Catalyst 9000 스위치의 컨트롤 플레인 작업 문제 해결

목차
<u>소개</u>
<u>배경 정보</u>
<u>용어</u>
Catalyst 9000 CoPP
<u>CoPP 구현</u>
<u>기본 정책</u>
<u>CoPP 조정</u>
<u>문제 해결</u>
<u>방법론</u>
<u>유용한 Show 명령</u>
<u>전체 및 기록 사용률 결정</u>
<u>컨트롤 플레인 정책 확인</u>
<u>펀트된 트래픽에 대한 정보 수집</u>
<u>CPU 바운드 트래픽 검사</u>
<u>일반적인 시나리오</u>
<u>로컬 IP에 대한 간헐적 ICMP(Ping) 손실</u>
<u>높은 ICMP 리디렉션 및 DHCP 작업 부진</u>
<u>추가 리소스</u>

소개

이 문서에서는 Cisco IOS® XE를 실행하는 Catalyst 9000 제품군 스위치에서 컨트롤 플레인 상태를 트러블슈팅하고 검증하는 방법에 대해 설명합니다.

배경 정보

스위치의 기본 작업은 가능한 한 빨리 패킷을 전달하는 것입니다. 대부분의 패킷은 하드웨어에서 전달되지만 특정 트래픽 유형은 시스템 CPU에서 처리해야 합니다. CPU에 도착하는 트래픽은 최대 한 빨리 처리됩니다. CPU에서 일정한 양의 트래픽이 표시될 것으로 예상되지만 과도한 트래픽이 발생할 경우 운영 문제가 발생합니다. Catalyst 9000 스위치 제품군에는 기본적으로 강력한 CoPP(Control Plane Policing) 메커니즘이 통합되어 있어 CPU의 트래픽 과포화로 인한 문제를 방 지합니다.

정상적인 작동의 기능으로서 특정한 사용 사례에서 예기치 못한 문제가 발생한다. 원인과 결과의 상관관계가 명확하지 않은 경우도 있어 문제를 접근하기 어렵다. 이 문서에서는 컨트롤 플레인 상 태를 확인할 수 있는 도구를 제공하며, 컨트롤 플레인 펀트 또는 삽입 경로와 관련된 문제에 접근하 는 방법에 대한 워크플로를 제공합니다. 또한 현장에서 발견된 문제를 기반으로 몇 가지 일반적인 시나리오를 제공합니다.

CPU 펀트 경로는 제한된 리소스입니다. 최신 하드웨어 포워딩 스위치는 기하급수적으로 더 많은 양의 트래픽을 처리할 수 있습니다. Catalyst 9000 스위치 제품군은 지정된 시간에 CPU에서 총 약 19,000pps(packets-per-second)를 지원합니다. 이 임계값을 초과하며, 펀트된 트래픽은 가중치 없 이 폴리싱됩니다.

용어

- FED(Forwarding Engine Driver): Cisco Catalyst 스위치의 핵심으로서 모든 하드웨어 프로그 래밍/포워딩을 담당합니다
- IOSd: Linux 커널에서 실행되는 Cisco IOS 데몬입니다. 커널 내에서 소프트웨어 프로세스의 형태로 실행됩니다
- PDS(Packet Delivery System): 다양한 서브시스템에 패킷이 전달되고 그 내부에서 패킷이 전 달되는 아키텍처 및 프로세스입니다. 예를 들면, FED에서 IOSd로 또는 그 반대로 패킷이 전 달되는 방법을 제어합니다
- 컨트롤 플레인(CP): 컨트롤 플레인은 Catalyst 스위치의 CPU와 관련된 기능과 트래픽을 그룹 화하는 데 사용되는 일반 용어입니다. 여기에는 STP(Spanning Tree Protocol), HSRP(Hot Standby Router Protocol), 스위치를 대상으로 하거나 스위치에서 전송되는 라우팅 프로토콜 과 같은 트래픽이 포함됩니다. 여기에는 SSH(Secure Shell), SNMP(Simple Network Management Protocol) 등 CPU에서 처리해야 하는 애플리케이션 레이어 프로토콜도 포함됩 니다
- 데이터 플레인(DP): 일반적으로 데이터 플레인은 제어 플레인의 지원 없이 전달되는 하드웨 어 ASIC 및 트래픽을 포함합니다
- Punt:처리를 위해 CP로 전송된 DP에서 가로챈 인그레스 프로토콜 제어 패킷
- 삽입:IP 생성 프로토콜 패킷이 IO 인터페이스에서 이그레스(egress) 아웃하기 위해 DP로 전 송됨
- LSMPI:Linux 공유 메모리 Punt 인터페이스

Catalyst 9000 CoPP

Catalyst 9000 스위치 제품군의 CPU 보호의 기반은 CoPP입니다. CoPP를 사용하면 시스템에서 생성된 QoS(Quality of Service) 정책이 CPU 주입/주입 경로에 적용됩니다. CPU 바운드 트래픽은 여러 가지 다른 클래스로 그룹화되고, CPU와 연결된 개별 하드웨어 폴리서 간에 매핑됩니다. 폴리서 는 특정 트래픽 클래스에 의한 CPU의 과포화(oversaturation)를 방지합니다.

CoPP 구현

CPU 바운드 트래픽은 대기열로 분류됩니다. 이러한 대기열/클래스는 시스템에서 정의되며 사용자 가 구성할 수 없습니다. 폴리서는 하드웨어로 구성됩니다. Catalyst 9000 제품군은 32개의 대기열에 대해 32개의 하드웨어 폴리서를 지원합니다.

특정 값은 플랫폼마다 다릅니다. 일반적으로 시스템 정의 대기열은 32개입니다. 이러한 큐는 폴리 서 인덱스와 관련된 클래스 맵과 관련이 있습니다. 폴리서 인덱스에는 기본 폴리서 속도가 있습니 다. 이 속도는 사용자가 구성할 수 있지만 기본 CoPP 정책을 변경하면 예기치 않은 서비스에 영향 을 미칠 수 있습니다.

Г

CoPP에 대한 시스템 정의 값

클래스 맵 이름	폴리서 인덱스(폴리서 번호)	CPU 큐(큐 번호)			
system- cpp- police- data	WK_CPP_POLICE_DATA(0)	WK_CPU_Q_ICMP_GEN(3) WK_CPU_Q_BROADCAST(12) WK_CPU_Q_ICMP_REDIRECT(6)			
system- cpp- police-l2- 제어	WK_CPP_POLICE_L2_ 컨트롤(1)	WK_CPU_Q_L2_CONTROL(1)			
system- cpp- police- routing- control	WK_CPP_POLICE_ROUTING_CONTROL(2)	WK_CPU_Q_ROUTING_CONTROL(4) WK_CPU_Q_LOW_LATENCY(27)			
system- cpp- police- control-낮 은 우선순 위	WK_CPP_POLICE_CO NTROL_LOW_PRI(3)	WK_CPU_Q_GENERAL_PUNT(25)			
system- cpp- police- punt- webauth	WK_CPP_POLICE_PU NT_WEBAUTH(7)	WK_CPU_Q_PUNT_WEBAUTH(22)			
system- cpp- police- 토 폴로지 제 어	WK_CPP_POLICE_TOPOLOGY_CONTROL(8)	WK_CPU_Q_TOPOLOGY_CONTROL(15)			
system- cpp- police- 멀 티캐스트	WK_CPP_POLICE_MULTICAST(9)	WK_CPU_Q_TRANSIT_TRAFFIC(18) WK_CPU_Q_MCAST_DATA(30)			
system- cpp- police- sys-data	WK_CPP_POLICE_SYS _DATA(10)	WK_CPU_Q_LEARNING_CACHE_OVFL(1 WK_CPU_Q_CRYPTO_CONTROL(23)			

클래스 맵 이름	폴리서 인덱스(폴리서 번호)	CPU 큐(큐 번호)				
		WK_CPU_Q_EXCEPTION(24) WK_CPU_Q_EGR_EXCEPTION(28) WK_CPU_Q_NFL_SAMPLED_DATA(26) WK_CPU_Q_GOLD_PKT(31) WK_CPU_Q_RPF_FAILED(19)				
system- cpp- police- dot1x- auth	WK_CPP_POLICE_DOT1X(11)	WK_CPU_Q_DOT1X_AUTH(0)				
system- cpp- police- 프 로토콜 스 누핑	WK_CPP_POLICE_PR(12)	WK_CPU_Q_PROTO_SNOOPING(16)				
system- cpp- police-sw- forward	WK_CPP_POLICE_SW_FWD (13)	WK_CPU_Q_SW_FORWARDING_Q(14) WK_CPU_Q_LOGGING(21) WK_CPU_Q_L2_LVX_DATA_PACK(11)				
system- cpp- police- forus	WK_CPP_POLICE_FORUS(14)	WK_CPU_Q_FORUS_ADDR_RESOLUTIO WK_CPU_Q_FORUS_TRAFFIC(2)				
system- cpp- police- 멀 티캐스트 엔드 스테 이션	WK_CPP_POLICE_MULTICAST_SNOOPING(15)	WK_CPU_Q_MCAST_END_STA TION_SERVICE(20)				
system- cpp- default	WK_CPP_POLICE_DEFAULT_POLICER(16)	WK_CPU_Q_DHCP_SNOOPING(17) WK_CPU_Q_UNUSED(7) WK_CPU_Q_EWLC_CONTROL(9)				

클래스 맵 이름	폴리서 인덱스(폴리서 번호)	CPU 큐(큐 번호)				
		WK_CPU_Q_EWLC_DATA(10)				
system- cpp- police- stackwise- virt-control	WK_CPP_STACKWISE_VIRTUAL_CONTROL(5)	WK_CPU_Q_STACKWISE_VIRTUAL_CON				
system- cpp- police- l2lvx- control	WK_CPP_ L2_LVX_CONT_PACK(4)	WK_CPU_Q_L2_LVX_CONT_PACK(8)				

각 대기열은 트래픽 유형 또는 특정 기능 집합과 관련이 있습니다. 이 목록이 완전한 목록은 아닙니 다:

CPU 대기열	및 관련 기능
---------	---------

CPU 큐(큐 번호)	기능			
WK_CPU_Q_DOT1X_AUTH(0)	IEEE 802.1x 포트 기반 인증			
WK_CPU_Q_L2_CONTROL(1)	DTP(Dynamic Trunking Protocol) VTP(VLAN Trunking Protocol) PAgP(Port Aggregation Protocol) CISP(Client Information Signaling Protocol) 메시지 세션 릴레이 프로토콜 MVRP(Multiple VLAN Registration Protocol) MMN(Metropolitan Mobile Network) LLDP(Link Level Discovery Protocol) UDLD(UniDirectional Link Detection) LACP(Link Aggregation Control Protocol)			

CPU 큐(큐 번호)	기능			
	CDP(Cisco Discovery Protocol) STP(Spanning Tree Protocol)			
WK_CPU_Q_FORUS_TRAFFIC(2)	Telnet, Pingv4 및 Pingv6, SNMP와 같은 호스트 Keepalive/루프백 탐지 IPSec(Initiate-Internet Key Exchange) 프로토콜			
WK_CPU_Q_ICMP_GEN(3)	ICMP - 대상에 연결할 수 없음 ICMP-TTL이 만료됨			
WK_CPU_Q_ROUTING_CONTROL(4)	RIPv1(Routing Information Protocol version 1) RIPv2 IGRP(Interior Gateway Routing Protocol) BGP(Border Gateway Protocol) PIM-UDP VRRP(Virtual Router Redundancy Protocol) HSRPv1(Hot Standby Router Protocol version 1) HSRPv2 GLBP(Gateway Load Balancing Protocol) LDP(Label Distribution Protocol) WCCP(Web Cache Communication Protocol) RIPng(Routing Information Protocol) 차세대 OSPF(Open Shortest Path First) Open Shortest Path First 버전 3(OSPFv3) EIGRP(Enhanced Interior Gateway Routing Protocol)			

CPU 큐(큐 번호)	기능			
	EIGRPv6(Enhanced Interior Gateway Routing Protocol version 6)			
	DHCPv6			
	PIM(Protocol Independent Multicast)			
	PIMv6(Protocol Independent Multicast version 6)			
	HSRPng(Hot Standby Router Protocol next generation)			
	IPv6 제어			
	GRE(Generic Routing Encapsulation) 킵얼라이 브			
	NAT(Network Address Translation) 펀트			
	IS-IS(Intermediate System-to-Intermediate System)			
	ARP(Address Resolution Protocol)			
WK_CPU_Q_FORUS_ADDR_RESOLUTION(5)	IPv6 네이버 광고 및 네이버 요청			
WK_CPU_Q_ICMP_REDIRECT(6)	ICMP(Internet Control Message Protocol) 재전 송			
WK_CPU_Q_INTER_FED_TRAFFIC(7)	내부 통신을 위한 레이어 2 브리지 도메인 삽입			
WK_CPU_Q_L2_LVX_CONT_PACK(8)	Exchange ID(XID) 패킷			
WK_CPU_Q_EWLC_CONTROL(9)	eWLC(Embedded Wireless Controller) [CAPWAP(Control and Provisioning of Wireless Access Points) (UDP 5246)]			
WK_CPU_Q_EWLC_DATA(10)	eWLC 데이터 패킷(CAPWAP DATA, UDP 5247)			

CPU 큐(큐 번호)	기능			
WK_CPU_Q_L2_LVX_DATA_PACK(11)	맵 요청에 대해 펀트된 알 수 없는 유니캐스트 패 킷입니다.			
WK_CPU_Q_BROADCAST(12)	모든 유형의 브로드캐스트			
WK_CPU_Q_OPENFLOW(13)	학습 캐시 오버플로(레이어 2 + 레이어 3)			
WK_CPU_Q_CONTROLLER_PUNT(14)	데이터 - ACL(Access Control List) 전체 데이터 - IPv4 옵션 데이터 - IPv6 홉별 데이터 - 리소스 부족/모두 포착 데이터 - RPF(Reverse Path Forwarding) 불완전 군더더기 패킷			
WK_CPU_Q_TOPOLOGY_CONTROL(15)	STP(Spanning Tree Protocol) REP(Resilient Ethernet Protocol) SSTP(Shared Spanning Tree Protocol)			
WK_CPU_Q_PROTO_SNOOPING(16)	DAI(Dynamic ARP Inspection)를 위한 ARP(Address Resolution Protocol) 스누핑			
WK_CPU_Q_DHCP_SNOOPING(17)	DHCP 스누핑			
WK_CPU_Q_TRANSIT_TRAFFIC(18)	이는 소프트웨어 경로에서 처리해야 하는 NAT에서 펀칭하는 패킷에 사용됩니다.			
WK_CPU_Q_RPF_FAILED(19)	데이터 - mRPF(멀티캐스트 RPF) 실패			
WK_CPU_Q_MCAST_END_STATION _SERVICE(20)	IGMP(Internet Group Management Protocol)/MLD(Multicast Listener Discovery) 제 어			

CPU 큐(큐 번호)	기능				
WK_CPU_Q_LOGGING(21)	ACL(Access Control List) 로깅				
WK_CPU_Q_PUNT_WEBAUTH(22)	웹 인증				
WK_CPU_Q_HIGH_RATE_APP(23)	브로드캐스트				
WK_CPU_Q_EXCEPTION(24)	IKE 표시 IP 학습 위반 IP 포트 보안 위반 IP 고정 주소 위반 IPv6 범위 확인 RCP(Remote Copy Protocol) 예외 유니캐스트 RPF 실패				
WK_CPU_Q_SYSTEM_CRITICAL(25)	미디어 신호 처리/무선 프록시 ARP				
WK_CPU_Q_NFL_SAMPLED_DATA(26)	Netflow 샘플 데이터 및 MSP(미디어 서비스 프 록시)				
WK_CPU_Q_LOW_LATENCY(27)	BFD(Bidirectional Forwarding Detection), PTP(Precision Time Protocol)				
WK_CPU_Q_EGR_EXCEPTION(28)	이그레스 해결 예외				
WK_CPU_Q_STACKWISE_VIRTUAL _CONTROL(29)	전면 스태킹 프로토콜, 즉 SVL				
WK_CPU_Q_MCAST_DATA(30)	데이터 - (S,G) 생성 데이터 - 로컬 조인 데이터 - PIM 등록 데이터 - SPT 전환				

CPU 큐(큐 번호)	기능		
	데이터 - 멀티캐스트		
WK_CPU_Q_GOLD_PKT(31)	골드		

기본 정책

기본적으로 시스템 생성 CoPP 정책은 펀트/삽입 경로에 적용됩니다. 기본 정책은 일반적인 MQC 기반 명령을 사용하여 볼 수 있습니다. 스위치 컨피그레이션에서도 볼 수 있습니다. CPU/컨트롤 플 레인의 인그레스 또는 이그레스에 적용할 수 있는 유일한 정책은 시스템 정의 정책입니다.

"show policy-map control-plane"을 사용하여 제어 평면에 적용된 정책을 봅니다.

<#root>

Catalyst-9600#

show policy-map control-plane

Control Plane

Service-policy input: system-cpp-policy

Class-map: system-cpp-police-ios-routing (match-any) 0 packets, 0 bytes 5 minute offered rate 0000 bps, drop rate 0000 bps Match: none police: rate 17000 pps, burst 4150 packets conformed 95904305 bytes; actions: transmit exceeded 0 bytes; actions: drop

<snip>

Class-map: class-default (match-any) 0 packets, 0 bytes 5 minute offered rate 0000 bps, drop rate 0000 bps Match: any

CoPP 조정

CoPP 폴리서 속도는 사용자가 구성할 수 있습니다. 사용자는 대기열을 비활성화할 수도 있습니다.

이 예에서는 개별 폴리서 값을 조정하는 방법을 보여 줍니다. 이 예에서 조정된 클래스는 "systemcpp-police-protocol-snooping"입니다.

<#root>

Device>

enable

Device#

configure terminal

Device(config)#

policy-map system-cpp-policy

Device(config-pmap)#

Device(config-pmap)#

class system-cpp-police-protocol-snooping

Device(config-pmap-c)#

Device(config-pmap-c)#

police rate 100 pps

Device(config-pmap-c-police)#

Device(config-pmap-c-police)#

exit

Device(config-pmap-c)#

exit

Device(config-pmap)#

exit

Device(config)#

Device(config)#

control-plane

Device(config-cp)#

Device(config)#

control-plane

Device(config-cp)#

service-policy input system-cpp-policy

```
Device(config-cp)#
Device(config-cp)#
```

end

Device#

show policy-map control-plane

이 예에서는 큐를 완전히 비활성화하는 방법을 보여 줍니다. 큐가 비활성화되면 CPU의 과포화 상 태가 될 수 있으므로 주의하십시오.

<#root>
Device>
enable
Device#
configure terminal
Device(config)#
policy-map system-cpp-policy
Device(config-pmap)#
Device(config-pmap)#
class system-cpp-police-protocol-snooping
Device(config-pmap-c)#
no police rate 100 pps
Device(config-pmap-c)#
end

문제 해결

방법론

CPU 사용률은 프로세스와 중단이라는 두 가지 기본 활동의 영향을 받습니다. 프로세스는 CPU가 수행하는 구조화된 활동이며, 중단은 데이터 플레인에서 가로채기되어 작업을 위해 CPU로 전송되 는 패킷을 가리킵니다. 이러한 활동은 모두 CPU의 총 사용률을 구성합니다. CoPP는 기본적으로 활성화되어 있으므로 서비스 영향은 높은 CPU 사용률과 상관관계가 없습니다. CoPP가 작업을 수 행할 경우 CPU 사용률은 크게 영향을 받지 않습니다. CPU의 전체적인 활용도를 고려하는 것도 중 요하지만, 전체적인 활용도가 전체 스토리를 말해주지는 않는다. 이 섹션의 show 명령 및 유틸리티 는 CPU의 상태를 신속하게 평가하고 CPU 바인딩 트래픽에 대한 관련 세부 정보를 식별하는 데 사 용됩니다.

지침:

- 문제가 컨트롤 플레인과 관련이 있는지 확인합니다. 대부분의 전송 트래픽은 하드웨어에서 전 달됩니다. 특정 트래픽 유형 및 특정 시나리오에만 CPU와 컨트롤 플레인이 포함되므로 조사 내내 이 점을 염두에 두십시오.
- 사용 기준을 파악합니다. 정상 활용이 어떻게 보이는지 이해하는 것이 중요하기 때문에 규범 으로부터의 편차를 확인할 수 있다.
- 프로세스 및 중단 모두에 대한 전체 활용도를 검증합니다. 예기치 않은 양의 CPU 사이클을 사용하는 프로세스를 식별합니다. 사용률이 예상 범위를 벗어나는 경우 이는 잠재적으로 문제가될 수 있습니다. 어떤 시스템에 대한 평균 활용도를 파악하는 것이 중요한데, 이를 통해 규범밖의 편차가 인식되게 된다. 사용률만으로는 컨트롤 플레인 상태를 완벽하게 파악할 수 없습니다.
- CoPP에서 드롭이 활발하게 증가하고 있는지 확인합니다. CoPP 드롭이 항상 문제를 나타내는 것은 아니지만, 능동적으로 폴리싱된 트래픽 클래스와 관련된 문제를 트러블슈팅할 경우 이는 관련성을 나타내는 강력한 지표입니다.

유용한 Show 명령

이 스위치를 사용하면 CPU 상태 및 CoPP 통계를 빠르게 관리할 수 있습니다. 또한 CPU 바운드 트 래픽의 인그레스 지점을 신속하게 확인하는 데 유용한 CLI가 있습니다.

전체 및 기록 사용률 결정

• 전체 CPU 사용률을 보려면 "프로세스 cpu를 정렬하여 표시"를 사용합니다. "sorted" 인수는 사용률을 기준으로 프로세스 출력을 정렬합니다. 더 많은 CPU 리소스를 사용하는 프로세스 가 출력의 맨 위에 있습니다. 인터럽트로 인한 사용률도 백분율로 제공됩니다.

<#root>

Catalyst-9600#

show processes cpu sorted

CPU utilization for five seconds: 92%/13%; one minute: 76%; five minutes: 73%

<<<--- Utilization is displayed for 5 second (both process and interrupt), 1 minute and 5 minute interva

PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process <<<--- Runtime statistics, as well as utilization averages are displayed here. The process is also ident</pre>

344	547030523	607054509	901	38.13%	30.61%	29.32%	0	SISF Switcher Th
345	394700227	615024099	641	31.18%	22.68%	21.66%	0	SISF Main Thread
98	112308516	119818535	937	4.12%	4.76%	5.09%	0	Crimson flush tr
247	47096761	92250875	510	2.42%	2.21%	2.18%	0	Spanning Tree
123	35303496	679878082	51	1.85%	1.88%	1.84%	0	IOSXE-RP Punt Se
234	955	1758	543	1.61%	0.71%	0.23%	3	SSH Process
547	5360168	5484910	977	1.04%	0.46%	0.44%	0	DHCPD Receive
229	27381066	963726156	28	1.04%	1.34%	1.23%	0	IP Input
79	13183805	108951712	121	0.48%	0.55%	0.55%	0	IOSD ipc task
9	1073134	315186	3404	0.40%	0.06%	0.03%	0	Check heaps
37	11099063	147506419	75	0.40%	0.54%	0.52%	0	ARP Input
312	2986160	240782059	12	0.24%	0.12%	0.14%	0	DAI Packet Proce
<sni< td=""><td>p></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sni<>	p>							
565	0	1	0	0.00%	0.00%	0.00%	0	LICENSE AGENT
566	14	1210	11	0.00%	0.00%	0.00%	0	DHCPD Timer
567	40	45	888	0.00%	0.00%	0.00%	0	OVLD SPA Backgro
568	12	2342	5	0.00%	0.00%	0.00%	0	DHCPD Database
569	0	12	0	0.00%	0.00%	0.00%	0	SpanTree Flush
571	0	1	0	0.00%	0.00%	0.00%	0	EM Action CNS
572	681	140276	4	0.00%	0.00%	0.00%	0	Inline power inc

• "프로세스 CPU 기록 표시"는 지난 60초, 5분 및 72시간 동안의 CPU 사용률에 대한 기록 그래 프를 제공합니다.

<#root>

Catalyst-9600#

show processes cpu history

<<<--- The numbers at the top of each column represent the highest value seen throughout the time period

22255555999994444444444400000888888888881111177777333335555500

It is read top-down. "9" over "2" in this example means "92%" for example.

100	
90	*** ***** ******
80	****** ***** ******************
70	*****************
60	***************************************
50	***************************************
40	***************************************
30	***************************************
20	***************************************
10	******************

<<<--- The "*" represents the highest value during the given time period. This relates to a momentary sp

In this example, utilization spiked to 92% in the last 5 seconds.

0 5 0 5 0 5 0 5 0 5 0 5 0 CPU% per second (last 60 seconds) * = maximum CPU% # = average CPU%

<<<--- The "#" represents the average utilization. This indicates sustained utilization.

In this example, within the last 5 minutes the average utilization was sustained around 70% while

the maximum utilization spiked to 94%.

```
665656566646555666655656575654556567737555567574545545775957554648576757
90
80
60
50
40
0
  5 0 5 0 5 0
        0 5 0 5 0
       5
  CPU% per hour (last 72 hours)
  * = maximum CPU% # = average CPU%
```

컨트롤 플레인 정책 확인

 "show platform hardware fed <switch> active qos queue stats internal cpu policer"를 사용하 여 큐/폴리서 구조에 대한 집계 CoPP 통계 및 추가 정보를 봅니다. 이 출력은 제어 평면의 마 지막 재설정 이후 폴리서 통계의 기록 보기를 제공합니다. 이러한 카운터는 수동으로 정리할 수도 있습니다. 일반적으로 폴리서가 제어 평면을 삭제하는 경우 관련된 대기열/클래스의 문 제가 나타나지만 문제가 발생하는 동안 삭제는 활발하게 증가해야 합니다. Queue Drop 값이 증가하는지 관찰하려면 명령을 여러 번 실행합니다.

<#root>

Catalyst9500#

show platform hardware fed active qos queue stats internal cpu policer

		CPU Queue S	tatistics					
===:								
QId	PlcIdx	Queue Name	Enabled	(default) Rate	(set) Rate	Queue Drop(Bytes	Queue) Drop(Frames)	
<	The top	section of this output g	ives a his	torical v	iew of CoP	P drops. Run	the command sever	al times
CPU	queues	correlate with a Policer	Index (Plc)	Idx) and	Queue (QId).		
0	11	DOT1X Auth	Yes	1000	1000	0	0	
Note	e that m	ultiple policer indices m	ap to the a	same queu	e for some	classes.		
1	1	L2 Control	Yes	2000	2000	0	0	
2	14	Forus traffic	Yes	4000	4000	0	0	
3	0	ICMP GEN	Yes	750	750	0	0	
4	2	Routing Control	Yes	5500	5500	0	0	
5	14	Forus Address resolution	Yes	4000	4000	83027876	1297199	
6	0	ICMP Redirect	Yes	750	750	0	0	
7	16	Inter FED Traffic	Yes	2000	2000	0	0	
8	4	L2 LVX Cont Pack	Yes	1000	1000	0	0	
9	19	EWLC Control	Yes	13000	13000	0	0	
10	16	EWLC Data	Yes	2000	2000	0	0	
11	13	L2 LVX Data Pack	Yes	1000	1000	0	0	
12	0	BROADCAST	Yes	750	750	0	0	
13	10	Openflow	Yes	250	250	0	0	
14	13	Sw forwarding	Yes	1000	1000	0	0	
15	8	Topology Control	Yes	13000	16000	0	0	
16	12	Proto Snooping	Yes	2000	2000	0	0	
17	6	DHCP Snooping	Yes	500	500	0	0	
18	13	Transit Traffic	Yes	1000	1000	0	0	
19	10	RPF Failed	Yes	250	250	0	0	
20	15	MCAST END STATION	Yes	2000	2000	0	0	

21	13	LOGGING	Yes	1000	1000	769024	12016
22	7	Punt Webauth	Yes	1000	1000	0	0
23	18	High Rate App	Yes	13000	13000	0	0
24	10	Exception	Yes	250	250	0	0
25	3	System Critical	Yes	1000	1000	0	0
26	10	NFL SAMPLED DATA	Yes	250	250	0	0
27	2	Low Latency	Yes	5500	5500	0	0
28	10	EGR Exception	Yes	250	250	0	0
29	5	Stackwise Virtual OOB	Yes	8000	8000	0	0
30	9	MCAST Data	Yes	500	500	0	0
31	3	Gold Pkt	Yes	1000	1000	0	0

* NOTE: CPU queue policer rates are configured to the closest hardware supported value

=========										
Policer Index	Policer Accept Bytes	Policer Accept Frames	Policer Drop Bytes	Policer Drop Frames						
0	59894	613	0	0						
1	15701689	57082	0	0						
2	5562892	63482	0	0						
3	3536	52	0	0						
4	0	0	0	0						
5	0	0	0	0						
6	0	0	0	0						
7	0	0	0	0						
8	2347194476	32649666	0	0						
9	0	0	0	0						
10	0	0	0	0						
11	0	0	0	0						
12	0	0	0	0						
13	577043	8232	769024	12016						
14	719225176	11182355	83027876	1297199						
15	132766	1891	0	0						
16	0	0	0	0						
17	0	0	0	0						
18	0	0	0	0						
19	0	0	0	0						

CPU Queue Policer Statistics

Second Level Policer Statistics

<-- Second level policer information begins here. Catalyst CoPP is organized with two policers to allow

==========				============
20	2368459057	32770230	0	0
21	719994879	11193091	0	0

Policer Index Mapping and Settings

level-2 PlcIndex	:	level-1 PlcIndex		(default) rate	(set) rate
20 21	:	1 2 8 0 4 7 9 10 11	L2 13 14 15	13000 6000	17000 6000
==========	====				

Second Level Policer Config

====		========		
	level-1	level-2		level-2
QId	PlcIdx	PlcIdx	Queue Name	Enabled
 0			DOM1 V A	 Vog
U	TT	21	DOIIX AUCH	ies

1	1	20	L2 Control	Yes
2	14	21	Forus traffic	Yes
3	0	21	ICMP GEN	Yes
4	2	20	Routing Control	Yes
5	14	21	Forus Address resolution	Yes
6	0	21	ICMP Redirect	Yes
7	16	-	Inter FED Traffic	No
8	4	21	L2 LVX Cont Pack	Yes
9	19	-	EWLC Control	No
10	16	-	EWLC Data	No
11	13	21	L2 LVX Data Pack	Yes
12	0	21	BROADCAST	Yes
13	10	21	Openflow	Yes
14	13	21	Sw forwarding	Yes
15	8	20	Topology Control	Yes
16	12	21	Proto Snooping	Yes
17	6	-	DHCP Snooping	No
18	13	21	Transit Traffic	Yes
19	10	21	RPF Failed	Yes
20	15	21	MCAST END STATION	Yes
21	13	21	LOGGING	Yes
22	7	21	Punt Webauth	Yes
23	18	-	High Rate App	No
24	10	21	Exception	Yes
25	3	-	System Critical	No
26	10	21	NFL SAMPLED DATA	Yes
27	2	20	Low Latency	Yes
28	10	21	EGR Exception	Yes
29	5	-	Stackwise Virtual OOB	No
30	9	21	MCAST Data	Yes
31	3	-	Gold Pkt	No

CPP Classes to queue map

<-- Information on how different traffic types map to different queues are found here.</pre>

PlcIdx	CPP Class	:	Queues
0	system-cpp-police-data	:	ICMP GEN/ BROADCAST/ ICMP Redirect/
10	system-cpp-police-sys-data	:	Openflow/ Exception/ EGR Exception/ NFL SAMPLED DATA/
13	system-cpp-police-sw-forward	:	Sw forwarding/ LOGGING/ L2 LVX Data Pack/ Transit Tra
9	system-cpp-police-multicast	:	MCAST Data/
15	system-cpp-police-multicast-end-station	:	MCAST END STATION /
7	system-cpp-police-punt-webauth	:	Punt Webauth/
1	system-cpp-police-12-control	:	L2 Control/
2	system-cpp-police-routing-control	:	Routing Control/ Low Latency/
3	system-cpp-police-system-critical	:	System Critical/ Gold Pkt/
4	system-cpp-police-121vx-control	:	L2 LVX Cont Pack/
8	system-cpp-police-topology-control	:	Topology Control/
11	system-cpp-police-dot1x-auth	:	DOT1X Auth/
12	system-cpp-police-protocol-snooping	:	Proto Snooping/
6	system-cpp-police-dhcp-snooping	:	DHCP Snooping/
14	system-cpp-police-forus	:	Forus Address resolution/ Forus traffic/
5	system-cpp-police-stackwise-virt-control	:	Stackwise Virtual OOB/
16	system-cpp-default	:	Inter FED Traffic/ EWLC Data/
18	system-cpp-police-high-rate-app	:	High Rate App/
19	system-cpp-police-ewlc-control	:	EWLC Control/
20	system-cpp-police-ios-routing	:	L2 Control/ Topology Control/ Routing Control/ Low La
21	system-cpp-police-ios-feature	:	ICMP GEN/ BROADCAST/ ICMP Redirect/ L2 LVX Cont Pack/

펀트된 트래픽에 대한 정보 수집

이 명령은 트래픽 유형 및 인그레스 물리적 지점을 포함하여 CPU에 적용되는 트래픽에 대한 정보 를 수집하는 데 사용됩니다.

"Show platform software fed <switch> active punt cpuq all" 또는 "Show platform software fed <switch> active punt cpuq <0-31 Queue ID>"를 사용하여 전체 또는 특정 CPU 대기열과 관련 된 통계를 볼 수 있습니다.

<#root>

C9300#

show platform software fed switch active punt cpuq all

Punt CPU Q Statistics

CPU Q Id	:	0
CPU Q Name	:	CPU_Q_DOT1X_AUTH
Packets received from ASIC	:	964
Send to IOSd total attempts	:	964
Send to IOSd failed count	:	0
RX suspend count	:	0
RX unsuspend count	:	0
RX unsuspend send count	:	0
RX unsuspend send failed count	:	0
RX consumed count	:	0
RX dropped count	:	0
RX non-active dropped count	:	0
RX conversion failure dropped	:	0
RX INTACK count	:	964
RX packets dq'd after intack	:	0
Active RxQ event	:	964
RX spurious interrupt	:	0
RX phy_idb fetch failed: 0		
RX table_id fetch failed: 0		
RX invalid punt cause: O		
CPU Q Id	:	1
CPU Q Name	:	CPU_Q_L2_CONTROL
Packets received from ASIC	:	80487
Send to IOSd total attempts	:	80487
Send to IOSd failed count	:	0
RX suspend count	:	0
RX unsuspend count	:	0
RX unsuspend send count	:	0
RX unsuspend send failed count	:	0
RX consumed count	:	0
RX dropped count	:	0
RX non-active dropped count	:	0
RX conversion failure dropped	:	0
RX INTACK count	:	80474
RX packets dq'd after intack	:	16
Active RxQ event	:	80474
RX spurious interrupt	:	9
RX phy_idb fetch failed: 0		
RX table_id fetch failed: 0		

CPU Q Id	:	2
CPU Q Name	:	CPU_Q_FORUS_TRAFFIC
Packets received from ASIC	:	176669
Send to IOSd total attempts	:	176669
Send to IOSd failed count	:	0
RX suspend count	:	0
RX unsuspend count	:	0
RX unsuspend send count	:	0
RX unsuspend send failed count	:	0
RX consumed count	:	0
RX dropped count	:	0
RX non-active dropped count	:	0
RX conversion failure dropped	:	0
RX INTACK count	:	165584
RX packets dq'd after intack	:	12601
Active RxQ event	:	165596
RX spurious interrupt	:	11851
RX phy_idb fetch failed: 0		
RX table_id fetch failed: 0		
RX invalid punt cause: 0		
<snip></snip>		

C9300#

show platform software fed switch active punt cpuq 16 <-- Queue ID 16 correlates with Protocol Snooping.

Punt CPU Q Statistics

CPU Q Id	:	16
CPU Q Name	:	CPU_Q_PROTO_SNOOPING
Packets received from ASIC	:	55661
Send to IOSd total attempts	:	55661
Send to IOSd failed count	:	0
RX suspend count	:	0
RX unsuspend count	:	0
RX unsuspend send count	:	0
RX unsuspend send failed count	:	0
RX consumed count	:	0
RX dropped count	:	0
RX non-active dropped count	:	0
RX conversion failure dropped	:	0
RX INTACK count	:	55659
RX packets dq'd after intack	:	9
Active RxQ event	:	55659
RX spurious interrupt	:	23
RX phy_idb fetch failed: 0		
RX table_id fetch failed: 0		
RX invalid punt cause: 0		
Replenish Stats for all rxq:		
Number of replenish		4926842
Number of replenish suspend	÷	0
Number of replenish un-suspend		0

• CPU에서 볼 수 있는 모든 다른 트래픽 유형을 간략하게 살펴보려면 "show platform software

fed <switch> active punt cause summary"를 사용하십시오. 0이 아닌 원인만 표시됩니다.

<#root>

C9300#

show platform software fed switch active punt cause summary

Statistics for all causes

Cause Info	Rcvd	Dropped
ARP request or response	142962	0
For-us data	490817	0
RP<->QFP keepalive	448742	0
Glean adjacency	2	0
For-us control	415222	0
Layer2 bridge domain data packe	3654659	0
IP subnet or broadcast packet	37167	0
EPC	17942	0
Layer2 control protocols	358614	0
Packets to LFTS	964	0
snoop packets	48867	0
	Cause Info ARP request or response For-us data RP<->QFP keepalive Glean adjacency For-us control Layer2 bridge domain data packe IP subnet or broadcast packet EPC Layer2 control protocols Packets to LFTS snoop packets	Cause InfoRcvdARP request or response142962For-us data490817RP<->QFP keepalive448742Glean adjacency2For-us control415222Layer2 bridge domain data packe3654659IP subnet or broadcast packet37167EPC17942Layer2 control protocols358614Packets to LFTS964snoop packets48867

• CPU 바운드 트래픽이 시스템을 인그레스하는 인터페이스를 빠르게 보려면 "show platform software fed <switch> active punt rate interfaces" 명령을 사용합니다. 이 명령은 0이 아닌 입 력 대기열이 있는 인터페이스만 표시합니다.

<#root>

C9300#

show platform software fed switch active punt rates interfaces

Punt Rate on Interfaces Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

Interface Name	 IF_ID	==== 	Recv 10s	======== Recv 1min	======== Recv 5min	======= Drop 10s	======== Drop 1min	====== Drop 5min
TenGigabitEthernet1/0/2 TenGigabitEthernet1/0/23	0x0000000 0x0000001	––– a f	5 1	5 1	5 1	0 0	0 0	0 0

• 인터페이스의 개별 대기열을 드릴다운하고 보려면 "show platform software fed <switch> active punt rate interfaces <IF-ID>"를 사용합니다. 이 명령은 집계 통계를 보여주며, 트래픽이 폴리싱된 경우 기록 입력 대기열 활동을 보는 데 사용할 수 있습니다. C9300#

show platform software fed switch active punt rates interfaces 0x1f <-- "0x1f" is the IF_ID of Te1/0/23,

Punt Rate on Single Interfaces Statistics

Interface : TenGigabitEthernet1/0/23 [if_id: 0x1F]

Received		Dropped	
Total	: 1010652	Total	: 0
10 sec average	: 1	10 sec average	: 0
1 min average	: 1	1 min average	: 0
5 min average	: 1	5 min average	: 0

Per CPUQ punt stats on the interface (rate averaged over 10s interval)

Q no	Queue Name	Recv Total	Recv Rate	Drop Total	Drop Rate
0	 CPU_Q_DOT1X_AUTH	0	0	0	0
1	CPU_Q_L2_CONTROL	9109	0	0	0
2	CPU_Q_FORUS_TRAFFIC	176659	0	0	0
3	CPU_Q_ICMP_GEN	0	0	0	0
4	CPU_Q_ROUTING_CONTROL	447374	0	0	0
5	CPU_Q_FORUS_ADDR_RESOLUTION	80693	0	0	0
6	CPU_Q_ICMP_REDIRECT	0	0	0	0
7	CPU_Q_INTER_FED_TRAFFIC	0	0	0	0
8	CPU_Q_L2LVX_CONTROL_PKT	0	0	0	0
9	CPU_Q_EWLC_CONTROL	0	0	0	0
10	CPU_Q_EWLC_DATA	0	0	0	0
11	CPU_Q_L2LVX_DATA_PKT	0	0	0	0
12	CPU_Q_BROADCAST	22680	0	0	0
13	CPU_Q_CONTROLLER_PUNT	0	0	0	0
14	CPU_Q_SW_FORWARDING	0	0	0	0
15	CPU_Q_TOPOLOGY_CONTROL	271014	0	0	0
16	CPU_Q_PROTO_SNOOPING	0	0	0	0
17	CPU_Q_DHCP_SNOOPING	0	0	0	0
18	CPU_Q_TRANSIT_TRAFFIC	0	0	0	0
19	CPU_Q_RPF_FAILED	0	0	0	0
20	CPU_Q_MCAST_END_STATION_SERVICE	2679	0	0	0
21	CPU_Q_LOGGING	444	0	0	0
22	CPU_Q_PUNT_WEBAUTH	0	0	0	0
23	CPU_Q_HIGH_RATE_APP	0	0	0	0
24	CPU_Q_EXCEPTION	0	0	0	0
25	CPU_Q_SYSTEM_CRITICAL	0	0	0	0
26	CPU_Q_NFL_SAMPLED_DATA	0	0	0	0
27	CPU_Q_LOW_LATENCY	0	0	0	0
28	CPU_Q_EGR_EXCEPTION	0	0	0	0
29	CPU_Q_FSS	0	0	0	0
30	CPU_Q_MCAST_DATA	0	0	0	0
31	CPU_Q_GOLD_PKT	0	0	0	0

CPU 바운드 트래픽 검사

Catalyst 9000 스위치 제품군은 CPU 바운드 트래픽을 모니터링하고 볼 수 있는 유틸리티를 제공합 니다. 이러한 툴을 사용하여 어떤 트래픽이 CPU에 능동적으로 적용되는지 파악합니다.

EPC(Embedded Packet Capture)

```
제어 평면의 EPC는 어느 방향(또는 둘 다)으로도 수행할 수 있습니다. 펀트된 트래픽의 경우 인바
운드를 캡처합니다. 컨트롤 플레인의 EPC를 버퍼 또는 파일에 저장할 수 있습니다.
```

<#root>

C9300#

monitor capture CONTROL control-plane in match any buffer circular size 10

C9300#

show monitor capture CONTROL parameter <-- Check to ensure parameters are as expected.

```
monitor capture CONTROL control-plane IN
monitor capture CONTROL match any
monitor capture CONTROL buffer size 10 circular
C9300#
monitor capture CONTROL start <-- Starts the capture.</pre>
```

Started capture point : CONTROL
C9300#

monitor capture CONTROL stop < -- Stops the capture.

```
Capture statistics collected at software:
Capture duration - 5 seconds
Packets received - 39
Packets dropped - 0
Packets oversized - 0
```

Bytes dropped in asic - 0

Capture buffer will exists till exported or cleared

Stopped capture point : CONTROL

캡처 결과는 간략한 출력 또는 자세한 출력으로 볼 수 있습니다.

<#root>

C9300#

show monitor capture CONTROL buffer brief

Starting the packet display Press Ctrl + Shift + 6 to exit

```
0.000000 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
1
2
   0.030643 00:00:00:00:00 -> 00:06:df:f7:20:01 0x0000 30 Ethernet II
   0.200016 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
3
   0.400081 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
4
   0.599962 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
5
   0.800067 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
6
7
   0.812456 00:1b:0d:a5:e2:a5 -> 01:80:c2:00:00 STP 60 RST. Root = 0/10/00:1b:53:bb:91:00 Cost
8
   0.829809 \ 10.122.163.3 \rightarrow 224.0.0.2
                                          HSRP 92 Hello (state Active)
```

```
0.981313 \ 10.122.163.2 \rightarrow 224.0.0.13
    9
                                              PIMv2 72 Hello
       1.004747 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
   10
       1.200082 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
   11
       1.399987 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
   12
       1.599944 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
   13
<snip>
C9300#
show monitor capture CONTROL buffer detail | begin Frame 7
Frame 7: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface /tmp/epc_ws/wif_to_ts_p
    Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe)
        Interface name: /tmp/epc_ws/wif_to_ts_pipe
    Encapsulation type: Ethernet (1)
    Arrival Time: May 3, 2023 23:58:11.727432000 UTC
    [Time shift for this packet: 0.000000000 seconds]
    Epoch Time: 1683158291.727432000 seconds
    [Time delta from previous captured frame: 0.012389000 seconds]
    [Time delta from previous displayed frame: 0.012389000 seconds]
    [Time since reference or first frame: 0.812456000 seconds]
    Frame Number: 7
    Frame Length: 60 bytes (480 bits)
    Capture Length: 60 bytes (480 bits)
    [Frame is marked: False]
    [Frame is ignored: False]
    [Protocols in frame: eth:llc:stp]
IEEE 802.3 Ethernet
    Destination: 01:80:c2:00:00:00 (01:80:c2:00:00:00)
       Address: 01:80:c2:00:00:00 (01:80:c2:00:00)
        .... ..0. .... .... = LG bit: Globally unique address (factory default)
        .... 1 .... = IG bit: Group address (multicast/broadcast)
    Source: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5)
        Address: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5)
        .... ..0. .... .... = LG bit: Globally unique address (factory default)
        .... = IG bit: Individual address (unicast)
    Length: 39
    Padding: 00000000000000
Logical-Link Control
    DSAP: Spanning Tree BPDU (0x42)
        0100 001. = SAP: Spanning Tree BPDU
        .... ...0 = IG Bit: Individual
    SSAP: Spanning Tree BPDU (0x42)
       0100 001. = SAP: Spanning Tree BPDU
        \dots 0 = CR Bit: Command
    Control field: U, func=UI (0x03)
       000. 00.. = Command: Unnumbered Information (0x00)
        \dots \dots \dots \dots \dots \dots \square Frame type: Unnumbered frame (0x3)
Spanning Tree Protocol
    Protocol Identifier: Spanning Tree Protocol (0x0000)
    Protocol Version Identifier: Rapid Spanning Tree (2)
    BPDU Type: Rapid/Multiple Spanning Tree (0x02)
    BPDU flags: 0x3c, Forwarding, Learning, Port Role: Designated
        0... = Topology Change Acknowledgment: No
        .0.. .... = Agreement: No
        ..1. .... = Forwarding: Yes
        ...1 .... = Learning: Yes
        .... 11.. = Port Role: Designated (3)
        .... ..0. = Proposal: No
        .... ...0 = Topology Change: No
    Root Identifier: 0 / 10 / 00:1b:53:bb:91:00
        Root Bridge Priority: 0
        Root Bridge System ID Extension: 10
```

```
Root Bridge System ID: 00:1b:53:bb:91:00 (00:1b:53:bb:91:00)
   Root Path Cost: 19
   Bridge Identifier: 32768 / 10 / 00:1b:0d:a5:e2:80
       Bridge Priority: 32768
       Bridge System ID Extension: 10
       Bridge System ID: 00:1b:0d:a5:e2:80 (00:1b:0d:a5:e2:80)
   Port identifier: 0x8025
   Message Age: 1
   Max Age: 20
   Hello Time: 2
   Forward Delay: 15
   Version 1 Length: 0
C9300#
monitor capture CONTROL buffer display-filter "frame.number==9" detailed <-- Most Wireshark display filt
Starting the packet display ..... Press Ctrl + Shift + 6 to exit
Frame 9: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface /tmp/epc_ws/wif_to_ts_p
   Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe)
       Interface name: /tmp/epc_ws/wif_to_ts_pipe
   Encapsulation type: Ethernet (1)
   Arrival Time: May 4, 2023 00:07:44.912567000 UTC
   [Time shift for this packet: 0.000000000 seconds]
   Epoch Time: 1683158864.912567000 seconds
   [Time delta from previous captured frame: 0.123942000 seconds]
   [Time delta from previous displayed frame: 0.000000000 seconds]
   [Time since reference or first frame: 1.399996000 seconds]
   Frame Number: 9
   Frame Length: 64 bytes (512 bits)
   Capture Length: 64 bytes (512 bits)
   [Frame is marked: False]
   [Frame is ignored: False]
   [Protocols in frame: eth:ethertype:vlan:ethertype:arp]
Ethernet II, Src: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f), Dst: 00:00:04:00:0e:00 (00:00:04:00:0e:00)
   Destination: 00:00:04:00:0e:00 (00:00:04:00:0e:00)
       Address: 00:00:04:00:0e:00 (00:00:04:00:0e:00)
       .... ..0. .... .... = LG bit: Globally unique address (factory default)
       .... = IG bit: Individual address (unicast)
   Source: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f)
       Address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f)
       .... ..0. .... .... = LG bit: Globally unique address (factory default)
       .... = IG bit: Individual address (unicast)
   Type: 802.1Q Virtual LAN (0x8100)
802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 10
   000. .... = Priority: Best Effort (default) (0)
   ....0 ..... = DEI: Ineligible
    .... 0000 0000 1010 = ID: 10
   Type: ARP (0x0806)
   Trailer: 00000000
Address Resolution Protocol (reply)
   Hardware type: Ethernet (1)
   Protocol type: IPv4 (0x0800)
   Hardware size: 6
   Protocol size: 4
   Opcode: reply (2)
   Sender MAC address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f)
   Sender IP address: 192.168.10.1
   Target MAC address: 00:00:04:00:0e:00 (00:00:04:00:0e:00)
   Target IP address: 192.168.10.25
```

캡처 결과는 파일에 직접 기록하거나 버퍼에서 내보낼 수 있습니다.

<#root>

C9300#

monitor capture CONTROL export location flash:control.pcap <-- Exports the current buffer to file. Exter

Export Started Successfully

Export completed for capture point CONTROL C9300# C9300#

dir flash: | in control.pcap

475231 -rw- 3972 May 4 2023 00:00:38 +00:00 control.pcap C9300#

FED CPU 패킷 캡처

Catalyst 9000 스위치 제품군은 CPU를 오가는 패킷의 향상된 가시성을 허용하는 디버그 유틸리티 를 지원합니다.

#debug pla [.]	tform software fed switch active punt packet-capture ?
fer	Configure packet capture buffer
ar-filter	Clear punt PCAP filter
-filter	Specify wireshark like filter (Punt PCAP)
rt	Start punt packet capturing
р	Stop punt packet capturing
	#debug pla [:] fer ar-filter -filter rt p

C9300#\$re fed switch active punt packet-capture buffer limit 16384 Punt PCAP buffer configure: one-time with buffer size 16384...done

C9300#show platform software fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets

C9300#debug platform software fed switch active punt packet-capture start Punt packet capturing started.

C9300#debug platform software fed switch active punt packet-capture stop Punt packet capturing stopped. Captured 55 packet(s)

버퍼 내용에는 출력에 대한 간략하고 자세한 옵션이 있습니다.

<#root>

C9300#

show platform software fed switch active punt packet-capture brief

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 3, Timestamp: 2023/05/04 00:17:42.109 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 4, Timestamp: 2023/05/04 00:17:42.309 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 5, Timestamp: 2023/05/04 00:17:42.509 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 C9300# show platform software fed switch active punt packet-capture detailed <-- Detailed provides the same int Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 Packet Data Hex-Dump (length: 68 bytes) : 000004000E005C5A C7614C5F8100000A 0806000108000604 00025C5AC7614C5F E9F1C9F3 Doppler Frame Descriptor : fdFormat systemTt1 = 0x4= 0xeloadBalHash1 = 0x20loadBalHash2 = 0xcspanSessionMap = 0 forwardingMode = 0 destModIndex = 0 skipIdIndex = 0 = 0x2srcGpn qosLabel = 0x83ingressTranslatedVlan srcCos = 0 = 0x7= 0 bpdu spanHistory = 0fpeFirstHeaderType = 0 = 0 sgt = 0xa rcpServiceId = 0x1srcVlan wccpSkip = 0 srcPortLeIndex = 0x1

debugTagId

= 0

cryptoProtocol

= 0

vrfId	= 0	saIndex	=	0
pendingAfdLabel	= 0	destClient	=	0x1
appId	= 0	finalStationIndex	=	0x74
decryptSuccess	= 0	encryptSuccess	=	0
rcpMiscResults	= 0	stackedFdPresent	=	0
spanDirection	= 0	egressRedirect	=	0
redirectIndex	= 0	exceptionLabel	=	0
destGpn	= 0	inlineFd	=	0x1
suppressRefPtrUpdate	= 0	suppressRewriteSideEfects	=	0
cmi2	= 0	currentRi	=	0x1
currentDi	= 0x527b	dropIpUnreachable	=	0
srcZoneId	= 0	srcAsicId	=	0
originalDi	= 0	originalRi	=	0
srcL3IfIndex	= 0x27	dstL3IfIndex	=	0
dstVlan	= 0	frameLength	=	0x44
fdCrc	= 0x97	tunnelSpokeId	=	0
isPtp	= 0	ieee1588TimeStampValid	=	0
ieee1588TimeStamp55_48	= 0	<pre>lvxSourceRlocIpAddress</pre>	=	0
sgtCachingNeeded	= 0			
Doppler Frame Descriptor He	ex-Dump :			

000000004400	04E04 000B4097	7B520000 000000	0000000100 0000	00070A000000
00000000100	00010 0000000	74000100 000000	00027830200 0000	0000000000000

많은 디스플레이 필터를 사용할 수 있습니다. 대부분의 일반적인 Wireshark 디스플레이 필터가 지 원됩니다.

<#root>

C9300#

show platform software fed switch active punt packet-capture display-filter-help

FED Punject specific filters	:
1. fed.cause	FED punt or inject cause
fed.linktype	FED linktype
fed.pal_if_id	FED platform interface ID
<pre>4. fed.phy_if_id</pre>	FED physical interface ID
5. fed.queue	FED Doppler hardware queue
6. fed.subcause	FED punt or inject sub cause
Generic filters supported :	
7. arp	Is this an ARP packet
8. bootp	DHCP packets [Macro]
9. cdp	Is this a CDP packet
10. eth	Does the packet have an Ethernet header
11. eth.addr	Ethernet source or destination MAC address
12. eth.dst	Ethernet destination MAC address
13. eth.ig	IG bit of ethernet destination address (broadcast/multicast)
14. eth.src	Ethernet source MAC address
15. eth.type	Ethernet type
16. gre	Is this a GRE packet
17. icmp	Is this a ICMP packet
18. icmp.code	ICMP code
19. icmp.type	ICMP type
20. icmp∨6	Is this a ICMPv6 packet
21. icmpv6.code	ICMPv6 code
22. icmpv6.type	ICMPv6 type
23. ip	Does the packet have an IPv4 header

ip.addr	IPv4 source or destination IP address
ip.dst	IPv4 destination IP address
ip.flags.df	IPv4 dont fragment flag
ip.flags.mf	IPv4 more fragments flag
ip.frag_offset	IPv4 fragment offset
ip.proto	Protocol used in datagram
ip.src	IPv4 source IP address
ip.ttl	IPv4 time to live
ipv6	Does the packet have an IPv4 header
ipv6.addr	IPv6 source or destination IP address
ipv6.dst	IPv6 destination IP address
ipv6.hlim	IPv6 hop limit
ipv6.nxt	IPv6 next header
ipv6.plen	IPv6 payload length
ipv6.src	IPv6 source IP address
stp	Is this a STP packet
tcp	Does the packet have a TCP header
tcp.dstport	TCP destination port
tcp.port	TCP source OR destination port
tcp.srcport	TCP source port
udp	Does the packet have a UDP header
udp.dstport	UDP destination port
udp.port	UDP source OR destination port
udp.srcport	UDP source port
vlan.id	Vlan ID (dot1q or qinq only)
vxlan	Is this a VXLAN packet
	<pre>ip.addr ip.dst ip.flags.df ip.flags.mf ip.frag_offset ip.proto ip.src ip.ttl ipv6 ipv6.addr ipv6.dst ipv6.hlim ipv6.nxt ipv6.hlim ipv6.nxt ipv6.plen ipv6.src stp tcp tcp.dstport tcp.srcport udp udp.dstport udp.port udp.srcport vlan.id vxlan</pre>

C9300#

show platform software fed switch active punt packet-capture display-filter arp brief

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets

```
----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 -----
interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id:
metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f
ether hdr : vlan: 10, ethertype: 0x8100
```

----- Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id:
metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f
ether hdr : vlan: 10, ethertype: 0x8100
<snip>

필터를 캡처 필터로 적용할 수도 있습니다.

<#root>

C9300#

show platform software fed switch active punt packet-capture set-filter arp <-- Most common Wireshark f:

Filter setup successful. Captured packets will be cleared

C9300#\$e fed switch active punt packet-capture status

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets Capture filter : "arp"

일반적인 시나리오

로컬 IP에 대한 간헐적 ICMP(Ping) 손실

스위치의 로컬 IP로 전달되는 트래픽은 Forus(문자 그대로 "for us") 대기열에 기록됩니다. Forus CoPP 대기열이 증가하는 것은 로컬 스위치로 향하는 삭제된 패킷과 관련이 있습니다. 이는 비교적 직진적이고 개념화가 용이하다.

그러나 어떤 상황에서는 Forus 삭제와 깔끔하게 상관관계가 없는 로컬로 목적지가 지정된 트래픽 에 손실이 발생할 수 있습니다.

충분한 CPU 바운드 트래픽 플로우가 이루어지면, CoPP가 어떤 트래픽을 폴리싱할지 우선 순위를 지정할 수 없을 정도로 펀트 경로가 과포화 상태가 됩니다. 트래픽은 선입 선출 방식으로 '조용히' 폴 리싱됩니다.

이 시나리오에서는 대량의 컨트롤 플레인 정책에 대한 증거가 확인되지만, 관심 트래픽 유형(이 예 에서는 Forus)이 반드시 증가하지는 않습니다.

요약하면, 활성 CoPP 폴리싱에서 입증되고 패킷 캡처 또는 FED punt 디버그로 입증된 매우 많은 양의 CPU 바운드 트래픽이 있을 경우, 문제 해결 중인 대기열에 맞지 않는 손실이 발생할 수 있습니 다. 이 시나리오에서는 과도한 양의 CPU 바인딩 트래픽이 있는 이유를 확인하고 컨트롤 플레인의 부담을 덜어주기 위한 조치를 취합니다.

높은 ICMP 리디렉션 및 DHCP 작업 부진

Catalyst 9000 Series 스위치의 CoPP는 32개의 하드웨어 대기열로 구성됩니다. 이러한 32개의 하 드웨어 대기열은 20개의 개별 폴리서 인덱스에 맞춰집니다. 각 폴리서 인덱스는 하나 이상의 하드 웨어 대기열과 상호 연관됩니다.

기능적으로는 여러 트래픽 클래스가 하나의 폴리서 인덱스를 공유하며 공통의 종합 폴리서 값에 종 속됨을 의미합니다.

DHCP 릴레이 에이전트가 활성화된 스위치에서 나타나는 일반적인 문제는 느린 DHCP 응답과 관 련이 있습니다. 클라이언트는 산발적으로 IP를 얻을 수 있지만 완료하는 데 몇 가지 시도가 필요하 고 일부 클라이언트는 시간이 초과됩니다.

ICMP 리디렉션 대기열과 브로드캐스트 대기열은 폴리서 인덱스를 공유하므로, 동일한 SVI(Switch Virtual Interface)에서 수신 및 라우팅되는 많은 양의 트래픽은 브로드캐스트 트래픽에 의존하는 애 플리케이션에 영향을 줍니다. 이는 스위치가 릴레이 에이전트 역할을 하는 경우 특히 두드러집니다.

이 문서에서는 <u>Catalyst 9000</u> DHCP 릴레이 에이전트의 개념 및 완화 방법<u>에</u> 대한 자세한 <u>설명을 제</u> <u>공합니다.</u>

추가 리소스

Catalyst 9000 DHCP 릴레이 에이전트의 느린 DHCP 또는 간헐적인 DHCP 문제 해결

<u>Catalyst 9000 스위치에서 FED CPU 패킷 캡처 구성</u>

Catalyst 9300 스위치: 컨트롤 플레인 정책 구성

<u>패킷 캡처 구성 - 네트워크 관리 컨피그레이션 가이드, Cisco IOS XE Bengaluru 17.6.x(Catalyst</u> <u>9300 스위치)</u>

<u>Catalyst 9000 스위치에서 DHCP 스누핑 운영 및 문제 해결</u>

이 번역에 관하여

Cisco는 전 세계 사용자에게 다양한 언어로 지원 콘텐츠를 제공하기 위해 기계 번역 기술과 수작업 번역을 병행하여 이 문서를 번역했습니다. 아무리 품질이 높은 기계 번역이라도 전문 번역가의 번 역 결과물만큼 정확하지는 않습니다. Cisco Systems, Inc.는 이 같은 번역에 대해 어떠한 책임도 지지 않으며 항상 원본 영문 문서(링크 제공됨)를 참조할 것을 권장합니다.