

ストレージ インベントリ

- NVMe で最適化された M5 サーバ (1ページ)
- B200 M6 サーバーの NVMe 交換に関する考慮事項 (3ページ)
- •ボリューム管理デバイス (VMD)の設定(4ページ)

NVMe で最適化された **M5** サーバ

3.2(3a) 以降では、Cisco UCS Manager は次の NVMe 最適化 M5 サーバをサポートしています。

- UCSC-C220-M5SN—PCIe MSwitch は、UCS C220 M5 サーバ用の専用 PCIe MSwirch スロットに配置されます。このセットアップでは、最大 10 台の NVMe ドライブがサポートされます。最初の2 台のドライブは、ライザーを介して直接接続されています。残りの8 台のドライブは、MSwitchによって接続および管理されます。このセットアップでは、SAS/SATAドライブの組み合わせはサポートされていません。
- UCSC-C240-M5SN—PCIe MSwitch は、UCS C240 M5 サーバのスロット4のライザー2に 配置されます。サーバは最大24台のドライブをサポートします。スロット1~8は、 MSwitchによって接続および管理されるNVMeドライブです。また、サーバは背面で最大 2台のNVMeドライブをサポートし、ライザーを介して直接接続されます。この設定で は、スロット9~24のSAS/SATAドライブとSAS/SATAの組み合わせがサポートされて います。これらのドライブは、専用のMRAIDPCIeスロットに配置されたSASコントロー ラによって管理されます。
- UCS-C480-M5—UCS C480 M5 サーバは最大 3 個の NVMe ドライブをサポートし、それぞれ最大 8 台の NVMe ドライブをサポートします。各ケージには、MSwitch を含むインタポーザカードがあります。各サーバは、最大 24 台の NVMe ドライブ (3 個の NVMe ドライブ ケージ x 8 個の NVMe ドライブ)をサポートできます。サーバは背面 PCIe Aux ドライブケージもサポートしています。これには、PCIe スロット 10 に配置された MSwitch によって管理される最大 8 台の NVMe ドライブを搭載できます。

このセットアップでは次の機能はサポートされていません。

- NVMe ドライブ ケージと HDD ドライブ ケージの組み合わせ
- 背面補助ドライブ ケージに関係なく、Cisco 12G 9460-8i RAID コントローラと NVMe ドライブ ケージの組み合わせ

• UCSC-C220-M5SN および UCSC-C240-M5SN には、個別の MSwitch PID はありません。こ れらのサーバの MSwitch カードは、対応する NVMe 最適化サーバの一部です。

MSwitch ディザスタ リカバリ

破損した MSwitch を回復し、以前動作していたファームウェアにロールバックすることができます。

(注)

Cisco UCS C480 M5 サーバ を使用して設定した場合、mswitch 障害復旧プロセスは、一度に1 個の MSwitch でのみ実行できます。障害復旧プロセスが1個の MSwitch ですでに実行されて いる場合は、完了するまで待機します。FSM からリカバリ ステータスをモニタできます。

	コマンドまたはアクション	目的
ステップ1	UCS-A# scope server [chassis-num/server-num dynamic-uuid]	指定したサーバのサーバ モードを開始 します。
ステップ 2	UCS-A /server # scope nvme-swtich nvme_switch	指定されたNVMeスイッチに入ります。
ステップ3	UCS-A /server/nvme-switch # set recover-nvme-switch	指定した名前で LUN 設定を削除しま す。
ステップ4	UCS-A /server/nvme-switch* # commit-buffer	トランザクションをシステムの設定に対 して確定します。
ステップ5	UCS-A /server/nvme-switch # exit	MSwitch モードを終了します。
ステップ6	UCS-A /server # ack-nvme-switch-recovery acknowledge	MSwitch リカバリを確認します。
ステップ 7	UCS-A /server* # commit-buffer	 トランザクションをシステムの設定にコ ミットします。 (注) 障害復旧プロセス中は、 サーバをリセットしないでください。

手順

例

次の例では、server1の MSwitch を復旧します。

```
UCS-A# scope server 1
UCS-A/server # scope nvme-switch 1
UCS-A/server/nvme-switch # set recover-nvme-switch
UCS-A/server/nvme-switch* # commit-buffer
UCS-A/server/nvme-switch # exit
UCS-A/server # ack-nvme-switch-recovery acknowledge
UCS-A/server* # commit-buffer
```

B200 M6 サーバーの NVMe 交換に関する考慮事項

システムの電源がオフのときに Cisco B200 M6 サーバーの NVMe ストレージデバイスをスワッ プまたは交換すると、、エラー状態が発生する可能性があります。このエラーの発生を回避す るため、次の予防措置を講じてください。

・サーバーの電源を切らずに、NVMe SSD ストレージデバイスを交換またはホットスワップします。

 ・サーバーの電源を切った状態でNVMeストレージを交換する必要がある場合は、サーバー をデコミッションし、ハードウェアを取り外すか、交換してから、サーバーを再起動しま す。これにより、サーバーは再コミッションされ、NVMeストレージは正しく検出されま す。

システムの電源がオフになっているときに NVMe ストレージを交換すると、そのコントローラは応答なしとしてマークされます。この問題を回復するには、サーバーを再認識させます。

ボリューム管理デバイス (VMD) の設定

Intel® ボリューム管理デバイス (VMD) は、VMD 対応ドメインに接続された PCIe ソリッドス テート ドライブを管理するための NVMe ドライバを提供するツールです。これには、PCIe ド ライブの Surprise ホットプラグと、ステータスを報告するための点滅パターンの設定が含まれ ます。PCIe ソリッドステート ドライブ (SSD) ストレージには、デバイスのステータスを示す ために LED を点滅させる標準化された方法がありません。VMD を使用すると、単純なコマン ドラインツールを使用して、直接接続された PCIe ストレージとスイッチに接続された PCIe ス トレージの両方の LED インジケータを制御できます。

VMD を使用するには、最初に UCS Manager BIOS ポリシーを使用して VMD を有効にして、 UEFI ブート オプションを設定する必要があります。VMD を有効にすると、ルート ポートに 接続されている PCIe SSD ストレージに対して、Surprise ホットプラグとオプションの LED ス テータス管理が提供されます。VMD パススルー モードは、ゲスト VM 上のドライブを管理す る機能を提供します。

また、VMDを有効にすると、intel[®] Xeon[®] スケーラブルプロセッサのハイブリッド RAID アー キテクチャである CPU 上の Intel[®] 仮想 RAID (VRoC) の設定も可能になります。VRoC の使用 および設定に関するマニュアルは、Intel の Web サイトを参照してください。

重要:VMD は、オペレーティング システムをインストールする前に、UCS Manager BIOS 設 定で有効にする必要があります。OS のインストール後に有効にすると、サーバの起動に失敗 します。この制限は、標準の VMD および VMD パススルーの両方に適用されます。同様に有 効にすると、システム機能を失わずに VMD を無効にすることはできません。 翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。