Nexus 7000 F1 module-ELAM procedure

Inhoud

Inleiding Topologie Bepaal de Ingrress Forwarding Engine De trigger configureren Start de Capture Resultaten interpreteren Aanvullende verificatie

Inleiding

In dit document worden de stappen beschreven die zijn gebruikt om een ELAM op een Cisco Nexus 7000 (N7K) F1-module uit te voeren, wordt de meest relevante output uitgelegd en wordt beschreven hoe de resultaten moeten worden geïnterpreteerd.

Tip: Raadpleeg het OCR-document voor een overzicht van de automatische alarmlampjes.

Topologie

In dit voorbeeld, een host op VLAN 10 (10.1.1.101 met MAC-adres 0050.56a1.1a01), stuurt Port Eth3/18 een ICMP-verzoek (Internet Control Message Protocol) naar een host die ook op VLAN 10 (10.1.1.10) is 2 met MAC-adres 0050.56a1.1aef), poort Eth3/26. ELAM wordt gebruikt om dit enkele frame van 10.1.101 tot 10.1.1.102 op te nemen. Het is belangrijk om te onthouden dat één enkele ELAM u slechts een opname toestaat kader.

Als u een ELAM op N7K wilt uitvoeren, moet u eerst verbinding maken met de juiste module (dit vereist het netwerk-admin privilege):

```
N7K# attach module 3
Attaching to module 3 ...
To exit type 'exit', to abort type '$.'
module-3#
```

Bepaal de Ingrress Forwarding Engine

Verwacht wordt dat het verkeer de switch ingaat op poort **Eth3/18**. Wanneer u de modules in het systeem controleert, ziet u dat **Module 3** een F1 module is. Het is belangrijk te onthouden dat N7K volledig is verdeeld en dat de modules, en niet de toezichthouder, de doorvoerbeslissingen nemen voor dataplaneverkeer.

N7K#	show mo	odule 3		
Mod	Ports	Module-Type	Model	Status
3	32	1/10 Gbps Ethernet Module	N7K-F132XP-15	ok

Voer voor F1-modules de ELAM uit op Layer 2 (L2) Forwarding Engine (FE) met interne codenaam **Orion**. N7K F1 heeft 16 FE's per module, dus moet u de **Orion** ASIC bepalen die voor de FE op poort **Eth3/18** wordt gebruikt. Voer deze opdracht in om te verifiëren:

```
module-3# show hardware internal dev-port-map
(some output omitted)
_____
CARD_TYPE: DCE 32 port 10G
>Front Panel ports:32
_____
Device name
            Dev role
                        Abbr num inst:
_____
>Orion Fwding Driver DEV_LAYER_2_LOOKUP
                        L2LKP 16
 ------
+----+++FRONT PANEL PORT TO ASIC INSTANCE MAP+++----++
 ------
FP port | PHYS | MAC_0 | L2LKP | QUEUE | SWICHF
         8
     8
            8
                 8
 18
                      1
```

In de output kan je zien dat poort Eth3/18 op Orion (L2LKP) voorbeeld 8 staat.

```
module-3# elam asic orion instance 8
module-3(orion-elam)#
```

De trigger configureren

De **Orion** ASIC heeft een zeer beperkt aantal ELAM triggers in vergelijking met de andere FE's op het N7K-platform. Dit komt doordat de F1 een L2-only module is. Daarom maakt het switching besluiten op basis van de MAC-adresinformatie (of SwitchID in FabricPath omgevingen).

Met Nexus Operating Systems (NX-OS) kunt u het vraagteken gebruiken om de ELAM-trigger te splitsen:

da	Destination mac-address
mim_da	Destination mac-in-mac-address
mim_sa	Source mac-in-mac-address
sa	Source mac-address
vlan	

Dit voorbeeld, wordt het kader opgenomen op basis van de bron en van bestemming MAC adressen op het ingangsbeslissingsblok.

Opmerking: De F1 module vereist geen afzonderlijke DBUS- en RBUS-triggers.

Hier is de trekker:

module-3(orion-elam)# trigger di field sa 0050.56a1.1a01 da 0050.56a1.1aef

Start de Capture

De F1 module verschilt van de andere N7K-modules, omdat de ELAM onmiddellijk begint nadat de trigger is ingesteld. Om de status van de ELAM te controleren voert u de opdracht **status** in:

module-3(orion-elam)# status

Armed

Zodra het kader dat met de trigger overeenkomt door de FE wordt ontvangen, toont de ELAMstatus als **Trigge**:

module-3(orion-elam)# status
Triggered

Resultaten interpreteren

Typ de opdracht **opname** in de **show** om de ELAM-resultaten weer te geven. Hier is het fragment uit de ELAM-gegevens dat het meest relevant is voor dit voorbeeld (een deel van de output wordt weggelaten):

<pre>module-3(orion-elam)#</pre>	show	capture			
dc3v4_si[11:0]	:		17		
vlanx	:		a		
di	:		1e	or	1f
res_eth_da	:		5056a11aef		
res_eth_sa	:		5056a11a01		

Opmerking: Met de F1 module worden de ELAM-gegevens die worden gebruikt om het doorvoerbesluit te nemen en de gegevens die het doorvoerresultaat bevatten, in dezelfde output gecombineerd. Merk ook op dat het MAC-adresformaat in de ELAM-uitvoer geen voorhangende nullen bevat.

Destination MAC (res_eth_da) 5056allaef = 0050.56al.laef
Source MAC (res_eth_sa) 5056alla01 = 0050.56al.la01

Met deze uitvoer kunt u de bron Local Target Logic (LTL) (dc3v4_si), de bestemming LTL (di), het

VLAN (vlanx) en de bron- en doeladressen van MAC (5056a11a01 en 5056a1 1aef, respectievelijk).

De bron LTL (**dc3v4_si**) vertegenwoordigt de poort waarop het frame wordt ontvangen. F1 ELAM geeft twee resultaten weer voor de bestemmingsplanning LTL (**1e of 1f**). Dit komt voor omdat de ELAM parser het minst significante beetje van de ELAM data niet kan lezen, wat een dubbelzinnig resultaat veroorzaakt. Daarom raadt Cisco u aan om de hardware MAC-adresingang voor het doeladres te valideren en het met de doellijst in het ELAM te controleren.

N7K# show system internal pixm info ltl 0x17 Type LTL

PHY_PORT Eth3/18

De output laat zien dat de bron LTL van **0x17** kaarten naar poort **Eth3/18** toont. Dit bevestigt dat het kader op poort **Eth3/18** wordt ontvangen.

<pre>module-3# show hardware mac address-table fe 8 address 0050.56a1.1aef vlan 10 vdc 1</pre>					fe 8		
(some output omitted)							
FE +-	Valio	1 PI +-	BD	 _+	MAC	In +	.dex
8	1	0	34	0050.5	6a1.1aef	0x000	1f
N7К# Туре	show	syste	m int LTL	ernal p	ixm info	ltl Ox	1f

PHY_PORT Eth3/26

Met deze uitvoer kunt u verifiëren dat **Orion** instantie **8** (de FE die de verzendingsbeslissing voor **Eth3/18** maakt) een hardware MAC-adres ingangsadres van **0x1f** heeft voor het **MAC-adres 0050.56a1.1aef.** Deze index is ook de bestemming LTL (**di**) in de F1 ELAM-gegevens.

Daarnaast kunt u controleren of LTL **0x1f** kaarten naar poort **Eth3/26** heeft. Dit bevestigt dat het kader van poort **Eth3/26** wordt verzonden.

Aanvullende verificatie

Om te verifiëren hoe de switch de LTL pool toewijst, **voert** u de opdracht **interne** elf **van het showsysteem info ItI-regio in**. De output van deze opdracht is nuttig om het doel van een LTL te begrijpen als het niet aan een fysieke poort wordt aangepast. Een goed voorbeeld hiervan is een **Drop** LTL:

N7K# show system internal pixm info ltl 0x11a0 0x11a0 is not configured N7K# show system internal pixm info ltl-region LTL POOL TYPE SIZE RANGE DCE/FC Pool 1024 0x0000 to 0x03ff

SUP Inband LTL	32	0x0400	to 0x041f		
MD Flood LTL	1	0x0420			
Central R/W	1	0x0421			
UCAST Pool	1536	0x0422	to 0x0a21		
PC Pool	1720	0x0a22	to 0x10d9		
LC CPU Pool	32	0x1152	to 0x1171		
EARL Pool	72	0x10da	to 0x1121		
SPAN Pool	48	0x1122	to 0x1151		
UCAST VDC Use Pool	16	0x1172	to 0x1181		
UCAST Generic Pool	30	0x1182	to 0x119f		
LISP Pool	4	0x1198	to 0x119b		
Invalid SI	1	0x119c	to 0x119c		
ESPAN SI	1	0x119d	to 0x119d		
Recirc SI	1	0x119e	to 0x119e		
Drop DI	2	0x119f	to 0x11a0		
UCAST (L3_SVI_SI) Region	31	0x11a1	to 0x11bf		
UCAST (Fex/GPC/SVI-ES) 3	648 0x11c0 to	0x1fff			
UCAST Reserved for Future Use 3	Region 2048	0x2000	to 0x27ff		
======================================					
VDC OMF Pool	32	0x2800	to 0x281f		