

NTP の設定

この章では、Cisco NX-OS デバイスでネットワーク タイム プロトコル (NTP) を設定する方法 について説明します。

この章は、次の項で構成されています。

- NTP の詳細 (1 ページ)
- NTPの前提条件 (3ページ)
- NTP の注意事項と制約事項 (3ページ)
- •NTP のデフォルト設定 (6ページ)
- NTP の設定 (6ページ)
- NTP の設定確認 (17 ページ)
- NTP の設定例 (17 ページ)
- その他の参考資料 (19ページ)

NTPの詳細

ネットワークタイムプロトコル(NTP)は、分散している一連のタイムサーバとクライアント間で1日の時間を同期させ、複数のネットワークデバイスから受信するシステムログや時間関連のイベントを相互に関連付けられるようにします。NTPではトランスポートプロトコルとして、ユーザデータグラムプロトコル(UDP)を使用します。すべてのNTP通信はUTCを使用します。

NTP サーバは通常、タイム サーバに接続されたラジオ クロックやアトミック クロックなどの 正規の時刻源から時刻を受信し、ネットワークを介してこの時刻を配信します。NTP はきわめ て効率的で、毎分1パケット以下で2台のマシンを相互に1ミリ秒以内に同期します。

NTPではストラタム(stratum)を使用して、ネットワークデバイスと正規の時刻源の距離を表します。

- ストラタム1のタイムサーバは、信頼できる時刻源に直接接続されます (無線時計や原子 時計または GPS 時刻源など)。
- ストラタム 2 の NTP サーバは、ストラタム 1 のタイム サーバから NTP を使用して時刻を 受信します。

同期の前に、NTPは複数のネットワークサービスが報告した時刻を比較し、1つの時刻が著しく異なる場合は、それがStratum1であっても、同期しません。Cisco NX-OS は、無線時計や原子時計に接続できず、ストラタム1サーバとして動作することはできないため、インターネット上で利用できるパブリック NTP サーバを使用することを推奨します。ネットワークがインターネットから切り離されている場合、Cisco NX-OS では、NTPによって時刻が同期されていなくても、NTPで同期されているものとして時刻を設定できます。

(注) NTP ピア関係を作成して、サーバで障害が発生した場合に、ネットワーク デバイスを同期させて、正確な時刻を維持するための時刻提供ホストを指定できます。

デバイス上の時刻は重要な情報であるため、NTPのセキュリティ機能を使用して、不正な時刻を誤って(または悪意を持って)設定できないように保護することを強く推奨します。その方法として、アクセスリストベースの制約方式と暗号化認証方式があります。

NTP アソシエーション

NTPアソシエーションは、次のいずれかになります。

- ピアアソシエーション: デバイスが別のデバイスに同期するか、別のデバイスをそのデバイスに同期させることができます。
- サーバ アソシエーション: デバイスは、サーバに同期します。

設定する必要があるのはアソシエーションの片側だけです。他方のデバイスは自動的にアソシエーションを確立できます。

時間サーバとしての NTP

Cisco NX-OS デバイスでは、時刻を配信するために NTP を使用できます。他のデバイスからタイム サーバとして設定できます。デバイスを正規の NTP サーバとして動作するよう設定し、外部の時刻源と同期していないときでも時刻を配信させることもできます。

クロック マネージャ

クロックはさまざまなプロセス間で共有する必要のあるリソースです。NTPなどの複数の時刻 同期プロトコルが、システムで稼働している可能性があります。

クロックマネージャを使用して、システム内のさまざまなクロックを制御するプロトコルを指定できます。プロトコルを指定すると、システムクロック更新が開始します。クロックマネージャの設定の詳細については『Cisco Nexus 9000 シリーズ NX-OS 基本設定ガイド』を参照してください。

高可用性

NTP はステートレス リスタートをサポートします。 リブート後またはスーパーバイザ スイッチオーバー後に、実行コンフィギュレーションが適用されます。 ハイアベイラビリティの詳細については、『Cisco Nexus 9000 シリーズ NX-OS ハイアベイラビリティおよび冗長性ガイド』を参照してください。

NTP ピアを設定すると、NTP サーバ障害の発生時に冗長性が得られます。

仮想化のサポート

NTP は Virtual Routing and Forwarding (VRF) インスタンスを認識します。NTP サーバおよび NTP ピアに対して特定の VRF を設定していない場合、NTP はデフォルトの VRF を使用します。VRF の詳細については、『Cisco Nexus 9000 シリーズ NX-OS ユニキャスト ルーティング 設定ガイド』を参照してください

NTP の前提条件

NTP の前提条件は、次のとおりです。

• NTP を設定するには、NTP が動作している 1 つ以上のサーバに接続できなければなりません。

NTP の注意事項と制約事項

NTP に関する設定時の注意事項および制約事項は、次のとおりです。

- NTP サーバ機能はサポートされます。
- デフォルト以外の VRF で名前ベースの NTP サーバ(FQDN)を設定する前に、その特定 の VRF で DNS サーバを設定する必要があります。オプションを使用してグローバルコン フィギュレーションモードから DNS サーバを設定する場合、その名前ベースの NTP サーバ 設定は実行コンフィギュレーションに追加されません。 use-vrf この方法を使用して NTP サーバを設定しようとした場合は、コマンドの no バージョンを使用して NTP 設定を削除し、その VRF の下に DNS サーバを追加してから、 VRF に名前ベースの NTP サーバを追加する必要があります。構成された DNS サーバーは到達可能であり、照会されたときに NTP サーバーの FODN の正しい IP を返す必要があります。
- 使用するクロックの信頼性が確実な場合(つまり、信頼できる NTP サーバのクライアントである場合)に限り、別のデバイスとの間にピアアソシエーションを設定することを推奨します。
- 単独で設定したピアは、サーバの役割を担いますが、バックアップとして使用する必要があります。サーバが2台ある場合、いくつかのデバイスが一方のサーバに接続し、残りの

デバイスが他方のサーバに接続するように設定できます。その後、2台のサーバ間にピアアソシエーションを設定すると、信頼性の高いNTP構成になります。

- ・サーバが1台だけの場合は、すべてのデバイスをそのサーバのクライアントとして設定することを推奨します。
- 設定できる NTP エンティティ (サーバおよびピア) は、最大 64 です。
- VRF で NTP を設定する場合は、NTP サーバおよびピアが、設定された VRF を介して相互にアクセスできることを確認します。
- ネットワーク全体の NTP サーバおよび Cisco NX-OS デバイスに、NTP 認証キーを手動で配信します。
- スイッチをエッジデバイスとして使用して NTP を利用したい場合は、ntp access-group コマンドを使用して必要なエッジデバイスにのみ NTP をフィルタリングすることを推奨します。
- システムに ntp passive、ntp broadcast client、または ntp multicast client コマンドが設定されている場合、対称アクティブの着信パケット、ブロードキャストパケット、マルチキャストパケットを NTP が受信する際に、送信者と同期させるための一時的なピア アソシエーションを設定できます。

- (注) 上記コマンドのいずれかを有効にする前に必ず ntp authenticate bを指定してください。そうしないと、上記のパケット タイプの いずれかを送信する任意のデバイス (悪意のある攻撃者に制御されたデバイスを含む) とデバイスが同期される可能性があります。
 - ntp authenticate コマンドが指定されている場合、対称アクティブ パケット、ブロード キャスト パケット、マルチキャスト パケットが受信されても、ntp trusted-key グローバル コンフィギュレーション コマンドで指定された認証キーの1つがパケットで運ばれていない限り、システムとピアの同期は行われません。
 - ntp access-group コマンドなど他の方法で、デバイスのNTP サービスと非承認ホストとの 通信防止の措置が取られている場合を除き、非承認のネットワークホストとの同期を避けるには、ntp passive、ntp broadcast client、ntp multicast client コマンドを指定した段階で随時 ntp authenticate コマンドを指定する必要があります。
 - The ntp authenticate コマンドは、ntp server および ntp peer コンフィギュレーションコマンドで設定されたピア アソシエーションを認証しません。ntp server および ntp peer アソシエーションを認証するには、key キーワードを指定します。
 - •1つのNTPアクセスグループに最大4つのIPACLを設定できます。IPv4およびIPv6ACLがサポートされています。
 - インバンド ポートでパケット フラッディングが発生すると、NTPD による CPU 使用率が 90% を超える可能性があります。NTPD によるこの高い CPU 使用率を克服するには、カ

スタム CoPP ポリシーを使用して、NTP への着信トラフィックをレート制限します。コントロール プレーン ポリシングの詳細については、cisco.com の『Cisco Nexus 9000 Series NX-OS Security Configuration Guide』の関連バージョンの「Configuring Control Plane Policing」の章を参照してください。

(注) 推奨されるレート制限は、ポリシー**CIR**フィールドの場合は1000 kbps、**BC**フィールドの場合は 64,000 バイトです。

- Cisco NX-OS リリース 10.1(1) 以降、Cisco Nexus 9000 スイッチはストラタム 14 および 15 と同期しません。
- Cisco NX-OS リリース 10.3(3)F 以降、RFC 8573 標準に沿って、NTP セキュリティは、認証キーのタイプ 6 暗号化サポートとともに AES128CMAC 認証メカニズムによって強化されています。次の注意事項と制限事項が適用されます。
 - この機能には、パスワードをタイプ 0、タイプ 7、またはタイプ 6 として設定するオプションがあります。
 - 構成できる一意のキーの最大数は 1024 で、範囲は 1 ~ 65535 です。
 - タイプ 6 認証を機能させるには、**feature password encryption aes**とともに、構成する 新しいタイプ 6 キーを生成するために使用したものと同じプライマリ(マスター) キーをデバイスに構成します。
 - encryption re-encrypt obfuscated コマンドを使用して再暗号化を適用すると、タイプ 6 以外のすべての NTP パスワードがタイプ 6 に再暗号化されます。
 - コマンドは、NTP に設定されているすべてのタイプ6パスワードを削除します。encryption delete type6
 - encryption decrypt type6 コマンドは、既存の構成済みのタイプ 6 パスワードを復号化します。
 - AES128CMAC/タイプ 6 でサポートされるバージョンから非 AES128CMAC/タイプ 6 でサポートされるバージョンに ISSD を実行するには、タイプ 6 キーの設定を解除してから ISSD を実行します。
 - プログラム (restconf/Netconf など) でキーチェーンを構成する場合は、encryptType と keyString を指定することをお勧めします。指定しない場合、キー チェーン インフラ は、欠落しているプロパティのすでに使用可能な (またはデフォルトの) 値を使用して keyString を構成します。
 - 欠落しているプロパティを構成する必要がある場合は、両方のピアルータで同じ手順 を実行する必要があります。

NTP のデフォルト設定

次の表に、NTP パラメータのデフォルト設定を示します。

パラメータ	デフォルト
NTP	イネーブル
NTP 認証	ディセーブル
NTP アクセス	イネーブル
NTP ロギング	無効化

NTP の設定

(注)

この機能の Cisco NX-OS コマンドは、Cisco IOS のコマンドとは異なる場合があるので注意してください。

NTP の有効化または無効化

NTP をイネーブルまたはディセーブルにできます。NTP はデフォルトでイネーブルです。

手順の概要

- 1. configure terminal
- 2. [no] feature ntp
- 3. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal	グローバル設定モードを開始します。
	例:	
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	[no] feature ntp	NTP を有効または無効にします。
	例:	

	コマンドまたはアクション	目的
	switch(config)# feature ntp	
ステップ3	(任意) copy running-config startup-config 例: switch(config)# copy running-config startup-config	実行コンフィギュレーションを、スタートアップコ ンフィギュレーションにコピーします。

正規の NTP サーバとしてのデバイスの設定

デバイスを正規の NTP サーバとして動作するよう設定し、既存のタイム サーバと同期していないときでも時刻を配信させることができます。

手順の概要

- 1. configure terminal
- 2. [no] ntp master [stratum]
- 3. (任意) show running-config ntp
- 4. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始
	例:	します
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	[no] ntp master [stratum]	正規の NTP サーバとしてデバイスを設定します。
	例:	NTPクライアントがこれらの時間を同期するのと別
	<pre>switch(config)# ntp master</pre>	の階層レベルを指定できます。指定できる範囲は 1 ~ 15 です。
ステップ3	(任意) show running-config ntp	NTP コンフィギュレーションを表示します。
	例:	
	switch(config)# show running-config ntp	
ステップ4	(任意) copy running-config startup-config	実行コンフィギュレーションを、スタートアップコ
	例:	ンフィギュレーションにコピーします。
	switch(config)# copy running-config startup-config	

NTP サーバおよびピアの設定

NTP サーバおよびピアを設定できます。

始める前に

使用している NTP サーバと、そのピアの IP アドレスまたはドメイン ネーム システム (DNS) 名がわかっていることを確認します。

手順の概要

- 1. configure terminal
- **2.** [no] ntp server {ip-address | ipv6-address | dns-name} [key key-id] [maxpoll max-poll] [minpoll min-poll] [prefer] [use-vrf vrf-name]
- **3.** [no] ntp peer {ip-address | ipv6-address | dns-name} [key key-id] [maxpoll max-poll] [minpoll min-poll] [prefer] [use-vrf vrf-name]
- 4. (任意) show ntp peers
- 5. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal 例: switch# configure terminal switch(config)#	グローバル コンフィギュレーション モードを開始 します
ステップ2	[no] ntp server {ip-address ipv6-address dns-name} [key key-id] [maxpoll max-poll] [minpoll min-poll] [prefer] [use-vrf vrf-name] 例: switch(config)# ntp server 192.0.2.10	1つのサーバと1つのサーバアソシエーションを形成します。 NTP サーバとの通信で使用するキーを設定するには、key キーワードを使用します。key-id 引数の範囲は1~65535です。サーバをポーリングする最大および最小の間隔を設定するには、maxpoll および minpoll キーワードを使用します。 max-poll および min-poll 引数の範囲は4~16(2の累乗として設定されます。つまり、実質的に16~65536秒)で、デフォルト値はそれぞれ6と4です(maxpoll デフォルト=64秒、minpoll デフォルト=16秒)。
		このサーバをデバイスの優先 NTP サーバにするには、 prefer キーワードを使用します。

	コマンドまたはアクション	目的
		指定された VRF を介して通信するように NTP サーバを設定するには、use-vrf キーワードを使用します。vrf-name 引数には、default、management、または大文字と小文字が区別される最大 32 文字の任意の英数字文字列を指定できます。
		(注) NTPサーバとの通信で使用するキーを設定する場合は、そのキーが、デバイス上の信頼できるキーとして存在していることを確認してください。
ステップ3	[no] ntp peer {ip-address ipv6-address dns-name} [key key-id] [maxpoll max-poll] [minpoll min-poll] [prefer] [use-vrf vrf-name]	1 つのピアと 1 つのピア アソシエーションを形成します。 複数のピア アソシエーションを指定できます。
	例: switch(config)# ntp peer 2001:0db8::4101	NTPピアとの通信で使用するキーを設定するには、 key キーワードを使用します。 <i>key-id</i> 引数の範囲は1 ~65535 です。
		サーバをポーリングする最大および最小の間隔を設定するには、 $maxpoll$ および $minpoll$ キーワードを使用します。 $max-poll$ および $min-poll$ 引数の範囲は $4-16$ (2 の累乗として設定されます。つまり、実質的に $16-131072$ 秒) で、デフォルト値はそれぞれ 6 と 4 です($maxpoll$ デフォルト= 64 秒、 $minpoll$ デフォルト= 16 秒)。
		デバイスに対して対象の NTP ピアを優先にするには、prefer キーワードを使用します。
		指定された VRF を介して通信するように NTP ピアを設定するには、use-vrfキーワードを使用します。 vrf-name 引数には、default、management、または大文字と小文字が区別される最大 32 文字の任意の英数字文字列を指定できます。
ステップ4	(任意) show ntp peers	設定されたサーバおよびピアを表示します。
	例: switch(config)# show ntp peers	(注) ドメイン名が解決されるのは、DNS サーバが設定 されている場合だけです。
		DNS/ネームサーバが IPv4 と IPv6 の両方を解決する場合、NX-OS では IPv6 アドレスが優先されます。
ステップ5	(任意) copy running-config startup-config 例:	実行コンフィギュレーションを、スタートアップコ ンフィギュレーションにコピーします。

コマンドまたはアクション	目的
<pre>switch(config)# copy running-config startup-config</pre>	

NTP 認証の設定

ローカル ロックを同期させる時刻源を認証するようデバイスを設定できます。NTP 認証をイネーブルにすると、ntp trusted-key コマンドによって指定されたいずれかの認証キーを時刻源が保持している場合のみ、デバイスはその時刻源と同期します。デバイスは、認証チェックに失敗したすべてのパケットをドロップし、それらのパケットでローカルクロックがアップデートされないようにします。NTP 認証はデフォルトでディセーブルになっています。

始める前に

この手順で指定する予定の認証キーによって、NTP サーバが設定されていることを確認します。

手順の概要

- 1. configure terminal
- 2. [no] ntp authentication-key number {md5 | aes128cmac} password string encryption-type
- 3. ntp server ip-address key key-id
- 4. (任意) show ntp authentication-keys
- **5.** [no] ntp trusted-key number
- 6. (任意) show ntp trusted-keys
- 7. [no] ntp authenticate
- 8. (任意) show ntp authentication-status
- 9. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始
	例:	します。
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	[no] ntp authentication-key number {md5 aes128cmac} password string encryption-type	認証キーを定義します。認証キーの範囲は1~65535 です。
	例:	デバイスが時刻源と同期するのは、時刻源がこれらの認証キーのいずれかを持ち、 ntp trusted-key <i>number</i>

	コマンドまたはアクション	目的
	<pre>switch(config)# ntp authentication-key 42 md5 aNiceKey switch(config)# ntp authentication-key 21 md5 JDYk3pp/Fuv0zWyVSRhS6EDERSSspluA7s57dvdsx g74ndf02lEI9dF6WX6Z78/5R8qPmSRRrDUDtCcUlZ XDUrf0ErodS3ikPQA= 6 switch(config)# ntp authentication-key 12 aes128cmac JDYkzj4NojJdSkQPvBhFvAO9xCSVwj2iRGvShNSg ER4JwMBMtUEibfqkscgZ4+/iTdDmeCRW9SGWLxKb 3Xk5g8pz4bR7Iula7QA= 6</pre>	コマンドによってキー番号が指定されている場合だけです。 md5 または aes128cmac 認証方式を選択できます。 ユーザーが同じプライマリ (マスター) キーから生成されたタイプ 6 キーを使用している場合、ユーザーが機能パスワード暗号化 aes を有効にするまで、デバイスは時刻源に同期しません。 タイプ 0 およびタイプ 7 の暗号化タイプの場合、最大長は 32 文字です。リリース 10.3(3)F までは、15 文字 (英数字) でした。タイプ 6 暗号化タイプの場合、最大文字数は 128 文字です。
 ステップ 3	ntp server ip-address key key-id 例: switch(config)# ntp server 192.0.2.1 key 1001	1つのサーバと1つのサーバアソシエーションを形成します。 NTP サーバとの通信で使用するキーを設定するには、 key キーワードを使用します。 <i>key-id</i> 引数の範囲は1~65535です。
		認証を必須とする場合は、 key キーワードを使用する必要があります。 ntp server または ntp peer コマンドで key キーワードを指定しない場合、認証なしでの動作が続けられます。
ステップ 4	(任意) show ntp authentication-keys 例: switch(config)# show ntp authentication-keys	設定済みの NTP 認証キーを表示します。
ステップ5	[no] ntp trusted-key number 例: switch(config)# ntp trusted-key 42	1つ以上のキー (ステップ2で定義されているもの) を指定します。デバイスを時刻源と同期させるには、未設定のリモートシンメトリック、ブロードキャスト、およびマルチキャストの時刻源をNTPパケット内に入力する必要があります。 trusted key の範囲は 1 ~ 65535 です。
		このコマンドにより、デバイスが、信頼されていない時刻源と誤って同期する、ということが防止されます。
ステップ6	(任意) show ntp trusted-keys 例: switch(config)# show ntp trusted-keys	設定済みの NTP の信頼されているキーを表示します。

	コマンドまたはアクション	目的
ステップ 7	<pre>[no] ntp authenticate 例: switch(config)# ntp authenticate</pre>	ntp passive、ntp broadcast client、および ntp multicast で認証を有効または無効にします。NTP 認証はデフォルトでディセーブルになっています。
ステップ8	(任意) show ntp authentication-status 例: switch(config)# show ntp authentication-status	NTP 認証の状況を表示します。
ステップ9	(任意) copy running-config startup-config 例: switch(config)# copy running-config startup-config	実行コンフィギュレーションを、スタートアップコ ンフィギュレーションにコピーします。

NTP アクセス制限の設定

アクセス グループを使用して、NTP サービスへのアクセスを制御できます。具体的には、デバイスで許可する要求のタイプ、およびデバイスが応答を受け取るサーバを指定できます。

アクセスグループを設定しない場合は、すべてのデバイスにNTPアクセス権が付与されます。 何らかのアクセスグループを設定した場合は、ソースIPアドレスがアクセスリストの基準をパスしたリモートデバイスに対してだけ、NTPアクセス権が付与されます。

- match-all キーワードがない場合、パケットは permit が見つかるまでアクセス グループに対して(以下に示す順で)評価されます。 permit が検出されない場合、パケットはドロップされます。
- match-all キーワードがある場合、パケットはすべてのアクセス グループに対して(以下に示す順で)評価され、最後に成功した評価(ACL が設定されている最後のアクセス グループ)に基づいてアクションが実行されます。
- peer: クライアント、対称アクティブ、対称パッシブ、サービス、コントロール、および プライベート パケット(すべてのタイプ)を処理
- serve: クライアント、コントロール、およびプライベート パケットを処理
- serve-only: クライアント パケットだけを処理
- query-only: コントロールおよびプライベート パケットだけを処理

アクセス グループは次の順で評価されます:

- 1. peer (すべてのパケットタイプ)
- 2. serve (クライアント、コントロール、およびプライベート パケット)
- **3.** serve-only (クライアントパケット) または query-only (コントロールおよびプライベートパケット)

serve-only または query-only の ACL 処理は、NTP パケット タイプによって異なります。

手順の概要

- 1. configure terminal
- $\textbf{2.} \quad [\textbf{no}] \ \textbf{ntp access-group match-all} \ | \ \{\{\textbf{peer} \ | \ \textbf{serve} \ | \ \textbf{serve-only} \ | \ \textbf{query-only} \ \} \ \textit{access-list-name}\}$
- 3. (任意) show ntp access-groups
- 4. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal 例:	グローバル コンフィギュレーション モードを開始 します
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	[no] ntp access-group match-all {{peer serve serve-only query-only } access-list-name}	NTPのアクセスを制御し、基本の IP アクセス リストを適用するためのアクセスグループを作成または削除します。
	<pre>switch(config)# ntp access-group match-all switch(config)# ntp access-group peer peer-acl switch(config)# ntp access-group serve serve-acl</pre>	設定ピアの遅延 ACL 1ルールに NTP が一致する場合、ACL 処理は停止し、次のアクセス グループ オプションへと継続しません。
		• peer キーワードは、デバイスが時刻要求とNTP 制御クエリーを受信し、アクセスリストで指定 されているサーバと同期するようにします。
		• serve キーワードは、アクセス リストに指定されているサーバからの時刻要求と NTP 制御クエリーをデバイスが受信できるようにしますが、指定されたサーバとは同期しないようにします。
		• serve-only キーワードは、デバイスがアクセス リストで指定されたサーバからの時刻要求だけ を受信するようにします。
		• query-only キーワードは、デバイスがアクセス リストで指定されたサーバからのNTP制御クエ リーのみを受信するようにします。
		• match-all キーワードを使用すると、アクセス グループオプションが、制限の最も緩いものか ら最も厳しいもの、peer、serve、serve-only、

	コマンドまたはアクション	目的
		query-only の順序でスキャンされるようにできます。着信パケットが peer アクセスグループのACL に一致しない場合、パケットは serve アクセスグループに送信され、処理されます。パケットが serve アクセスグループのACL に一致しない場合、serve-only アクセスグループに送られ、これが継続されます。
		(注) match-all キーワードは、Cisco NX-OS リリース7.0(3)I6(1) 以降で利用可能なもので、Cisco Nexus 9000 シリーズ スイッチと、Cisco Nexus 3164Q、31128PQ、3232C、および3264Q スイッチでサポートされています。
		• access-list-name 変数は、NTP アクセスグループ の名前です。名前は、特殊文字を含む、最大64 文字の英数字ストリングで指定できます。
ステップ3	(任意) show ntp access-groups 例: switch(config)# show ntp access-groups	NTPアクセスグループのコンフィギュレーションを表示します。
ステップ4	(任意) copy running-config startup-config 例: switch(config)# copy running-config startup-config	実行コンフィギュレーションを、スタートアップコ ンフィギュレーションにコピーします。

NTP ソース IP アドレスの設定

NTP は、NTP パケットが送信されたインターフェイスのアドレスに基づいて、すべての NTP パケットにソース IP アドレスを設定します。特定のソース IP アドレスを使用するよう NTP を 設定できます。

手順の概要

- 1. configure terminal
- **2.** [no] ntp source ip-address
- 3. (任意) copy running-config startup-config

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ 1	configure terminal 例: switch# configure terminal switch(config)#	グローバル コンフィギュレーション モードを開始 します
ステップ2	<pre>[no] ntp source ip-address 例: switch(config) # ntp source 192.0.2.1</pre>	すべての NTP パケットにソース IP アドレスを設定します。 <i>ip-address</i> には IPv4 または IPv6 形式を使用できます。
ステップ3	(任意) copy running-config startup-config 例: switch(config)# copy running-config startup-config	実行コンフィギュレーションを、スタートアップコ ンフィギュレーションにコピーします。

NTP ソース インターフェイスの設定

特定のインターフェイスを使用するよう NTP を設定できます。

手順の概要

- 1. configure terminal
- 2. [no] ntp source-interface interface
- 3. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal	グローバル コンフィギュレーション モードを開始
	例:	します。
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	[no] ntp source-interface interface	すべてのNTPパケットに対してソースインターフェ
	例:	イスを設定します。サポートされているインター
	<pre>switch(config)# ntp source-interface ethernet 2/1</pre>	フェイスのリストを表示するには、? キーワードを使用します。

	コマンドまたはアクション	目的
ステップ3		実行コンフィギュレーションを、スタートアップコ
	例:	ンフィギュレーションにコピーします。
	<pre>switch(config) # copy running-config startup-config</pre>	

NTP ロギングの設定

重要な NTP イベントでシステム ログを生成するよう、NTP ロギングを設定できます。 NTP ロギングはデフォルトでディセーブルになっています。

手順の概要

- 1. configure terminal
- 2. [no] ntp logging
- 3. (任意) show ntp logging-status
- 4. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ 1	configure terminal	グローバル設定モードを開始します。
	例:	
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	[no] ntp logging	重要な NTP イベントでシステム ログを生成するこ
	例:	とをイネーブルまたはディセーブルにします。NTP ロギングはデフォルトでディセーブルになっていま
	switch(config)# ntp logging	す。
ステップ3	(任意) show ntp logging-status	NTPロギングのコンフィギュレーション状況を表示
	例:	します。
	switch(config)# show ntp logging-status	
ステップ4	(任意) copy running-config startup-config	実行コンフィギュレーションを、スタートアップコ
	例:	ンフィギュレーションにコピーします。
	switch(config)# copy running-config startup-config	

NTP の設定確認

NTP 設定を表示するには、次のタスクのうちのいずれかを実行します。

コマンド	目的
show ntp access-groups	NTP アクセス グループのコンフィギュレー ションを表示します。
show ntp authentication-keys	設定済みの NTP 認証キーを表示します。
show ntp authentication-status	NTP 認証の状況を表示します。
show ntp logging-status	NTP のロギング状況を表示します。
show ntp peer-status	すべての NTP サーバおよびピアのステータス を表示します。
show ntp peers	すべての NTP ピアを表示します。
show ntp rts-update	RTS アップデートの状況を表示します。
ntp ソースを表示する	設定済みのNTPソースIPアドレスを表示します。
show ntp source-interface	設定済みのNTPソースインターフェイスを表示します。
show ntp statistics {io local memory peer {ipaddr {ipv4-addr ipv6-addr} name peer-name}}	NTP 統計情報を表示します。
show ntp trusted-keys	設定済みのNTPの信頼されているキーを表示します。
show running-config ntp	NTP 情報を表示します。

NTP セッションをクリアするには、clear ntp session コマンドを使用します。

NTP 統計情報を消去するには、clear ntp statistics コマンドを使用します。

NTP の設定例

次に、NTP パケット内で認証キー 42 を提示している時刻源とだけ同期するようデバイスを構成する md5 の例を示します。

```
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ntp authentication-key 42 md5 aNiceKey
switch(config)# ntp server 192.0.2.105 key 42
switch(config)# ntp trusted-key 42
switch(config)# ntp authenticate
switch(config)# copy running-config startup-config
```

```
[############# 100%
switch(config)#
```

次に、NTPパケット内で認証キー12を提示している時刻源とだけ同期するようデバイスを構成するaes128cmacの例を示します。

次に、以下の制約事項のある NTP アクセス グループの設定の例を示します。

- peer の制約事項は、「peer-acl」というアクセス リストの条件を満たす IP アドレスに適用 されます。
- serve の制約事項は、「serve-acl」というアクセス リストの条件を満たす IP アドレスに適用されます。
- serve-only の制約事項は、「serve-only-acl」というアクセス リストの条件を満たす IP アドレスに適用されます。
- query-only の制約事項は、「query-only-acl」というアクセスリストの条件を満たす IP アドレスに適用されます。

```
switch# configure terminal
switch(config)# ntp peer 10.1.1.1
switch(config) # ntp peer 10.2.2.2
switch(config)# ntp peer 10.3.3.3
switch(config) # ntp peer 10.4.4.4
switch(config) # ntp peer 10.5.5.5
switch(config) # ntp peer 10.6.6.6
switch(config)# ntp peer 10.7.7.7
switch(config) # ntp peer 10.8.8.8
switch(config) # ntp access-group peer peer-acl
switch(config)# ntp access-group serve serve-acl
switch(config) # ntp access-group serve-only serve-only-acl
switch(config) # ntp access-group query-only query-only-acl
switch(config)# ip access-list peer-acl
switch(config-acl) # 10 permit ip host 10.1.1.1 any
switch(config-acl)# 20 permit ip host 10.8.8.8 any
switch(config)# ip access-list serve-acl
switch(config-acl)# 10 permit ip host 10.4.4.4 any
switch(config-acl) # 20 permit ip host 10.5.5.5 any
switch(config)# ip access-list serve-only-acl
switch(config-acl) # 10 permit ip host 10.6.6.6 any
switch(config-acl) # 20 permit ip host 10.7.7.7 any
switch(config)# ip access-list query-only-acl
switch(config-acl) # 10 permit ip host 10.2.2.2 any
switch(config-acl)# 20 permit ip host 10.3.3.3 any
```


(注) 単一のACL グループのみが適用される場合、他のACL カテゴリに関連するすべてのパケット は拒否され、設定された ACL グループに関連するパケットのみが処理されます。これについては、以下のシナリオで説明します。

- serve ACL が設定されている場合、クライアント、コントロール、およびプライベート パケットのみが処理され、他のすべてのパケットは拒否されます。
- serve-only ACL が設定されている場合、クライアントパケットのみが処理され、他のすべてのパケットは拒否されます。

複数のACLが設定されている場合、以下のシナリオで説明されている処理の順序に従います。

• serve と serve-only の両方が、match-all が構成されていない同じ IP アドレスに対して構成 されていて、IP が serve-acl で許可され、serve-only で拒否されている場合、クライアント、コントロール、プライベート パケットはその IP に対して許可されます。

その他の参考資料

関連資料

関連項目	マニュアル タイトル
クロック マネージャ	

MIB

MIB	MIB のリンク
NTP に関連する MIB	サポートされている MIB を検索およびダウンロ 次の URL にアクセスしてください。
	https://cisco.github.io/cisco-mibs/supportlists/nexus90 Nexus9000MIBSupportList.html

MIB

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。