LTE WAN-back-up implementeren met Cisco RV34x Series routers met een Mac OSX

Doel

Dit artikel legt uit hoe u een Cisco Business RV-router in combinatie met een router van derden kunt gebruiken die LTE (Long Term Evolution) WAN-mogelijkheid (Wide Area Network) heeft geïntegreerd met een Mac-computer. De LTE-router wordt gebruikt als back-upconnectiviteit op het internet voor de RV34x-Series router. In dit scenario wordt de mobiele hotspotrouter van het <u>NETGEAR Nighthawk LTE, model MR.1100</u> gebruikt.

Als u een Windows-computer gebruikt, dient u de stappen te volgen in het implementeren van LTE WAN-back-up met Cisco RV34x Series routers met een Windows-pc.

Inhoud

- 1. NETGEAR-bronnen
- 2. Topologie voor back-up internet
- 3. Overzicht voor installatie
- 4. Eerste configuratie op LTE mobiele router
- 5. IP-passthrough configureren op LTE mobiele router
- 6. RV34x-router voor back-up-internet op WAN 2
- 7. Controleer de internettoegang op Cisco RV34x-router
- 8. Controleer WAN 2 back-up-internet

Toepasselijke apparaten | Versie firmware

- RV340 | Firmware 1.0.03.16
- RV340 W | Firmware 1.0.03.16
- RV345 | Firmware 1.0.03.16
- RV345P router | Firmware 1.0.03.16

Inleiding

Het is essentieel voor een bedrijf om een consistent internet te hebben. U wilt alles doen wat u kunt om connectiviteit in uw netwerk te verzekeren, maar u hebt geen controle over de betrouwbaarheid van uw Internet Service Provider (ISP). Op een bepaald moment kan hun service dalen, wat betekent dat ook uw netwerk dat zou doen. Daarom is het belangrijk om vooruit te plannen. Wat kan je doen?

Het is eenvoudig, met de Cisco Business RV34x Series routers zijn er twee opties beschikbaar om een back-upinternet op te zetten:

- U kunt een tweede traditionele ISP toevoegen met behulp van een 3G/4G LTE Universal Serial Bus (USB) compatibel koppel met een abonnement. De uitdaging van deze instelling is wanneer een derde partij een update van de software uitvoert en soms compatibiliteitsproblemen veroorzaakt. Als u de meest recente USB-dongle compatibiliteit van de ISP met Cisco RV Series routers wilt zien, klikt u <u>hier</u> op.
- 2. Gebruik de 2^e WAN-poort en voeg een tweede ISP-router toe met een geïntegreerd LTEvermogen. Dit artikel is gefocust op deze optie, dus als dat u interesseert, ga dan door! In dit scenario zullen we ons richten op het toevoegen van een ISP-router met LTEmogelijkheid, in het bijzonder, de NETGEAR Nighthawk LTE Mobile Hotspot Router, model MR.1100. De router gebruikt mobiele gegevens, net zoals een mobiele telefoon, wanneer het wordt gebruikt om tot het internet te toegang zodat u het juiste plan hebt om uw omgeving te ondersteunen.

4G LTE van de vierde generatie is een verbetering in vergelijking met 3G. Het voorziet in een betrouwbaarder verbinding, sneller uploaden en downloaden snelheden, en betere spraak- en videohelderheid. Hoewel 4G LTE geen volledige 4G-verbinding is, wordt deze veel superieur geacht aan 3G.

Bovendien kan de secondaire ISP worden geconfigureerd om de balans te laden en bandbreedte op uw netwerk uit te vouwen. Als u een video op dit onderwerp wilt weergeven, controleert u <u>Cisco Tech Talk: Configuratie van dubbel WAN voor taakverdeling op RV340 Series routers</u>.

Cisco Business verkoopt of ondersteunt geen NETGEAR-producten. Het werd eenvoudig

gebruikt als een LTE-router die compatibel was met de Cisco RV-Series routers.

NETGEAR-bronnen

- 1. Productpagina
- 2. Snel starten
- 3. Gebruikershandleiding
- 4. Welke mobiele banden worden ondersteund door MR.1100 Nighthawk M1 Mobile Router?
- 5. Lijst van door de luchtkaarthotspot ondersteunde luchtvaartmaatschappijen
- 6. Schaf de MR.1100 Night M1 mobiele router aan (controleer uw ISP op beschikbaarheid)

Topologie voor back-up internet

Het beeld hieronder illustreert de primaire ISP die aangesloten is op WAN1 op de RV Series router (weergegeven als een blauwe doos) en WAN 2 dat aangesloten is op de weergegeven poort op de NETGEAR router (het zwarte stuk apparatuur) voor de secundaire ISP.

Voordat u de LTE-router op de RV340-router aansluit, volgt u de onderstaande instructies om de LTE-router als een reservekopie-internet in te stellen.

Overzicht voor installatie

Hier zijn de stappen op hoog niveau nodig om back-up-internet mogelijk te maken.

1. Eerste configuratie op LTE mobiele router

- 2. IP-passthrough configureren op LTE mobiele router
- 3. RV34x-router voor back-up-internet op WAN 2 configureren

Eerste configuratie op LTE mobiele router

Gebruik een werkstation om verbinding te maken met de Nighthawk LTE-router en volg de instructies om standaardbeheer en hotspotnetwerken in te stellen. Stappen zijn te vinden in de <u>NETGEAR-gebruikershandleiding</u>. Hiermee wordt de LTE-router ingesteld als een Wi-Fi hotspot.

Initiële configuratie voor de LTE mobiele router maakt een Ethernet verbonden verbinding mogelijk. Gebruik hetzelfde werkstation en sluit een verbinding aan op de Ethernet-poort en controleer of een geldig IP-adres is afgegeven op de LTE mobiele router. Controleer dit door uw browser te openen om een geldige internetsite te controleren.

Het volgende gedeelte wordt automatisch uitgeschakeld. Dit zal toegang tot het externe, naar het publiek gerichte IP-adres mogelijk maken dat voor onze behoeften vereist is.

IP-passthrough configureren op LTE mobiele router

Na de stappen in het bovenstaande gedeelte te hebben gevolgd, kunt u het dashboard benaderen om de LTE mobiele router te configureren als een standalone apparaat voor rechte toegang tot het openbare internet.

Voltooi de configuratie van de IP-passthrough om een rechtstreeks, naar buiten gericht IP-adres te bieden.

Stap 1

Voer in een webbrowser attwifimanager/index.html in.

^{🗊 🔏} attwifimanager/index.html

U dient een dashboard scherm te bekijken dat vergelijkbaar is met de afbeelding hieronder.

Klik op Instellingen voor toegang tot de geavanceerde configuratieparameters.

Navigeer naar mobiele routerinstelling.

Selecteer onder *IP PASSTHROUGH* de optie **ON Disables Wi-Fi op de mobiele router**. Dit schakelt Wi-Fi hotspotondersteuning uit.

IP PASSTHROUGH
⊖ Off
 ON Disables Wi-Fi on the mobile router

Stap 5

Selecteer onder TETHERING alleen de optie Laad in het vervolgkeuzemenu.

TETHERING	
Turn off Wi-Fi when tethering	0
Use USB port for	
Charge only	

Stap 6

Klik op Toepassen.

In het pop-upvenster voor bevestigen herstart klikt u op Doorgaan.

Stap 8

In de rechterbovenhoek verschijnt een waarschuwing, mobiele breedband losgekoppeld.

Mobile Broadband Disconnected

Your data connection is disconnected.

Er verschijnt een waarschuwing met een SCANNING VOOR MOBIELE ROUTER.

De Wi-Fi-interface moet worden uitgeschakeld om de configuratie van de LTE-router op het LAN-netwerk te testen. Als u de Wi-Fi-verbinding wilt uitschakelen, klikt u op het **pictogram Wi-Fi** en vervolgens selecteert u **Wi-Fi uit**.

U ziet dan dat het netwerk niet is aangesloten op de RV340.

• • < >		Network	¢	Q Search
	Location	n: Automatic	٥	
USB 10/00 LAN Not Connected Bluetooth PAN Not Connected	<>	Status:	Not Connected The cable for USB 10/100/1 connected, but your compu an IP address.	000 LAN is Iter does not have
BelkinB-C LAN Not Connected	$\langle \cdot \rangle$	Configure IPv4:	Using DHCP	0
MR1100 Not Connected	$\langle \cdots \rangle$	IP Address:		
Wi-Fi	~	Subnet Mask:		
Off	÷	Router:		
 InundeIt Bridge Not Connected 	·~>	DNS Server:		
+ - &-		Search Domains:		Advanced ?

In Stap 7, liet u de router NETGEAR een herstart uitvoeren. Zodra dat is voltooid, neem een Ethernet-kabel en sluit u de LTE-router rechtstreeks aan op uw PC.

Stap 13

Merk op het internetgerichte IP-adres van de ISP op uw Ethernet LAN. Dit is het IPadres van de LTE-router.

Controleer connectiviteit op het internet door uw browser te openen en een geldige internetsite in te voeren.

Stap 15

Koppel de Ethernet-kabel los van de LTE-router en de PC.

RV34x-router voor back-up-internet op WAN 2

Nu de LTE-router is geconfigureerd en het werkstation een IP-adres van ISP ontvangt, sluit u de LTE-mobiele router rechtstreeks aan op WAN 2-poorten van de RV340 Series router zoals in het gedeelte <u>Back-upinternet</u> van dit artikel wordt getoond. Dit adres is rechtstreeks aan de Cisco-router geleverd door de LTE-router (van de ISP).

Op dit moment wordt de internetverbinding geboden door WAN 1 van de RV340.

Stap 1

Sluit de LTE-router aan op de WAN-2-poort van de RV340-router.

Stap 2

Sluit uw PC aan op de RV-router om toegang te hebben tot de beheermenu's.

Stap 3

Navigeer naar **Status en Statistieken > ARP Tabel**. Neem nota van het IPv4-adres voor uw pc op het LAN. Dit IP-adres is nodig voor stap 5.

Selecteer **System Summary** en zie WAN 1 en WAN 2 worden weergegeven als *omhoog*.

⊗	Getting Started	System S	Summary	/							
	Status and Statistics										
1	System Summary	System Informa	ation						Firmware Inf	ormation	
	TCP/IP Services	Host Name:	router4	45788					Firmware Ver	rsion:	1.0.03.16
	Port Traffic	Serial Number:	PSZ20	231BKX					Firmware MD	5 Checksum:	1b5370409d0f404504
	WAN QoS Statistics	System Up Time Current Time:	e: 0 Days 2020-	3 Hours 11 Mi Jan-23, 01:13:	nutes 36 Sec 21 GMT	conds			WAN1 MAC	Address: Address:	ec:bd:1d:44:57:86 ec:bd:1d:44:57:87
	ARP Table	CPU/Memory U	sage: 6% / 34	4%					LAN MAC Ad	idress:	ec:bd:1d:44:57:88
	Routing Table	PID VID:	RV345	P-K9 PP							
	DHCP Bindings	Port Status									
	Mobile Network	r on outua									
	View Logs	Port ID	1	2	3		4	5	6	7	8
**	Administration	Interface	LAN	LAN	LAN		LAN	LAN	LAN	LAN	N LAN
٠	System Configuration	Link Status	1	t	1		Ļ	1	4	1	1
۲	WAN	Speed		1000Mbps							
"	LAN								2		
8	Routing	Port ID	11	12	13	14		15	16/DMZ	Internet	Internet
	Firewall	Interface	LAN	LAN	LAN	LAN		LAN	LAN	WAN1	WAN2
e	VPN	Link Status	1	1	1	1		1	1,	. t	T.
A	Security	Speed								1000Mbp	os 1000Mbps

Stap 5

Scrolt door de pagina en neem nota van de IP adressen voor elk WAN.

Interface	WAN1	WAN2
IP Address	192.168.100.147	10.226.255.225
Default Gateway	192.168.100.1	10.226.255.1
DNS	192.168.100.1	172.26.38.1
Dynamic DNS	Disabled	Disabled
Multi-WAN Status	Online	Online
	Release	Release

Stap 6

Selecteer in de Mac Computer het volgende:

1. Toepassingsmap

3. Map hulpprogramma's

4.

5. terminal

Stap 7

Typ het bevel om de lokale LAN gateway van de router te pingelen.

C:\USETS\ ping [IP-adres van lokale gateway van de router] In dit scenario is het IP-adres 172.168.1.1.

C:\Users_{ping} 172.168.1.1

	Downloads — R2 — -bash — 80×25
P.	-MBPidownloads \$ ping 172.168.1.1
\mathbf{P}	G 172.168.1.1 (172.168.1.1): 56 data bytes
103	pytes from 1/2.168.1.1: icmp_seq=0 ttl=64 time=0.800 ms
64	bytes from 172.168.1.1: icmp_seg=1 ttl=64 time=0.659 ms
64	bytes from 172.168.1.1: icmp seg=2 ttl=64 time=0.623 ms
64	bytes from 172.168.1.1: icmp seg=3 ttl=64 time=0.592 ms
^0	
-	172.168.1.1 ping statistics
4	packets transmitted, 4 packets received, 0.0% packet loss
TO	and-trip min/avg/max/stddev = 0.592/0.668/0.800/0.080 ms
1997 - P.	ind-errp many degradation of of or of

Typ de opdracht om de WAN 2-poort te pingelen. Op een Mac-computer gaat de ping verder totdat u op **control + C** klikt.

C: |USETS| ping [IP-adres van de WAN 2-gateway]

In dit scenario is het IP-adres 10.226.255.1.

C:\Users\ping 10.226.255.1

•	• •			Downle	oads — R2 — s	ping 192.1	68.100.1 - 80	×25
					\$ \$ ping 10.2	226.255.	1	
PIN	G 10.	226.25	5.1 (10	0.226.25	55	ica byci	10	
64	bytes	from	10.226.	.255.1:	icmp_seq=0	tt1=63	time=1.745	ma
64	bytes	from	10.226	.255.11	icmp_seq=1	tt1=63	time=2.802	ms
64	bytes	from	10.226.	.255.1:	icmp_seq=2	tt1=63	time=0.926	ma
64	bytes	from	10.226.	.255.1:	icmp_seq=3	tt1=63	time=1.248	me
^¢								

Stap 9

Typ de opdracht om de WAN 1-poort te pingelen. Laat het ping door het verificatieproces gaan.

$C: \setminus USETS \setminus$ ping [IP-adres van de WAN 1-gateway]

In dit scenario is het IP-adres 192.168.100.1.

C:\USETS\ping 192.168.100.1

	1		3			ping 192.	168.100.	1	
PI	NG 192.	.168.1	100.1	(192	.168.	100.1): 56	data byt	es	
-		-		168.1	00.1:	icmp_seq=0	tt1=63	time=2.334	mø
64	bytea	from	192.	168.1	00.1:	icmp_seq=1	tt1=63	time=1.716	ma
64	bytes	from	192.	168.1	00.1:	icmp_seq=2	tt1=63	time=1.638	ms
64	bytes	from	192.	168.1	00.1:	icmp_seq=3	tt1=63	time=1.623	2.5
64	bytes	from	192.	168.1	00.1:	icmp_seq=4	tt1=63	time=1.806	2.5
64	bytes	from	192.	168.1	00.1:	icmp_seq=5	tt1=63	time=1.735	ms
64	bytes	from	192.	168.1	00.1:	icmp_seq=6	tt1=63	time=1.617	25.6
64	bytes	from	192.	168.1	00.1:	icmp_seq=7	tt1=63	time=1.960	25
64	bytes	from	192.	168.1	00.1:	icmp_seq=8	tt1=63	time=1.734	7.8
64	bytes	from	192.	168.1	00.1:	icmp_seq=9	tt1=63	time=1.730	25

Stap 10

Navigeer naar **WAN > multi-WAN**. Zorg ervoor dat WAN 1 een voorrang van 1 krijgt en WAN 2 een voorrang van 2 krijgt.

Dit zal WAN 2 als de back-up ISP configureren in het geval van een storing op WAN 1.

		Ð	cisco R	V345P-router445788		cisco (admin) English 🔹 ? 🧿	•
⊗	Getting Started	Mult					
٩	Status and Statistics	Ividit				4 Apply Car	ncel
*	Administration	Inte	rface Setting 1	able			^
٠	System Configuration		A (7)				
1	WAN		່ ິ3	\frown	 Weighted by Percentage (For Load-Balance)(%)) O Weighted by Bandwidth (For Load-Balance)	
	WAN Settings	0	Interface \$	Precedence (For Failover) \$	(Mbps)		_
2	Multi-WAN		WAN1	1	100	100	
	Mobile Network		WAN2	2	100		
	Dynamic DNS		USB1	3	100	100	
	Hardware DMZ		USB2	4	100		

Klik op het pictogram **Opslaan**.

Controleer de internettoegang op Cisco RV34x-router

Stap 1

Navigeer naar **Status en Statistieken > Systeemsamenvatting**. Controleer of de status van meerdere WAN's online is.

-	Getting Started	S	vstem	Sum	mary			
1	Status and Statistics	0	yotom	Gam	ind y			
2	System Summary							
	TCP/IP Services		IPv4	IPv6				
	Port Traffic		Interface		WAN1	WAN2	USB1	USB2
	WAN QoS Statistics		IP Addres	s	192.168.100.147	10.226.255.225		
	ARP Table		Default Ga	ateway	192.168.100.1	10.226.255.1		
	Routing Table		DNS		192.168.100.1	172.26.38.1		
		З	Dynamic I	DNS	Disabled	Disabled	Disabled	Disabled
	DHCP Bindings	- (Multi-WA	N Status	Online	Online	Offline	Offline
	Mobile Network				Release	Release	(Not Attached)	(Not Attached)
	View Logs				Renew	Renew		

Controleer door uw browser te openen om een geldige internetsite te controleren.

Controleer WAN 2 back-up-internet

Stap 1

Zorg ervoor dat de ping nog draait.

			Downlo	ade - P2 - ala	0 192 168	1001-80-2	5
			144 174 144 1	duo ne pri	9 102.100		.~
64	bytes	from	192.168.100.11	1cmp_seq=73	tt1=63	time=1.921	0.8
64	bytes	from	192.168.100.1:	icmp_seg=74	tt1=63	time=2.069	ns
64	bytes	from	192.168.100.1:	icmp_seq=75	tt1=63	time=1.600	ns
64	bytes	from	192.168.100.1:	icmp_seq=76	tt1=63	time=2.329	ma
64	bytes	from	192.168.100.1:	icmp_seq=77	tt1=63	time=1.653	n.s
64	bytes	from	192.168.100.1:	icmp_seq=78	tt1=63	time=2.076	m .8
64	bytes	from	192.168.100.1:	icnp_seq=79	tt1=63	time=1.794	8.0
64	bytes	from	192.168.100.1:	icmp_seq=80	tt1=63	time=1.583	21.8
64	bytes	from	192.168.100.1:	icmp_seq=81	tt1=63	time=1.782	21.0
64	bytes	from	192.168.100.1:	icmp_seq=82	tt1=63	time=1.567	ns.
64	bytes	from	192.168.100.1:	icmp_seq=83	tt1=63	time=1.734	21.6
64	bytes	from	192.168.100.1:	icmp_seq=84	tt1=63	time=2.429	25
64	bytes	from	192.168.100.1:	icmp_seq=85	tt1=63	time=3.014	n .8
64	bytes	from	192.168.100.1:	icmp_seq=86	tt1=63	time=2.362	8.0
64	bytes	from	192.168.100.1:	icmp_seq=87	tt1=63	time=1.803	=
64	bytes	from	192.168.100.1:	icmp_seq=88	tt1=63	time=1.832	21.0
64	bytes	from	192.168.100.1:	icnp seq=89	tt1=63	time=1.884	D.S
64	bytes	from	192.168.100.1:	icmp_seq=90	tt1=63	time=1.885	2.8
64	bytes	from	192.168.100.1:	icmp_seq=91	tt1=63	time=1.918	25
64	bytes	from	192.168.100.1:	icmp seq=92	tt1=63	time=1.802	8
64	bytes	from	192.168.100.1:	icmp seq=93	tt1=63	time=1.828	21.0
64	bytes	from	192.168.100.1:	icmp_seq=94	tt1=63	time=2.194	2.0
64	bytes	from	192.168.100.1:	icmp_seq=95	tt1=63	time=2.010	8.0
64	bytes	from	192.168.100.1:	icmp seq=96	tt1=63	time=1.853	ns

Stap 2

Trek de kabel naar WAN 1. U ziet dat de pings falen. Klik op **Control + c** om de pings stop te zetten.

	• •		Downlos	ads - R2 - ping 192.168.100.1 - 80×25
64	bytes	from	192.168.100.1:	icmp_seq=90 ttl=63 time=1.885 ms
64	bytes	from	192.168.100.1:	icmp_seq=91 ttl=63 time=1.918 ms
64	bytes	from	192.168.100.1:	icmp_seq=92 ttl=63 time=1.802 ms
64	bytes	from	192.168.100.1:	icmp_seq=93 ttl=63 time=1.828 ms
64	bytes	from	192.168.100.1:	icmp_seq=94 ttl=63 time=2.194 ms
64	bytes	from	192.168.100.1:	icmp_seq=95 ttl=63 time=2.010 ms
64	bytes	from	192.168.100.1:	icmp_seq=96 ttl=63 time=1.853 ms
64	bytes	from	192.168.100.1:	icmp_seq=97 ttl=63 time=1.609 ms
64	bytes	from	192.168.100.1:	icmp_seq=98 ttl=63 time=1.761 ms
64	bytes	from	192.168.100.11	icmp_seq=99 ttl=63 time=3.376 ms
64	bytes	from	192.168.100.1:	icmp_seq=100 ttl=63 time=1.804 ms
64	bytes	from	192.168.100.1:	<pre>icmp_seq=101 ttl=63 time=1.416 ms</pre>
64	bytes	from	192.168.100.1:	<pre>icmp_seq=102 ttl=63 time=1.615 ns</pre>
64	bytes	from	192.168.100.1:	icmp_seq=103 ttl=63 time=3.400 ms
64	bytes	from	192.168.100.11	icmp_seq=104 ttl=63 time=1.855 ms
64	bytes	from	192.168.100.1:	icmp_seq=105 ttl=63 time=2.057 ms
64	bytes	from	192.168.100.1:	icmp_seq=106 ttl=63 time=2.233 ns
64	bytes	from	192.168.100.1:	icnp_seq=107 ttl=63 time=1.739 ms
64	bytes	from	192.168.100.1:	icmp_seq=108 ttl=63 time=2.482 ms
Re	quest (timeou	it for icmp_seq	109
Re	quest (timeou	it for icmp_seq	110
Re	quest (timeou	it for icmp_seq	111
Rea	quest 1	timeou	it for icmp_seq	112
Re	quest 1	timeou	it for icmp_seq	113

Navigeer naar Status en Statistieken > Systeemsamenvatting. Let op dat WAN 1 offline is.

Ping het WAN 2 IP-adres. De antwoorden geven aan dat u connectiviteit hebt op de LTE backup-WAN (LTE-router).

C:\USETS\ ping [WAN 2 IP-adres]

In dit scenario is het IP-adres 10.226.255.1.

Open een webbrowser en controleer een geldige internetsite. Dit verifieert ook dat u de juiste backup WAN-functionaliteit op de WAN (LTE router) hebt.

← → ♂ ŵ	Ū	https://www.apple.com		
	É	Mac	iPad	iPhone
Conclusie				

Geweldig werk, je hebt nu je netwerk ingesteld met een back-upconnectiviteit. Uw netwerk is nu betrouwbaarder, wat goed werkt voor iedereen!