Entendendo o OSPF nos Switches Catalyst 1300X

Objetivo

O objetivo deste artigo é fornecer uma compreensão abrangente do protocolo de roteamento Open Shortest Path First (OSPF), seus conceitos fundamentais, mecanismos operacionais e sua aplicação nos switches Cisco Catalyst da série 1300X.

Dispositivos aplicáveis/versão de software

Catalyst 1300X/4.1.7.17

Introdução

Nos cenários de rede dinâmicos de hoje, o roteamento de dados eficiente e confiável é fundamental. O OSPF (Open Shortest Path First) é um protocolo de roteamento dinâmico amplamente adotado, especificamente o IGP (Interior Gateway Protocol), projetado para determinar os melhores caminhos para o tráfego de dados dentro de um sistema autônomo. Tradicionalmente, o roteamento dinâmico era exclusivo para roteadores dedicados, mas com os avanços na tecnologia de rede, switches sofisticados como o Cisco Catalyst série 1300X agora suportam OSPF. Essa integração permite que seus switches tomem decisões de roteamento inteligentes, aumentando significativamente o desempenho e a resiliência da rede.

Como um padrão aberto, o OSPF garante a interoperabilidade entre vários dispositivos de fornecedores, tornando-o uma escolha versátil para diversas infraestruturas de rede. Ele é conhecido por sua rápida convergência, identificando rapidamente novas rotas quando as condições da rede mudam, e sua capacidade de escalar redes grandes de forma eficiente através de um projeto hierárquico usando áreas.

Table Of Contents

- O que é OSPF e como funciona?
- Principais conceitos do OSPF
- A métrica de custo do OSPF
- Organização de Rede OSPF com Áreas
- Versões do OSPF

- Quando usar o OSPF com switches Catalyst 1300X
- Considerações sobre a implementação do OSPF
- Entendendo a distância administrativa

O que é OSPF e como funciona?

O OSPF é um protocolo link-state, o que significa que cada dispositivo habilitado para OSPF (roteador ou switch) mantém um mapa detalhado e atualizado de toda a rede. Esse mapa é conhecido como o banco de dados de link-state (LSDB). Nesse banco de dados, cada "link" representa uma interface de rede, como uma interface de roteador, subinterface, porta de switch de Camada 3 ou Interface Virtual de Switch (SVI). O "estado" desses links inclui detalhes cruciais, como endereços IP, máscaras de sub-rede, o custo associado à passagem do link e informações sobre roteadores vizinhos.

Para manter esse mapa de rede atualizado, os dispositivos OSPF trocam mensagens especiais chamadas Link-State Advertisements (LSAs). Sempre que ocorre uma alteração na rede - por exemplo, um novo dispositivo fica on-line ou um link falha - os LSAs são enviados, solicitando que todos os dispositivos OSPF atualizem seus LSDBs e recalculem rapidamente os melhores caminhos para os dados.

Principais conceitos do OSPF

- ID do roteador (RID): A cada dispositivo que executa o OSPF é atribuído um identificador exclusivo de 32 bits, formatado como um endereço IP (por exemplo, 192.168.1.1). Esse RID ajuda a identificar o dispositivo no domínio OSPF e pode ser atribuído automática ou manualmente.
- Vizinhos e adjacências: Os roteadores e switches com OSPF ativado que estão diretamente conectados e se reconhecem como participantes do OSPF são chamados de vizinhos. Quando esses vizinhos sincronizam totalmente seus bancos de dados de link-state trocando informações de roteamento detalhadas, eles formam uma adjacência.
- Roteador designado (DR) e roteador designado de backup (BDR): Em redes com vários dispositivos, o OSPF utiliza um DR e um BDR para melhorar a eficiência. Em vez de cada roteador se comunicar com todos os outros roteadores, o DR e o BDR gerenciam a maior parte da comunicação, reduzindo significativamente o tráfego desnecessário e acelerando a convergência.
- Pacotes Hello: Os dispositivos OSPF usam pacotes "hello" para check-ins regulares. Esses pacotes ajudam os roteadores a descobrirem uns aos outros e a manterem suas relações. Se um roteador falhar ao receber um pacote hello de um vizinho dentro de um "intervalo dead" predefinido, ele supõe que o vizinho está inativo e atualiza o mapa de rede de acordo.

A métrica de custo do OSPF

O OSPF determina o caminho mais curto e mais eficiente usando uma métrica chamada "custo". Por padrão, o custo é inversamente proporcional à largura de banda do link: os links de maior largura de banda têm um custo menor. O OSPF sempre

prioriza o caminho com o menor custo total.

O Cisco IOS, por padrão, define a largura de banda de referência do OSPF como 100 megabits por segundo (Mbps). O custo de cada interface é calculado dividindo-se essa largura de banda de referência pela largura de banda real do link. Para redes modernas e de alta velocidade, essa largura de banda de referência pode ser ajustada para garantir cálculos precisos de custo. Além disso, os administradores de rede podem definir manualmente o custo do OSPF em uma interface específica. Isso permite influenciar a seleção de caminhos com base em fatores além da simples velocidade, como balanceamento de carga, redundância, requisitos de política ou confiabilidade de link.

Organização de Rede OSPF com Áreas

Para facilitar a escalabilidade e a organização em grandes redes, o OSPF emprega o conceito de áreas. O elemento fundamental de cada rede OSPF é a Área 0, também conhecida como área de backbone. Áreas adicionais podem ser criadas para segmentar a rede, limitando o tráfego de roteamento desnecessário e garantindo uma operação tranquila. Os dispositivos dentro da mesma área compartilham informações detalhadas de roteamento, enquanto os dispositivos em áreas diferentes trocam apenas informações resumidas. Esse projeto hierárquico melhora muito a eficiência de redes de grande escala.

Versões do OSPF

- OSPFv2: Usado para rotear o tráfego IPv4.
- OSPFv3: Usado para rotear o tráfego IPv6.

Quando usar o OSPF com switches Catalyst 1300X

O OSPF é uma excelente opção para organizações que gerenciam redes dinâmicas de médio a grande porte que exigem alta confiabilidade, escalabilidade e rápida adaptação às mudanças. Ele é particularmente adequado para redes com vários roteadores e switches avançados, como o Cisco Catalyst 1300X, onde o reroteamento automático e a interoperabilidade com o fornecedor são requisitos críticos.

Considerações sobre a implementação do OSPF

Embora poderoso, o OSPF nem sempre pode ser a solução ideal:

 Redes pequenas: Para redes muito pequenas, o roteamento estático pode ser mais simples e fácil de gerenciar, exigindo menos recursos.

- Dispositivos legados: Alguns dispositivos mais antigos podem ter recursos limitados de CPU e memória, tornando o OSPF menos eficiente.
- Segurança: O OSPF suporta autenticação através de texto simples ou algoritmo message-digest (MD5). Embora isso forneça uma camada de segurança, não é tão robusto quanto os algoritmos criptográficos mais recentes. Para obter o mais alto nível de segurança, podem ser necessárias medidas adicionais. A cadeia de chaves é outra opção suportada no C1300X, que usa algoritmos de hash criptográficos como HMAC-SHA-512.

Entendendo a distância administrativa (AD)

Quando um roteador aprende sobre o mesmo destino de várias fontes de roteamento (por exemplo, OSPF, RIP, rotas estáticas ou redes diretamente conectadas), ele usa a Distância Administrativa (AD) para determinar qual rota confiar e instalar em sua tabela de roteamento. O intervalo de valores do AD é de 0 a 255 e a rota com o menor valor do AD é sempre a preferida.

- As rotas diretamente conectadas têm o AD mais baixo (valor 0).
- As rotas estáticas têm um AD baixo (valor 1).
- Os protocolos de roteamento dinâmico, como OSPF e RIP, têm valores AD mais altos.

A distância administrativa do OSPF é 110. Isso significa que ele tem preferência sobre os protocolos de vetor de distância, como RIP (AD 120), mas é menos preferido que o Enhanced Interior Gateway Routing Protocol (EIGRP) da Cisco, que tem um AD de 90.

Conclusão

O OSPF é um protocolo de roteamento dinâmico robusto e altamente eficiente que permite que os switches Cisco Catalyst 1300X criem redes mais inteligentes, resilientes e escaláveis. O suporte da série Catalyst 1300X para OSPF permite que sua rede se adapte automaticamente às alterações, redirecione o tráfego de forma contínua e mantenha o alto desempenho, tornando-a uma solução ideal para demandas de rede modernas.

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.