# Nexus 7000 M3 module-ELAM procedure

## Inhoud

Inleiding Topologie Bepaal de Ingrress Forwarding Engine De trigger configureren Start de Capture Resultaten interpreteren Aanvullende verificatie

## Inleiding

Topologie

In dit document worden de stappen beschreven die zijn gebruikt om een ELAM op Cisco Nexus 7700 (N700) M3-modules uit te voeren, wordt de meest relevante output uitgelegd en wordt beschreven hoe de resultaten te interpreteren.

Tip: Raadpleeg het OCR-document voor een overzicht van de automatische alarmlampjes.



In dit voorbeeld, een host op VLAN 2500 (**10.0.5.101**), port **Eth4/1** stuurt een ICMP-verzoek (Internet Control Message Protocol) naar een host op VLAN 55 (**10.0.3.101**), **Eth3/5** ELAM. Het is belangrijk om niet te vergeten dat ELAM u in staat stelt om **één kader vast te leggen.** 

Als u een ELAM op N7K wilt uitvoeren, moet u eerst verbinding maken met de juiste module (dit vereist het netwerk-admin privilege):

N7700# **attach module 4** Attaching to module 4 ... module-4#

## Bepaal de Ingrress Forwarding Engine

Verwacht wordt dat het verkeer de schakelaar op poort Eth4/1 ingaat. Wanneer u de modules in

het systeem controleert, zie u dat **Module 4** een M3 module is. Het is belangrijk te onthouden dat N7K volledig is verdeeld en dat de modules, en niet de toezichthouder, de doorvoerbeslissingen nemen voor dataplaneverkeer.

| N770  | 0# show            | module              |                   |                  |                           |        |
|-------|--------------------|---------------------|-------------------|------------------|---------------------------|--------|
| Mod   | Ports              | Module-Type         |                   | Model            | Status                    |        |
| 1     | 12                 | 100 Gbps Ethernet   | Module            | N77-F312CK-26    | ok                        |        |
| 3 48  | 1/10 Gł            | ops Ethernet Module | N77-M348XP-23L o  | k <b>4</b> 24 10 | /40 Gbps Ethernet Modul   | le     |
| N77-I | M324FQ-2           | 25L ok              |                   |                  |                           |        |
| 5     | 0                  | Supervisor Module-  | 2                 | N77-SUP2E        | active *                  |        |
| 6     | 0                  | Supervisor Module-  | 2                 | N77-SUP2E        | ha-standby                |        |
| 7     | 24                 | 10/40 Gbps Etherne  | et Module         | N77-F324FQ-25    | ok                        |        |
| Mod   | Sw                 | Hw                  |                   |                  |                           |        |
| 1     | 7.3(0)I            | DX(1) 1.1           |                   |                  |                           |        |
| 3 7.3 | 3(0)DX(2           | ) 1.1 4 7.3(0)DX(1  | ) 1.0 5 7.3(0)DX( | 1) 1.2 6 7.3(0)[ | X(1) 1.2 7 7.3(0) $DX(1)$ | 1.0    |
| Vooi  | <sup>-</sup> M-Ser | ies modules, voer l | het ELAM uit op L | aver 2 (L2) Forv | arding Engine (FE) me     | t inte |

Voor M-Series modules, voer het ELAM uit op Layer 2 (L2) Forwarding Engine (FE) met interne codenaam **F4**. Merk op dat de L2 FE Data Bus (DBUS) de oorspronkelijke headerinformatie bevat vóór de L2- en Layer 3 (L3) raadpleging, en de Resultaatbus (RBUS) de resultaten na zowel L3- als L2-raadpleging bevat.

N7K M3 modules kunnen meerdere FE's gebruiken voor elke module, dus moet u de **F4** ASIC bepalen die voor de FE op poort **Eth4/1** wordt gebruikt. Voer deze opdracht in om dit te verifiëren:

| module-4# <b>show h</b><br>(some output omi | <b>ardware</b><br>tted) | internal | dev-po: | rt-map    |                 |         |            |                 |                                       |
|---------------------------------------------|-------------------------|----------|---------|-----------|-----------------|---------|------------|-----------------|---------------------------------------|
| Panel ports:24 -                            | <br>                    |          |         |           |                 | (       | CARD_TYPE: | 24 port<br>Devi | 40G >Front<br>ce name Dev<br>> SLE L3 |
| Driver DEV_LAYER                            | _3_LOOKU<br>            | P L3LKP  | 4 > SLF | L2FWD dr: | iver <b>DEV</b> | LAYER_2 | 2_LOOKUP   | L2LKP           | 4                                     |
| +                                           | -+++FRON                | T PANEL  | PORT TO | ASIC INS  | ГАNCE МА        | P+++    | +          |                 |                                       |
| FP port   PHYS                              | MAC_0                   | RWR_0    | L2LKP   | L3LKP     | QUEUE           | SWICHF  |            |                 |                                       |
| 1                                           | 0                       | 0        | 0       | 0         | 0               | 0,1     |            |                 |                                       |
| 2                                           | 0                       | 0        | 0       | 0         | 0               | 0,1     |            |                 |                                       |
| 3                                           | 0                       | 0        | 0       | 0         | 0               | 0,1     |            |                 |                                       |

In de output kan je zien dat poort **Eth4/1** op **F4 (L2LKP)** instantie **0** is. Op de N77-M312CQ-26L module zijn er **6** F4 ASICs met 2 poorten in elke poortgroep. Op de N77-M324FQ-25L module zijn er **4** F4 ASICs met 6 poorten in elke poortgroep. De N77-M348XP-23L module heeft **2** F4 ASICs met 12 poorten in elke poortgroep.

Opmerking: Net als F-Series modules gebruikt de syntaxis van M3 module-ELAM op 0 gebaseerde waarden. Dit is niet het geval voor M1- en M2-modules, die op 1 gebaseerde waarden gebruiken.

```
module-4# elam asic f4 instance 0
module-4(f4-elam)# layer2
module-4(f4-l2-elam)#
```

### De trigger configureren

De **F4** ASIC ondersteunt ELAM triggers voor IPv4, IPv6 en andere. De ELAM trigger moet uitlijnen op het frame type. Als het frame een IPv4-frame is, moet de trigger ook IPv4 zijn. Een IPv4-frame wordt niet opgenomen met een *andere* trigger. Dezelfde logica is van toepassing op IPv6.

Met Nexus Operating Systems (NX-OS) kunt u het vraagteken gebruiken om de ELAM-trigger te splitsen:

module-4(f4-l2-elam)# trigger dbus ipv4 ingress if ?
 (some output omitted)
 destination-index Destination-index
 destination-ipv4-address Destination ipv4 address
 destination-mac-address Destination mac address
 l4-protocol L4 protocol
 source-index Source-index
 source-ipv4-address Source ipv4 address
 source-ipv4-mask Source ipv4 mask
 source-mac-address Source mac address

Dit voorbeeld, wordt het frame opgenomen volgens de bron- en doeladressen van IPv4, zodat alleen die waarden worden gespecificeerd.

F4 vereist afzonderlijke triggers voor de DBUS en de RBUS.

Hier is de DBUS-trigger:

module-4(f4-l2-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.0.5.101 destination-ipv4-address 10.0.3.101

Hier is de RBUS-trigger:

module-4(f4-l2-elam)# trigger rbus ingress result if tr 1

#### Start de Capture

status als Trigge:

Nu de INGress FE is geselecteerd en u de trigger hebt ingesteld, kunt u de opname starten:

module-4(f4-l2-elam)# start Om de status van de ELAM te controleren voert u de opdracht status in:

```
module-4(f4-12-elam)# status
ELAM Slot 4 instance 0: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Configured
ELAM Slot 4 instance 0: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Configured
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 PLI: Unconfigured
L2 PLE: Unconfigured
Zodra het kader dat met de trigger overeenkomt door de FE wordt ontvangen, toont de ELAM-
```

```
module-4(f4-l2-elam)# status
ELAM Slot 4 instance 1: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Triggered
ELAM Slot 4 instance 1: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Triggered
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 PLI: Unconfigured
L2 PLE: Unconfigured 7
```

#### Resultaten interpreteren

Om de ELAM-resultaten weer te geven, typt u de opdrachten van de **showbus** en **showbus**. Als er een groot volume verkeer is dat dezelfde triggers aansluit, kunnen DBUS en RBUS op verschillende frames geactiveerd worden. Daarom is het belangrijk de interne sequentienummers op de DBUS- en RBUS-gegevens te controleren om ervoor te zorgen dat ze overeenkomen:

module-4(f4-l2-elam)# show dbus | i seq
port-id : 0x0 sequence-number : 0x868
module-4(f4-l2-elam)# show rbus | i seq
de-bri-rslt-valid : 0x1 sequence-number : 0x868
Hier is bet fragment uit de EL ΔM-gegevens dat bet m

Hier is het fragment uit de ELAM-gegevens dat het meest relevant is voor dit voorbeeld (een deel van de output wordt weggelaten):

| module-4(f4-l2-elam)                                                               | )#              | show dbus                                                                      |                                                        |    |                                      |
|------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------|--------------------------------------------------------|----|--------------------------------------|
|                                                                                    |                 | LBD IPV4                                                                       |                                                        |    |                                      |
| ttl<br>destination-address:<br>source-address: <b>10.0</b>                         | :<br>: 1<br>0.5 | 0xff<br>.0.0.3.101<br>5.101                                                    | 13-packet-length                                       | :  | 0x54                                 |
| packet-length<br>segid-lsb<br>destination-mac-add<br>source-mac-address<br>port-id | :<br>dre<br>:   | <b>0x66</b><br>0x0<br>ess : <b>8c60.4f07.a</b><br><b>8c60.4fb7.3dc2</b><br>0x0 | vlan<br>source-index<br><b>ac65</b><br>sequence-number | :  | 0x9c4<br>0xe05<br>0x868              |
| module-4(f4-l2-elam)                                                               | ) #<br>         | show rbus<br>L2 RBUS RSLT CA                                                   | AP DATA                                                |    |                                      |
| de-bri-rslt-valid<br>vlan<br>cos                                                   | :               | 0x1<br><b>0x37</b><br>0x0                                                      | sequence-number<br>rbh<br>destination-index            | :: | <b>0x868</b><br>0x65<br><b>0x9ed</b> |

Met de **DBUS-**gegevens kunt u controleren of het frame op VLAN 2500 is ontvangen met een MAC-adres van 8c60.4fb6.3dc2 en een MAC-adres van 8c60.4f07.ac65. U kunt ook zien dat dit een IPv4-kader is. van 10.0.5.101, en is bestemd voor 10.0.3.101.

**Tip**: Er zijn verschillende andere nuttige velden die niet in deze uitvoer zijn opgenomen, zoals de waarde van het Type of Service (TOS), de vlaggen van IP, de lengte van IP en de lengte van het L2 frame.

Om te verifiëren op welke poort het frame is ontvangen, voert u de opdracht **SRC\_INDEX in** (de bron Local Target Logic (LTL)). Voer deze opdracht in om een LTL in kaart te brengen naar een poort of groep poorten voor N7K:

N7700# show system internal pixm info ltl 0xe05

Member info ------Type LTL ------PHY\_PORT Eth4/1

FLOOD\_W\_FPOE 0xc031

De output laat zien dat de SRC\_INDEX van 0xe05 kaarten naar poort Eth4/1. Dit bevestigt dat het kader op poort Eth4/1 wordt ontvangen.

Met de **RBUS**-gegevens kunt u controleren of het frame is aangesloten op VLAN 55. Merk op dat de TTL **als 0xff** start in de **DBUS**-gegevens. Daarnaast kunt u de **bovenlooppoort** van de **DEST\_INDEX** (bestemmingslijn) bevestigen:

De output toont dat de **DEST\_INDEX** van **0x9ed** kaarten naar poort **Eth3/5** toont. Dit bevestigt dat het kader van haven **Eth3/5** wordt verzonden.

#### Aanvullende verificatie

Om te verifiëren hoe de schakelaar de LTL pool toewijst, voer de opdracht **interne elfpo info ltlgebied van het show systeem in**. De output van deze opdracht is nuttig om het doel van een LTL te begrijpen als het niet aan een fysieke poort wordt aangepast. Een goed voorbeeld hiervan is een **Drop LTL**:

```
N7700# show system internal pixm info ltl 0xcad
0x0cad is Drop DI LTL
N7700# show system internal pixm info ltl-region
MAP Version: 3 Description: LTL Map for Crossbow
====== LTL_TYPE SIZE START END
_____
LIBLTLMAP LTL TYPE PHY PORT 3072 0x0 0xbff LIBLTLMAP LTL TYPE SUP ETH INBAND 64 0xc00 0xc3f
LIBLTLMAP_LTL_TYPE_UCAST_VPC_VDC_SI 32 0xc40 0xc5f LIBLTLMAP_LTL_TYPE_EXCEPTION_SPAN 32 0xc60
0xc7f LIBLTLMAP_LTL_TYPE_UCAST_GENERIC 48 0xc80 0xcaf ------
  ----- SUB-TYPE LTL ------
----- LIBLTLMAP_LTL_TYPE_UCAST_GENERIC_NOT_USED 0xcaf
LIBLTLMAP_LTL_TYPE_DROP_DI_WO_HW_BITSET 0xcae LIBLTLMAP_LTL_TYPE_DROP_DI
0xcad
     LIBLTLMAP_LTL_TYPE_SUP_DIAG_SI_V5
                                          0xcac
     LIBLTLMAP_LTL_TYPE_RESERVED_ERSPAN_LTL
                                          0xcab
```

| LIBLTLMAP_LTL_TYPE_LC_CPU          | 192   | 0xcb0  | 0xd6f  |
|------------------------------------|-------|--------|--------|
| LIBLTLMAP_LTL_TYPE_UCAST_RESERVED  | 144   | 0xd70  | 0xdff  |
| LIBLTLMAP_LTL_TYPE_PC              | 1536  | 0xe00  | 0x13ff |
| LIBLTLMAP_LTL_TYPE_DYNAMIC_UCAST   | 5120  | 0x1400 | 0x27ff |
| LIBLTLMAP_LTL_TYPE_MCAST_RESERVED  | 48    | 0x2800 | 0x282f |
| LIBLTLMAP_LTL_TYPE_DYNAMIC_MCAST   | 38848 | 0x2830 | 0xbfef |
| LIBLTLMAP_LTL_TYPE_SAC_FLOOD       | 16    | 0xbff0 | 0xbfff |
| LIBLTLMAP_LTL_TYPE_FLOOD_WITH_FPOE | 16384 | 0xc000 | Oxffff |