Configure o ZBFW usando a correspondência de padrão de ACL FQDN na série C8300

Contents

introdução
Pré-requisitos
Requisitos
Componentes Utilizados
nformações de Apoio
Configurar
Diagrama de Rede
Configurações
Etapa 1.(Opcional) ConfigurarVRF
Etapa 2. Configurar a interface
Etapa 3. (Opcional) Configurar o NAT
Etapa 4. Configurar ACL FQDN
Etapa 5. Configurar ZBFW
<u>Verificar</u>
Etapa 1. Iniciar conexão HTTP do cliente
Etapa 2. Confirmar cache de IP
Etapa 3. Confirmar log ZBFW
Etapa 4. Confirmar captura de pacote
Troubleshooting
Perguntas mais freqüentes
P: Como o valor de tempo limite do cache IP é determinado no roteador ?
P: É aceitável quando o servidor DNS retorna o registro CNAME em vez do registro A?
P:Qual é o comando para transferir capturas de pacotes coletadas em um roteador C8300 para um servidor FTP?
Referência

Introdução

Este documento descreve o procedimento para configurar o ZBFW com a correspondência do padrão FQDN ACL no modo autônomo na plataforma C8300.

Pré-requisitos

Requisitos

A Cisco recomenda ter conhecimento deste tópico:

- Firewall de política baseado em zona (ZBFW)
- Roteamento e encaminhamento virtual (VRF)
- Tradução de Endereço de Rede (NAT)

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

• C8300-2N2S-6T 17.12.02

As informações neste documento foram criadas a partir de dispositivos em um ambiente de laboratório específico. Todos os dispositivos utilizados neste documento foram iniciados com uma configuração (padrão) inicial. Se a rede estiver ativa, certifique-se de que você entenda o impacto potencial de qualquer comando.

Informações de Apoio

O Zone-Based Policy Firewall (ZBFW) é um método avançado de configuração de firewall nos dispositivos Cisco IOS® e Cisco IOS XE que permite a criação de zonas de segurança dentro da rede.

O ZBFW permite que os administradores agrupem interfaces em zonas e apliquem políticas de firewall ao tráfego que se move entre essas zonas.

As ACLs FQDN (Fully Qualified Domain Name Access Control Lists), usadas com um ZBFW nos roteadores Cisco, permitem que os administradores criem regras de firewall que correspondam ao tráfego com base nos nomes de domínio, em vez de apenas endereços IP.

Este recurso é particularmente útil ao lidar com serviços hospedados em plataformas como AWS ou Azure, onde o endereço IP associado a um serviço pode mudar com frequência.

Ele simplifica o gerenciamento das políticas de controle de acesso e melhora a flexibilidade das configurações de segurança na rede.

Configurar

Diagrama de Rede

Este documento apresenta a configuração e a verificação para ZBFW com base neste diagrama. Este é um ambiente simulado usando o BlackJumboDog como um servidor DNS.

Diagrama de Rede

Configurações

Essa é a configuração para permitir a comunicação do cliente com o servidor Web.

Etapa 1. (Opcional) Configurar o VRF

O recurso VRF (Virtual Routing and Forwarding, roteamento e encaminhamento virtual) permite criar e gerenciar várias tabelas de roteamento independentes em um único roteador. Neste exemplo, criamos um VRF chamado WebVRF e executamos o roteamento para comunicações relacionadas.

```
vrf definition WebVRF
rd 65010:10
!
address-family ipv4
route-target export 65010:10
route-target import 65010:10
exit-address-family
!
address-family ipv6
route-target export 65010:10
route-target import 65010:10
exit-address-family
ip route vrf WebVRF 8.8.8.8 255.255.255.255 GigabitEthernet0/0/3 192.168.99.10
ip route vrf WebVRF 192.168.10.0 255.255.255.0 Port-channel1.2001 192.168.1.253
ip route vrf WebVRF 192.168.20.0 255.255.255.0 GigabitEthernet0/0/3 192.168.99.10
```

Etapa 2. Configurar a interface

Configure informações básicas, como membro de zona, VRF, NAT e endereços IP para as interfaces interna e externa.

interface GigabitEthernet0/0/1 no ip address negotiation auto lacp rate fast channel-group 1 mode active interface GigabitEthernet0/0/2 no ip address negotiation auto lacp rate fast channel-group 1 mode active interface Port-channel1 no ip address no negotiation auto interface Port-channel1.2001 encapsulation dot1Q 2001 vrf forwarding WebVRF ip address 192.168.1.1 255.255.255.0 ip broadcast-address 192.168.1.255 no ip redirects no ip proxy-arp ip nat inside zone-member security zone_client interface GigabitEthernet0/0/3

vrf forwarding WebVRF ip address 192.168.99.1 255.255.255.0 ip nat outside zone-member security zone_internet speed 1000 no negotiation auto

Etapa 3. (Opcional) Configurar o NAT

Configure o NAT para interfaces internas e externas. Neste exemplo, o endereço IP origem do cliente (192.168.10.1) é convertido em 192.168.99.100.

ip access-list standard nat_source 10 permit 192.168.10.0 0.0.0.255 ip nat pool natpool 192.168.99.100 192.168.99.100 prefix-length 24 ip nat inside source list nat_source pool natpool vrf WebVRF overload Etapa 4. Configurar ACL FQDN

Configure a ACL FQDN para corresponder ao tráfego de destino. Neste exemplo, use o curinga '*' na correspondência de padrão do grupo de objetos FQDN para corresponder ao FQDN de destino.

object-group network src_net 192.168.10.0 255.255.255.0 object-group fqdn dst_test_fqdn pattern .*\.test\.com object-group network dst_dns host 8.8.8.8 ip access-list extended Client-WebServer 1 permit ip object-group src_net object-group dst_dns 5 permit ip object-group src_net fqdn-group dst_test_fqdn

Etapa 5. Configurar ZBFW

Configure zone, class-map, policy-map para ZBFW. Neste exemplo, usando o mapa de parâmetros, logs são gerados quando o tráfego é permitido pelo ZBFW.

zone security zone_client
zone security zone_internet

parameter-map type inspect inspect_log
audit-trail on

class-map type inspect match-any Client-WebServer-Class
match access-group name Client-WebServer

policy-map type inspect Client-WebServer-Policy
class type inspect Client-WebServer-Class
inspect inspect_log
class class-default
drop log

zone-pair security Client-WebServer-Pair source zone_client destination zone_internet
service-policy type inspect Client-WebServer-Policy

Verificar

Etapa 1. Iniciar conexão HTTP do cliente

Verifique se a comunicação HTTP do cliente com o servidor WEB foi bem-sucedida.

Conexão HTTP

Etapa 2. Confirmar cache de IP

Execute show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all o comando para confirmar se o cache IP para o FQDN de destino é gerado em C8300-2N2S-6T.

<#root>

02A7382#

show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

IP Address Client(s) Expire RegexId Dirty VRF ID Match 192.168.20.1 0x1 117 0xdbccd400 0x00 0x0 .*\.test\.com

Etapa 3. Confirmar log ZBFW

Confirme se o endereço IP (192.168.20.1) corresponde ao FQDN (.*\.test\.com) e verifique se a comunicação HTTP na etapa 1 é permitida pelo ZBFW.

*Mar 7 11:08:23.018: %IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:003 TS:00000551336606461468 %FW-6-SESS_AUDIT_TRAIL_START

*Mar 7 11:08:24.566: %IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:002 TS:00000551338150591101 %FW-6-SESS_AUDIT_TRAIL: (target:

Etapa 4. Confirmar captura de pacote

Confirme se a resolução DNS para o FQDN de destino e a conexão HTTP entre o Cliente e o servidor WEB foram bem-sucedidas.

Captura de pacotes no interior:

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time	e to Live	Protocol	Length	TCP.Seq	Next sequence TCP.Ac	k Info
15	2024-03-07 11:50:36.775945	0x0511 (1297)	192.168.10.1	64078	8.8.8.8		53	127	DNS	76			Standard query 0xa505 A abc.test.com
18	2024-03-07 11:50:36.782949	0xe036 (57398)	8.8.8.8	53	192.168.10.1	640	78	126	DNS	92			Standard query response 0xa505 A abc.test.com A 192.168.20.1

Pacotes DNS no interior

No.	Time	Identification	Source	S.Port Destination	D.Port	Time to Live P	rotocol Length	TCP.Seq	Next sequence TO	CP.Ack Info
Г	22 2024-03-07 11:50:36.798954	0x4575 (17781)	192.168.10.1	51715 192.168.20.1	80	127 T	CP 76) 0	1	0 51715 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
	23 2024-03-07 11:50:36.798954	0x92fb (37627)	192.168.20.1	80 192.168.10.1	51715	126 T	CP 70) 0	1	1 80 → 51715 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256
	24 2024-03-07 11:50:36.798954	0x4576 (17782)	192.168.10.1	51715 192.168.20.1	80	127 T	CP 58	3 1	1	1 51715 → 80 [ACK] Seg=1 Ack=1 Win=2102272 Len=0
	26 2024-03-07 11:50:36.803944	0x4577 (17783)	192.168.10.1	51715 192.168.20.1	80	127 H	ITTP 492	2 1	435	1 GET / HTTP/1.1
	27 2024-03-07 11:50:36.806949	0x92fc (37628)	192.168.20.1	80 192.168.10.1	51715	126 H	TTP 979) 1	922	435 HTTP/1.1 200 OK (text/html)

Pacotes HTTP no interior

Captura de pacote no lado (192.168.10.1 é NAT para 192.168.19.100) :

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence	TCP.Ack	Info
	3 2024-03-07 11:50:36.775945	0x0511 (1297)	192.168.99.100	64078	8.8.8.8	53	12	6 DNS	72				Standard query 0xa505 A abc.test.com
	6 2024-03-07 11:50:36.782949	0xe036 (57398)	8.8.8.8	53	192.168.99.100	64078	12	7 DNS	88				Standard query response 0xa505 A abc.test.com A 192.168.20.1

Pacotes DNS no Exterior

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence	TCP.Ad	Info				
E D	10 2024-03-07 11:50:36.798954	0x4575 (17781)	192.168.99.100	51715	192.168.20.1	80	126	TCP	66	0	1		0 51715 → 80	[SYN]	Seq=0 Win=64240 Le	en=0 MSS=1460 V	IS=256 SACK
	11 2024-03-07 11:50:36.798954	0x92fb (37627)	192.168.20.1	80	192.168.99.100	51715	127	TCP	66	0	1		1 80 - 51715	[SYN,	ACK] Seq=0 Ack=1 W	lin=65535 Len=@	MSS=1460
	12 2024-03-07 11:50:36.798954	0x4576 (17782)	192.168.99.100	51715	192.168.20.1	80	126	TCP	54	1	1		1 51715 → 80	[ACK]	Seq=1 Ack=1 Win=2:	102272 Len=0	
	14 2024-03-07 11:50:36.803944	0x4577 (17783)	192.168.99.100	51715	192.168.20.1	80	126	HTTP	488	1	435		1 GET / HTTP/	1.1			
	15 2024-03-07 11:50:36.806949	0x92fc (37628)	192.168.20.1	80	192.168.99.100	51715	127	HTTP	975	1	922	43	5 HTTP/1.1 20	Ø OK	(text/html)		

Pacotes HTTP no Exterior

Troubleshooting

Para solucionar problemas de comunicação relacionados ao ZBFW usando a correspondência de padrão FQDN ACL, você pode coletar os logs durante o problema e fornecê-los ao Cisco TAC. Observe que os registros para a solução de problemas dependem da natureza do problema.

Exemplo de logs a serem coletados:

!!!! before reproduction
!! Confirm the IP cache
show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

!! Enable packet-trace debug platform packet-trace packet 8192 fia-trace debug platform packet-trace copy packet both debug platform condition ipv4 access-list Client-WebServer both debug platform condition feature fw dataplane submode all level verbose

!! Enable debug-level system logs and ZBFW debug logs debug platform packet-trace drop debug acl cca event debug acl cca error debug ip domain detail !! Start to debug debug platform condition start

!! Enable packet capture on the target interface (both sides) and start the capture monitor capture CAPIN interface Port-channel1.2001 both monitor capture CAPIN match ipv4 any any monitor capture CAPIN buffer size 32 monitor capture CAPIN start

monitor capture CAPOUT interface g0/0/3 both monitor capture CAPOUT match ipv4 any any monitor capture CAPOUT buffer size 32 monitor capture CAPOUT start !! (Optional) Clear the DNS cache on the client ipconfig/flushdns ipconfig /displaydns

!! Run the show command before reproduction show platform hardware qfp active feature firewall drop all show policy-map type inspect zone-pair Client-WebServer-Pair sessions show platform packet-trace statistics show platform packet-trace summary show logging process cpp_cp internal start last boot show platform hardware qfp active feature dns-snoop-agent client hw-pattern-list show platform hardware qfp active feature dns-snoop-agent client info show platform hardware qfp active feature dns-snoop-agent datapath stats show ip dns-snoop all show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all show platform software access-list F0 summary

!!!! Reproduce the issue - start

!! During the reproduction the issue, run show commands at every 10 seconds
!! Skip show ip dns-snoop all command if it is not supported on the specific router show ip dns-snoop all
show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

!!!! After reproduction
!! Stop the debugging logs and packet capture debug platform condition stop monitor capture CAPIN stop monitor capture CAPOUT stop

!! Run the show commands show platform hardware qfp active feature firewall drop all show policy-map type inspect zone-pair Client-WebServer-Pair sessions show platform packet-trace statistics show platform packet-trace summary show logging process cpp_cp internal start last boot show platform hardware qfp active feature dns-snoop-agent client hw-pattern-list show platform hardware qfp active feature dns-snoop-agent client info show platform hardware qfp active feature dns-snoop-agent datapath stats show ip dns-snoop all show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all show platform software access-list F0 summary

show platform packet-trace packet all decode show running-config

Perguntas mais freqüentes

P: Como o valor de tempo limite do cache IP é determinado no roteador ?

R: O valor de tempo limite do cache IP é determinado pelo valor TTL (Time-To-Live, tempo de vida restante) do pacote DNS retornado do servidor DNS. Neste exemplo, ele é de 120 segundos. Quando o cache IP atinge o tempo limite, ele é automaticamente removido do roteador. Este é o detalhe da captura de pacotes.

Doi	main Name System (response)												
	Transaction ID: 0xa505												
>	Plags: 0x8580 Standard query response, No error												
	Answer RRs: 1												
	Authority RRs: 0												
	Additional RRs: 0												
>	Queries												
\sim	Answers												
	✓ abc.test.com: type A, class IN, addr 192.168.20.1												
	Name: abc.test.com												
	Type: A (Host Address) (1)												
	Class: IN (0x0001)												
	Time to live: 120 (2 minutes)												
	Data length: 4												
	Address: 192.168.20.1												

Detalhes do pacote de resolução DNS

P: É aceitável quando o servidor DNS retorna o registro CNAME em vez do registro A?

R: Sim, não é um problema. A resolução DNS e a comunicação HTTP são prosseguidas sem problemas quando o registro CNAME é retornado

pelo servidor DNS. Este é o detalhe da captura de pacotes.

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence TCP.Ack	Info
356	2024-03-07 12:09:55.625959	0x0bc5 (3013)	192.168.10.1	63777	8.8.8.8	53	127	DNS	76			Standard query 0x6bd8 A abc.test.com
352	2024-03-07 12:09:55.629957	0xe4fe (58622)	8.8.8.8	53	192.168.10.1	63777	126	DNS	114			Standard query response 0x6bd8 A abc.test.com CNAME def.test.

Pacotes DNS no interior

```
Domain Name System (response)
   Transaction ID: 0x6bd8
> Flags: 0x8580 Standard query response, No error
   Ouestions: 1
   Answer RRs: 2
   Authority RRs: 0
   Additional RRs: 0
> Queries

    Answers

     abc.test.com: type CNAME, class IN, cname def.test.com
        Name: abc.test.com
        Type: CNAME (Canonical NAME for an alias) (5)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 6
        CNAME: def.test.com
     def.test.com: type A, class IN, addr 192.168.20.1
        Name: def.test.com
        Type: A (Host Address) (1)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 4
        Address: 192.168.20.1
```

Detalhes do pacote de resolução DNS

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.5	Next :	TCP.J Info
	356 2024-03-07 12:09:55.644955	0x4589 (17801)	192.168.10.1	51801	192.168.20.1	80	12	7 TCP	70	0	1	0 51801 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=
	357 2024-03-07 12:09:55.644955	0x9349 (37705)	192.168.20.1	80	192.168.10.1	51801	12	6 TCP	70	0	1	1 80 → 51801 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 M
	358 2024-03-07 12:09:55.644955	0x458a (17802)	192.168.10.1	51801	192.168.20.1	80	12	7 TCP	58	1	1	1 51801 → 80 [ACK] Seq=1 Ack=1 Win=2102272 Len=0
	359 2024-03-07 12:09:55.645962	0x458b (17803)	192.168.10.1	51801	192.168.20.1	80	12	7 HTTP	492	1	435	1 GET / HTTP/1.1
	362 2024-03-07 12:09:55.646954	0x934a (37706)	192.168.20.1	80	192.168.10.1	51801	12	6 HTTP	979	1	922	435 HTTP/1.1 200 OK (text/html)

Pacotes HTTP no interior

P: Qual é o comando para transferir capturas de pacotes coletadas em um roteador C8300 para um servidor FTP?

R: Use os comandos monitor capture <capture name> export bootflash:<capture name>.pcap e copy bootflash:<capture name>.pcap ftp://<user>:<password>@<FTP IP Address> para transferir capturas de pacotes para um servidor FTP. Este é um exemplo para transferir CAPIN para um servidor FTP.

<#root>

monitor capture CAPIN export bootflash:CAPIN.pcap

copy bootflash:CAPIN.pcap ftp://<user>:<password>@<FTP IP Address>

Referência

Entender o design do firewall de política baseado em zona

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.