

LTE から Wi-Fi(S2bGTP)へのシームレス ハンドオーバー

ここでは、次の内容について説明します。

- ・機能の概要と変更履歴 (1ページ)
- 機能説明 (2ページ)
- 機能の仕組み (3ページ)
- •LTE から Wi-Fi へのシームレスハンドオーバーの設定 (4ページ)
- モニタリングおよびトラブルシューティング (5ページ)

機能の概要と変更履歴

要約データ

該当製品または機能エリア	• P-GW
	• SAEGW
	4 GD 5500
該当プラットフォーム	• ASR 5500
	• VPC - DI
	• VPC - SI
機能のデフォルト	無効:設定が必要
このリリースでの関連する変更点	N/A
関連資料	Command Line Interface Reference
	• P-GW Administration Guide
	SAEGW Administration Guide
	Statistics and Counters Reference

マニュアルの変更履歴

重要 リリース 21.2 および N5.1 よりも前に導入された機能の変更履歴の詳細は示されません。

改訂の詳細	リリース
このリリースでは、サブスクライバの LTE から Wi-Fi(S2bGTP)へのシームレスなハンドオーバーのサポートが追加されています。	21.8
最初の導入。	21.2 よりも前

機能説明

LTE から Wi-Fi へのハンドオーバーが開始され、セッション作成応答(CSR)が Wi-Fi トンネルで送信されるとすぐに、ベアラー削除要求(DBR)がLTEトンネルを介して送信されます。このとき、ePDGでの IPSec トンネル確立の遅延により、パケット損失が発生します。パケット損失の問題に対処するために、リリース 21.8 に拡張機能が導入されました。これにより2つのトンネル(LTE と Wi-Fi)が保持され、アップリンクデータが Wi-Fi トンネルで確認された場合、または設定されたハンドオーバータイマーの期限が切れたとき(アップリンクデータがない場合)のいずれか早い方でのみ、LTEトンネルでベアラー削除要求が送信されるようになります。LTEトンネルがアクティブである限り、アップリンクとダウンリンクのデータはLTEトンネルで交換されます。ハンドオーバーが完了すると、アップリンクとダウンリンクのデータがWi-Fi トンネルで交換されます。これにより、パケット損失を防げます。

この機能拡張によるメリットは次のとおりです。

- •LTEからWi-Fi (S2bGTP) へのハンドオーバー中のパケット損失を最小限に抑え、ハンドオーバーをシームレスにします(つまり、メイクビフォアブレーク)。
- P-GWで両方のトンネルが確立されている場合、LTE 手順はLTE トンネルを介して正常に 処理されます。
- P-GW で両方のトンネルが確立されている場合、Wi-Fi 手順は Wi-Fi トンネルを介して正常に処理されます。
- •同じサブスクライバに対して2つのトンネル (LTEとWi-Fi) が確立されている場合、LTE またはWi-Fi トンネル (デフォルトまたは専用ベアラー)上でのGTP-Uエラー通知とGTP-Uパス障害が移行期間中に適切に処理されます。

機能の仕組み

次の項では、LTE から Wi-Fi(S2bGTP)へのシームレスなハンドオーバーについて説明します。

LTE から Wi-Fi へのハンドオフ

LTE から Wi-Fi へのハンドオフは、次のように行われます。

- 1. P-GW は、次の時点まで S-GW への DBR の送信を遅延させます。
 - CSR の有効期限が ePDG に送信される (デフォルトの動作)。
 - Wi-Fi トンネルでアップリンクデータが送信される。
 - •ハンドオーバータイマーが期限切れになる。タイマーが期限切れになった場合、ePDG はハンドオフの完了を通知するために、ベアラー変更要求(MBR)を送信しません。
- **2.** LTE から Wi-Fi へのハンドオフの CSR を受信した後、LTE アクセスからのコントロールプレーン GTPv2(GTP-C)メッセージは P-GW で処理されません。これらのメッセージは EGTPC でブロックされます。
- 3. LTE トンネルは、移行期間中にGTP-Uトラフィックを伝送します。移行期間はCSR(LTE から Wi-Fi へのハンドオフの受信)からハンドオーバーが完了するまでの時間として定義されます。このシナリオでは、ハンドオフ完了の MBR は予期されません。
- **4.** 複数の未処理の CCR-U がサポートされている場合、ハンドオフ要求前のすべての要求はドロップされます。これは IMSA で行われます。
- 5. 移行期間中:
 - ベアラー変更コマンド (MBC) が Wi-Fi で受信された場合、サービス拒否メッセージ を付けて拒否されます。
 - 専用ベアラーのベアラー削除コマンドが LTE で受信された場合は破棄されます。
 - ポリシー変更のために PCRF が RAR を送信する場合、ハンドオーバーの完了後に処理されます。
 - •新しいトンネル (つまり、Wi-Fi) は GTP-U トラフィックを伝送しません。移行期間中に Wi-Fi で受信された GTP-U トラフィックはドロップまたは無視されます。同様に、Wi-Fi で受信されたダウンリンクトラフィックは、DBR が Wi-Fi トンネルで送信されるまで、古いトンネル (つまり、LTE トンネル) で送信されます。これは、CSRが Wi-Fi トンネルで送信される場合にも当てはまります。アップリンクトラフィックが、タイマーの期限切れによってハンドオーバーの完了がトリガーされる前に Wi-Fi トンネルで受信された場合、それ以降のすべてのトラフィックは Wi-Fi トンネル経由でのみ転送されます。

- LTEアクセスで保留中のトランザクションはすべて破棄されます。たとえば、CBRまたは UBR が LTE アクセス用に送信され、CBR または UBR トランザクションが完了する前にハンドオフが開始された場合、CBR または UBR は P-GW で無視されます。PCRF には障害が通知されません。
- ASR が受信されると、コールドロップが発生して、両方のトンネルがダウンします。
- PCRF からセッション解放が発生した場合、コールはドロップされ、CSR が「リソースなし」という理由で送信されます。
- •LTE を介した GTP-U または GTP-C パスで障害が発生した場合、Wi-Fi 通話が継続中 に LTE アクセスでコールがドロップされます。
- Wi-Fi を介した GTP-U または GTP-C パスで障害が発生した場合、コールのドロップに つながります。両方のトンネルがクリアされます。
- HO-Ind が 1 に設定された状態で(ガードタイマー後)、ユーザーが LTE に戻る(つまり、LTE から Wi-Fi、LTE へのハンドオフが繰り返される)場合、HO は正常に処理され、ユーザーセッションは再び LTE に移行されます。
- ユーザーが HO-Ind を 0 に設定した状態で LTE に戻る (つまり、LTE から Wi-Fi、LTE へのハンドオフを繰り返す)場合、コンテキストの置換が発生します。古いコールはコンテキスト置換という理由でWi-Fiアクセスでクリアされ、LTEを介した新しいコールのように処理されます。

セッションリカバリとICSR

移行期間中、古いアクセスが安定した状態と見なされ、LTEからWi-Fi(S2bGTP)へのハンドオーバーが完了すると、フルチェックポイントがトリガーされます。これは、セッションリカバリと ICSR の両方に対して行われます。

LTE から Wi-Fi へのシームレスハンドオーバーの設定

ここでは、機能を有効または無効にするために使用できるCLIコマンドについて説明します。

LTE から Wi-Fi へのハンドオーバータイマーの設定

次の CLI コマンドを使用して、LTE から Wi-Fi へのハンドオーバータイマーを設定します。

```
configure
context context_name
  apn apn_name
  lte-s2bgtp-first-uplink timeout
  { default | no } lte-s2bgtp-first-uplink
  end
```

注:

- **default**: Wi-Fi トンネルでセッション作成応答が送信された時点での、LTE から Wi-Fi へのハンドオーバーの完了を有効にします。
- no:機能を無効にし、セッション作成応答時点でハンドオーバーが完了します。
- Ite-s2bgtp-first-uplink timeout: LTE から S2bGTP へのハンドオーバー完了タイムアウトを 100 ミリ秒の倍数で設定します。有効な範囲は $100\sim3000$ です。推奨設定は 1000 ミリ秒です。
- デフォルトでは、Wi-Fi トンネルでセッション作成応答が送信された時点で、LTE から Wi-Fiへのハンドオーバーが完了します。ただし、ハンドオーバータイムアウトの設定後、ハンドオーバーは、タイムアウトするまで、または Wi-Fi トンネルでアップリンクデータ が受信されるまで遅延されます。

モニタリングおよびトラブルシューティング

この項では、機能のモニタリングとトラブルシューティングのサポートで使用できるCLIコマンドについて説明します。

コマンドや出力の表示

この項では、この機能のサポートにおける show コマンドまたはその出力について説明します。

show apn statistics name < name>

この CLI コマンドの出力が拡張され、APN に関する次のフィールドが表示されるようになりました。

- LTE-to-S2bGTP handover Succeeded on First Uplink Data on S2b tunnel: アップリンクパケットによるハンドオーバーの回数を指定します。
- LTE-to-S2bGTP handover Succeeded on Timer Expiry: タイマー時間の終了によるハンドオーバーの回数を指定します。

注:

この機能の一部として導入された新しいフィールドは、次のCLIコマンドでも表示されます。

- show pgw-service statistics name service_name verbose
- · show pgw-service statistics all verbose
- show saegw-service statistics all function pgw verbose

バルク統計

この機能のサポートには、次の統計情報が含まれています。

APN スキーマ

LTEから Wi-Fi へのシームレスなハンドオーバー機能をサポートするために、APN スキーマの APN に次のバルク統計が追加されています。

バルク統計	説明
apn-handoverstat-ltetos2bgtpsucc-timerexpiry	タイマーの期限切れ時の、成功した LTE から S2bGTP へのハンドオーバーの数。
apn-handoverstat-ltetos2bgtpsucc-uplnkdata	S2b トンネル上のアップリンクデータで成功 した LTE から S2bGTP へのハンドオーバーの 数。

P-GW スキーマ

LTE から Wi-Fi へのシームレスなハンドオーバー機能をサポートするために、P-GW スキーマ で P-GW に次のバルク統計が追加されています。

バルク統計	説明
handoverstat-ltetos2bgtpsucc-timerexpiry	ハンドオーバー統計:タイマーの期限切れ時のLTEからGTP S2bへの成功したハンドオーバーの数。
handoverstat-ltetos2bgtpsucc-uplnkdata	ハンドオーバー統計:S2bトンネルのアップ リンクデータにおけるLTEからGTPS2bへの 成功したハンドオーバーの数。

SAEGW スキーマ

LTE から Wi-Fi へのシームレスなハンドオーバー機能をサポートするために、SAEGW スキーマで SAEGW に次のバルク統計が追加されています。

バルク統計	説明
pgw-handoverstat-ltetos2bgtpsucc-timerexpiry	P-GW ハンドオーバー統計:タイマーの期限 切れ時の LTE から GTP S2b への成功したハンドオーバーの数。
pgw-handoverstat-ltetos2bgtpsucc-uplnkdata	P-GW ハンドオーバー統計: S2b トンネルの アップリンクデータにおける LTE から GTP S2b への成功したハンドオーバーの数。

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。