Identificar e Solucionar Problemas de Operações do Plano de Controle nos Switches Catalyst 9000

Contents

Introdução Informações de Apoio **Terminologia** CoPP do Catalyst 9000 Implementação de CoPP Política padrão Ajustar CoPP Troubleshooting **Metologia** Comandos show úteis Determine a utilização geral e histórica Verificar Políticas de Plano de Controle Coletar informações sobre tráfego direcionado Inspecionar o tráfego vinculado à CPU Cenários comuns Perda intermitente de ICMP (ping) para o IP local Redirecionamentos ICMP altos e operação DHCP lenta Outros recursos

Introdução

Este documento descreve como solucionar problemas e validar a integridade do plano de controle nos switches da família Catalyst 9000 que executam o Cisco IOS® XE.

Informações de Apoio

O principal trabalho de um switch é encaminhar pacotes o mais rápido possível. A maioria dos pacotes é encaminhada no hardware, mas determinados tipos de tráfego devem ser manipulados pela CPU do sistema. O tráfego que chega à CPU é tratado o mais rápido possível. Espera-se que uma certa quantidade de tráfego seja vista na CPU, mas uma superabundância leva a problemas operacionais. A família de switches Catalyst 9000 incorpora um mecanismo robusto de Políticas de Plano de Controle (CoPP - Control Plane Policing) por padrão para evitar problemas causados pela saturação do tráfego da CPU.

Problemas inesperados surgem em certos casos de uso em função da operação normal. A correlação entre causa e efeito não é óbvia às vezes, o que torna o problema difícil de abordar. Este documento fornece ferramentas para validar a integridade do plano de controle e fornece um fluxo de trabalho sobre como abordar problemas que envolvem o caminho de inserção ou punt do plano de controle. Ele também fornece vários cenários comuns com base nos problemas observados no campo.

Tenha em mente que o caminho de punt da CPU é um recurso limitado. Os switches modernos de encaminhamento de hardware podem lidar com um volume de tráfego exponencialmente maior. A família de switches Catalyst 9000 suporta aproximadamente 19.000 pacotes por segundo (pps) agregados na CPU a qualquer momento. Exceda esse limite, e o tráfego pontuado é policiado sem peso.

Terminologia

- Forwarding Engine Driver (FED): este é o coração do switch Cisco Catalyst e é responsável por toda a programação/encaminhamento de hardware
- IOSd: Este é o daemon Cisco IOS que é executado no kernel Linux. Ele é executado como um processo de software dentro do kernel
- Packet Delivery System (PDS): essa é a arquitetura e o processo de como os pacotes são entregues de e para os vários subsistemas. Como exemplo, ele controla como os pacotes são entregues do FED ao IOSd e vice-versa
- Plano de Controle (CP):O plano de controle é um termo genérico usado para agrupar as funções e o tráfego que envolvem a CPU do Switch Catalyst. Isso inclui o tráfego como o Spanning Tree Protocol (STP), o Hot Standby Router Protocol (HSRP) e os protocolos de roteamento que são destinados ao switch ou enviados do switch. Isso também inclui protocolos da camada de aplicação como Secure Shell (SSH) e Simple Network Management Protocol (SNMP) que devem ser tratados pela CPU
- Plano de dados (DP):Normalmente, o plano de dados abrange os ASICs de hardware e o tráfego que é encaminhado sem assistência do Plano de controle
- Punt:Pacote de controle de protocolo de entrada que interceptou no DP enviado ao CP para processá-lo
- Inserir:pacote de protocolo gerado pelo CP enviado ao DP para saída em interface(s) de E/S
- LSMPI:Interface de Pontuação de Memória Compartilhada do Linux

CoPP do Catalyst 9000

A base da proteção da CPU na família de switches Catalyst 9000 é o CoPP. Com o CoPP, uma política de Qualidade de Serviço (QoS) gerada pelo sistema é aplicada no caminho de punt/inserção da CPU. O tráfego vinculado à CPU é agrupado em várias classes diferentes e, subsequentemente, mapeado nos vigilantes de hardware individuais associados à CPU. Os vigilantes evitam a saturação da CPU por uma classe específica de tráfego.

Implementação de CoPP

O tráfego vinculado à CPU é classificado em filas. Essas filas/classes são definidas pelo sistema e não podem ser configuradas pelo usuário. Os vigilantes são configurados no hardware. A família Catalyst 9000 suporta 32 vigilantes de hardware para 32 filas.

Os valores específicos diferem de plataforma para plataforma. Em geral, há 32 filas definidas pelo sistema. Essas filas se relacionam a mapas de classe, que se relacionam a índices de vigilante. Os índices do vigilante têm uma taxa de vigilante padrão. Essa taxa é configurável pelo usuário, embora as alterações na política de CoPP padrão aumentem a susceptibilidade a um impacto inesperado no serviço.

Nomes dos mapas de classe	Índice do vigilante (Nº do vigilante)	Filas de CPU (Nº da fila)
system- cpp- police- data	WK_CPP_POLICE_DATA(0)	WK_CPU_Q_ICMP_GEN(3) WK_CPU_Q_BROADCAST(12) WK_CPU_Q_ICMP_REDIRECT(6)
system- cpp- police-l2- control	WK_CPP_POLICE_L2_CONTROL(1)	WK_CPU_Q_L2_CONTROL(1)
system- cpp- police- routing- control	WK_CPP_POLICE_ROUTING_CONTROL(2)	WK_CPU_Q_ROUTING_CONTROL(4) WK_CPU_Q_LOW_LATENCY (27)
system- cpp- police- control- low- priority	WK_CPP_POLICE_CO NTROL_LOW_PRI(3)	WK_CPU_Q_GENERAL_PUNT(25)
system- cpp- police- punt- webauth	WK_CPP_POLICE_PU NT_WEBAUTH(7)	WK_CPU_Q_PUNT_WEBAUTH(22)
system- cpp- police- controle-	WK_CPP_POLICE_TOPOLOGY_CONTROL(8)	WK_CPU_Q_TOPOLOGY_CONTROL(15)

Valores definidos pelo sistema para CoPP

Nomes dos mapas de classe	Índice do vigilante (Nº do vigilante)	Filas de CPU (№ da fila)
de- topologia		
system- cpp- police- multicast	WK_CPP_POLICE_MULTICAST(9)	WK_CPU_Q_TRANSIT_TRAFFIC(18) WK_CPU_Q_MCAST_DATA(30)
system- cpp- police- sys- data	WK_CPP_POLICE_SYS _DATA(10)	WK_CPU_Q_LEARNING_CACHE_OVFL(1 WK_CPU_Q_CRYPTO_CONTROL(23) WK_CPU_Q_EXCEPTION(24) WK_CPU_Q_EGR_EXCEPTION(28) WK_CPU_Q_NFL_SAMPLED_DATA(26) WK_CPU_Q_GOLD_PKT(31) WK_CPU_Q_RPF_FAILED(19)
system- cpp- police- dot1x- auth	WK_CPP_POLICE_DOT1X(11)	WK_CPU_Q_DOT1X_AUTH(0)
system- cpp- police- protocol- snooping	WK_CPP_POLICE_PR(12)	WK_CPU_Q_PROTO_SNOOPING(16)
system- cpp- police-sw- forward	WK_CPP_POLICE_SW_FWD (13)	WK_CPU_Q_SW_FORWARDING_Q(14) WK_CPU_Q_LOGGING(21) WK_CPU_Q_L2_LVX_DATA_PACK(11)
system- cpp- police- forus	WK_CPP_POLICE_FORUS(14)	WK_CPU_Q_FORUS_ADDR_RESOLUTIO WK_CPU_Q_FORUS_TRAFFIC(2)

Nomes dos mapas de classe	Índice do vigilante (Nº do vigilante)	Filas de CPU (Nº da fila)
system- cpp- police- multicast- end- station	WK_CPP_POLICE_MULTICAST_SNOOPING(15)	WK_CPU_Q_MCAST_END_STATION_SEF
system- cpp- default	WK_CPP_POLICE_DEFAULT_POLICER(16)	WK_CPU_Q_DHCP_SNOOPING(17) WK_CPU_Q_UNUSED(7) WK_CPU_Q_EWLC_CONTROL(9) WK_CPU_Q_EWLC_DATA(10)
system- cpp- police- stackwise- virt-control	WK_CPP_STACKWISE_VIRTUAL_CONTROL(5)	WK_CPU_Q_STACKWISE_VIRTUAL_CON (29)
system- cpp- police- l2lvx- control	WK_CPP_ L2_LVX_CONT_PACK(4)	WK_CPU_Q_L2_LVX_CONT_PACK(8)

Cada fila está relacionada a um tipo de tráfego ou a um conjunto específico de recursos. Esta não é uma lista completa:

Filas de CPU (Nº da fila)	Recurso(s)
WK_CPU_Q_DOT1X_AUTH(0)	Autenticação baseada em porta IEEE 802.1x
WK_CPU_Q_L2_CONTROL(1)	Dynamic Trunking Protocol (DTP) Protocolo VLAN Trunking (VTP) Port Aggregation Protocol (PAgP)

Filas de CPU e recursos associados

Protocolo de sinalização de informações do cliente (CISP)				
Protocolo de retransmissão de sessão de mensagem				
Protocolo de Registro de VLAN Múltiplo (MVRP)				
Rede Móvel Metropolitana (MMN)				
Protocolo LLDP				
Detecção de enlace unidirecional (UDLD)				
LACP (Link Aggregation Control Protocol, protocolo de controle de agregação de link)				
Cisco Discovery Protocol (CDP)				
STP (Spanning Tree Protocol)				
Host como Telnet, Pingv4 e Pingv6 e SNMP Detecção de keepalive / loopback Inicie o protocolo IKE (Internet Key Exchange) (IPSec)				
ICMP - destino inalcançável ICMP-TTL expirado				
Routing Information Protocol versão 1 (RIPv1) RIPv2 IGRP (Interior Gateway Routing Protocol) Protocolo de gateway de borda (BGP) PIM-UDP Virtual Router Redundancy Protocol (VRRP)				
_				

Filas de CPU (Nº da fila)	Recurso(s)
	(HSRPv1)
	HSRPv2
	Protocolo de balanceamento de carga do gateway (GLBP)
	Protocolo de distribuição de rótulo (LDP - Label Distribution Protocol)
	Protocolo de Comunicação de Cache de Web (WCCP - Web Cache Communication Protocol)
	RIPng (Routing Information Protocol, protocolo de informações de roteamento de próxima geração)
	Abra o protocolo OSPF
	Open Shortest Path First versão 3(OSPFv3)
	Enhanced Interior Gateway Routing Protocol (EIGRP)
	Enhanced Interior Gateway Routing Protocol versão 6 (EIGRPv6)
	DHCPv6
	Multicast independente de protocolo (PIM)
	Protocol Independent Multicast versão 6 (PIMv6)
	Protocolo de Roteador de Hot Standby de próxima geração (HSRPng)
	Controle de IPv6
	Manutenção de atividade do Generic Routing Encapsulation (GRE)
	Pont de conversão de endereço de rede (NAT)
	Sistema intermediário para sistema intermediário (IS-IS)

Filas de CPU (Nº da fila)	Recurso(s)
WK_CPU_Q_FORUS_ADDR_RESOLUTION(5)	Address Resolution Protocol (ARP) Propaganda de vizinho IPv6 e solicitação de vizinho
WK_CPU_Q_ICMP_REDIRECT(6)	redirecionamento de Internet Control Message Protocol (ICMP)
WK_CPU_Q_INTER_FED_TRAFFIC(7)	Inserção de domínio de bridge da camada 2 para comunicação interna.
WK_CPU_Q_L2_LVX_CONT_PACK(8)	Pacote XID (Exchange ID)
WK_CPU_Q_EWLC_CONTROL(9)	Controlador sem fio integrado (eWLC) [Controle e provisionamento de pontos de acesso sem fio (CAPWAP) (UDP 5246)]
WK_CPU_Q_EWLC_DATA(10)	Pacote de dados eWLC (dados CAPWAP, UDP 5247)
WK_CPU_Q_L2_LVX_DATA_PACK(11)	Pacote unicast desconhecido apontado para solicitação de mapa.
WK_CPU_Q_BROADCAST(12)	Todos os tipos de broadcast
WK_CPU_Q_OPENFLOW(13)	Estouro de cache de aprendizagem (Camada 2 + Camada 3)
	Dados - lista de controle de acesso (ACL) completa Dados - opções de IPv4
WK_CPU_Q_CONTROLLER_PUNT(14)	Dados - IPv6 salto a salto Dados - sem recursos / capturar tudo Dados - Encaminhamento de Caminho Reverso (RPF) incompleto

Filas de CPU (Nº da fila)	Recurso(s)
	Pacote Glean
WK_CPU_Q_TOPOLOGY_CONTROL(15)	STP (Spanning Tree Protocol) Protocolo Ethernet resiliente (REP) Protocolo Spanning Tree Compartilhado (SSTP)
WK_CPU_Q_PROTO_SNOOPING(16)	Rastreamento Address Resolution Protocol (ARP) para Dynamic ARP Inspection (DAI)
WK_CPU_Q_DHCP_SNOOPING(17)	rastreamento de DHCP
WK_CPU_Q_TRANSIT_TRAFFIC(18)	Isso é usado para pacotes apontados pelo NAT, que precisam ser manipulados no caminho do software.
WK_CPU_Q_RPF_FAILED(19)	Dados - falha de mRPF (RPF multicast)
WK_CPU_Q_MCAST_END_STATION _SERVICE(20)	Internet Group Management Protocol (IGMP) / Controle de descoberta de ouvinte multicast (MLD)
WK_CPU_Q_LOGGING(21)	Registro da lista de controle de acesso (ACL)
WK_CPU_Q_PUNT_WEBAUTH(22)	Autenticação da Web
WK_CPU_Q_HIGH_RATE_APP(23)	Broadcast
WK_CPU_Q_EXCEPTION(24)	indicação IKE Violação de aprendizagem de IP Violação de segurança de porta IP Violação de endereço IP estático Verificação de escopo IPv6

Filas de CPU (Nº da fila)	Recurso(s)					
	Exceção de Remote Copy Protocol (RCP) Falha de RPF unicast					
WK_CPU_Q_SYSTEM_CRITICAL(25)	Sinalização de mídia/Proxy sem fio ARP					
WK_CPU_Q_NFL_SAMPLED_DATA(26)	Dados de amostra do Netflow e Media Services Proxy (MSP)					
WK_CPU_Q_LOW_LATENCY(27)	Detecção de encaminhamento bidirecional (BFD - Bidirectional Forwarding Detection), protocolo de tempo de precisão (PTP - Precision Time Protocol)					
WK_CPU_Q_EGR_EXCEPTION(28)	Exceção de resolução de saída					
WK_CPU_Q_STACKWISE_VIRTUAL _CONTROL(29)	Protocolos de empilhamento frontal, ou seja, SVL					
WK_CPU_Q_MCAST_DATA(30)	Criação de dados - (S,G) Dados - joins locais Dados - Registro PIM Dados - switchover de SPT Dados - Multicast					
WK_CPU_Q_GOLD_PKT(31)	Ouro					

Política padrão

Por padrão, a política de CoPP gerada pelo sistema é aplicada ao caminho de punt/inserção. A política padrão pode ser visualizada usando comandos comuns baseados em MQC. Ele também pode ser visto na configuração do switch. A única política que pode ser aplicada na entrada ou saída da CPU/plano de controle é a política definida pelo sistema.

Use "show policy-map control-plane" para exibir a política aplicada ao plano de controle:

<#root>

```
Catalyst-9600#

show policy-map control-plane

Control Plane

Service-policy input: system-cpp-policy

Class-map: system-cpp-police-ios-routing (match-any)

0 packets, 0 bytes

5 minute offered rate 0000 bps, drop rate 0000 bps

Match: none

police:

rate 17000 pps, burst 4150 packets

conformed 95904305 bytes; actions:

transmit

exceeded 0 bytes; actions:

drop
```

<snip>

```
Class-map: class-default (match-any)
0 packets, 0 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: any
```

Ajustar CoPP

As taxas de vigilante CoPP são configuráveis pelo usuário. Os usuários também podem desativar filas.

Este exemplo demonstra como ajustar um valor de vigilante individual. Neste exemplo, a classe ajustada é "system-cpp-police-protocol-snooping".

<#root>
Device>
enable
Device#
configure terminal
Device(config)#
policy-map system-cpp-policy
Device(config-pmap)#

```
Device(config-pmap)#
class system-cpp-police-protocol-snooping
Device(config-pmap-c)#
Device(config-pmap-c)#
police rate 100 pps
Device(config-pmap-c-police)#
Device(config-pmap-c-police)#
exit
Device(config-pmap-c)#
exit
Device(config-pmap)#
exit
Device(config)#
Device(config)#
control-plane
Device(config-cp)#
Device(config)#
control-plane
Device(config-cp)#
service-policy input system-cpp-policy
Device(config-cp)#
Device(config-cp)#
end
Device#
```

show policy-map control-plane

Este exemplo demonstra como desativar totalmente uma fila. Tenha cuidado ao desativar filas, pois isso pode levar a uma possível saturação da CPU.

```
<#root>
Device>
enable
Device#
configure terminal
Device(config)#
policy-map system-cpp-policy
Device(config-pmap)#
Class system-cpp-police-protocol-snooping
Device(config-pmap-c)#
no police rate 100 pps
Device(config-pmap-c)#
end
```

Troubleshooting

Metologia

A utilização da CPU é afetada por duas atividades básicas: processos e interrupção. Os processos são atividades estruturadas que a CPU executa enquanto a interrupção se refere a pacotes interceptados no plano de dados e enviados à CPU para ação. Juntas, essas atividades compreendem a utilização total da CPU. Como o CoPP é ativado por padrão, um impacto no serviço não se correlaciona necessariamente com a alta utilização da CPU. Se o CoPP fizer seu trabalho, a utilização da CPU não sofrerá grande impacto. É importante considerar a utilização geral da CPU, mas a utilização geral não conta toda a história. Os comandos e utilitários show nesta seção são usados para avaliar rapidamente a integridade da CPU e identificar detalhes relevantes sobre o tráfego vinculado à CPU.

Diretrizes:

 Determine se o problema está relacionado ao plano de controle. A maior parte do tráfego de trânsito é encaminhado no hardware. Apenas certos tipos de tráfego e certos cenários envolvem a CPU e o plano de controle, portanto, tenha isso em mente durante toda a investigação.

- Entenda sua linha de base de utilização. É importante entender como é a utilização normal para que possam ser identificados desvios da norma.
- Valide a utilização geral para processos e interrupções. Identificar todos os processos que ocupam volumes inesperados de ciclos da CPU. Se a utilização ficar fora do intervalo esperado, isso pode ser motivo de preocupação. É importante entender a utilização média de um sistema, para que desvios fora da norma sejam reconhecidos. Tenha em mente que a utilização isolada não é uma imagem completa da integridade do plano de controle.
- Determine se há aumentos ativos de quedas em CoPP. As quedas de CoPP nem sempre são indicativas de um problema, mas se você solucionar um problema relacionado a uma classe de tráfego que está ativamente vigiada, esse é um forte indicador de relevância.

Comandos show úteis

O switch permite uma supervisão rápida da integridade da CPU e das estatísticas de CoPP. Há também uma CLI útil para determinar rapidamente o ponto de ingresso do tráfego vinculado à CPU.

Determine a utilização geral e histórica

 "Show processes cpu sorted" é usado para visualizar a utilização geral da CPU. O argumento "sorted" classifica a saída do processo com base no percentual de uso. Os processos que usam mais recursos da CPU estão na parte superior da saída. A utilização devido a interrupções também é fornecida como uma porcentagem.

<#root>

Catalyst-9600#

show processes cpu sorted

CPU utilization for five seconds: 92%/13%; one minute: 76%; five minutes: 73%

<<<--- Utilization is displayed for 5 second (both process and interrupt), 1 minute and 5 minute interva

92% refers to the d

The 13% value refer

PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process

344	547030523	607054509	901	38.13%	30.61%	29.32%	0	SISF Switcher Th
345	394700227	615024099	641	31.18%	22.68%	21.66%	0	SISF Main Thread
98	112308516	119818535	937	4.12%	4.76%	5.09%	0	Crimson flush tr
247	47096761	92250875	510	2.42%	2.21%	2.18%	0	Spanning Tree
123	35303496	679878082	51	1.85%	1.88%	1.84%	0	IOSXE-RP Punt Se
234	955	1758	543	1.61%	0.71%	0.23%	3	SSH Process
547	5360168	5484910	977	1.04%	0.46%	0.44%	0	DHCPD Receive

229	27381066	963726156	28	1.04%	1.34%	1.23%	0 IP Input	
79	13183805	108951712	121	0.48%	0.55%	0.55%	0 IOSD ipc tas	k
9	1073134	315186	3404	0.40%	0.06%	0.03%	0 Check heaps	
37	11099063	147506419	75	0.40%	0.54%	0.52%	0 ARP Input	
312	2986160	240782059	12	0.24%	0.12%	0.14%	0 DAI Packet P	roce
<snip></snip>	>							
565	0	1	0	0.00%	0.00%	0.00%	0 LICENSE AGEN	г
566	14	1210	11	0.00%	0.00%	0.00%	0 DHCPD Timer	
567	40	45	888	0.00%	0.00%	0.00%	0 OVLD SPA Bac	kgro
568	12	2342	5	0.00%	0.00%	0.00%	0 DHCPD Databa	se
569	0	12	0	0.00%	0.00%	0.00%	0 SpanTree Flu	sh
571	0	1	0	0.00%	0.00%	0.00%	0 EM Action CN	S
572	681	140276	4	0.00%	0.00%	0.00%	0 Inline power	inc

 "Show processes cpu history" fornece um gráfico histórico da utilização da CPU nos últimos 60 segundos, 5 minutos e 72 horas.

<#root>

Catalyst-9600#

show processes cpu history

<<<--- The numbers at the top of each column represent the highest value seen throughout the time period

22255555999994444444444400000888888888881111177777333335555500

It is read top-down. "9" over "2" in this example means "92%" for example.

100 *** ***** ******** 90 ***** 80 70 60 50 ********************** ******* 40 ****** 30 20 10

<<<--- The "*" represents the highest value during the given time period. This relates to a momentary spectrum

In this example, utilization spiked to 92% in the last 5 seconds.

0 5 0 5 0 5 0 5 0 5 0 CPU% per second (last 60 seconds) * = maximum CPU% # = average CPU% 431823091102635316235129283771336574892809604014230901133511

100 ** *

90 ***** *********

<<<--- The "#" represents the average utilization. This indicates sustained utilization.

In this example, within the last 5 minutes the average utilization was sustained around 70% while

the maximum utilization spiked to 94%.

	9999999999999	999999	999999	99999	99999	99999	99999	99999	999999	999999	9999999	99999	99999999
	66565656664	655566	666556	5657	5654	55656	57737	55556	757454	155457	775957	55464	8576757
100	*****	*****	*****	****	*** :	****	*** *	****	*** *	** **	*****	** *	****
90	****	*****	*****	* * * * *	****	****	****	****	*****	*****	*****	****	****
80	****	*****	*****	****	****	****	****	*****	*****	*****	*****	****	****
70	###########	######	######	#####	####	#####	####	#####	######	+#####	######	#####	#####
60	###########	######	######	#####	####	#####	####	#####	######	#####	######	#####	#####
50	###########	######	######	#####	####	#####	####	#####	######	#####	######	#####	#####
40	###########	######	######	#####	####	#####	####	#####	######	#####	######	#####	#####
30	###########	######	######	#####	####	#####	####	#####	######	#####	######	#####	#####
20	###########	######	######	#####	####	#####	####	#####	######	#####	######	#####	#####
10	###########	######	######	#####	####	#####	####	#####	######	#####	######	#####	#####
0		12	22		3	.3	.4	4	5	.5	6	.6	.7
	0	5 () 5	5 (0	5	0	5	0	5	0	5	0
	CPU% per hour (last 72 hours)												
	* = maximum CPU% # = average CPU%												

Verificar Políticas de Plano de Controle

 Use "show platform hardware fed <switch> ative qos queue stats internal cpu policer" para exibir estatísticas CoPP agregadas e informações adicionais sobre a estrutura de fila/vigilante. Esta saída fornece uma visão histórica das estatísticas do vigilante desde a última reinicialização do plano de controle. Esses contadores também podem ser limpos manualmente. Geralmente, a evidência de quedas do plano de controle pelo vigilante aponta para um problema com a fila/classe associada, mas certifique-se de que as quedas sejam incrementadas ativamente enquanto o problema ocorre. Execute o comando várias vezes para observar o aumento dos valores de Queue Drop.

<#root>

Catalyst9500#

show platform hardware fed active qos queue stats internal cpu policer

CPU Queue Statistics (default) (set) Queue Oueue QId PlcIdx Queue Name Enabled Rate Rate Drop(Bytes) Drop(Frames) <-- The top section of this output gives a historical view of CoPP drops. Run the command several times _____ CPU queues correlate with a Policer Index (PlcIdx) and Queue (QId). 1000 11 DOT1X Auth 1000 0 0 0 Yes Note that multiple policer indices map to the same queue for some classes.

1	1	L2 Control	Yes	2000	2000	0	0
2	14	Forus traffic	Yes	4000	4000	0	0
3	0	ICMP GEN	Yes	750	750	0	0
4	2	Routing Control	Yes	5500	5500	0	0
5	14	Forus Address resolution	Yes	4000	4000	83027876	1297199
6	0	ICMP Redirect	Yes	750	750	0	0
7	16	Inter FED Traffic	Yes	2000	2000	0	0
8	4	L2 LVX Cont Pack	Yes	1000	1000	0	0
9	19	EWLC Control	Yes	13000	13000	0	0
10	16	EWLC Data	Yes	2000	2000	0	0
11	13	L2 LVX Data Pack	Yes	1000	1000	0	0
12	0	BROADCAST	Yes	750	750	0	0
13	10	Openflow	Yes	250	250	0	0
14	13	Sw forwarding	Yes	1000	1000	0	0
15	8	Topology Control	Yes	13000	16000	0	0
16	12	Proto Snooping	Yes	2000	2000	0	0
17	6	DHCP Snooping	Yes	500	500	0	0
18	13	Transit Traffic	Yes	1000	1000	0	0
19	10	RPF Failed	Yes	250	250	0	0
20	15	MCAST END STATION	Yes	2000	2000	0	0
21	13	LOGGING	Yes	1000	1000	769024	12016
22	7	Punt Webauth	Yes	1000	1000	0	0
23	18	High Rate App	Yes	13000	13000	0	0
24	10	Exception	Yes	250	250	0	0
25	3	System Critical	Yes	1000	1000	0	0
26	10	NFL SAMPLED DATA	Yes	250	250	0	0
27	2	Low Latency	Yes	5500	5500	0	0
28	10	EGR Exception	Yes	250	250	0	0
29	5	Stackwise Virtual OOB	Yes	8000	8000	0	0
30	9	MCAST Data	Yes	500	500	0	0
31	3	Gold Pkt	Yes	1000	1000	0	0

* NOTE: CPU queue policer rates are configured to the closest hardware supported value

CPU	Oueue	Policer	Statistics
CPU	Queue	Policer	Statistics

Policer	Policer Accept	Policer Accept	Policer Drop	Policer Drop		
Index	Bytes	Frames	Bytes	Frames		
0	59894	613	0	0		
1	15701689	57082	0	0		
2	5562892	63482	0	0		
3	3536	52	0	0		
4	0	0	0	0		
5	0	0	0	0		
6	0	0	0	0		
7	0	0	0	0		
8	2347194476	32649666	0	0		
9	0	0	0	0		
10	0	0	0	0		
11	0	0	0	0		
12	0	0	0	0		
13	577043	8232	769024	12016		
14	719225176	11182355	83027876	1297199		
15	132766	1891	0	0		
16	0	0	0	0		
17	0	0	0	0		
18	0	0	0	0		
19	0	0	0	0		

Second Level Policer Statistics

<-- Second level policer information begins here. Catalyst CoPP is organized with two policers to allow

===========				==========
20	2368459057	32770230	0	0
21	719994879	11193091	0	0

Policer Index Mapping and Settings

level-2	:	level-1	(default)	(set)
PlcIndex		PlcIndex	rate	rate
20	:	1 2 8	13000	17000
21		0 4 7 9 10 11 12 13 14 15	6000	6000
	====			

Second Level Policer Config

====							
	level-1	level-2		level-2			
QId	PlcIdx	PlcIdx	Queue Name	Enabled			
0	11	21	DOT1X Auth	Yes			
1	1	20	L2 Control	Yes			
2	14	21	Forus traffic	Yes			
3	0	21	ICMP GEN	Yes			
4	2	20	Routing Control	Yes			
5	14	21	Forus Address resolution	Yes			
6	0	21	ICMP Redirect	Yes			
7	16	-	Inter FED Traffic	No			
8	4	21	L2 LVX Cont Pack	Yes			
9	19	-	EWLC Control	No			
10	16	-	EWLC Data	No			
11	13	21	L2 LVX Data Pack	Yes			
12	0	21	BROADCAST	Yes			

13	10	21	Openflow	Yes
14	13	21	Sw forwarding	Yes
15	8	20	Topology Control	Yes
16	12	21	Proto Snooping	Yes
17	6	-	DHCP Snooping	No
18	13	21	Transit Traffic	Yes
19	10	21	RPF Failed	Yes
20	15	21	MCAST END STATION	Yes
21	13	21	LOGGING	Yes
22	7	21	Punt Webauth	Yes
23	18	-	High Rate App	No
24	10	21	Exception	Yes
25	3	-	System Critical	No
26	10	21	NFL SAMPLED DATA	Yes
27	2	20	Low Latency	Yes
28	10	21	EGR Exception	Yes
29	5	-	Stackwise Virtual OOB	No
30	9	21	MCAST Data	Yes
31	3	-	Gold Pkt	No

CPP Classes to queue map

<-- Information on how different traffic types map to different queues are found here.</pre>

PlcIdx	CPP Class	:	Queues
0	system-cpp-police-data	:	ICMP GEN/ BROADCAST/ ICMP Redirect/
10	system-cpp-police-sys-data	:	Openflow/ Exception/ EGR Exception/ NFL SAMPLED DATA/
13	system-cpp-police-sw-forward	:	Sw forwarding/ LOGGING/ L2 LVX Data Pack/ Transit Tra
9	system-cpp-police-multicast	:	MCAST Data/
15	system-cpp-police-multicast-end-station	:	MCAST END STATION /
7	system-cpp-police-punt-webauth	:	Punt Webauth/
1	system-cpp-police-12-control	:	L2 Control/
2	system-cpp-police-routing-control	:	Routing Control/ Low Latency/
3	system-cpp-police-system-critical	:	System Critical/ Gold Pkt/
4	system-cpp-police-12lvx-control	:	L2 LVX Cont Pack/
8	system-cpp-police-topology-control	:	Topology Control/
11	system-cpp-police-dot1x-auth	:	DOT1X Auth/
12	system-cpp-police-protocol-snooping	:	Proto Snooping/
6	system-cpp-police-dhcp-snooping	:	DHCP Snooping/
14	system-cpp-police-forus	:	Forus Address resolution/ Forus traffic/
5	system-cpp-police-stackwise-virt-control	:	Stackwise Virtual OOB/
16	system-cpp-default	:	Inter FED Traffic/ EWLC Data/
18	system-cpp-police-high-rate-app	:	High Rate App/
19	system-cpp-police-ewlc-control	:	EWLC Control/
20	system-cpp-police-ios-routing	:	L2 Control/ Topology Control/ Routing Control/ Low La
21	system-cpp-police-ios-feature	:	ICMP GEN/ BROADCAST/ ICMP Redirect/ L2 LVX Cont Pack,

Coletar informações sobre tráfego direcionado

Esses comandos são usados para coletar informações sobre o tráfego apontado para a CPU, incluindo o tipo de tráfego e os pontos físicos de entrada.

 "Show platform software fed <switch> ative punt cpuq all" ou "Show platform software fed <switch> ative punt cpuq <0-31 Queue ID>" podem ser usados para ver estatísticas relacionadas a todas ou a uma fila de CPU específica.

<#root>

C9300#

show platform software fed switch active punt cpuq all

Punt CPU Q Statistics

CPU Q Id CPU Q Name Packets received from ASIC Send to IOSd total attempts Send to IOSd failed count RX unsuspend count RX unsuspend send failed count RX unsuspend send failed count RX unsuspend send failed count RX consumed count RX non-active dropped count RX non-active dropped count RX non-active dropped count RX packets dq'd after intack Active RxQ event RX spurious interrupt RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 CPU Q Id CPU Q Name Packets received from ASIC Send to IOSd total attempts Send to IOSd total attempts Send to IOSd failed count RX unsuspend count RX unsuspend send failed count RX unsuspend send failed count RX unsuspend send failed count RX unsuspend send failed count RX non-active dropped count RX packets dq'd after intack Active RXQ event RX packets dq'd after intack Active RXQ event RX spurious interrupt		0 CPU_Q_DOT1X_AUTH 964 964 0 0 0 0 0 0 0 0 0 964 0 0 0 0 0 0 0 0 0 0 0 0 0
RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0	•	2
CPU Q Id CPU Q Name Packets received from ASIC Send to IOSd total attempts Send to IOSd failed count RX suspend count RX unsuspend count RX unsuspend send failed count RX consumed count RX dropped count		2 CPU_Q_FORUS_TRAFFIC 176669 0 0 0 0 0 0 0 0 0 0 0 0

RX non-active dropped count	:	0
RX conversion failure dropped	:	0
RX INTACK count	:	165584
RX packets dq'd after intack	:	12601
Active RxQ event	:	165596
RX spurious interrupt	:	11851
RX phy_idb fetch failed: 0		
RX table_id fetch failed: 0		
RX invalid punt cause: 0		
<snip></snip>		

C9300#

show platform software fed switch active punt cpuq 16 <-- Queue ID 16 correlates with Protocol Snooping.

Punt CPU Q Statistics

CPU Q Id	: 16
CPU Q Name	: CPU_Q_PROTO_SNOOPING
Packets received from ASIC	: 55661
Send to IOSd total attempts	: 55661
Send to IOSd failed count	: 0
RX suspend count	: 0
RX unsuspend count	: 0
RX unsuspend send count	: 0
RX unsuspend send failed count	: 0
RX consumed count	: 0
RX dropped count	: 0
RX non-active dropped count	: 0
RX conversion failure dropped	: 0
RX INTACK count	: 55659
RX packets dq'd after intack	: 9
Active RxQ event	: 55659
RX spurious interrupt	: 23
RX phy_idb fetch failed: 0	
RX table_id fetch failed: 0	
RX invalid punt cause: O	
Replenish Stats for all rxq:	
Number of replenish	: 4926842
Number of replenish suspend	: 0
Number of replenish un-suspend	: 0

 Use "show platform software fed <switch> ative punt cause summary" para obter uma visão rápida de todos os diferentes tipos de tráfego vistos na CPU. Observe que somente causas diferentes de zero são mostradas.

<#root>
C9300#
show platform software fed switch active punt cause summary
Statistics for all causes
Cause Cause Info Rcvd Dropped

7	ARP request or response	142962	0
11	For-us data	490817	0
21	RP<->QFP keepalive	448742	0
24	Glean adjacency	2	0
55	For-us control	415222	0
58	Layer2 bridge domain data packe	3654659	0
60	IP subnet or broadcast packet	37167	0
75	EPC	17942	0
96	Layer2 control protocols	358614	0
97	Packets to LFTS	964	0
109	snoop packets	48867	0

 Use o comando "show platform software fed <switch> ative punt rates interfaces" para visualizar rapidamente as interfaces que o tráfego vinculado à CPU entra no sistema. Esse comando mostra apenas interfaces com uma fila de entrada diferente de zero.

<#root>

C9300#

show platform software fed switch active punt rates interfaces

Punt Rate on Interfaces Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

Interface Name	 IF_ID	Recv 10s	Recv 1min	=========== Rec∨ 5min	Drop 10s	Drop 1min	====== Drop 5min
TenGigabitEthernet1/0/2	0x0000000a	5	5	5	0	0	0
TenGigabitEthernet1/0/23	0x0000001f	1	1	1	0	0	0

 Use "show platform software fed <switch> ative punt rates interfaces <IF-ID>" para detalhar e exibir as filas individuais da interface. Esse comando mostra estatísticas agregadas e pode ser usado para exibir a atividade da fila de entrada histórica e se o tráfego foi policiado.

<#root>									
C9300#									
show platform	software fed swite	ch active punt rates	interfaces	0x1f <	"0x1f"	is t	he IF	_ID of	Te1/0/23,
Punt Rate on S	Punt Rate on Single Interfaces Statistics								
Interface : Te	nGigabitEthernet1,	/0/23 [if_id: 0x1F]							
Received		Dropped							
	. 1010652	 T-+-]	. 0						
IOTAI	: 1010652	IOTAI	: 0						

10 sec average : 1	10 sec average : 0
1 min average : 1	1 min average : O
5 min average : 1	5 min average : O

rei cruy punt stats on the internace (rate averaged over tos interv	Per	CPUQ punt s	stats on th	ne interface	(rate averaged	over 10s	interva
---	-----	-------------	-------------	--------------	----------------	----------	---------

==== Q	 Queue	Recv	========= Rec∨	========= Drop	======== Drop
no	Name	Total	Rate	Total	Rate
====					
0		0	0	0	0
1	CPU_Q_L2_CONTROL	9109	0	0	0
2		1/6659	0	0	0
3	CPU_Q_ICMP_GEN	0	0	0	0
4		447374	0	0	0
5	CPU_Q_FORUS_ADDR_RESOLUTION	80693	0	0	0
6	CPU_Q_ICMP_REDIRECT	0	0	0	0
/	CPU_Q_INTER_FED_TRAFFIC	0	0	0	0
8		0	0	0	0
9	CPU_Q_EWLC_CONTROL	0	0	0	0
10	CPU_Q_EWLC_DATA	0	0	0	0
11		0	0	0	0
12		22680	0	0	0
13		0	0	0	0
14	CPU_Q_SW_FORWARDING	0	0	0	0
15	CPU_Q_TOPOLOGY_CONTROL	271014	0	0	0
16	CPU_Q_PROTO_SNOOPING	0	0	0	0
1/	CPU_Q_DHCP_SNOOPING	0	0	0	0
18	CPU_Q_TRANSIT_TRAFFIC	0	0	0	0
19	CPU_Q_RPF_FAILED	0	0	0	0
20	CPU_Q_MCAST_END_STATION_SERVICE	2679	0	0	0
21	CPU_Q_LOGGING	444	0	0	0
22	CPU_Q_PUNT_WEBAUTH	0	0	0	0
23	CPU_Q_HIGH_RATE_APP	0	0	0	0
24	CPU_Q_EXCEPTION	0	0	0	0
25	CPU_Q_SYSTEM_CRITICAL	0	0	0	0
26	CPU_Q_NFL_SAMPLED_DATA	0	0	0	0
27	CPU_Q_LOW_LATENCY	0	0	0	0
28	CPU_Q_EGR_EXCEPTION	0	0	0	0
29	CPU_Q_FSS	0	0	0	0
30	CPU_Q_MCAST_DATA	0	0	0	0
31	CPU_Q_GOLD_PKT	0	0	0	0

Inspecionar o tráfego vinculado à CPU

A família de switches Catalyst 9000 oferece utilitários para monitorar e visualizar o tráfego vinculado à CPU. Use essas ferramentas para entender qual tráfego é apontado ativamente para a CPU.

Captura de pacotes incorporada (EPC)

O EPC no plano de controle pode ser feito em qualquer direção (ou em ambas). Para tráfego direcionado, capture a entrada. O EPC no plano de controle pode ser salvo em buffer ou em arquivo.

<#root>

```
C9300#
monitor capture CONTROL control-plane in match any buffer circular size 10
C9300#
show monitor capture CONTROL parameter <-- Check to ensure parameters are as expected.
   monitor capture CONTROL control-plane IN
   monitor capture CONTROL match any
   monitor capture CONTROL buffer size 10 circular
C9300#
monitor capture CONTROL start <-- Starts the capture.
Started capture point : CONTROL
C9300#
monitor capture CONTROL stop < -- Stops the capture.
Capture statistics collected at software:
    Capture duration - 5 seconds
    Packets received - 39
    Packets dropped - 0
    Packets oversized - 0
Bytes dropped in asic - 0
Capture buffer will exists till exported or cleared
Stopped capture point : CONTROL
```

Os resultados da captura podem ser exibidos em uma saída breve ou detalhada.

<#root>

C9300#

show monitor capture CONTROL buffer brief

Starting the packet display Press Ctrl + Shift + 6 to exit

```
1
       0.000000 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    2
       0.030643 00:00:00:00:00:00 -> 00:06:df:f7:20:01 0x0000 30 Ethernet II
       0.200016 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    3
       0.400081 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    4
       0.599962 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    5
       0.800067 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    6
    7
       0.812456 00:1b:0d:a5:e2:a5 -> 01:80:c2:00:00 STP 60 RST. Root = 0/10/00:1b:53:bb:91:00 Cost
       0.829809 10.122.163.3 -> 224.0.0.2
                                             HSRP 92 Hello (state Active)
    8
       0.981313 10.122.163.2 -> 224.0.0.13
                                             PIMv2 72 Hello
   9
       1.004747 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
  10
  11
       1.200082 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
       1.399987 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
  12
       1.599944 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
  13
<snip>
```

C9300#

```
Frame 7: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface /tmp/epc_ws/wif_to_ts_p
    Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe)
        Interface name: /tmp/epc_ws/wif_to_ts_pipe
    Encapsulation type: Ethernet (1)
    Arrival Time: May 3, 2023 23:58:11.727432000 UTC
    [Time shift for this packet: 0.000000000 seconds]
    Epoch Time: 1683158291.727432000 seconds
    [Time delta from previous captured frame: 0.012389000 seconds]
    [Time delta from previous displayed frame: 0.012389000 seconds]
    [Time since reference or first frame: 0.812456000 seconds]
    Frame Number: 7
    Frame Length: 60 bytes (480 bits)
    Capture Length: 60 bytes (480 bits)
    [Frame is marked: False]
    [Frame is ignored: False]
    [Protocols in frame: eth:llc:stp]
IEEE 802.3 Ethernet
    Destination: 01:80:c2:00:00:00 (01:80:c2:00:00:00)
        Address: 01:80:c2:00:00:00 (01:80:c2:00:00)
        .... ..0. .... .... = LG bit: Globally unique address (factory default)
        .... = IG bit: Group address (multicast/broadcast)
    Source: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5)
       Address: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5)
        .... ..0. .... .... = LG bit: Globally unique address (factory default)
        .... = IG bit: Individual address (unicast)
    Length: 39
    Padding: 00000000000000
Logical-Link Control
    DSAP: Spanning Tree BPDU (0x42)
        0100 001. = SAP: Spanning Tree BPDU
        .... ...0 = IG Bit: Individual
    SSAP: Spanning Tree BPDU (0x42)
       0100 001. = SAP: Spanning Tree BPDU
        \dots \dots 0 = CR Bit: Command
    Control field: U, func=UI (0x03)
        000. 00.. = Command: Unnumbered Information (0x00)
        \dots \dots \dots \dots \dots \dots \square = Frame type: Unnumbered frame (0x3)
Spanning Tree Protocol
    Protocol Identifier: Spanning Tree Protocol (0x0000)
    Protocol Version Identifier: Rapid Spanning Tree (2)
    BPDU Type: Rapid/Multiple Spanning Tree (0x02)
    BPDU flags: 0x3c, Forwarding, Learning, Port Role: Designated
        0... = Topology Change Acknowledgment: No
        .0.. .... = Agreement: No
        ..1. .... = Forwarding: Yes
        ...1 .... = Learning: Yes
        .... 11.. = Port Role: Designated (3)
        .... ..0. = Proposal: No
        .... 0 = Topology Change: No
    Root Identifier: 0 / 10 / 00:1b:53:bb:91:00
        Root Bridge Priority: 0
        Root Bridge System ID Extension: 10
        Root Bridge System ID: 00:1b:53:bb:91:00 (00:1b:53:bb:91:00)
    Root Path Cost: 19
    Bridge Identifier: 32768 / 10 / 00:1b:0d:a5:e2:80
        Bridge Priority: 32768
        Bridge System ID Extension: 10
        Bridge System ID: 00:1b:0d:a5:e2:80 (00:1b:0d:a5:e2:80)
    Port identifier: 0x8025
    Message Age: 1
    Max Age: 20
```

Hello Time: 2 Forward Delay: 15 Version 1 Length: 0

C9300#

monitor capture CONTROL buffer display-filter "frame.number==9" detailed <-- Most Wireshark display filt Starting the packet display Press Ctrl + Shift + 6 to exit Frame 9: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface /tmp/epc_ws/wif_to_ts_p Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe) Interface name: /tmp/epc_ws/wif_to_ts_pipe Encapsulation type: Ethernet (1) Arrival Time: May 4, 2023 00:07:44.912567000 UTC [Time shift for this packet: 0.000000000 seconds] Epoch Time: 1683158864.912567000 seconds [Time delta from previous captured frame: 0.123942000 seconds] [Time delta from previous displayed frame: 0.000000000 seconds] [Time since reference or first frame: 1.399996000 seconds] Frame Number: 9 Frame Length: 64 bytes (512 bits) Capture Length: 64 bytes (512 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:ethertype:vlan:ethertype:arp] Ethernet II, Src: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f), Dst: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Destination: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Address: 00:00:04:00:0e:00 (00:00:04:00:0e:00)0. = LG bit: Globally unique address (factory default) = IG bit: Individual address (unicast) Source: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) Address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f)0. = LG bit: Globally unique address (factory default) = IG bit: Individual address (unicast) Type: 802.1Q Virtual LAN (0x8100) 802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 10 000. = Priority: Best Effort (default) (0)0 = DEI: Ineligible \dots 0000 0000 1010 = ID: 10 Type: ARP (0x0806) Trailer: 00000000 Address Resolution Protocol (reply) Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800) Hardware size: 6 Protocol size: 4 Opcode: reply (2) Sender MAC address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) Sender IP address: 192.168.10.1 Target MAC address: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Target IP address: 192.168.10.25

Os resultados da captura podem ser gravados diretamente no arquivo ou exportados do buffer.

C9300#

monitor capture CONTROL export location flash:control.pcap <-- Exports the current buffer to file. Exter

Export Started Successfully

Export completed for capture point CONTROL C9300# C9300#

dir flash: | in control.pcap

475231 -rw- 3972 May 4 2023 00:00:38 +00:00 control.pcap C9300#

Captura de Pacotes de CPU FED

A família de switches Catalyst 9000 suporta um utilitário de depuração que permite visibilidade aprimorada de pacotes de e para a CPU.

C9300#debug platform software fed switch active punt packet-capture ? buffer Configure packet capture buffer clear-filter Clear punt PCAP filter set-filter Specify wireshark like filter (Punt PCAP) start Start punt packet capturing stop Stop punt packet capturing

C9300#\$re fed switch active punt packet-capture buffer limit 16384 Punt PCAP buffer configure: one-time with buffer size 16384...done

C9300#show platform software fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets

C9300#debug platform software fed switch active punt packet-capture start Punt packet capturing started.

C9300#debug platform software fed switch active punt packet-capture stop Punt packet capturing stopped. Captured 55 packet(s)

O conteúdo do buffer tem opções breves e detalhadas para a saída.

<#root>

C9300#

show platform software fed switch active punt packet-capture brief

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets

----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100

rcpMiscResults

spanDirection

redirectIndex

= 0

= 0

= 0

----- Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 3, Timestamp: 2023/05/04 00:17:42.109 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 4, Timestamp: 2023/05/04 00:17:42.309 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 5, Timestamp: 2023/05/04 00:17:42.509 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 C9300# show platform software fed switch active punt packet-capture detailed <-- Detailed provides the same inf Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 Packet Data Hex-Dump (length: 68 bytes) : 000004000E005C5A C7614C5F8100000A 0806000108000604 00025C5AC7614C5F C0A80A0100000400 0E00C0A80A190000 00000000000000 000000000000000 E9F1C9F3 Doppler Frame Descriptor : fdFormat = 0x4= 0xesystemTt1 loadBalHash1 = 0x20loadBalHash2 = 0xcspanSessionMap = 0 forwardingMode = 0 destModIndex = 0 skipIdIndex = 0 srcGpn = 0x2qosLabel = 0x83srcCos = 0 ingressTranslatedVlan = 0x7= 0 bpdu = 0 spanHistory = 0 fpeFirstHeaderType = 0sgt srcVlan = 0xarcpServiceId = 0x1wccpSkip = 0 srcPortLeIndex = 0x1cryptoProtocol = 0 debugTagId = 0 = 0 = 0vrfId saIndex pendingAfdLabel = 0 destClient = 0x1= 0 finalStationIndex appId $= 0 \times 74$ decryptSuccess = 0 encryptSuccess = 0

stackedFdPresent

egressRedirect

exceptionLabel

= 0

= 0

= 0

destGpn	= 0	inlineFd	=	0x1
suppressRefPtrUpdate	= 0	suppressRewriteSideEfects	=	0
cmi2	= 0	currentRi	=	0x1
currentDi	= 0x527b	dropIpUnreachable	=	0
srcZoneId	= 0	srcAsicId	=	0
originalDi	= 0	originalRi	=	0
<pre>srcL3IfIndex</pre>	= 0x27	dstL3IfIndex	=	0
dstVlan	= 0	frameLength	=	0x44
fdCrc	= 0x97	tunnelSpokeId	=	0
isPtp	= 0	ieee1588TimeStampValid	=	0
ieee1588TimeStamp55_48	= 0	lvxSourceRlocIpAddress	=	0
sgtCachingNeeded	= 0			
Doppler Frame Descriptor H	ex-Dump :			

Muitos filtros de exibição estão disponíveis para uso. Há suporte para os filtros de exibição mais comuns do Wireshark.

<#root>

C9300#

show platform software fed switch active punt packet-capture display-filter-help

FED Punject specific filters :

	5 1	
1.	fed.cause	FED punt or inject cause
2.	fed.linktype	FED linktype
3.	fed.pal_if_id	FED platform interface ID
4.	fed.phy_if_id	FED physical interface ID
5.	fed.queue	FED Doppler hardware queue
6.	fed.subcause	FED punt or inject sub cause
Gener	ic filters supported :	
7.	arp	Is this an ARP packet
8.	bootp	DHCP packets [Macro]
9.	cdp	Is this a CDP packet
10.	eth	Does the packet have an Ethernet header
11.	eth.addr	Ethernet source or destination MAC address
12.	eth.dst	Ethernet destination MAC address
13.	eth.ig	IG bit of ethernet destination address (broadcast/multicast)
14.	eth.src	Ethernet source MAC address
15.	eth.type	Ethernet type
16.	gre	Is this a GRE packet
17.	icmp	Is this a ICMP packet
18.	icmp.code	ICMP code
19.	icmp.type	ICMP type
20.	icmp∨6	Is this a ICMPv6 packet
21.	icmp∨6.code	ICMP∨6 code
22.	icmpv6.type	ICMPv6 type
23.	ip	Does the packet have an IPv4 header
24.	ip.addr	IPv4 source or destination IP address
25.	ip.dst	IPv4 destination IP address
26.	ip.flags.df	IP∨4 dont fragment flag
27.	ip.flags.mf	IP∨4 more fragments flag
28.	ip.frag_offset	IPv4 fragment offset
29.	ip.proto	Protocol used in datagram
30.	ip.src	IPv4 source IP address

31.	ip.ttl	IPv4 time to live
32.	ipv6	Does the packet have an IPv4 header
33.	ipv6.addr	IPv6 source or destination IP address
34.	ipv6.dst	IPv6 destination IP address
35.	ipv6.hlim	IPv6 hop limit
36.	ipv6.nxt	IPv6 next header
37.	ipv6.plen	IPv6 payload length
38.	ipv6.src	IPv6 source IP address
39.	stp	Is this a STP packet
40.	tcp	Does the packet have a TCP header
41.	tcp.dstport	TCP destination port
42.	tcp.port	TCP source OR destination port
43.	tcp.srcport	TCP source port
44.	udp	Does the packet have a UDP header
45.	udp.dstport	UDP destination port
46.	udp.port	UDP source OR destination port
47.	udp.srcport	UDP source port
48.	vlan.id	Vlan ID (dot1q or qinq only)
49.	vxlan	Is this a VXLAN packet

C9300#

show platform software fed switch active punt packet-capture display-filter arp brief

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets

------ Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 -----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100

----- Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id:
metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f
ether hdr : vlan: 10, ethertype: 0x8100
<snip>

Os filtros também podem ser aplicados como filtros de captura.

<#root>

C9300#

show platform software fed switch active punt packet-capture set-filter arp <-- Most common Wireshark fi

Filter setup successful. Captured packets will be cleared

C9300#\$e fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets Capture filter : "arp"

Cenários comuns

Perda intermitente de ICMP (ping) para o IP local

O tráfego encaminhado para um IP local em um switch é colocado na fila Forus (literalmente "para nós"). Ver incrementos na fila de CoPP de fóruns relaciona-se a pacotes descartados destinados ao switch local. Isso é relativamente direto e fácil de conceitualizar.

Em algumas condições, no entanto, pode haver perda para o tráfego destinado localmente que não se correlaciona perfeitamente com quedas de Forus.

Com fluxo de tráfego limitado pela CPU suficiente, o caminho de punt fica saturado além da capacidade de CoPP para priorizar qual tráfego é policiado. O tráfego é policiado "silenciosamente", primeiro a entrar, primeiro a sair.

Neste cenário, é vista evidência de policiamento de plano de controle em alto volume, mas o tipo de tráfego de interesse (Forus neste exemplo) não aumenta necessariamente.

Em resumo, se houver um volume excepcionalmente alto de tráfego vinculado à CPU, evidenciado por policiamento de CoPP ativo e demonstrado com uma captura de pacotes ou depuração de punt de FED, poderá haver perda que não se alinhe à fila que você está solucionando. Neste cenário, determine por que há uma quantidade excessiva de tráfego vinculado à CPU e tome medidas para aliviar a carga no plano de controle.

Redirecionamentos ICMP altos e operação DHCP lenta

O CoPP no switch da série Catalyst 9000 é organizado em 32 filas de hardware. Essas 32 filas de hardware se alinham a 20 índices de vigilante individuais. Cada índice de vigilante correlacionase com uma ou mais filas de hardware.

Funcionalmente, isso significa que várias classes de tráfego compartilham um índice de vigilante e estão sujeitas a um valor de vigilante agregado comum.

Um problema comum visto em switches com agentes de retransmissão DHCP ativados envolve uma resposta DHCP lenta. Os clientes podem obter IPs esporadicamente, mas são necessárias várias tentativas para concluir e alguns clientes atingem o tempo limite.

A fila de redirecionamento de ICMP e a fila de Broadcast compartilham um índice de vigilante, de modo que um alto volume de tráfego que é recebido e roteado para fora da mesma Interface Virtual do Switch (SVI) impacta os aplicativos que dependem do tráfego de broadcast. Isso é especialmente perceptível quando o switch atua como um agente de retransmissão.

Este documento oferece uma explicação detalhada do conceito e como mitigar: <u>Troubleshooting</u> <u>de Problemas de DHCP nos Catalyst 9000 DHCP Relay Agents</u>

Outros recursos

Identificar e Solucionar Problemas de DHCP Lento ou Intermitente em Agentes de Retransmissão DHCP do Catalyst 9000

Configurar a captura de pacotes de CPU FED nos Switches Catalyst 9000

Switches Catalyst 9300: configuração da vigilância do plano de controle

Configurando a captura de pacotes - Guia de configuração de gerenciamento de rede, Cisco IOS XE Bengaluru 17.6.x (Switches Catalyst 9300)

Operar e solucionar problemas de rastreamento de DHCP em switches Catalyst 9000

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.