tree vlan 200 cost 18
 switchport trunk allowed vlan 100,200
!
interface FastEthernet0/47
 switchport trunk encapsulation dotlg
 switchport mode trunk
switchport trunk allowed vlan 100,200
interface FastEthernet0/48
 switchport trunk encapsulation dotlq
 switchport mode trunk
 spanning-tree vlan 200 port-priority 64
 switchport trunk allowed vlan 100,200
1
 !
end
Access1
Access1#show running-config
Building configuration...
1
spanning-tree mode pvst
spanning-tree portfast bpduguard default
spanning-tree extend system-id
spanning-tree uplinkfast
spanning-tree backbonefast
!
vlan 10,20
1
interface FastEthernet0/1
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20
1
interface FastEthernet0/2
 switchport trunk encapsulation dotlq
 switchport mode trunk
 switchport trunk allowed vlan 10,20
1
end
Access2
Access2> (enable) show config all
#mac address reduction
set spantree macreduction enable
1
#stp mode
set spantree mode pvst+
1
#uplinkfast groups
set spantree uplinkfast enable rate 15 all-protocols off
1
\#backbonefast
```

set spantree backbonefast enable

```
1
#vlan parameters
set spantree priority 49152 1
set spantree priority 49152 30
set spantree priority 49152 40
!
#vlan(defaults)
set spantree enable 1,30,40
set spantree fwddelay 15 1,30,40
                           1,30,40
set spantree hello 2
set spantree maxage 20
                          1,30,40
1
#vtp
set vlan 1,30,40
!
#module 3 : 48-port 10/100BaseTX Ethernet
set trunk 3/3 on dot1q 30,40
set trunk 3/4 on dot1q 30,40
!
end
```

<u>MST遷移</u>

很難將企業網路中的所有交換機同時轉換為MST。由於向後相容性,您可以逐階段對其進行轉換。 在計畫維護視窗中實施更改,因為生成樹重新配置可能會中斷通訊流。啟用MST時,也會啟用 RSTP。生成樹uplinkfast和backbonefast功能是PVST+功能,當您啟用MST時,該功能被禁用,因 為這些功能是在RSTP內構建的,而MST依賴RSTP。在遷移過程中,您可以在IOS中刪除這些命令 。在catOS backbonefast和uplinkfast中,命令會自動從配置中清除,但功能配置(例如PortFast、 bpduguard、bpdufilter、根防護和環防護)也適用於MST模式。這些功能的用法與PVST+模式中的 用法相同。如果已在PVST+模式下啟用這些功能,則在遷移到MST模式後,該功能將保持活動狀態 。設定MST時,請遵循以下原則和限制:

- 遷移到802.1s/w的第一步是正確識別點對點和邊緣埠。確保需要快速轉換的所有交換機到交換 機鏈路都是全雙工的。邊緣埠是通過PortFast功能定義的。
- · 選擇網路中所有交換機通用的配置名稱和修訂版號。思科建議您將儘可能多的交換機放置在單個區域;將網路劃分為多個單獨區域是不有利的。
- 仔細決定交換網路中需要多少例項,並牢記例項轉換為邏輯拓撲。避免將任何VLAN對映到例項
 0。決定要將哪些VLAN對映到這些例項,並為每個例項仔細選擇根和備份根。
- 確保中繼承載對映到某個例項的所有VLAN或完全不承載此例項的任何VLAN。
- MST可以與按埠運行PVST+的傳統網橋互動,因此,如果可以清楚地瞭解互動,混合這兩種型別的網橋就不是問題。始終嘗試將CST和IST的根保留在區域內。如果通過中繼與PVST+網橋互動,請確保MST網橋是該中繼上允許的所有VLAN的根。請勿使用PVST網橋作為CST的根。
- 確保所有PVST生成樹根網橋的優先順序都比CST根網橋低(在數字上更高)。
- •請勿在任何PVST網橋中的任何VLAN上禁用生成樹。
- •請勿使用存取連結連線交換器,因為存取連結可以對VLAN進行分割。
- 任何涉及大量當前或新邏輯VLAN埠的MST配置都必須在一個維護視窗中完成,因為完整的 MST資料庫將針對任何增量更改(例如向例項新增新VLAN或跨例項移動VLAN)重新初始化。

在本示例中,園區網路有一個名為region1的MST區域以及兩個MST1例項(資料VLAN 10、30和 100)和MST2(語音VLAN 20、40和200)。您可以看到,MST僅運行兩個例項,但PVST+運行六 個例項。Distribution1被選為CIST區域根。這意味著Distribution1是IST0的根。為了根據圖對網路中 的流量進行負載均衡,Distribution1配置為MST1(資料VLAN的例項)的根,MST2配置為 MST2(語音VLAN的例項)的根。

您需要首先遷移核心,然後逐步遷移到接入交換機。更改生成樹模式之前,請在交換機上配置

MST配置。然後將STP型別更改為MST。在本示例中,遷移按以下順序進行:

- 1. 分佈1和分佈2
- 2. 服務1和服務2
- 3. Access1
- 4. Access2

1. Distribution1和Distribution2遷移:

```
!--- Distribution1 configuration: Distribution1(config)#spanning-tree mst configuration
Distribution1(config-mst)#name region1
Distribution1(config-mst)#instance 1 vlan 10, 30, 100
Distribution1(config-mst)#instance 2 vlan 20, 40, 200
Distribution1(config-mst)#exit
Distribution1(config)#spanning-tree mst 0-1 root primary
Distribution1(config)#spanning-tree mst 2 root secondary
```

```
!--- Distribution2 configuration: Distribution2(config)#spanning-tree mst configuration
Distribution2(config-mst)#name region1
Distribution2(config-mst)#revision 10
Distribution2(config-mst)#instance 1 vlan 10, 30, 100
Distribution2(config-mst)#instance 2 vlan 20, 40, 200
Distribution2(config-mst)#exit
Distribution2(config)#spanning-tree mst 2 root primary
Distribution2(config)#spanning-tree mst 0-1 root secondary
```

```
!--- Make sure that trunks carry all the VLANs that are mapped to an instance.
Distribution1(config)#interface FastEthernet1/0/1
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution1(config)#interface FastEthernet1/0/3
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!
Distribution1(config)#interface FastEthernet1/0/5
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution1(config)#interface FastEthernet1/0/23
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Distribution1(config)#interface FastEthernet1/0/24
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Distribution2(config)#interface FastEthernet1/0/2
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution2(config)#interface FastEthernet1/0/4
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution2(config)#interface FastEthernet1/0/6
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution2(config)#interface FastEthernet1/0/23
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Distribution2(config)#interface FastEthernet1/0/24
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!--- STP mode conversion. Distribution1(config)#spanning-tree mode mst
```

Distribution2(config)#spanning-tree mode mst

```
Distribution2(config)#interface FastEthernet1/0/24
Distribution2(config-if)#spanning-tree mst 2 port-priority 64
```

```
!--- PVST+ cleanup. Distribution1(config)#no spanning-tree backbonefast
Distribution2(config)#no spanning-tree backbonefast
Distribution2(config)#interface FastEthernet1/0/24
Distribution2(config-if)#no spanning-tree vlan 20,40,200 port-priority 64
```

注意:建議您手動設定MST0根。在本示例中,Distribution1被選為MST0根,因此 Distribution1成為CIST根。現在,網路處於混合配置。可以如下圖所示

Distribution1和Distribution2位於MST區域1中,PVST+交換機將區域1視為單個網橋。重新收 斂後的流量如圖2所示。您仍然可以按照圖1調整PVST+(生成樹VLAN X開銷)交換機,以負 載均衡資料和語音流量。按照步驟2至4遷移所有其他交換機後,按照圖1獲得最終生成樹拓撲

```
2. Services1和Services2遷移:
```

```
!--- Services1 configuration: Services1(config)#spanning-tree mst configuration
Services1(config-mst)#name region1
Services1(config-mst)#instance 1 vlan 10, 30, 100
Services1(config-mst)#instance 2 vlan 20, 40, 200
Services1(config-mst)#exit

!--- Services2 configuration: Services2(config)#spanning-tree mst configuration
Services2(config-mst)#name region1
Services2(config-mst)#instance 1 vlan 10, 30, 100
Services2(config-mst)#instance 2 vlan 20, 40, 200
Services2(config-mst)#instance 2 vlan 20, 40, 200
Services2(config-mst)#instance 1 vlan 10, 30, 100
Services2(config-mst)#instance 2 vlan 20, 40, 200
Services2(config-mst)#exit
```

```
!--- Make sure that trunks carry all the !--- VLANs that are mapped to an instance.
Services1(config)#interface FastEthernet0/5
Services1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!
Services1(config)#interface FastEthernet0/47
Services1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Services1(config)#interface FastEthernet0/48
Services1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Services2(config)#interface FastEthernet0/6
Services2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Services2(config)#interface FastEthernet0/47
Services2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Services2(config)#interface FastEthernet0/48
Services2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!--- STP Mode conversion: Services1(config)#spanning-tree mode mst
Services2(config)#spanning-tree mode mst
```

!--- MST tuning - to load balance data and voice VLAN traffic: Services1(config)#interface

```
fastEthernet 0/46
Services1(config-if)#spanning-tree mst 2 cost 200000
Services1(config-if)#exit
Services1(config)#interface fastEthernet 0/47
Services1(config-if)#spanning-tree mst 2 cost 100000
Services1(config-if)#exit
```

```
Services2(config)#interface FastEthernet 0/6
Services2(config-if)#spanning-tree mst 1 cost 500000
Services2(config-if)#exit
```

```
!--- PVST+ cleanup: Services1(config)#no spanning-tree uplinkfast
Services1(config)#no spanning-tree backbonefast
Services1(config)#interface FastEthernet0/5
Services1(config-if)#no spanning-tree vlan 100 cost 18
Services1(config-if)#exit
```

```
Services2(config)#no spanning-tree uplinkfast
Services2(config)#no spanning-tree backbonefast
Services2(config)#interface FastEthernet0/6
Services2(config-if)#no spanning-tree vlan 200 cost 18
Services2(config-if)#exit
Services2(config)#interface FastEthernet0/48
Services2(config-if)#no spanning-tree vlan 200 port-priority 64
Services2(config-if)#exit
```

3. Access1遷移:

```
!--- Access1 configuration: Access1(config)#spanning-tree mst configuration
Access1(config-mst)#name region1
Access1(config-mst)#revision 10
Access1(config-mst)#instance 1 vlan 10, 30, 100
Access1(config-mst)#instance 2 vlan 20, 40, 200
Access1(config-mst)#exit
```

```
!--- Make sure that trunks carry all the VLANs that are mapped to an instance.
Access1(config)#interface FastEthernet0/1
Access1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
```

!
Access1(config)#interface FastEthernet0/2
Access1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!--- STP mode conversion: Access1(config)#spanning-tree mode mst

!--- PVST+ cleanup: Access1(config)#no spanning-tree uplinkfast
Access1(config)#no spanning-tree backbonefast

4. Access2遷移:

!--- Access2 configuration: Access2> (enable) set spantree mst config name region1 revision
10
Edit Buffer modified.
Use 'set spantree mst config commit' to apply the changes

Access2> (enable) **set spantree mst 1 vlan 10,30,100** Edit Buffer modified. Use 'set spantree mst config commit' to apply the changes

Access2> (enable) **set spantree mst 2 vlan 20,40,200** Edit Buffer modified. Use 'set spantree mst config commit' to apply the changes

Access2> (enable) set spantree mst config commit

!--- Ensure that trunks carry all the VLANs that are mapped to an instance: Access2>
(enable)set trunk 3/3 on dot1q 10,20,30,40,100,200
Access2> (enable)set trunk 3/4 on dot1q 10,20,30,40,100,200

STP mode conversion

Access2> (enable) **set spantree mode mst** PVST+ database cleaned up. Spantree mode set to MST.

!--- Backbonefast and uplinkfast configurations are cleaned up automatically.

<u>驗證</u>

建議每次更改配置時都檢驗生成樹拓撲。

驗證Distribution1交換機是資料VLAN 10、30和100的根網橋,並驗證生成樹轉發路徑是否與圖中的 路徑匹配。

Distribution1# show spanning-tree mst 0

##### MST0	vlans mapped: 1-9,1	1-19,21-29	,31-39,41-99,	101-199,201-4	1094
Bridge	address 0015.63f6.b70	0 priorit	y 24576	(24576 sysid	0)
Root	this switch for the C	IST			
Operational	hello time 2 , forward	d delay 15	, max age 20,	txholdcount	6
Configured	hello time 2 , forward	d delay 15	, max age 20,	max hops	20
Interface	Role Sts Cost	Prio.Nbr	Туре		
Fa1/0/1	Desg FWD 200000	128.1	P2p		
Fa1/0/3	Desg FWD 200000	128.3	P2p		
Fa1/0/5	Desg FWD 200000	128.5	P2p		
Fa1/0/23	Desg FWD 200000	128.23	P2p		
Fa1/0/24	Desg FWD 200000	128.24	P2p		

Distribution1#show spanning-tree mst 1

##### MST1	vlans mapped: 10,30	0,100	
Bridge	address 0015.63f6.b70	00 priority	24577 (24576 sysid 1)
Root	this switch for MST1		
Interface	Role Sts Cost	Prio.Nbr Type	
 Fa1/0/1	Desg FWD 200000	 128.1 P2p	
E-1/0/2	Dogg EWD 20000	1202 020	

Fa1/0/3	Desg	F.MD	200000	128.3	P2p
Fa1/0/5	Desg	FWD	200000	128.5	P2p
Fa1/0/23	Desg	FWD	200000	128.23	P2p
Fa1/0/24	Desg	FWD	200000	128.24	P2p

Distribution1#show spanning-tree mst 2

##### MST2	vlans ma	apped: 20,40	,200				
Bridge	address	0015.63f6.b70	0 priorit	сy	28674 (286	72 sysid	2)
Root	address	0015.c6c1.300	0 priorit	СУ	24578 (245	76 sysid	2)
	port	Gi1/0/24	cost		200000	rem hops	4
Interface	Role	Sts Cost	Prio.Nbr	Туре			
Gi1/0/1	Desg	FWD 200000	128.1	P2p			
Gi1/0/3	Desg	FWD 200000	128.3	P2p			
Gi1/0/23	Altn	BLK 200000	128.23	P2p			
Gi1/0/24	Root	FWD 200000	128.24	P2p			

Distribution2#show spanning-tree mst 0

##### MST0	vlans mapped: 1-9,	11-19,21-29,31-39	,41-99,101-199,201-4094
Bridge	address 0015.c6c1.30	00 priority	28672 (28672 sysid 0)
Root	address 0015.63f6.b7	00 priority	24576 (24576 sysid 0)
	port Fal/0/23	path cost	0
Regional Root	address 0015.63f6.b7	00 priority	24576 (24576 sysid 0)
		internal cost	200000 rem hops 19
Operational	hello time 2 , forwa:	rd delay 15, max	age 20, txholdcount 6
Configured	hello time 2 , forwa:	rd delay 15, max	age 20, max hops 20
Interface	Role Sts Cost	Prio.Nbr Type	
Fa1/0/2	Desg FWD 200000	128.54 P2p	
Fa1/0/4	Desg FWD 200000	128.56 P2p	
Fa1/0/6	Desg FWD 200000	128.58 P2p	
Fa1/0/23	Root FWD 200000	128.75 P2p	
Fa1/0/24	Altn BLK 200000	128.76 P2p	

!--- CIST root is Distribution1. All the !--- switches are in the same region "region1". !--Hence in all the switches in the region1 you can see the path cost as 0. Distribution2#show
spanning-tree mst 1

##### MST1	vlans ma	apped: 10,30	,100				
Bridge	address	0015.c6c1.300	0 priorit	СУ	28673 (286	572 sysid	1)
Root	address	0015.63f6.b70	0 priorit	су	24577 (245	576 sysid	1)
	port	Gi2/0/23	cost		200000	rem hops	1
Interface	Role	Sts Cost	Prio.Nbr	Туре			
Gi2/0/2	Desg	FWD 200000	128.54	P2p			
Gi2/0/4	Desg	FWD 200000	128.56	P2p			
Gi2/0/23	Root	FWD 200000	128.75	P2p			
Gi2/0/24	Altn	BLK 200000	128.76	P2p			

Distribution2#show spanning-tree mst 2

MST2 vlans mapped: 20,40,200 address 0015.c6c1.3000 priority 24578 (24576 sysid 2) Bridge this switch for MST2 Root Interface Role Sts Cost Prio.Nbr Type _____ ____ Desg FWD 200000 128.54 P2p Gi2/0/2 Gi2/0/4 Desg FWD 200000 128.56 P2p Gi2/0/6 Desg FWD 200000 128.58 P2p Desg FWD 200000 128.75 P2p Gi2/0/23 Desg FWD 200000 64.76 P2p Gi2/0/24 Access2> (enable) show spantree mst 1 MST Spanning tree mode Instance 1 VLANs Mapped: 10,30,100 00-15-63-f6-b7-00 Designated Root Designated Root Priority 24577 (root priority: 24576, sys ID ext: 1) Designated Root Cost 200000 Remaining Hops 19 3/3 Designated Root Port Bridge ID MAC ADDR 00-d0-00-50-30-00 Bridge ID Priority 32769 (bridge priority: 32768, sys ID ext: 1) Port State Role Cost Prio Type forwarding ROOT 200000 32 P2P 3/3 ALTR 200000 32 P2P 3/4 blocking Access2> (enable) show spantree mst 2 Spanning tree mode MST 2 Instance VLANs Mapped: 20,40,200 00-15-c6-c1-30-00 Designated Root Designated Root Priority 24578 (root priority: 24576, sys ID ext: 2) Designated Root Cost 200000 Remaining Hops 19 3/4 Designated Root Port Bridge ID MAC ADDR 00-d0-00-50-30-00 Bridge ID Priority 32770 (bridge priority: 32768, sys ID ext: 2) Port State Role Cost Prio Type _____ ___ ___ 3/3 blocking ALTR 200000 32 P2P forwarding ROOT 200000 32 P2P 3/4

<u>疑難排解</u>

目前尚無適用於此組態的具體疑難排解資訊。

<u>相關資訊</u>

- 瞭解多重跨距樹狀目錄通訊協定(802.1s)
- 瞭解快速跨距樹狀目錄通訊協定 (802.1w)
- 擴充樹通訊協定問題和相關設計考量

- <u>跨距樹狀目錄通訊協定根目錄防護增強功能</u>
 <u>交換器產品支援</u>
- LAN 交換技術支援
- 技術支援與文件 Cisco Systems