ZBFW configureren met behulp van FQDN ACLpatroonmatching in C8300 Series

Inhoud

Inleiding
Voorwaarden
Vereisten
Gebruikte componenten
<u>Achtergrondinformatie</u>
Configureren
Netwerkdiagram
Configuraties
Stap 1.(optioneel) ConfigureVRF
Stap 2. Interface configureren
Stap 3. (optioneel) Configureer NAT
Stap 4. FQDN-ACL configureren
Stap 5. ZBFW configureren
Verifiëren
Stap 1. HTTP-verbinding vanaf client starten
Stap 2. IP-cachegeheugen bevestigen
Stap 3. ZBFW-log bevestigen
Stap 4. Packet Capture bevestigen
Problemen oplossen
Veelgestelde vragen
Q: Hoe wordt de onderbrekingswaarde van IP cachebepaald op de router?
<u>Q: Is het aanvaardbaar wanneer de DNS server CNAME verslag eerder dan A verslag</u> terugkeert?
Q:Wat is het bevel om pakket over te brengen vangt verzameld op een router C8300 aan een server van FTP?
Referentie

Inleiding

In dit document wordt de procedure beschreven om ZBFW te configureren met FQDN ACLpatronen die in autonome modus op het C8300-platform worden aangepast.

Voorwaarden

Vereisten

Cisco raadt u aan bekend te zijn met dit onderwerp:

- Zone-Based Policy Firewall (ZBFW)
- Virtual Routing and Forwarding (VRF)
- Netwerkadresomzetting (NAT)

Gebruikte componenten

De informatie in dit document is gebaseerd op de volgende software- en hardware-versies:

• C830-2N2S-6T 17.12.02

De informatie in dit document is gebaseerd op de apparaten in een specifieke laboratoriumomgeving. Alle apparaten die in dit document worden beschreven, hadden een opgeschoonde (standaard)configuratie. Als uw netwerk live is, moet u zorgen dat u de potentiële impact van elke opdracht begrijpt.

Achtergrondinformatie

Zone-Based Policy Firewall (ZBFW) is een geavanceerde methode voor het configureren van firewalls op Cisco IOS® en Cisco IOS XE-apparaten waarmee beveiligingszones binnen het netwerk kunnen worden gemaakt.

Met ZBFW kunnen beheerders interfaces in zones groeperen en firewallbeleid toepassen op verkeer dat zich tussen deze zones verplaatst.

FQDN ACL's (Fully Qualified Domain Name Access Control Lists), gebruikt met een ZBFW in Cisco-routers, stellen beheerders in staat firewallregels te maken die verkeer aanpassen op basis van domeinnamen in plaats van alleen IP-adressen.

Deze functie is met name nuttig bij het omgaan met diensten die worden gehost op platforms zoals AWS of Azure, waar het IP-adres dat aan een service is gekoppeld vaak kan veranderen.

Het vereenvoudigt het beheer van het toegangscontrolebeleid en verbetert de flexibiliteit van de beveiligingsconfiguraties binnen het netwerk.

Configureren

Netwerkdiagram

Dit document introduceert de configuratie en verificatie voor ZBFW op basis van dit diagram. Dit is een gesimuleerde omgeving met BlackJumboDog als DNS-server.

Netwerkdiagram

Configuraties

Dit is de configuratie om communicatie van de client naar de webserver toe te laten.

Stap 1. (optioneel) VRF configureren

Met de functie VRF (Virtual Routing and Forwarding) kunt u meerdere onafhankelijke routingtabellen binnen één router maken en beheren. In dit voorbeeld maken we een VRF genaamd WebVRF en voeren we routing uit voor gerelateerde communicatie.

```
vrf definition WebVRF
rd 65010:10
!
address-family ipv4
route-target export 65010:10
route-target import 65010:10
exit-address-family
!
address-family ipv6
route-target export 65010:10
route-target import 65010:10
exit-address-family
ip route vrf WebVRF 8.8.8.8 255.255.255.255 GigabitEthernet0/0/3 192.168.99.10
ip route vrf WebVRF 192.168.10.0 255.255.255.0 Port-channel1.2001 192.168.1.253
ip route vrf WebVRF 192.168.20.0 255.255.255.0 GigabitEthernet0/0/3 192.168.99.10
```

Stap 2. Interface configureren

Configureer basisinformatie zoals zone-lid, VRF-, NAT- en IP-adressen voor de interfaces binnen en buiten.

interface GigabitEthernet0/0/1 no ip address negotiation auto lacp rate fast channel-group 1 mode active interface GigabitEthernet0/0/2 no ip address negotiation auto lacp rate fast channel-group 1 mode active interface Port-channel1 no ip address no negotiation auto interface Port-channel1.2001 encapsulation dot1Q 2001 vrf forwarding WebVRF ip address 192.168.1.1 255.255.255.0 ip broadcast-address 192.168.1.255 no ip redirects no ip proxy-arp ip nat inside zone-member security zone_client interface GigabitEthernet0/0/3

vrf forwarding WebVRF ip address 192.168.99.1 255.255.255.0 ip nat outside zone-member security zone_internet speed 1000 no negotiation auto

Stap 3. (optioneel) Configureer NAT

Configureer NAT voor interfaces binnen en buiten. In dit voorbeeld wordt het IP-bronadres van de client (192.168.10.1) vertaald naar 192.168.99.100.

ip access-list standard nat_source 10 permit 192.168.10.0 0.0.0.255 ip nat pool natpool 192.168.99.100 192.168.99.100 prefix-length 24 ip nat inside source list nat_source pool natpool vrf WebVRF overload Stap 4. FQDN-ACL configureren

Configureer FQDN ACL om het doelverkeer aan te passen. In dit voorbeeld, gebruik de vervanging '*' in de patroonaanpassing van de FQDN-objectgroep om de bestemming FQDN aan te passen.

object-group network src_net 192.168.10.0 255.255.255.0 object-group fqdn dst_test_fqdn pattern .*\.test\.com object-group network dst_dns host 8.8.8 ip access-list extended Client-WebServer 1 permit ip object-group src_net object-group dst_dns 5 permit ip object-group src_net fqdn-group dst_test_fqdn

Stap 5. ZBFW configureren

Zone, class-map en policy-map configureren voor ZBFW. In dit voorbeeld worden logbestanden met behulp van parameter-map gegenereerd wanneer het verkeer is toegestaan door ZBFW.

zone security zone_client zone security zone_internet parameter-map type inspect inspect_log audit-trail on class-map type inspect match-any Client-WebServer-Class match access-group name Client-WebServer policy-map type inspect Client-WebServer-Policy class type inspect Client-WebServer-Class inspect inspect_log class class-default drop log zone-pair security Client-WebServer-Pair source zone_client destination zone_internet

Verifiëren

Stap 1. HTTP-verbinding vanaf client starten

service-policy type inspect Client-WebServer-Policy

Controleer of HTTP-communicatie van de client naar de WEBserver succesvol is.

HTTP-verbinding

Stap 2. IP-cachegeheugen bevestigen

Voer show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all de opdracht uit om te bevestigen dat het IP-cache voor het doel-FQDN in C8300-2N2S-6T is gegenereerd.

<#root>

02A7382#

show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

IP Address Client(s) Expire RegexId Dirty VRF ID Match 192.168.20.1 0x1 117 0xdbccd400 0x00 0x0 .*\.test\.com

Stap 3. ZBFW-log bevestigen

Bevestig dat het IP-adres (192.168.20.1) overeenkomt met de FQDN (.*\.test\.com) en controleer of de HTTP-communicatie in stap 1 is toegestaan door ZBFW.

*Mar 7 11:08:23.018: %IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:003 TS:00000551336606461468 %FW-6-SESS_AUDIT_TRAIL_START

*Mar 7 11:08:24.566: %IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:002 TS:00000551338150591101 %FW-6-SESS_AUDIT_TRAIL: (target:

Stap 4. Packet Capture bevestigen

Bevestig dat de DNS-resolutie voor doel-FQDN en de HTTP-verbinding tussen de client en de WEBserver succesvol zijn.

PacketCapture in binnenkant:

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time	e to Live	Protocol	Length	TCP.Seq	Next sequence TCP.	ck Info
15	2024-03-07 11:50:36.775945	0x0511 (1297)	192.168.10.1	64078	8.8.8.8		53	127 0	DNS	76			Standard query 0xa505 A abc.test.com
18	2024-03-07 11:50:36.782949	0xe036 (57398)	8.8.8.8	53	192.168.10.1	640	78	126 (DNS	92			Standard query response 0xa505 A abc.test.com A 192.168.20.1

DNS-pakketten binnen

No.	Time	Identification	Source	S.Port Destination	D.Port	Time to Live P	rotocol Length	TCP.Seq	Next sequence TO	CP.Ack Info
Г	22 2024-03-07 11:50:36.798954	0x4575 (17781)	192.168.10.1	51715 192.168.20.1	80	127 T	CP 7	0 0	1	0 51715 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
	23 2024-03-07 11:50:36.798954	0x92fb (37627)	192.168.20.1	80 192.168.10.1	51715	126 T	CP 7	0 0	1	1 80 → 51715 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256
	24 2024-03-07 11:50:36.798954	0x4576 (17782)	192.168.10.1	51715 192.168.20.1	80	127 T	CP 5	8 1	1	1 51715 → 80 [ACK] Seg=1 Ack=1 Win=2102272 Len=0
	26 2024-03-07 11:50:36.803944	0x4577 (17783)	192.168.10.1	51715 192.168.20.1	80	127 H	TTP 49	2 1	435	1 GET / HTTP/1.1
	27 2024-03-07 11:50:36.806949	0x92fc (37628)	192.168.20.1	80 192.168.10.1	51715	126 H	ITTP 97	9 1	922	435 HTTP/1.1 200 OK (text/html)

HTTP-pakketten binnen

Packet Capture in Onside (192.168.10.1 is NAT naar 192.168.19.100) :

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence TC	P.Ack	Info
	3 2024-03-07 11:50:36.775945	0x0511 (1297)	192.168.99.100	64078	8.8.8.8	53	12	5 DNS	72	2			Standard query 0xa505 A abc.test.com
	6 2024-03-07 11:50:36.782949	0xe036 (57398)	8.8.8.8	53	192.168.99.100	64078	12	7 DNS	88	3			Standard query response 0xa505 A abc.test.com A 192.168.20.1
D!	VS-nakketten hinnen												
~1													

[10] 2024-03-07 11:50:36.798954 0x4575 (17781) 192.168.99.100 51715 192.168.20.1 80 126 TCP 66 0 1 0 51715 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS	=1460 WS=256 SACK
11 2024-03-07 11:50:36.798954 0x92fb (37627) 192.168.20.1 80 192.168.99.100 51715 127 TCP 66 0 1 1 80 + 51715 [SYN, ACK] Seq=0 Ack=1 Win=6553	5 Len=0 MSS=1460
12 2024-03-07 11:50:36.798954 0x4576 (17782) 192.168.99.100 51715 192.168.20.1 80 126 TCP 54 1 1 151715 + 80 [ACK] Seq=1 Ack=1 Win=2102272 L	.en=0
14 2024-03-07 11:50:36.803944 0x4577 (17783) 192.168.99.100 51715 192.168.20.1 80 126 HTTP 488 1 435 1 GET / HTTP/1.1	
15 2024-03-07 11:50:36.806949 0x92fc (37628) 192.168.20.1 80 192.168.99.100 51715 127 HTTP 975 1 922 435 HTTP/1.1 200 OK (text/html)	

HTTP-pakketten binnen en buiten

Problemen oplossen

Voor communicatieproblemen met betrekking tot ZBFW met behulp van FQDN ACL-patroonmatching, kunt u de logbestanden tijdens het probleem verzamelen en aan Cisco TAC leveren. Houd er rekening mee dat de logbestanden voor probleemoplossing afhankelijk zijn van de aard van het probleem.

Voorbeeld van te verzamelen stammen:

!!!! before reproduction
!! Confirm the IP cache
show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

!! Enable packet-trace debug platform packet-trace packet 8192 fia-trace debug platform packet-trace copy packet both debug platform condition ipv4 access-list Client-WebServer both debug platform condition feature fw dataplane submode all level verbose

!! Enable debug-level system logs and ZBFW debug logs debug platform packet-trace drop debug acl cca event debug acl cca error debug ip domain detail !! Start to debug debug platform condition start

!! Enable packet capture on the target interface (both sides) and start the capture monitor capture CAPIN interface Port-channel1.2001 both monitor capture CAPIN match ipv4 any any monitor capture CAPIN buffer size 32 monitor capture CAPIN start

monitor capture CAPOUT interface g0/0/3 both monitor capture CAPOUT match ipv4 any any monitor capture CAPOUT buffer size 32 monitor capture CAPOUT start !! (Optional) Clear the DNS cache on the client ipconfig/flushdns ipconfig /displaydns

!! Run the show command before reproduction show platform hardware qfp active feature firewall drop all show policy-map type inspect zone-pair Client-WebServer-Pair sessions show platform packet-trace statistics show platform packet-trace summary show logging process cpp_cp internal start last boot show platform hardware qfp active feature dns-snoop-agent client hw-pattern-list show platform hardware qfp active feature dns-snoop-agent client info show platform hardware qfp active feature dns-snoop-agent datapath stats show ip dns-snoop all show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all show platform software access-list F0 summary

!!!! Reproduce the issue - start

!! During the reproduction the issue, run show commands at every 10 seconds
!! Skip show ip dns-snoop all command if it is not supported on the specific router show ip dns-snoop all
show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

!!!! After reproduction
!! Stop the debugging logs and packet capture debug platform condition stop monitor capture CAPIN stop monitor capture CAPOUT stop

!! Run the show commands
show platform hardware qfp active feature firewall drop all
show policy-map type inspect zone-pair Client-WebServer-Pair sessions
show platform packet-trace statistics
show platform packet-trace summary
show logging process cpp_cp internal start last boot
show platform hardware qfp active feature dns-snoop-agent client hw-pattern-list
show platform hardware qfp active feature dns-snoop-agent datapath stats
show ip dns-snoop all
show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all
show platform hardware access-list F0 summary

show platform packet-trace packet all decode show running-config

Veelgestelde vragen

Q: Hoe wordt de onderbrekingswaarde van het IP geheim voorgeheugen bepaald op de router?

A: De tijdelijke waarde van het IP-cache wordt bepaald door de TTL-waarde (Time-To-Live) van het DNS-pakket dat van de DNS-server is geretourneerd. In dit voorbeeld is het 120 seconden. Wanneer het IP-cachegeheugen is uitgevallen, wordt het automatisch van de router verwijderd. Dit is het detail van pakketopname.

/ Dor	main Name System (response)
>	Transaction ID: 0xa505 Flags: 0x8580 Standard query response, No error Ouestions: 1
	Answer RRs: 1
>	Authority RRs: 0 Additional RRs: 0 Oueries
~	Answers
	✓ abc.test.com: type A, class IN, addr 192.168.20.1
	Name: abc.test.com
	Type: A (Host Address) (1)
	Class: IN (0x0001)
	Time to live: 120 (2 minutes)
	Data length: 4
	Address: 192.168.20.1

Packet Detail van DNS-resolutie

Q: Is het aanvaardbaar wanneer de DNS server CNAME verslag eerder dan A verslag terugkeert?

A: Ja, dat is geen probleem. DNS-resolutie en HTTP-communicatie worden zonder problemen uitgevoerd wanneer CNAME-record door DNSserver wordt teruggestuurd. Dit is het detail van pakketopname.

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence TCP.J	ck Info
350	2024-03-07 12:09:55.625959	0x0bc5 (3013)	192.168.10.1	63777	8.8.8.8	53	127	DNS	76			Standard query 0x6bd8 A abc.test.com
352	2024-03-07 12:09:55.629957	0xe4fe (58622)	8.8.8.8	53	192.168.10.1	63777	126	DNS	114			Standard query response 0x6bd8 A abc.test.com CNAME def.test.

DNS-pakketten binnen

```
Domain Name System (response)
   Transaction ID: 0x6bd8
> Flags: 0x8580 Standard query response, No error
   Ouestions: 1
   Answer RRs: 2
   Authority RRs: 0
   Additional RRs: 0
> Queries

    Answers

     abc.test.com: type CNAME, class IN, cname def.test.com
        Name: abc.test.com
        Type: CNAME (Canonical NAME for an alias) (5)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 6
        CNAME: def.test.com
     def.test.com: type A, class IN, addr 192.168.20.1
        Name: def.test.com
        Type: A (Host Address) (1)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 4
        Address: 192.168.20.1
```

Packet Detail van DNS-resolutie

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.5	Next :	TCP.J Info
Γ.	356 2024-03-07 12:09:55.644955	0x4589 (17801)	192.168.10.1	51801	192.168.20.1	80	12	7 TCP	70	0	1	0 51801 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=2
	357 2024-03-07 12:09:55.644955	0x9349 (37705)	192.168.20.1	88	192.168.10.1	51801	12	6 TCP	70	0	1	1 80 → 51801 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MS
	358 2024-03-07 12:09:55.644955	0x458a (17802)	192.168.10.1	51801	192.168.20.1	80	12	7 TCP	58	1	1	1 51801 → 80 [ACK] Seq=1 Ack=1 Win=2102272 Len=0
	359 2024-03-07 12:09:55.645962	0x458b (17803)	192.168.10.1	51801	192.168.20.1	80	12	7 HTTP	492	1	435	1 GET / HTTP/1.1
	362 2024-03-07 12:09:55.646954	0x934a (37706)	192.168.20.1	88	192.168.10.1	51801	12	6 HTTP	979	1	922	435 HTTP/1.1 200 OK (text/html)

HTTP-pakketten binnen

V: Wat is de opdracht om pakketopnamen die op een C8300-router zijn verzameld over te brengen naar een FTP-server?

A: Gebruik monitor capture <capture name> export bootflash:<capture name>.pcap en copy bootflash:<capture name>.pcap ftp://<user>:<password>@<FTP IP Address> commando's om pakketopnamen naar een FTP-server over te brengen. Dit is een voorbeeld om CAPIN over te brengen naar een FTP server.

<#root>

monitor capture CAPIN export bootflash:CAPIN.pcap

copy bootflash:CAPIN.pcap ftp://<user>:<password>@<FTP IP Address>

Referentie

Het Zone-Based Policy Firewall Design begrijpen

Over deze vertaling

Cisco heeft dit document vertaald via een combinatie van machine- en menselijke technologie om onze gebruikers wereldwijd ondersteuningscontent te bieden in hun eigen taal. Houd er rekening mee dat zelfs de beste machinevertaling niet net zo nauwkeurig is als die van een professionele vertaler. Cisco Systems, Inc. is niet aansprakelijk voor de nauwkeurigheid van deze vertalingen en raadt aan altijd het oorspronkelijke Engelstalige document (link) te raadplegen.