

# VRF-Lite の設定

- VRF-Lite について (1 ページ)
- VRF-Lite の設定に関するガイドライン (2ページ)
- VRF-Lite の設定方法 (3 ページ)
- VRF-Lite に関する追加情報 (20 ページ)
- VRF-Lite 設定の確認 (21 ページ)
- VRF-Lite の設定例 (22 ページ)
- VRF-Lite に関するその他の参考資料 (25 ページ)
- マルチキャスト VRF-Lite の機能履歴と情報 (26ページ)

# VRF-Lite について

VRF-Lite の機能によって、サービスプロバイダーは、VPN 間で重複した IP アドレスを使用で きる複数の VPN をサポートできます。VRF-Lite は入力インターフェイスを使用して異なる VPN のルートを区別し、各 VRF に 1 つまたは複数のレイヤ 3 インターフェイスを対応付けて 仮想パケット転送テーブルを形成します。VRF のインターフェイスは、イーサネット ポート などの物理インターフェイス、またはVLAN SVI などの論理インターフェイスにすることがで きますが、レイヤ 3 インターフェイスは、一度に複数の VRF に属することはできません。



(注) VRF-Lite インターフェイスは、レイヤ3インターフェイスである必要があります。

VRF-Lite には次のデバイスが含まれます。

- CEデバイスにおいて、カスタマーは、1つまたは複数のプロバイダーエッジ(PE)ルータへのデータリンクを介してサービスプロバイダーネットワークにアクセスできます。
   CEデバイスは、サイトのローカルルートをプロバイダーエッジルータにアドバタイズし、そこからリモート VPNルートを学習します。Cisco Catalyst スイッチは、CE にすることができます。
- プロバイダーエッジ(PE)ルータは、スタティックルーティングまたはルーティングプロトコル(BGP、RIPv1、RIPv2など)を使用して、CEデバイスとルーティング情報を交換します。

PE は、直接接続している VPN に対する VPN ルートのみを保守する必要があります。そのため、すべてのサービスプロバイダーVPN ルートをPEが保守する必要はありません。 各 PE ルータは、直接接続しているサイトごとに VRF を維持します。すべてのサイトが同 じ VPN に存在する場合は、PE ルータの複数のインターフェイスを1つの VRF に関連付 けることができます。各 VPN は、指定された VRF にマッピングされます。PE ルータは、 ローカル VPN ルートを CE から学習したあとで、iBGP を使用して別の PE ルータと VPN ルーティング情報を交換します。

プロバイダールータ(またはコアルータ)とは、サービスプロバイダーネットワーク内
 にあり、CEデバイスに接続していないすべてのルータです。

VRF-Lite を使用すると、複数のお客様が1つの CE を共有できます。共有 CE は、お客様ごと に別々の VRF テーブルを維持し、独自のルーティング テーブルに基づいて、お客様ごとにパ ケットをスイッチングまたはルーティングします。VRF-Lite により、CE デバイスは、個別の VRF テーブルを保持し、VPN のプライバシーおよびセキュリティをブランチオフィスまで拡 張することができます。

次の図に、各 Cisco Catalyst スイッチが複数の仮想 CE として機能する設定を示します。VRF-Lite はレイヤ3機能であるため、VRFの各インターフェイスはレイヤ3インターフェイスである必 要があります。

VRF を設定するには、VRF テーブルを作成し、VRF に対応付けられたレイヤ3インターフェ イスを指定します。

# VRF-Liteの設定に関するガイドライン

#### IPv4 と IPv6

- VRF-Lite が設定されたスイッチは複数のカスタマーで共有され、すべてのカスタマーが独 自のルーティングテーブルを持ちます。
- •カスタマーは別々の VRF テーブルを使用するので、同じ IP アドレスを再利用できます。
- VRF-Lite では、複数のカスタマーが PE と CE の間で同一の物理リンクを共有できます。
- Cisco Catalyst スイッチでは、物理ポートか VLAN SVI、またはその両方の組み合わせを使用して、VRFを設定できます。アクセス ポートまたはトランク ポート経由で SVI を接続できます。
- ・お客様は、別のお客様と重複しないかぎり、複数の VLAN を使用できます。お客様の VLAN は、スイッチに保存されている適切なルーティング テーブルの識別に使用される 特定のルーティング テーブル ID にマッピングされます。
- レイヤ3TCAMリソースは、すべてのVRF間で共有されます。各VRFが十分なCAM領 域を持つようにするには、maximum routesコマンドを使用します。
- VRF を使用した Cisco Catalyst スイッチは、1 つのグローバル ネットワークと複数の VRF をサポートできます。サポートされるルートの総数は、TCAM のサイズに制限されます。

- •1 つの VRF を IPv4 と IPv6 の両方に設定できます。
- 着信パケットの宛先アドレスが VRF テーブルにない場合、そのパケットはドロップされます。また、VRF ルートに TCAM 領域が十分にない場合、その VRF のハードウェア切り 替えは無効になり、対応するデータパケットがソフトウェアに送信されて処理されます。

#### IPv4 固有

• Cisco Catalyst スイッチでは、PIM-SM プロトコル と PIM-SSM プロトコルがサポートされます。

#### IPv6 固有

- VRF 認識 OSPFv3、EIGRPv6、および IPv6 スタティックルーティングがサポートされます。
- VRF 認識 IPv6 ルート アプリケーションには、ping、telnet、ssh、tftp、ftp、およびトレー スルートが含まれています(このリストには管理インターフェイスは含まれていません。 これは、その下に IPv4 も IPv6 も設定できますが、別々に処理されます)。

# VRF-Lite の設定方法

ここでは、VRF-Liteの設定について説明します。

## IPv4 用の VRF-Lite の設定

ここでは、IPv4 用の VRF-Lite の設定について説明します。

## VRF 認識サービスの設定

IP サービスは、グローバルなインターフェイス上と、グローバルなルーティングインスタン ス内で設定できます。IP サービスは複数のルーティングインスタンス上で稼働するように拡 張されます。これが、VRF 認識です。システム内の任意の設定済み VRF であればいずれも、 VRF 認識サービス用に指定できます。

VRF 認識サービスは、プラットフォームから独立したモジュールに実装されています。VRF は、Cisco IOS内の複数のルーティングインスタンスを提供します。各プラットフォームには、 サポートする VRF 数に関して独自の制限があります。

VRF 認識サービスには、次の特性があります。

- ユーザは、ユーザ指定の VRF 内のホストに ping を実行できます。
- ARP エントリは、個別の VRF で学習されます。ユーザは、特定の VRF の ARP エントリ を表示できます。

### ARP のユーザインターフェイスの設定

| 壬 | 旧百 |
|---|----|
| ┯ | 川只 |

|               | コマンドまたはアクション                                                    | 目的                           |
|---------------|-----------------------------------------------------------------|------------------------------|
| ステップ1         | show ip arp vrf vrf-name                                        | 指定された VRF で、ARP テーブル(スタティック  |
|               | 例:                                                              | エントリおよびダイナミックエントリ)を表示しま<br>オ |
|               | Device# show ip arp vrf vrf-name                                | 9 o                          |
| ステップ <b>2</b> | arp vrf vrf-name ip-address mac-address ARPA                    | 指定された VRF でスタティック ARP エントリを作 |
|               | 例:                                                              | 成します。                        |
|               | Device(config)# arp vrf vrf-name ip-address<br>mac-address ARPA |                              |

## TACACS+ サーバ用の Per-VRF の設定

TACACS+ サーバ機能の per-VRF は TACACS+ サーバの per- 仮想単位ルート転送 (per-VRF) の認証、認可、アカウンティング (AAA) を設定することができます。

VRF ルーティング テーブル (ステップ3および4で示すように)を作成し、インターフェイ スを設定する (ステップ6、7、および8) ことができます。TACACS+サーバの per-VRF 単位 の実際の設定は、ステップ10~13 で行われます。

#### 始める前に

TACACS+ サーバの per-VRF を設定する前に、AAA およびサーバ グループを設定しておく必要があります。

| 手 | 旧 |
|---|---|
|   | ~ |

|       | コマンドまたはアクション                            | 目的                        |
|-------|-----------------------------------------|---------------------------|
| ステップ1 | enable                                  | 特権 EXEC モードを有効にします。パスワードを |
|       | 例:                                      | 入力します(要求された場合)。           |
|       | Device> enable                          |                           |
| ステップ2 | configure terminal                      | グローバル コンフィギュレーション モードを開始  |
|       | 例:                                      | します。                      |
|       | Device# configure terminal              |                           |
| ステップ3 | vrf definition vrf-name                 | VRFテーブルを設定し、VRFコンフィギュレーショ |
|       | 例:                                      | ンモードを開始します。               |
|       | Device(config)# vrf definition vrf-name |                           |
| ステップ4 | rd route-distinguisher                  | VRFインスタンスに対するルーティングおよびフォ  |
|       | 例:                                      | ワーディングテーブルを作成します。         |
|       |                                         |                           |

|                | コマンドまたはアクション                                                                                 | 目的                                                |
|----------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|
|                | Device(config-vrf)# rd route-distinguisher                                                   |                                                   |
| ステップ5          | exit                                                                                         | VRFコンフィギュレーションモードを終了します。                          |
|                | 例:                                                                                           |                                                   |
|                | Device(config-vrf)# exit                                                                     |                                                   |
| ステップ6          | interface interface-name                                                                     | インターフェイスを設定し、インターフェイスコ                            |
|                | 例:                                                                                           | ンフィギュレーション モードを開始します。                             |
|                | Device(config)# interface interface-name                                                     |                                                   |
| ステップ <b>1</b>  | vrf forwarding vrf-name                                                                      | インターフェイスに VRF を設定します。                             |
|                | 例:                                                                                           |                                                   |
|                | Device(config-if)# vrf forwarding vrf-name                                                   |                                                   |
| ステップ8          | ip address ip-address mask [secondary]                                                       | インターフェイスに対するプライマリ IP アドレス                         |
|                | 例:                                                                                           | またはセカンダリ IP アドレスを設定します。                           |
|                | Device(config-if)# ip address ip-address mask<br>[secondary]                                 |                                                   |
| ステップ9          | exit                                                                                         | インターフェイス コンフィギュレーション モード                          |
|                | 例:                                                                                           | を終了します。                                           |
|                | Device(config-vrf)# exit                                                                     |                                                   |
| ステップ10         | aaa group server tacacs+ group-name                                                          | 異なる TACACS+ サーバ ホストを別々のリストと                       |
|                | 例:                                                                                           | 方式にグループ化し、server-group コンフィギュレー                   |
|                | Device(config)# aaa group server tacacs+ tacacs1                                             | ンヨンモートを開始しよす。                                     |
| ステップ11         | server-private {ip-address   name} [nat]<br>[single-connection] [port port-number] [ timeout | グループ サーバに対するプライベート TACACS+<br>サーバの IP アドレスを設定します。 |
|                | seconds] [key [0   7] string]                                                                |                                                   |
|                | 例:                                                                                           |                                                   |
|                | Device(config-sg-tacacs+)# server-private<br>10.1.1.1 port 19 key cisco                      |                                                   |
| ステップ <b>12</b> | vrf forwarding vrf-name                                                                      | AAA TACACS+サーバグループの VRF リファレン                     |
|                | 例:                                                                                           | スを設定します。                                          |
|                | Device(config-sg-tacacs+)# vrf forwarding<br>vrf-name                                        |                                                   |
| ステップ13         | ip tacacs source-interface subinterface-name                                                 | すべての発信 TACACS+ パケットに対して、指定                        |
|                | 例:                                                                                           | されたインターフェイスの IP アドレスを使用しま                         |
|                | Device(config-sg-tacacs+)# ip tacacs<br>source-interface subinterface-name                   | <u> </u>                                          |

|        | コマンドまたはアクション                   | 目的                             |
|--------|--------------------------------|--------------------------------|
| ステップ14 | exit                           | server-group コンフィギュレーションモードを終了 |
|        | 例:                             | します。                           |
|        | Device(config-sg-tacacs)# exit |                                |

## 例

次の例で、per-VRF TACACS+の設定に必要なすべての手順をリストします。

```
Device> enable
Device# configure terminal
Device(config)# vrf definition cisco
Device(config-vrf)# rd 100:1
Device(config-vrf)# exit
Device(config)# interface Loopback0
Device(config-if)# vrf forwarding cisco
Device(config-if)# ip address 10.0.0.2 255.0.0.0
Device(config-if)# exit
Device(config-sg-tacacs+)# vrf forwarding cisco
Device(config-sg-tacacs+)# ip tacacs source-interface Loopback0
Device(config-sg-tacacs+)# ip tacacs source-interface Loopback0
```

## マルチキャスト VRF の設定

#### 手順の概要

- 1. configure terminal
- **2**. ip routing
- **3.** vrf definition vrf-name
- 4. ip multicast-routing vrf vrf-name
- 5. rd route-distinguisher
- 6. route-target {export | import | both} route-target-ext-community
- 7. import map  $\mathcal{V} \mathcal{V} = \mathcal{V}$
- **8.** interface interface-id
- **9**. **vrf forwarding** *vrf-name*
- 10. ip address ip-addressmask
- 11. ip pim sparse-mode
- **12**. end
- **13.** show vrf definition [brief | detail | interfaces] [vrf-name]
- 14. copy running-config startup-config

#### 手順の詳細

|       | コマンドまたはアクション       | 目的                       |
|-------|--------------------|--------------------------|
| ステップ1 | configure terminal | グローバル コンフィギュレーション モードを開始 |
|       | 例:                 | します。                     |

|               | コマンドまたはアクション                                             | 目的                                                    |
|---------------|----------------------------------------------------------|-------------------------------------------------------|
|               | Device# configure terminal                               |                                                       |
| ステップ <b>2</b> | ip routing                                               | IP ルーティングをイネーブルにします。                                  |
|               | 例:                                                       |                                                       |
|               | Device(config)# ip routing                               |                                                       |
| ステップ3         | vrf definition vrf-name                                  | VRFテーブルを設定し、VRFコンフィギュレーショ                             |
|               | 例:                                                       | ンモードを開始します。                                           |
|               | <pre>Device(config)# vrf definition vrf-name</pre>       |                                                       |
| ステップ4         | ip multicast-routing vrf vrf-name                        | (任意)VRF テーブルでグローバル マルチキャス                             |
|               | 例:                                                       | トルーティングをイネーブルにします。                                    |
|               | Device(config-vrf)# ip multicast-routing vrf<br>vrf-name |                                                       |
| ステップ5         | rd route-distinguisher                                   | ルート識別子を指定して VRF テーブルを作成しま                             |
|               | 例:                                                       | す。自律システム(AS)番号および任意の数                                 |
|               | Device(config-vrf)# rd route-distinguisher               | (xxx:y)またはIPアドレスおよび仕意の数<br>(A.B.C.D:y)のどちらかを入力します。    |
| ステップ6         | route-target {export   import   both}                    | 指定された VRF のインポート、エクスポート、ま                             |
|               | route-target-ext-community                               | たはインポートおよびエクスポートルートターゲッ                               |
|               |                                                          | トコミュニティのリストを作成します。ASシステ<br>ム番号と任意の番号(xxx:v)またはIPアドレスと |
|               | both} route-target-ext-community                         | 任意の番号 (A.B.C.D:y) を入力します。                             |
|               |                                                          | ルートターゲット ext コミュニティ値は、ステップ                            |
|               |                                                          | 4 で入力した route-distinguisher 値と同じです。                   |
| ステップ7         | import map ルート マップ                                       | (任意)VRF にルート マップを対応付けます。                              |
|               | 例:                                                       |                                                       |
|               | Device(config-vrf)# import map route-map                 |                                                       |
| ステップ8         | interface interface-id                                   | インターフェイス コンフィギュレーション モード                              |
|               | 例:                                                       | を開始して、VRFに対応付けるレイヤ3インター                               |
|               | Device(config)# interface interface-id                   | フェイスを指定します。有効なインターフェイス<br>は、ルーテッドポートまたは SVI です。       |
| ステップ9         | vrf forwarding vrf-name                                  | VRFをレイヤ3インターフェイスに対応付けます。                              |
|               | 例:                                                       |                                                       |
|               | <pre>Device(config-if)# vrf forwarding vrf-name</pre>    |                                                       |
| ステップ 10       | ip address ip-addressmask                                | レイヤ3インターフェイスのIPアドレスを設定し                               |
|               | 例:                                                       | ます。                                                   |
|               | <pre>Device(config-if)# ip address ip-address mask</pre> |                                                       |

|                | コマンドまたはアクション                                                 | 目的                         |
|----------------|--------------------------------------------------------------|----------------------------|
| ステップ 11        | ip pim sparse-mode                                           | VRF に関連付けられているレイヤ 3 インターフェ |
|                | 例:                                                           | イス上で、PIM をイネーブルにします。       |
|                | <pre>Device(config-if)# ip pim sparse-mode</pre>             |                            |
| ステップ <b>12</b> | end                                                          | 特権 EXEC モードに戻ります。          |
|                | 例:                                                           |                            |
|                | Device(config-if)# end                                       |                            |
| ステップ <b>13</b> | show vrf definition [brief   detail   interfaces] [vrf-name] | 設定を確認します。設定した VRF に関する情報を  |
|                | 例:                                                           | 表示します。                     |
|                | Device# show vrf definition brief                            |                            |
| ステップ14         | copy running-config startup-config                           | (任意)コンフィギュレーション ファイルに設定    |
|                | 例:                                                           | を保存します。                    |
|                | Device# copy running-config startup-config                   |                            |

### 例

次に、VRF テーブル内にマルチキャストを設定する例を示します。

```
Device(config)# ip routing
Device(config)# vrf definition multiVrfA
Device(config-vrf)# ip multicast-routing vrf multiVrfA
Device(config-vrf)# interface GigabitEthernet3/1/0
Device(config-if)# vrf forwarding multiVrfA
Device(config-if)# ip address 172.21.200.203 255.255.255.0
Device(config-if)# ip pim sparse-mode
```

## IPv4 VRF の設定

手順

|       | コマンドまたはアクション               | 目的                        |
|-------|----------------------------|---------------------------|
| ステップ1 | configure terminal         | グローバル コンフィギュレーション モードを開始  |
|       | 例:                         | します。                      |
|       | Device# configure terminal |                           |
| ステップ2 | ip routing                 | グローバル コンフィギュレーション モードを開始  |
|       | 例:                         | します。                      |
|       | Device# configure terminal |                           |
| ステップ3 | vrf definition vrf-name    | VRF 名を指定し、VRF コンフィギュレーション |
|       | 例:                         | モードを開始します。                |
|       |                            |                           |

|                | コマンドまたはアクション                                                                                                                                                        | 目的                                                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Device(config)# vrf definition vrf-name                                                                                                                             |                                                                                                                                                                                |
| ステップ4          | rd route-distinguisher<br>例:<br>Device(config-vrf)# rd route-distinguisher                                                                                          | ルート識別子を指定して VRF テーブルを作成しま<br>す。自律システム番号と任意の数値(xxx:y)、ま<br>たはIPアドレスと任意の数値(A.B.C.D:y)のいず<br>れかを入力します。                                                                            |
| ステップ5          | <pre>route-target {export   import   both} route-target-ext-community 例: Device(config-vrf)# route-target {export   import   both} route-target-ext-community</pre> | 指定された VRF のインポート、エクスポート、ま<br>たはインポートおよびエクスポートルートターゲッ<br>トコミュニティのリストを作成します。ASシステ<br>ム番号と任意の番号(xxx:y)または IP アドレスと<br>任意の番号(A.B.C.D:y)を入力します。                                     |
| ステップ6          | import map ルート マップ                                                                                                                                                  | (任意)VRF にルート マップを対応付けます。                                                                                                                                                       |
|                | <b>例</b> :<br>Device(config-vrf)# import map route-map                                                                                                              |                                                                                                                                                                                |
| ステップ1          | interface interface-id<br>例:<br>Device(config-vrf)# interface interface-id                                                                                          | インターフェイス コンフィギュレーション モード<br>を開始して、VRF に対応付けるレイヤ 3 インター<br>フェイスを指定します。インターフェイスにはルー<br>テッド ポートまたは SVI を設定できます。                                                                   |
| ステップ8          | vrf forwarding vrf-name                                                                                                                                             | VRFをレイヤ3インターフェイスに対応付けます。                                                                                                                                                       |
|                | 例:<br>Device(config-if)# vrf forwarding vrf-name                                                                                                                    |                                                                                                                                                                                |
| ステップ <b>9</b>  | end                                                                                                                                                                 | 特権 EXEC モードに戻ります。                                                                                                                                                              |
|                | 191]:<br>Device(config-if)# end                                                                                                                                     |                                                                                                                                                                                |
| ステップ10         | show vrf definition [brief   detail   interfaces]<br>[vrf-name]                                                                                                     | 設定を確認します。設定した VRF に関する情報を<br>表示します。                                                                                                                                            |
|                | Device# show vfr definition [brief   detail  <br>interfaces] [vrf-name]                                                                                             |                                                                                                                                                                                |
| ステップ <b>11</b> | copy running-config startup-config                                                                                                                                  | (任意)コンフィギュレーション ファイルに設定                                                                                                                                                        |
|                | 例:                                                                                                                                                                  | を保存します。                                                                                                                                                                        |
|                | Device# copy running-config startup-config                                                                                                                          | VRF とそのすべてのインターフェイスを削除する<br>には、no vrf definition vrf-name グローバル コンフィ<br>ギュレーション コマンドを使用します。VRF から<br>インターフェイスを削除するには、no vrf<br>forwarding インターフェイス コンフィギュレーショ<br>ン コマンドを使用します。 |

## IPv6 用の VRF-Lite の設定

ここでは、IPv6 用の VRF-Lite の設定について説明します。

## VRF 認識サービスの設定

IPv6 サービスは、グローバルなインターフェイス上と、グローバルなルーティング インスタ ンス内で設定できます。IPv6 サービスは複数のルーティング インスタンス上で稼働するよう に拡張されます。これが、VRF 認識です。システム内の任意の設定済み VRF であればいずれ も、VRF 認識サービス用に指定できます。

VRF 認識サービスは、プラットフォームから独立したモジュールに実装されています。VRF は、Cisco IOS内の複数のルーティングインスタンスを提供します。各プラットフォームには、 サポートする VRF 数に関して独自の制限があります。

VRF 認識サービスには、次の特性があります。

- ユーザは、ユーザ指定の VRF 内のホストに ping を実行できます。
- ネイバー探索エントリは、個別のVRFで学習されます。ユーザは、特定のVRFのネイバー探索(ND)エントリを表示できます。

次のサービスは VRF 認識です。

- Ping
- ・ユニキャスト RPF (uRPF)
- traceroute
- ・FTP および TFTP
- [Telnet および SSH (Telnet and SSH) ]
- NTP

#### PING のユーザインターフェイスの設定

VRF 認識 ping を設定するには、次の作業を実行します。

#### 手順

|       | コマンドまたはアクション                        | 目的                           |
|-------|-------------------------------------|------------------------------|
| ステップ1 | ping vrf vrf-name ipv6-host         | 指定された VRF で、IPv6 ホストまたはアドレスに |
|       | 例:                                  | 対して ping を実行します。             |
|       | Device# ping vrf vrf-name ipv6-host |                              |

#### uRPF のユーザインターフェイスの設定

VRF に割り当てられているインターフェイス上で、uRPF を設定できます。送信元の検索が VRF テーブルで実行されます。

## 手順の概要

## 1. configure terminal

- **2. interface** *interface-id*
- 3. no switchport
- **4.** vrf forwarding *vrf-name*
- 5. ipv6 address *ip-address*subnet-mask
- 6. ipv6 verify unicast source reachable-via rx allow-default
- 7. end

## 手順の詳細

|       | コマンドまたはアクション                                                           | 目的                         |
|-------|------------------------------------------------------------------------|----------------------------|
| ステップ1 | configure terminal                                                     | グローバル コンフィギュレーション モードを開始   |
|       | 例:                                                                     | します。                       |
|       | Device# configure terminal                                             |                            |
| ステップ2 | interface interface-id                                                 | インターフェイス コンフィギュレーション モード   |
|       | 例:                                                                     | を開始し、設定するレイヤ3インターフェイスを指    |
|       | <pre>Device(config)# interface interface-id</pre>                      | 定します。                      |
| ステップ3 | no switchport                                                          | レイヤ2コンフィギュレーションモードからイン     |
|       | 例:                                                                     | ターフェイスを削除します(物理インターフェイス    |
|       | <pre>Device(config-if) # no switchport</pre>                           | の場合)。                      |
| ステップ4 | vrf forwarding vrf-name                                                | インターフェイス上で VRF を設定します。     |
|       | 例:                                                                     |                            |
|       | <pre>Device(config-if)# vrf forwarding vrf-name</pre>                  |                            |
| ステップ5 | ipv6 address ip-addresssubnet-mask                                     | インターフェイスの IPv6 アドレスを入力します。 |
|       | 例:                                                                     |                            |
|       | <pre>Device(config-if)# ip address ip-address mask</pre>               |                            |
| ステップ6 | ipv6 verify unicast source reachable-via rx allow-default              | インターフェイス上でuRPFをイネーブルにします。  |
|       | 例:                                                                     |                            |
|       | <pre>Device(config-if)# ipv6 verify unicast source reachable-via</pre> |                            |
|       | rx allow-default                                                       |                            |
| ステップ1 | end                                                                    | 特権 EXEC モードに戻ります。          |
|       | 例:                                                                     |                            |
|       | Device(config-if)# end                                                 |                            |

## Traceroute のユーザインターフェイスの設定

### 手順の概要

**1.** traceroute vrf vrf-name ipv6address

## 手順の詳細

|       | コマンドまたはアクション                                | 目的                          |
|-------|---------------------------------------------|-----------------------------|
| ステップ1 | traceroute vrf vrf-name ipv6address         | 宛先アドレスを取得する VPN VRF の名前を指定し |
|       | 例:                                          | ます。                         |
|       | Device# traceroute vrf vrf-name ipv6address |                             |

### Telnet および SSH のユーザインターフェイスの設定

#### 手順の概要

- **1. telnet** *ipv6-address*/ **vrf** *vrf-name*
- 2. ssh -l username -vrf vrf-name ipv6-host

#### 手順の詳細

|       | コマンドまたはアクション                                    | 目的                           |
|-------|-------------------------------------------------|------------------------------|
| ステップ1 | telnet ipv6-address/ vrf vrf-name               | 指定された VRF で、IPv6 ホストまたはアドレスに |
|       | 例:                                              | Telnet 経由で接続します。             |
|       | Device# telnet ipv6-address/vrf vrf-name        |                              |
| ステップ2 | ssh -l username -vrf vrf-name ipv6-host         | 指定された VRF で、IPv6 ホストまたはアドレスに |
|       | 例:                                              | SSH 経由で接続します。                |
|       | Device# ssh -l username -vrf vrf-name ipv6-host |                              |

## NTP のユーザインターフェイスの設定

### 手順の概要

- 1. configure terminal
- 2. ntp server vrf vrf-name ipv6-host
- 3. ntp peer vrf vrf-name ipv6-host

## 手順の詳細

|       | コマンドまたはアクション       | 目的                       |
|-------|--------------------|--------------------------|
| ステップ1 | configure terminal | グローバル コンフィギュレーション モードを開始 |
|       | 例:                 | します。                     |

|       | コマンドまたはアクション                                               | 目的                         |
|-------|------------------------------------------------------------|----------------------------|
|       | Device# configure terminal                                 |                            |
| ステップ2 | ntp server vrf vrf-name ipv6-host                          | 指定された VRF で NTP サーバを設定します。 |
|       | 例:<br>Device(config)# ntp server vrf vrf-name ipv6-host    |                            |
| ステップ3 | ntp peer vrf vrf-name ipv6-host                            | 指定された VRF で NTP ピアを設定します。  |
|       | 例:                                                         |                            |
|       | <pre>Device(config)# ntp peer vrf vrf-name ipv6-host</pre> |                            |

## IPv6 VRF の設定

## 手順の概要

- 1. configure terminal
- **2.** vrf definition *vrf-name*
- **3. rd** *route-distinguisher*
- 4. address-family *ipv4* | *ipv6*
- 5. route-target {export | import | both} route-target-ext-community
- 6. exit-address-family
- 7. vrf definition *vrf-name*
- 8. ipv6 multicast multitopology
- 9. address-family ipv6 multicast
- 10. end

## 手順の詳細

|       | コマンドまたはアクション                                                               | 目的                                                                                                                                                 |
|-------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ステップ1 | <b>configure terminal</b><br>例:<br>Device# configure terminal              | グローバル コンフィギュレーション モードを開始<br>します。                                                                                                                   |
| ステップ2 | vrf definition vrf-name<br>例:<br>Device(config)# vrf definition vrf-name   | VRF 名を指定し、VRF コンフィギュレーション<br>モードを開始します。                                                                                                            |
| ステップ3 | rd route-distinguisher<br>例:<br>Device(config-vrf)# rd route-distinguisher | <ul> <li>(任意) ルート識別子を指定して VRF テーブルを</li> <li>作成します。自律システム番号および任意の数</li> <li>(xxx:y)、または IP アドレスおよび任意の数</li> <li>(A.B.C.D:y)のいずれかを入力します。</li> </ul> |

|               | コマンドまたはアクション                                                                                                                                                        | 目的                                                                                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ステップ4         | address-family ipv4   ipv6<br>例:<br>Device(config-vrf)# address-family ipv4   ipv6                                                                                  | (任意)デフォルトは IPv4 です。 IPv6 の必須設<br>定。                                                                                                                                                     |
| ステップ5         | <pre>route-target {export   import   both} route-target-ext-community 例: Device(config-vrf)# route-target {export   import   both} route-target-ext-community</pre> | 指定された VRF のインポート、エクスポート、ま<br>たはインポートおよびエクスポートルートターゲッ<br>トコミュニティのリストを作成します。ASシステ<br>ム番号と任意の番号 (xxx:y) または IP アドレスと<br>任意の番号 (A.B.C.D:y) を入力します。<br>(注) このコマンドは、BGP が動作している場<br>合にのみ有効です。 |
| ステップ6         | exit-address-family<br>例:<br>Device(config-vrf)# exit-address-family                                                                                                | VRF アドレス ファミリ コンフィギュレーション<br>モードを終了し、VRFコンフィギュレーションモー<br>ドに戻ります。                                                                                                                        |
| ステップ <b>1</b> | vrf definition vrf-name<br>例:<br>Device(config)# vrf definition vrf-name                                                                                            | VRF コンフィギュレーションモードを開始します。                                                                                                                                                               |
| ステップ8         | ipv6 multicast multitopology<br>例:<br>Device(config-vrf-af)# ipv6 multicast<br>multitopology                                                                        | マルチキャスト固有の RPF トポロジを有効にします。                                                                                                                                                             |
| ステップ <b>9</b> | address-family ipv6 multicast<br>例:<br>Device(config-vrf)# address-family ipv6 multicast                                                                            | マルチキャスト IPv6 アドレスファミリを入力します。                                                                                                                                                            |
| ステップ10        | end<br>例:<br>Device(config-vrf-af)# end                                                                                                                             | 特権 EXEC モードに戻ります。                                                                                                                                                                       |

## 例

次に、VRFを設定する例を示します。

```
Device(config)# vrf definition red
Device(config-vrf)# rd 100:1
Device(config-vrf)# address family ipv6
Device(config-vrf-af)# route-target both 200:1
Device(config-vrf)# exit-address-family
Device(config-vrf)# vrf definition red
Device(config-vrf)# ipv6 multicast multitopology
```

Device(config-vrf)# address-family ipv6 multicast Device(config-vrf-af)# end

## 定義済み VRF へのインターフェイスの関連付け

## 手順の概要

- **1. interface** *interface-id*
- 2. no switchport
- **3.** vrf forwarding vrf-name
- 4. ipv6 enable
- 5. ipv6 address ip-address subnet-mask
- **6.** show ipv6 vrf [brief | detail | interfaces] [vrf-name]
- 7. copy running-config startup-config

### 手順の詳細

|       | コマンドまたはアクション                                                                                                                        | 目的                                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| ステップ1 | <pre>interface interface-id 例: Device(config-vrf)# interface interface-id</pre>                                                     | インターフェイス コンフィギュレーション モード<br>を開始して、VRF に対応付けるレイヤ 3 インター<br>フェイスを指定します。インターフェイスにはルー<br>テッド ポートまたは SVI を設定できます。 |
| ステップ2 | no switchport<br>例:<br>Device(config-if)# no switchport                                                                             | コンフィギュレーションモードからインターフェイ<br>スを削除します(物理インターフェイスの場合)。                                                           |
| ステップ3 | vrf forwarding vrf-name<br>例:<br>Device(config-if)# vrf forwarding vrf-name                                                         | VRFをレイヤ3インターフェイスに対応付けます。                                                                                     |
| ステップ4 | <b>ipv6 enable</b><br>例:<br>Device(config-if)# ipv6 enable                                                                          | インターフェイスで IPv6 をイネーブルにします。                                                                                   |
| ステップ5 | ipv6 address <i>ip-address subnet-mask</i><br>例:<br>Device(config-if)# ipv6 address ip-address<br>subnet-mask                       | インターフェイスの IPv6 アドレスを入力します。                                                                                   |
| ステップ6 | <pre>show ipv6 vrf [brief   detail   interfaces] [vrf-name] 例: Device# show ipv6 vrf [brief   detail   interfaces] [vrf-name]</pre> | 設定を確認します。設定したVRFに関する情報を表示します。                                                                                |

|       | コマンドまたはアクション                               | 目的                      |
|-------|--------------------------------------------|-------------------------|
| ステップ1 | copy running-config startup-config         | (任意)コンフィギュレーションファイルに設定を |
|       | 例:                                         | 保存します。                  |
|       | Device# copy running-config startup-config |                         |

#### 例

次に、インターフェイスを VRF に関連付ける例を示します。

```
Switch(config-vrf)# interface ethernet0/1
Switch(config-if)# vrf forwarding red
Switch(config-if)# ipv6 enable
Switch(config-if)# ipv6 address 5000::72B/64
```

## ルーティング プロトコル経由での VRF へのルートの入力

ここでは、ルーティングプロトコル経由での VRF へのルートの入力について説明します。

VRF スタティック ルートの設定

#### 手順の概要

#### 1. configure terminal

**2. ipv6 route** [**vrf** *vrf-name*] *ipv6-prefix/prefix-length* {*ipv6-address* | **interface-type** *interface-number* [*ipv6-address*]}

#### 手順の詳細

|               | コマンドまたはアクション                                                                                                                                                                           | 目的                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ステップ1         | configure terminal                                                                                                                                                                     | グローバル コンフィギュレーション モードを開始  |
|               | 例:                                                                                                                                                                                     | します。                      |
|               | Device# configure terminal                                                                                                                                                             |                           |
| ステップ <b>2</b> | <b>ipv6 route</b> [ <b>vrf</b> <i>vrf-name</i> ] <i>ipv6-prefix/prefix-length</i><br>{ <i>ipv6-address</i>   <b>interface-type</b> <i>interface-number</i><br>[ <i>ipv6-address</i> ]} | VRF に固有のスタティック ルートを設定します。 |
|               | 例:                                                                                                                                                                                     |                           |
|               | <pre>Device(config)# ipv6 route [vrf vrf-name] ipv6-prefix/prefix-length {ipv6-address   interface-type interface-number [ipv6-address]}</pre>                                         |                           |

### 例

Device(config) # ipv6 route vrf v6a 7000::/64 TenGigabitEthernet32 4000::2

## OSPFv3 ルータ プロセスの設定

#### 手順の概要

- 1. configure terminal
- 2. router ospfv3 process-id
- **3**. area *area-ID* [default-cot | nssa | stub]
- 4. router-id router-id
- 5. address-family ipv6 unicast vrf vrf-name
- 6. redistribute source-protocol [process-id] options
- 7. end

#### 手順の詳細

|       | コマンドまたはアクション                                                                 | 目的                                |
|-------|------------------------------------------------------------------------------|-----------------------------------|
| ステップ1 | configure terminal                                                           | グローバル コンフィギュレーション モードを開始          |
|       | 例:                                                                           | します。                              |
|       | Device# configure terminal                                                   |                                   |
| ステップ2 | router ospfv3 process-id                                                     | IPv6 アドレス ファミリの OSPFv3 ルータ コンフィ   |
|       | 例:                                                                           | ギュレーション モードを有効にします。               |
|       | Device(config)# router ospfv3 process-id                                     |                                   |
| ステップ3 | area area-ID [default-cot   nssa   stub]                                     | OSPFv3 エリアを設定します。                 |
|       | 例:                                                                           |                                   |
|       | Device(config-router)# area area-ID [default-cot<br>  nssa   stub]           |                                   |
| ステップ4 | router-id router-id                                                          | 固定ルータ ID を使用します。                  |
|       | 例:                                                                           |                                   |
|       | Device(config-router)# router-id router-id                                   |                                   |
| ステップ5 | address-family ipv6 unicast vrf vrf-name                                     | vrf vrf-nameのOSPFv3のIPv6アドレスファミリコ |
|       | 例:                                                                           | ンフィギュレーション モードを開始します。             |
|       | <pre>Device(config-router)# address-family ipv6 unicast   vrf vrf-name</pre> |                                   |
| ステップ6 | redistribute source-protocol [process-id] options                            | あるルーティング ドメインから別のルーティング           |
|       | 例:                                                                           | ドメインへ IPv6 ルートを再配布します。            |
|       | Device(config-router)# redistribute<br>source-protocol [process-id] options  |                                   |
| ステップ1 | end                                                                          | 特権 EXEC モードに戻ります。                 |
|       | 例:                                                                           |                                   |
|       | Device(config-router)# end                                                   |                                   |

#### 例

次に、OSPFv3 ルータプロセスを設定する例を示します。

```
Device(config-router)# router ospfv3 1
Device(config-router)# router-id 1.1.1.1
Device(config-router)# address-family ipv6 unicast
Device(config-router-af)# exit-address-family
```

```
インターフェイス上での OSPFv3 のイネーブル化
```

#### 手順の概要

- **1.** configure terminal
- **2. interface** *type-number*
- **3. ospfv3** process-id **area** area-id **ipv6** [ **instance** instance-id]
- 4. end

#### 手順の詳細

|               | コマンドまたはアクション                                                                                 | 目的                              |
|---------------|----------------------------------------------------------------------------------------------|---------------------------------|
| ステップ1         | configure terminal                                                                           | グローバル コンフィギュレーション モードを開始        |
|               | 例:                                                                                           | します。                            |
|               | Device# configure terminal                                                                   |                                 |
| ステップ <b>2</b> | interface type-number                                                                        | インターフェイスのタイプと番号を指定し、スイッ         |
|               | 例:                                                                                           | チをインターフェイスコンフィギュレーションモー         |
|               | Device(config-vrf)# interface type-number                                                    | ドにします。                          |
| ステップ <b>3</b> | ospfv3 process-id area area-id ipv6 [ instance instance-id]                                  | IPv6 AF を設定したインターフェイスで OSPFv3 を |
|               | 例:                                                                                           | 有効にします。                         |
|               | <pre>Device(config-if)# ospfv3 process-id area area-ID<br/>ipv6 [instance instance-id]</pre> |                                 |
| ステップ4         | end                                                                                          | 特権 EXEC モードに戻ります。               |
|               | 例:                                                                                           |                                 |
|               | Device(config-if)# end                                                                       |                                 |

#### 例

次に、インターフェイス上で OSPFv3 を有効にする例を示します。

```
Device(config)# interface GigabitEthernet2/1
Device(config-if)# no switchport
Device(config-if)# ipv6 address 4000::2/64
Device(config-if)# ipv6 enable
Device(config-if)# ipv6 ospf 1 area 0
Device(config-if)# end
```

## EIGRPv6 ルーティング プロセスの設定

### 手順の概要

- 1. configure terminal
- 2. router eigrp virtual-instance-name
- **3.** address-family ipv6 vrf vrf-name autonomous-system autonomous-system-number
- 4. topology {base | topology-name tid number
- 5. exit-aftopology
- 6. eigrp router-id *ip-address*
- **7.** end

## 手順の詳細

|               | コマンドまたはアクション                                                                                                              | 目的                                                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| ステップ1         | configure terminal                                                                                                        | グローバル コンフィギュレーション モードを開始<br>します                                                                        |
|               | <b>19]:</b><br>Device# configure terminal                                                                                 |                                                                                                        |
| ステップ <b>2</b> | router eigrp virtual-instance-name<br>例:<br>Device(config)# router eigrp virtual-instance-name                            | EIGRP ルーティング プロセスを設定し、ルータ コ<br>ンフィギュレーション モードを開始します。                                                   |
| ステップ3         | address-family ipv6 vrf vrf-name autonomous-system<br>autonomous-system-number                                            | EIGRP IPv6 VRF-Lite を有効にし、アドレス ファミ<br>リ コンフィギュレーション モードを開始します。                                         |
|               | 例:<br>Device(config-router)# address-family ipv6 vrf<br>vrf-name autonomous-system<br>autonomous-system-number            |                                                                                                        |
| ステップ4         | topology {base   topology-name tid number<br>例:<br>Device(config-router-af)# topology {base  <br>topology-name tid number | 指定されたトポロジインスタンスで IP トラフィッ<br>クをルーティングするよう EIGRP プロセスを設定<br>し、アドレス ファミリ トポロジ コンフィギュレー<br>ション モードを開始します。 |
| ステップ5         | exit-aftopology<br>例:<br>Device(config-router-af-topology)# exit-aftopology                                               | アドレス ファミリ トポロジ コンフィギュレーショ<br>ン モードを終了します。                                                              |
| ステップ6         | eigrp router-id <i>ip-address</i><br>例:<br>Device(config-router)# eigrp router-id ip-address                              | 固定ルータ ID の使用を有効にします。                                                                                   |
| ステップ1         | end<br>例:<br>Device(config-router)# end                                                                                   | ルータ コンフィギュレーション モードを終了しま<br>す。                                                                         |

**例** 次に、EIGRP ルーティング プロセスを設定する例を示します。

```
Device(config)# router eigrp test
Device(config-router)# address-family ipv6 unicast vrf bl autonomous-system 10
Device(config-router-af)# topology base
Device(config-router-af-topology)# exit-af-topology
Device(config-router)# eigrp router-id 2.3.4.5
Device(config-router)# exit-address-family
```

# VRF-Lite に関する追加情報

ここでは、VRF-Lite に関する追加情報を提供します。

## IPv4 と IPv6 間での VPN の共存

IPv4を設定するための「以前の」CLIと、IPv6用の「新しい」CLI間には下位互換性がありま す。つまり、設定に両方のCLIを含めることができます。IPv4 CLIは、同じインターフェイス 上で、VRF内で定義されている IP アドレスとともにグローバルルーティングテーブルで定義 されている IPv6 アドレスも備える機能を保持しています。

次に例を示します。

```
vrf definition red
rd 100:1
 address family ipv6
route-target both 200:1
exit-address-familv
!
vrf definition blue
rd 200:1
 route-target both 200:1
1
interface Ethernet0/0
vrf forwarding red
ip address 50.1.1.2 255.255.255.0
ipv6 address 4000::72B/64
1
interface Ethernet0/1
vrf forwarding blue
ip address 60.1.1.2 255.255.255.0
ipv6 address 5000::72B/64
```

この例では、Ethernet0/0 用に定義されたすべてのアドレス(v4 と v6)が VRF red を参照しま す。Ethernet0/1 については、IP アドレスは VRF blue を参照しますが、ipv6 アドレスはグロー バル IPv6 アドレス ルーティング テーブルを参照します。

## VRF-Lite 設定の確認

ここでは、VRF-Lite 設定を確認する手順について説明します。

## IPv4 VRF-Lite ステータスの表示

VRF-Liteの設定およびステータスに関する情報を表示するには、次の作業のいずれかを行います。

| コマンド                                                                                                                                                 | 目的                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Device# <b>show ip protocols vrf</b> vrf-name                                                                                                        | VRF に対応付けられたルーティング プロトコ<br>ル情報を表示します。    |
| Device# show ip route vrf vrf-name<br>[connected] [protocol<br>[as-number]] [list] [mobile] [odr]<br>[profile] [static]<br>[summary][supernets-only] | VRF に対応付けられた IP ルーティング テー<br>ブル情報を表示します。 |
| Device# show vrf definition [brief  <br>detail   interfaces] [vrf-name]                                                                              | 定義された VRF インスタンスに関する情報を<br>表示します。        |
| Device# bidir vrf instance-name a.b.c.d  <br>active   bidriectional   count  <br>interface   proxy   pruned   sparse<br>  ssm   static   summary     | 定義された VRF インスタンスに関する情報を<br>表示します。        |

次に、VRF インスタンス内のマルチキャスト ルート テーブル情報を表示する例を示します。

```
Switch# show ip mroute 226.0.0.2
IP Multicast Routing Table
Flags: S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
       L - Local, P - Pruned, R - RP-bit set, F - Register flag,
       T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
       X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
       U - URD, I - Received Source Specific Host Report,
       Z - Multicast Tunnel, z - MDT-data group sender,
       Y - Joined MDT-data group, y - Sending to MDT-data group,
       G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
      N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
       Q - Received BGP S-A Route, q - Sent BGP S-A Route,
       V - RD & Vector, v - Vector, p - PIM Joins on route,
       x - VxLAN group, c - PFP-SA cache created entry
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 226.0.0.2), 00:01:17/stopped, RP 1.11.1.1, flags: SJCF
  Incoming interface: Null, RPF nbr 0.0.0.0
  Outgoing interface list:
    Vlan100, Forward/Sparse, 00:01:17/00:02:36
(5.0.0.11, 226.0.0.2), 00:01:17/00:01:42, flags: FT
```

```
Incoming interface: Vlan5, RPF nbr 0.0.0.0
Outgoing interface list:
   Vlan100, Forward/Sparse, 00:01:17/00:02:36
```

# VRF-Lite の設定例

ここでは、VRF-Liteの設定例を示します。

## IPv6 VRF-Lite の設定例

次に、CE-PE ルーティングに OSPFv3 を使用するトポロジを示します。

図 1: VRF-Lite の設定例



#### CE1 スイッチの設定

```
ipv6 unicast-routing
vrf definition v1
rd 100:1
 1
address-family ipv6
exit-address-family
!
vrf definition v2
rd 200:1
 !
address-family ipv6
exit-address-family
!
interface Vlan100
vrf forwarding v1
ipv6 address 1000:1::1/64
ospfv3 100 ipv6 area 0
!
interface Vlan200
vrf forwarding v2
ipv6 address 2000:1::1/64
ospfv3 200 ipv6 area 0
1
```

```
interface GigabitEthernet 1/0/1
switchport access vlan 100
end
interface GigabitEthernet 1/0/2
switchport access vlan 200
end
interface GigabitEthernet 1/0/24
switchport trunk encapsulation dotlq
switchport mode trunk
end
router ospfv3 100
router-id 10.10.10.10
address-family ipv6 unicast vrf v1
 redistribute connected
 area O normal
exit-address-family
!
router ospfv3 200
router-id 20.20.20.20
 1
address-family ipv6 unicast vrf v2
 redistribute connected
 area 0 normal
exit-address-family
!
```

## PE スイッチの設定

```
ipv6 unicast-routing
vrf definition v1
rd 100:1
 1
address-family ipv6
exit-address-family
1
vrf definition v2
rd 200:1
 1
address-family ipv6
exit-address-family
!
interface Vlan600
vrf forwarding v1
no ipv6 address
ipv6 address 1000:1::2/64
ospfv3 100 ipv6 area 0
!
interface Vlan700
vrf forwarding v2
no ipv6 address
ipv6 address 2000:1::2/64
ospfv3 200 ipv6 area 0
```

!

```
interface Vlan800
vrf forwarding v1
ipv6 address 3000:1::7/64
ospfv3 100 ipv6 area 0
1
interface Vlan900
vrf forwarding v2
ipv6 address 4000:1::7/64
ospfv3 200 ipv6 area 0
1
interface GigabitEthernet 1/0/1
switchport trunk encapsulation dot1q
switchport mode trunk
exit
interface GigabitEthernet 1/0/2
switchport trunk encapsulation dotlq
switchport mode trunk
exit
router ospfv3 100
router-id 30.30.30.30
 1
address-family ipv6 unicast vrf v1
 redistribute connected
 area O normal
 exit-address-family
 Т
address-family ipv6 unicast vrf v2
 redistribute connected
 area O normal
 exit-address-family
 1
```

## CE2 スイッチの設定

```
ipv6 unicast-routing
vrf definition v1
rd 100:1
1
address-family ipv6
exit-address-family
!
vrf definition v2
rd 200:1
!
address-family ipv6
exit-address-family
!
interface Vlan100
vrf forwarding v1
ipv6 address 1000:1::3/64
ospfv3 100 ipv6 area 0
!
interface Vlan200
vrf forwarding v2
ipv6 address 2000:1::3/64
```

```
ospfv3 200 ipv6 area 0
I.
interface GigabitEthernet 1/0/1
switchport access vlan 100
end
interface GigabitEthernet 1/0/2
switchport access vlan 200
end
interface GigabitEthernet 1/0/24
switchport trunk encapsulation dotlq
switchport mode trunk
end
router ospfv3 100
router-id 40.40.40.40
 1
address-family ipv6 unicast vrf v1
 redistribute connected
 area O normal
 exit-address-family
1
router ospfv3 200
router-id 50.50.50.50
 !
address-family ipv6 unicast vrf v2
 redistribute connected
area O normal
exit-address-family
1
```

# VRF-Lite に関するその他の参考資料

#### 関連資料

| 関連項目                              | マニュアル タイトル                                                                                            |
|-----------------------------------|-------------------------------------------------------------------------------------------------------|
| この章で使用するコマンドの完全な構<br>文および使用方法の詳細。 | の「IP マルチキャスト ルーティングのコマンド」の<br>項を参照してください。 <i>Command Reference (Catalyst</i><br>9200 Series Switches) |

#### 標準および RFC

| 標準/RFC                        | タイトル                          |
|-------------------------------|-------------------------------|
| RFC 6763                      | [DNS-Based Service Discovery] |
| マルチキャスト DNS インターネット<br>(ドラフト) | マルチキャスト                       |

# マルチキャスト VRF-Lite の機能履歴と情報

次の表に、このモジュールで説明した機能に関するリリース情報を示します。この表は、ソフ トウェアリリーストレインで各機能のサポートが導入されたときのソフトウェアリリースだ けを示しています。その機能は、特に断りがない限り、それ以降の一連のソフトウェアリリー スでもサポートされます。

プラットフォームのサポートおよびシスコソフトウェアイメージのサポートに関する情報を検 索するには、Cisco Feature Navigator を使用します。Cisco Feature Navigator にアクセスするに は、www.cisco.com/go/cfn に移動します。Cisco.com のアカウントは必要ありません。

| 機能名                                    | リリース                        | 機能情報                                                                                                     |
|----------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|
| VRF-Lite を使用した<br>IPv6マルチキャストの<br>サポート | Cisco IOS XE Everest 16.6.1 | IPv6 VRF-Lite によっ<br>て、サービスプロバイ<br>ダーは1つのインター<br>フェイスを使用して、<br>重複する IP アドレス<br>を持つ複数の VPN を<br>サポートできます。 |