由於IPv6組播流量,Catalyst交換機上的CPU使用 率高

目錄

 簡介

 必要條件

 需求

 採用元件

 問題

 凝難排解與解決方案

 Catalyst 3850 系列交換器

 解決方案

 Catalyst 4500 系列交換器

 解決方案

 Catalyst 6500 系列交換器

 解決方案

 相關思科支援社群討論

簡介

本文檔介紹由於IPV6多播偵聽程式發現資料包泛洪而導致各種Catalyst平台上的CPU使用率較高 ,以及緩解此問題的方法。

必要條件

沒有先決條件。

需求

本文件沒有特定需求。

採用元件

本檔案中的資訊是根據Cisco Catalyst 6500系列交換器、Catalyst 4500系列交換器和Catalyst 3850系列交換器。

本文中的資訊是根據特定實驗室環境內的裝置所建立。文中使用到的所有裝置皆從已清除(預設)的組態來啟動。

問題

某些Cisco Catalyst平台上可能會出現CPU使用率較高的情況,這是因為MAC地址在

333.xxxx.xxxx範圍內的IPv6組播流量被傳送到CPU。

根據RFC7042,所有MAC-48組播識別符號的字首為「33-33」(即,從33-33-00-00-00-00到33-33-FF-FF-FF-FF範圍內的2**32組播MAC識別符號)均按照[RFC2464]中對IPv6組播指定的方式使用。 具有多點傳送目的地位址DST的IPv6封包(由16個八位元組成DST[1]到DST[16])會傳送到乙太網 路多點傳送位址,該位址的前兩個八位元是值3336十六進位制的,最後四個八位元是DST的最後四 個八位元,如圖1所示。

在某些情況下,當使用特定NIC卡的主機裝置進入睡眠模式時,它們會泛洪IPv6組播流量。此問題 不限於特定主機供應商,儘管某些晶片集比其他晶片集更常表現出此行為。

疑難排解與解決方案

您可以使用下列步驟瞭解看到高CPU利用率的Catalyst交換機是否受此問題影響,並實施相應的解 決方案。

Catalyst 3850 系列交換器

在Catalyst 3850交換機上,NGWC L2M進程使用CPU處理IPv6資料包。當交換器上停用多點傳送 監聽器探索(MLD)監聽時,MLD加入/離開封包會湧向所有成員連線埠。而且,如果有許多傳入 MLD加入/離開資料包,此過程將佔用更多的CPU週期來傳送所有成員埠上的資料包。已經發現,當 某些主機進入睡眠模式時,它們可能傳送數千個資料包/秒的IGMPv6 MLD流量。

3850#show processes cpu detailed process iosd sorted | exc 0.0 Core 0: CPU utilization for five seconds: 43%; one minute: 35%; five minutes: 33% Core 1: CPU utilization for five seconds: 54%; one minute: 46%; five minutes: 46% Core 2: CPU utilization for five seconds: 75%; one minute: 63%; five minutes: 58% Core 3: CPU utilization for five seconds: 48%; one minute: 49%; five minutes: 57% PID T C TID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process 2766882 2422952 291 23.52 23.67 23.69 34816 iosd 12577 L 12577 L 3 12577 1911782 1970561 0 23.34 23.29 23.29 34818 iosd 12577 L 0 14135 694490 3264088 0 0.28 0.34 0.36 0 iosd.fastpath 2832830 6643 0 93.11 92.55 92.33 0 NGWC L2M 162 I

解決方案

在受影響的交換機上配置ipv6 mld snooping,以全域性啟用ipv6 mld snooping。這樣會降低CPU利 用率。 啟用MLD監聽後,在軟體和硬體中構建每VLAN IPv6組播地址表。然後,交換機在硬體中執行基於 IPv6組播地址的橋接,從而阻止軟體處理這些資料包。

有關配置MLD監聽的詳細資訊,請<u>按一下連結</u>

在早期版本的IOS XE上,發現CPU隊列可能會因為這個問題而停滯,這會阻止該隊列中的所有控制 資料包進入CPU。此問題已在IOS版本3.3.3和3.6.0及更高版本中通過<u>CSCuo14829</u>修復。如需詳細 資訊,請參閱此錯誤。

Catalyst 4500 系列交換器

Catalyst 4500系列交換器支援使用三重內容可定址記憶體(TCAM)的IPv6多點傳送流量的硬體轉送 。 <u>Cisco Catalyst 4500E和4500X系列交換器上的多點傳送對此進行說明</u>

對於IPv6組播偵聽程式發現流量,交換機需要執行軟體轉發(使用CPU資源)。 如<u>在Catalyst</u> <u>4500交換器上設定IPv6 MLD窺探</u>中所述,可以全域性或每個VLAN啟用或停用MLD窺探。當啟用 MLD監聽時,在軟體中構建每VLAN IPv6組播MAC地址表,在軟體和硬體中構建每VLAN IPv6組播 地址表。然後,交換機在硬體中執行基於IPv6組播地址的橋接。這是Catalyst 4500系列交換器上的 預期行為。

若要檢查要傳送到CPU的封包型別,我們可以執行「debug platform packet all buffer」,然後執行 「show platform cpu packet buffered」命令。

4500#debug platform packet all buffer platform packet debugging is on Cat4500#sh platform cpu packet buffered Total Received Packets Buffered: 1024 Index 0: 33 days 11:42:21:833532 - RxVlan: 214, RxPort: Te1/15 Priority: Normal, Tag: Dot1Q Tag, Event: L2 Router, Flags: 0x40, Size: 90 Eth: Src 44:39:C4:39:5A:4A Dst 33:33:FF:7F:EB:DB Type/Len 0x86DD Remaining data: 0: 0x60 0x0 0x0 0x0 0x0 0x20 0x0 0x1 0xFE 0x80 10: 0x0 0x0 0x0 0x0 0x0 0x0 0x46 0x39 0xC4 0xFF 20: 0xFE 0x39 0x5A 0x4A 0xFF 0x2 0x0 0x0 0x0 0x0 30: 0x0 0x0 0x0 0x0 0x0 0x1 0xFF 0x7F 0xEB 0xDB 40: 0x3A 0x0 0x5 0x2 0x0 0x0 0x1 0x0 0x83 0x0 此封包從來源mac位址44:39:C4:39:5A:4A到達vlan 214上的介面Tengigabitethernet1/15。在這種情 '況下,協定0x86DD是IPv6,Dst MAC 33:33:FF:7F:EB:DB用於組播IPv6 MLD節點。

解決方案

有兩個選項可以解決由於此流量而導致的CPU使用率較高的問題。

- 在終端主機上禁用生成IPv6組播偵聽程式發現流量。這可以通過升級NIC驅動程式或在傳送 IPv6資料包的主機的BIOS上禁用該功能來實現。您可以聯絡您的客戶端電腦的供應商,他們 可幫助禁用BIOS上的功能或升級NIC驅動程式。
- 2. 啟用控制平面策略(CoPP),以丟棄要傳送到CPU的過量IPv6組播偵聽器發現流量。並且,這 些資料包是一個本地鏈路的跳數限制,因此預計這些資料包將被轉發到CPU。

ipv6 access-list IPv6-Block
permit ipv6 any any
!
class-map TEST
match access-group name IPv6-Block
!
policy-map ipv6
class TEST
police 32000 conform-action drop exceed-action drop
!
control-plane
service-policy input ipv6
在以上示例中,我們將CPU處理的IPv6流量限製為每秒32000個資料包。

Catalyst 6500 系列交換器

Catalyst 6500交換器使用TCAM在硬體中作出轉送決定,而只要TCAM具有轉送專案,通常不需要 CPU協助。

Catalyst 6500交換器上的Supervisor Engine 720具有兩個CPU。一個CPU是網路管理處理器 (NMP)或交換機處理器(SP)。 另一個CPU是第3層CPU,稱為路由處理器(RP)。

show process cpu 命令中列出了進程和中斷CPU利用率。如下所示,高 由中斷導致的CPU主要基 於流量。中斷交換流量,是與特定進程不匹配,但仍需要轉發的流量。以下示例顯示由於中斷而導 致RP上的CPU使用率較高的Catalyst 6500交換機。

6500#show process cpu CPU utilization for five seconds: 98%/92%; one minute: 99%; five minutes: 99% PID Runtime(ms) Invoked 檢查是否有任何介面或第3層VLAN正在丟棄大量流量。(輸入佇列捨棄)。如果是,流量可能會從 該VLAN傳送到RP。

Vlan19 is up, line protocol is up Input queue: 0/75/6303532/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo 5 minute input rate 19932000 bits/sec, 26424 packets/sec 5 minute output rate 2662000 bits/sec, 1168 packets/sec 以下命令可用於查詢介面vlan 19的輸入隊列緩衝區中的所有資料包。

6500#show buffer input-interface vlan 19 packet 或者,可以使用NetDR捕獲來捕獲通往Catalyst 6500交換機上CPU的流量。本文<u>將解釋如何解釋使</u> 用NetDR捕獲捕獲的資料包。

------ dump of incoming inband packet ----interface Vl16, routine mistral_process_rx_packet_inlin, timestamp 03:17:56.380
dbus info: src_vlan 0x10(16), src_indx 0x1001(4097), len 0x5A(90)
bpdu 0, index_dir 0, flood 1, dont_lrn 0, dest_indx 0x4010(16400)
E8820000 00100000 10010000 5A080000 0c000418 01000008 00000008 4010417E
mistral hdr: req_token 0x0(0), src_index 0x1001(4097), rx_offset 0x76(118)
requeue 0, obl_pkt 0, vlan 0x10(16)
destmac 33.33.FF.4A.C3.FD, srcmac C8.CB.B8.29.33.62, protocol 86DD
protocol ipv6: version 6, flow 1610612736, payload 32, nexthdr 0, hoplt 1

class 0, src FE80::CACB:B8FF:FE29:3362, dst FF02::1:FF4A:C3FD

解決方案

使用下列一個或多個解決方案。

1. 使用以下配置丟棄IPv6組播資料包。

6500(config)#mac-address-table static 3333.FF4A.C3FD vlan <vlan #> drop 2. 將IPv6組播流量重定向到未使用的或管理員關閉的介面(本例中為Gi1/22)。

6500(config)#mac-address-table 3333.FF4A.C3FD vlan 19 interface Gi1/22

3. 使用VLAN訪問控制清單(VACL)丟棄IPv6組播流量。

```
6500(config)#mac access-li extended Multicast_MAC
6500(config-ext-macl)#permit any host 3333.FF4A.C3FD
6500(config-ext-macl)#exit
6500(config)#vlan access-map block-ipv6 10
6500(config-access-map)#action drop
6500(config-access-map)#match mac address Multicast_MAC
6500(config-access-map)#exit
6500(config-access-map)#exit
6500(config-access-map)#vlan access-map block-ipv6 20
6500(config-access-map)#action forward
6500(config-access-map)#exit
6500(config-access-map)#exit
6500(config-access-map)#exit
```

4. 禁用IPv6 MLD監聽。

6500(config)#no ipv6 mld snoopin5. 使用控制平面原則制定(CoPP)捨棄IPv6多點傳送流量

6500(config)#ipv6 access-list test 6500(config-ipv6-acl)#permit ipv6 any any 6500(config-ipv6-acl)#exit

6500(config)#class-map TEST 6500(config-cmap)#match access-group name test 6500(config-cmap)#exit

6500(config)#policy-map ipv6
6500(config-pmap)#class TEST
6500(config-pmap-c)#police 320000 conform-action drop exceed-action drop
6500(config-pmap-c)#exit

6500(config)#control-plane 6500(config-cp)#service-policy in ipv6 6500(config-cp)#exit

6. 在入口介面上使用風暴控制。storm-control在1秒間隔內監控傳入的流量級別,並在此間隔內 將流量級別與配置的流量風暴控制級別進行比較。流量風暴控制級別是埠總可用頻寬的百分比 。每個埠都有一個流量風暴控制級別,用於所有型別的流量(廣播、組播和單播)。 6500(config-if)#storm-control multicast level 10

7.如果SP(交換機處理器)上的CPU使用率較高,請在下面應用解決方法。

6500(config)#mls rate-limit ipv6 mld 10 1

如果您無法根據本文檔中提供的資訊確定原因,請開啟TAC服務請求進行進一步調查。