

KVM 環境でのコントローラのインストー ル

- ・カーネルベースの仮想マシン環境の概要(1ページ)
- KVM 環境でのインストール手順 (2ページ)
- .qcow2 イメージを使用した Linux ブリッジ ネットワーキングでのコントローラのインストール (3ページ)
- ISO イメージを使用した Vrish でのコントローラのインストール (4ページ)
- •.qcow2 イメージを使用した OVS ネットワークでのコントローラのインストール (5 ページ)
- ・ブートストラップ設定を使用した Vrish でのコントローラのインストール (5ページ)
- ISO イメージを使用した VMM でのコントローラ インスタンスの作成 (6ページ)
- KVM VMM (virt-manager) でのブートストラップ設定 (7ページ)
- KVM での SR-IOV の設定 (8 ページ)
- •コントローラへの SR-IOV の接続 (11ページ)
- •SR-IOV ドライバとファームウェアバージョンの確認 (13ページ)

カーネルベースの仮想マシン環境の概要

クラウドの Cisco Catalyst 9800 ワイヤレス コントローラ は、カーネルベースの仮想マシン (KVM)を使用して Ubuntu、Red Hat Enterprise Linux (RHEL) 7.2、および Red Hat Enterprise Virtualization (RHEV)の上部でサポートされます。KVM でのインストールでは仮想マシン (VM)の作成と、.isoファイルまたは .qcow2 ファイルを使用したインストールが必要です。 VM は、KVM コマンド ラインまたは Virsh を使用して起動できます。

- •.qcow2: KVM 環境でソフトウェア イメージをブートするために使用します。
- .iso: Virsh ツールを使用して手動でクラウドの Cisco Catalyst 9800 ワイヤレス コントロー ラをインストールするために使用します。また、KVM 環境で virsh コマンドを使用して コントローラを起動するには、サンプル XML 設定の virsh.xml ファイルも必要です。

サポートされているプロファイルの設定

次のプロファイル設定がサポートされています。

```
表1:サポートされているプロファイルの設定
```

テンプレート	CPU	RAM	AP	クライアント
Small	4 vCPU	8 GB	1000	10000
Medium	6 vCPU	16 GB	3000	320000
Large	10 vCPU	32 GB	6000	640000

サポートされているネットワー キング オプション

次のネットワーキング オプションがサポートされています。

- Linux ブリッジ
- Open vSwitch (OVS)

KVM のインストールに必要なパッケージ

KVM をインストールするには、次のパッケージが必要です。

- Qemu-kvm
- Qemu-utils
- Uml-utilities
- Socat
- KVM
- Libvirt-bin
- Virtinst

KVM 環境でのインストール手順

ー連のインストールステップを説明する自動インストールパッケージを使用するか、または virt-manager、virt install、virshなど、KVMでサポートされている管理ソフトウェアのいずれか を使用してKVM環境にクラウドのCisco Catalyst 9800 ワイヤレスコントローラをインストー ルできます。

KVM インストーラ パッケージは KVM 用の自動インストール パッケージです。このパッケージを実行すると、次のモードを提供します。

- [Default]: バンドルされているイメージファイルとデフォルトの VM 設定オプション ([Small]、[Medium]、または [Large])のいずれかを使用してコントローラをインストー ルします。
- •[Interactive]: VM 設定のカスタマイズを許可し、バンドルされたイメージファイルか、または別の.qcow2 イメージをインストールするオプションを提供します。

 (注) サポートされていない VM 操作のリストについては、VMware ESXi 環境でのインストールの 章の「サポートされている VMware 機能と操作」セクションを参照してください。

始める前に

クラウドの Cisco Catalyst 9800 ワイヤレス コントローラ ソフトウェア インストール イメージ パッケージから .run 実行可能ファイルをダウンロードし、ホスト マシンのローカル ドライブ にコピーします。

.qcow2 イメージを使用した Linux ブリッジ ネットワーキ ングでのコントローラのインストール

この手順は、コントローラ用のVMを手動で作成するための一般的なガイドラインです。実行 する必要がある正確なステップは、KVM 環境とセットアップの特性によって異なることがあ ります。詳細については、Red Hat Linux、Ubuntu、および Virsh のドキュメントを参照してく ださい。

virt-install コマンドを使用してインスタンスを作成し、次の構文を使用してブートします。

```
--connect=qemu:///system \
--os-type=linux \
--os-variant=rhel4 \
--arch=x86_64 \
--cpu host \
--console pty,target type=virtio \
--hvm \
--import \
--name=my c9k vm \
--disk path=<path to c9800-c qcow2>,bus=ide,format=qcow2 \
--vcpus=1, sockets=1, cores=1, threads=1 \
--ram=4096 \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio
--noreboot \
```

(注) インストールが完了すると、コントローラ VM はシャットダウンされます。virsh start コマンド を使用してコントローラ VM を起動します。

ISO イメージを使用した Vrish でのコントローラのインス トール

この手順は、コントローラ用のVMを手動で作成するための一般的なガイドラインです。実行 する必要がある正確なステップは、KVM 環境とセットアップの特性によって異なることがあ ります。詳細については、Red Hat Linux、Ubuntu、および Virsh のドキュメントを参照してく ださい。

ステップ1 qemu-img コマンドを使用し、.qcow2 形式で8GB のディスク イメージを作成します。

qemu-img create -f qcow2 c9000-c_disk.qcow2 8G

ステップ2 virt-install コマンドを使用してコントローラをインストールします。これには、新しい VM を作成するための適切な権限が必要です。次に、4 GB の RAM を持つ1つの vCPU VM と3 つのネットワーク インターフェイスを作成する例を示します。

```
virt-install \setminus
--connect=qemu:///system \
--os-type=linux \
--os-variant=rhel4 \
--arch=x86 64 \
--cpu host
--hvm ∖
--import \
--name=my c9k vm \
--cdrom=<path to c9800-c iso> \setminus
--disk path=c9000-c disk.qcow2,bus=virtio,size=8,sparse=false,cache=none,format=qcow2 \
--ram=4096 \
--vcpus=1, sockets=1, cores=1, threads=1 \
--network=network:<network name>, model=virtio \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio \
--noreboot \
```

(注) virt-install コマンドで新しい VM インスタンスを作成し、コントローラは指定したディスク ファ イルにイメージをインストールします。インストールが完了すると、コントローラ VM はシャッ トダウンされます。virsh start コマンドを使用してコントローラ VM を起動します。

.qcow2イメージを使用したOVSネットワークでのコント ローラのインストール

この手順は、コントローラ用のVMを手動で作成するための一般的なガイドラインです。実行 する必要がある正確なステップは、KVM環境とセットアップの特性によって異なることがあ ります。詳細については、Red Hat Linux、Ubuntu、および Virsh のドキュメントを参照してく ださい。

virt-install コマンドを使用してインスタンスを作成し、次の構文を使用してブートします。

```
--connect=qemu:///system \
--os-type=linux \
--os-variant=rhel4 \
--arch=x86_64 \
--cpu host \
--console pty,target type=virtio \
--hvm ∖
--import \
--name=my c9k vm \
--cdrom=<path to c9800-c iso> \
--disk path=c9000-c_disk.qcow2,bus=virtio,size=8,sparse=false,cache=none,format=qcow2 \
--ram=4096 \
--vcpus=1, sockets=1, cores=1, threads=1 \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio \
--noreboot \
```

(注) インストールが完了すると、コントローラ VM はシャットダウンされます。virsh start コマンド を使用してコントローラ VM を起動します。

ブートストラップ設定を使用した Vrish でのコントロー ラのインストール

この手順は、コントローラ用のVMを手動で作成するための一般的なガイドラインです。実行 する必要がある正確なステップは、KVM環境とセットアップの特性によって異なることがあ ります。詳細については、Red Hat Linux、Ubuntu、および Virsh のドキュメントを参照してく ださい。

始める前に

必要な設定で *iosxe_config.txt* というテキスト ファイルを作成し、**mkisofs -l -o** *iso-file-name.iso iosxe_config.txt* コマンドを使用し、iosxe_config.txt ファイルを入力として指定して.isoイメージ を作成します。

mkisofs -l -o test.iso iosxe config.txt

次にサンプルの設定ファイルを示します。

```
hostname C9800-CL
license smart enable
username lab privilege 15 password lab
ip domain-name cisco.com
interface GigabitEthernet1
ip address 10.0.0.5 255.255.255.0
no shut
exit
ip route 0.0.0.0 0.0.0.0 10.0.0.1
line vty 0 4
login local
exit
```

virt-install コマンドを使用してコントローラをインストールします。このコマンドを使用するには、新しい VM を作成するための適切な権限が必要です。次に、4GBの RAM を持つ1つの vCPU VM と3つのネットワーク インターフェイスを作成する例を示します。

```
virt-install \
--connect=qemu:///system \
--os-type=linux \
--os-variant=rhel4 \
--arch=x86 64 \setminus
--cpu host \
--console pty,target_type=virtio \
--hvm ∖
--import \
--name=my c9k vm \
--disk path=<path to c9800-c qcow2>,bus=ide,format=qcow2 \
--vcpus=1, sockets=1, cores=1, threads=1 \
--ram=4096 \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio \
--network=network:<network name>,model=virtio \
--noreboot \
```

ISO イメージを使用した VMM でのコントローラ インス タンスの作成

ステップ1 [Applications]>[System Tools]>[Virtual Machine Manager] を使用して virt-manager を起動します。 ハイパーバイザの選択およびルート パスワードの入力を求められる可能性があります。

- ステップ2 上部にある [File] オプションを選択し、[New Virtual Machine] オプションを選択します。
- ステップ3 仮想マシンの詳細を入力します。
 - a) VM の名前を入力します。
 - b) オペレーティング システム オプションで、[Local install media] を選択します。
 - c) [Forward] をクリックします。
- ステップ4 ディスクから ISO イメージを選択します。
- ステップ5 [Automatically Detect operating system based on install media] を選択します。
- **ステップ6** メモリおよび CPU オプションを設定します。
 - a) [Memory (RAM)] を設定します。
 - b) [CPUs] を設定します。
 - c) [Forward] をクリックして続行します。
- **ステップ7** ディスクイメージサイズを8GBに設定し、[Forward] をクリックします。
- **ステップ8** インスタンス名を入力します。
- ステップ9 最初に [Customize configuration before install] ボックスをオンにしてから、[Finish] をクリックします。 これにより、他の NIC を追加することができます。
- ステップ10 [Network] タブを選択して他の NIC を追加します。
- ステップ11 [Network source] ドロップダウンで [Network] を選択します。 (注) virtio ネットワーク ドライバのみがサポートされています。
- ステップ12 ドロップダウンを使用して、[Portgroup]を選択します。
- ステップ13 [完了 (Finish)]をクリックします。

KVM VMM (virt-manager) でのブートストラップ設定

仮想マシンマネージャとも呼ばれる virt-manager は、libvirt を通じて仮想マシンを管理するた めのデスクトップアプリケーションです。実行中のドメインの概要(ライブパフォーマンス やリソース使用率の統計情報)が表示されます。ウィザードを使用して、新しいドメインを作 成したり、ドメインのリソース割り当てを設定/調整したり、仮想ハードウェアをイネーブル にすることができます。組み込みの VNC および SPICE クライアント ビューアは、ゲスト ド メイン用のフル機能のグラフィカルなコンソールとして使用できます。

- **ステップ1** [Applications] > [System Tools] > [Virtual Machine Manager] を使用して virt-manager を起動します。 ハイパーバイザの選択、およびルート パスワードの入力を求められる可能性があります。
- ステップ2 上部にある [File] オプションを選択し、[New Virtual Machine] オプションをクリックします。
- ステップ3 仮想マシンの詳細を入力します。

- a) [Name] を指定します。
- b) オペレーティングシステムの場合、[Import existing disk image] を選択します。

この方法でディスクイメージ(qcow2イメージを選択した場合は、事前にインストールされた、ブート可能なオペレーティングシステムを含んでいるもの)をインポートできます。

- c) [Forward] をクリックして続行します。
- **ステップ4** コントローラ qcow2 イメージ パスを選択します。
- **ステップ5** メモリおよび CPU オプションを設定します。
 - a) [Memory (RAM)] を 8192 に設定します。
 - b) [CPUs] を4に設定します。
 - c) [Forward] をクリックして続行します。
- **ステップ6** インスタンス名を入力します。
- **ステップ7** [Finish] をクリックする前に [Customize configuration before install] ボックスをオンにします。 これにより、複数の NIC を追加することができます。
- **ステップ8** [Network] を選択します。 ブリッジまたはネットワークのいずれかを選択します。
- **ステップ9** [Finish] をクリックします。
- ステップ10 編集するインスタンス名をダブルクリックします。
- ステップ11 [i] を選択してインスタンス情報を取得します。
- ステップ12 [Begin Installation] を選択してインスタンスを起動します。
- ステップ13 [Monitor] 記号をクリックして仮想コンソールに移動します。

KVM での SR-IOV の設定

SR-IOV で推奨されるソフトウェアバージョン

表 2:サポートされている NIC タイプの一覧

NIC	ファームウェア	ドライバのバージョン	ホスト 0S
Intel x710	7.10	I40e 2.10.19.82	KVM RedHat バージョ ン 7.5 以降
Ciscoized x710	7.0	I40e 2.10.19.82	KVM RedHat バージョ ン 7.5 以降

Intel VT-D の有効化

(注) 後続のタスクを実行するには、ルート権限が必要です。

Intel VT-D を有効にするには、次の手順を実行します。

- ステップ1 /etc/sysconfig/grub ファイルの GRUB_CMDLINX_LINUX 行で、末尾に intel_iommu = on および iommu = pt パラメータを追加します。
- ステップ2 次のコマンドを実行して、/etc/grub2.cfg ファイルを再生成します。

grub2-mkconfig -o /etc/grub2.cfg

(注) EFIの場合は、次のコマンドを実行します。

grub2-mkconfig -o /etc/grub2-efi.cfg

ステップ3変更を有効にするには、システムをリブートします。

これで、システムで PCI デバイスを割り当てることができるようになりました。

インターフェイスでの SR-IOV モード仮想機能 (VF) の設定

VF が使用できない場合は、次のコマンドを使用して SR-IOV VF を設定します。

ステップ1 インターフェイスで VF を設定します。

echo "no_of_vfs" > /sys/class/net/<interface_name>/device/sriov_numvfs

サンプル出力:

echo 1 > /sys/class/net/enp129s0f0/device/sriov numvfs

ここでは、最大のパフォーマンスを得るために、ポートあたり1つの VF が作成されます。

ステップ2次のコマンドを使用して、VFでスプーフィングチェック、信頼モード、および MAC を設定します。

ip link set dev enpl29s0f0 vf 0 trust on ip link set enpl29s0f0 vf 0 spoofchk off ip link set enpl29s0f0 vf 0 mac 3c:fd:fe:de:cc:bc

(注) MAC アドレスは一意にする必要があります。

ステップ3 次のコマンドを使用して設定を確認します。

ip link show interface_name

サンプル出力:

ip link show enpl29s0f0
6: enpl29s0f0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen
1000
link/ether 3c:fd:fe:de:01:bc brd ff:ff:ff:ff:ff
vf 0 MAC 3c:fd:fe:de:cc:bc, spoof checking off, link-state auto, trust on

SR-IOV 永続設定の構成

上記の方法で設定された SR-IOV 設定は、リブート後は保持されません。この問題を解決する には、ホストのリブート時に自動的に有効になるサービスとして上記の設定を実行します。

ステップ1 永続化するコマンドを使用して bash スクリプトを作成します。次のように、/usr/bin/sriov-config ファイル にスクリプトを記述する必要があります。

#!/bin/sh
echo "no_of_vfs" > /sys/class/net/<interface_name>/device/sriov_numvfs
ip link set dev <interface_name> vf 0 trust on
ip link set <interface_name> vf 0 spoofchk off
ip link set <interface_name> vf 0 mac 3c:fd:fe:de:cc:bc

サンプル出力:

#!/bin/sh
echo 1 > /sys/class/net/enpl29s0f0/device/sriov_numvfs
ip link set dev enpl29s0f0 vf 0 trust on
ip link set enpl29s0f0 vf 0 spoofchk off
ip link set enpl29s0f0 vf 0 mac 3c:fd:fe:de:cc:bc

- (注) すべての VF に対して同じ手順を繰り返す必要があります。
- ステップ2 スクリプトの実行権限を指定します。

chmod 777 /usr/bin/sriov-config

- ステップ3 システムサービスを作成します。ブートの最後に実行する新しいシステムサービスを定義します。このサービスでは、手順1で説明したように、必須の sriov コマンドを含む bash スクリプトを実行します。
 - (注) /usr/lib/systemd/system に sriov.service という名前の新しいファイルを作成し、次の内容を追加し ます。

```
[Unit]
Description=SR-IOV configuration
After=rc-local.service
Before=getty.target
[Service]
Type=oneshot
ExecStart=/usr/bin/sriov-config
[Install]
WantedBy=multi-user.target
```

(注) ExecStart=/usr/bin/sriov-config コマンドラインでスクリプトを実行します。

ステップ4 次のコマンドを使用して、sriov.service を有効にし、開始します。

systemctl -- now enable sriov.service

(注) このコマンドによってサービスが即座に開始され、ホストがリブートするたびにサービスが実行 されるようにします。

KVMのSR-IOV 設定の詳細については、以下を参照してください。

https://www.intel.com/content/www/us/en/embedded/products/networking/x1710-sr-iov-config-guide-gbe-linux-brief.html

コントローラへの SR-IOV の接続

コマンドラインを使用した新しい仮想マシンへの接続

PCIVFデバイスを追加するには、virt-installのホストデバイスオプションを使用します。手順 1(インターフェイスでの SR-IOV モード仮想機能(VF)の設定(9ページ))の情報と PCI BDF 番号を使用して、デバイスを接続します。

10GbE SFP+用 Intel Corporation Ethernet Controller X710の仮想機能。(enp129s0f0):

PCI	BDF	
	=====	
0000	0:18:06.0	
0000	0:18:06.1	

VMの作成と起動

VM を作成して起動するには、次のコマンドを使用します。

sudo virt-install --virt-type=kvm --name ewlc_sriov_3-18 --ram 16384 --vcpus=9 --hvm
--cdrom=/home/C9800-CL-universalk9.BLD_POLARIS_DEV_LATEST_20200318_062819-serial.iso
--network none --host-device=pci_0000_18_06_0 --host-device=pci_0000_18_06_1 --graphics
vnc --disk

path=/var/lib/libvirt/images/ewlc sriov 3-18.qcow2,size=8,bus=virtio,format=qcow2

次のコマンドを使用して VM コンソールを表示します。

```
virsh console ewlc_sriov_3-18
Connected to domain ewlc_sriov_3-18
Escape character is ^]
```

次のコマンドを入力して、インターフェイスの SR-IOV ドライバを確認できます。

Device > enable

Device #show platform software vnic-if interface-mapping

Device # show platform software vnic-if interface-mapping Interface Name Driver Name Mac Addr GigabitEthernet2 net_i40e_vf 3cfd.fede.ccbd GigabitEthernet1 net_i40e_vf 3cfd.fede.ccbc

(注)

上記のMACアドレスは、VFに設定されているアドレスと同じです。

次のコマンドを使用して、プロセッサ、メモリ、vNIC、ハイパーバイザ、およびスループット プロファイルの詳細を確認できます。

Device # show platform software system all

```
Device# show platform software system all
Controller Details:
_____
VM Template: medium
Throughput Profile: high
AP Scale: 3000
Client Scale: 32000
WNCD instances: 3
Processor Details
_____
Number of Processors : 9
Processor : 1 - 9
vendor_id : GenuineIntel
cpu MHz : 2593.748
cache size : 4096 KB
Crypto Supported : Yes
model name : Intel Core Processor (Haswell, IBRS)
Memory Details
_____
Physical Memory : 16363364KB
VNIC Details
_____
Name
                      Mac Address
                                   Driver Name
                                                   Status Platform MTU
GigabitEthernet1 3cfd.fede.ccbc net_i40e_vf
                                                 DOWN 1522
GigabitEthernet2 3cfd.fede.ccbd net_i40e_vf
                                                 DOWN
                                                       1522
Hypervisor Details
_____
Hypervisor: KVM
Manufacturer: Red Hat
Product Name: KVM
Serial Number: Not Specified
UUID: 0E3546DD-DE6E-400D-9B3D-025215519CB8
image variant :
Boot Details
_____
```

Boot mode: BIOS Bootloader version: 1.1

KVM VMM を使用したコントローラへのインターフェイスの接続 (virt-manager)

virt-manager で [Hardware] > [Add Hardware] を選択し、PCI ホストデバイスを VM に追加しま す。NIC カードに移動し、VM に接続する必要がある VF を選択します。

PCIがVMに追加されたら、VMを起動できます。

SR-IOV ドライバとファームウェアバージョンの確認

次のコマンドを使用して、イーサネットとドライバのバージョンを確認できます。

ethtool -i <interface_name>

(注)

このコマンドは、ホストマシンで実行する必要があります。

```
[root@cpp-rhel-perf ~]# ethtool -i enp129s0f0
driver: i40e
version: 2.10.19.82
firmware-version: 7.10 0x8000646c 1.2527.0
expansion-rom-version:
bus-info: 0000:81:00.0
```

次のコマンドを使用して、イーサネット情報、ドライバのバージョン、および SR-IOV VF の 名前を出力できます。

lspci | grep -i eth

```
[root@cpp-rhel-perf ~]# lspci | grep -i eth
81:00.0 Ethernet controller: Intel Corporation Ethernet Controller X710 for 10GbE SFP+
(rev 02)
81:00.1 Ethernet controller: Intel Corporation Ethernet Controller X710 for 10GbE SFP+
(rev 02)
81:02.0 Ethernet controller: Intel Corporation Ethernet Virtual Function 700 Series (rev
02)
81:0a.0 Ethernet controller: Intel Corporation Ethernet Virtual Function 700 Series (rev
02)
81:0a.0 Ethernet controller: Intel Corporation Ethernet Virtual Function 700 Series (rev
02)
```

https://downloadcenter.intel.com/product/82947/Intel-Ethernet-Controller-X710-Series

Intel および Cisco NIC のドライバに関する詳細については、以下を参照してください。

https://downloadcenter.intel.com/download/24411/ Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Ethernet-Network-Connections-Under-Linux-?product=82947

Cisco NIC のファームウェアに関する詳細については、以下を参照してください。

https://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-c-series-rack-servers/tsd-products-support-series-home.html

I