

 [image: ../images/cover_page.jpg]

 Part I. Part 1: Cisco APIC REST API Usage Guidelines

 	Using the REST API

 Chapter 1. Using the REST API

 About the REST API

 The Application Policy Infrastructure Controller (APIC) REST API is a programmatic interface that uses REST architecture. The API accepts and returns HTTP (not enabled by default)
 or HTTPS messages that contain JavaScript Object Notation (JSON) or Extensible Markup Language (XML) documents. You can use
 any programming language to generate the messages and the JSON or XML documents that contain the API methods or Managed Object
 (MO) descriptions.

 The REST API is the interface into the management information tree (MIT) and allows manipulation of the object model state.
 The same REST interface is used by the APIC CLI, GUI, and SDK, so that whenever information is displayed, it is read through the REST API, and when configuration changes
 are made, they are written through the REST API. The REST API also provides an interface through which other information can
 be retrieved, including statistics, faults, and audit events. It even provides a means of subscribing to push-based event
 notification, so that when a change occurs in the MIT, an event can be sent through a web socket.

 Standard REST methods are supported on the API, which includes POST, GET, and DELETE operations through HTTP. The POST and
 DELETE methods are idempotent, meaning that there is no additional effect if they are called more than once with the same
 input parameters. The GET method is nullipotent, meaning that it can be called zero or more times without making any changes
 (or that it is a read-only operation).

 Payloads to and from the REST interface can be encapsulated through either XML or JSON encoding. In the case of XML, the encoding
 operation is simple: the element tag is the name of the package and class, and any properties of that object are specified
 as attributes of that element. Containment is defined by creating child elements.

 For JSON, encoding requires definition of certain entities to reflect the tree-based hierarchy; however, the definition is
 repeated at all levels of the tree, so it is fairly simple to implement after it is initially understood.

 	

 All objects are described as JSON dictionaries, in which the key is the name of the package and class. The value is another
 nested dictionary with two keys: attribute and children.

 	

 The attribute key contains a further nested dictionary describing key-value pairs that define attributes on the object.

 	

 The children key contains a list that defines all the child objects. The children in this list are dictionaries containing
 any nested objects, which are defined as described here.

 Authentication

 REST API username- and password-based authentication uses a special subset of request Universal Resource Identifiers (URIs),
 including aaaLogin, aaaLogout, and aaaRefresh as the DN targets of a POST operation. Their payloads contain a simple XML or JSON payload containing the MO representation
 of an aaaUser object with the attribute name and pwd defining the username and password: for example, <aaaUser name='admin' pwd='password'/>. The response to the POST operation will contain an authentication token as both a Set-Cookie header and an attribute to
 the aaaLogin object in the response named token, for which the XPath is /imdata/aaaLogin/@token if the encoding is XML. Subsequent operations on the REST API can use this token value as a cookie named APIC-cookie to authenticate future requests.

 Subscription

 The REST API supports the subscription to one or more MOs during your active API session. When any MO is created, changed,
 or deleted because of a user- or system-initiated action, an event is generated. If the event changes the data on any of the
 active subscribed queries, the APIC will send out a notification to the API client that created the subscription.

 Management
 	 Information Model

 All the physical and logical components that comprise the Application Centric
 				 Infrastructure fabric are represented in a hierarchical management information model (MIM), also referred to as the MIT. Each node in the tree
 represents an MO or group of objects that contains its administrative state and its operational state.

 To view the MIM, see Cisco APIC Management Information Model Reference Guide.

 The hierarchical
 		structure starts at the top (Root) and contains parent and child nodes. Each
 		node in this tree is an MO and each object in the
 		ACI
 		fabric has a unique
 		distinguished name (DN) that describes the object and its place in the tree.
 		MOs are abstractions of the
 		fabric resources. An MO can represent a
 		physical object, such as a switch or adapter, or a logical object, such as a
 		policy or fault.
 	

 Configuration policies make up the majority of the policies in the system and describe the configurations of different ACI
 			fabric components. Policies determine how the system behaves under specific circumstances. Certain MOs are not created by users
 but are automatically created by the fabric (for example, power supply objects and fan objects). By invoking the API, you are reading and writing objects to the MIM.

 The information model is centrally stored as a logical model by the APIC, while each switch node contains a complete copy as a concrete model. When a user creates a policy in the APIC that represents a configuration, the APIC updates the logical model. The APIC then performs the intermediate step of creating a fully elaborated policy from the user policy and then pushes the policy
 into all the switch nodes where the concrete model is updated. The models are managed by multiple data management engine (DME)
 processes that run in the fabric. When a user or process initiates an administrative change to a fabric component (for example,
 when you apply a profile to a switch), the DME first applies that change to the information model and then applies the change
 to the actual managed endpoint. This approach is called a model-driven framework.

 The following branch diagram of a leaf switch port starts at the top Root of the ACI fabric MIT and shows a hierarchy that comprises a chassis with two line module slots, with a line module in slot 2.

|——root———————————–– (root)
 |——sys———————————––– (sys)
 |——ch————————————————(sys/ch)
 |——lcslot-1——————————(sys/ch/lcslot-1)
 |——lcslot-2——————————(sys/ch/lcslot-2)
 |——lc————————————————(sys/ch/lcslot-2/lc)
 |——leafport-1————————(sys/ch/lcslot-2/lc/leafport-1)

 Object
 	 Naming

 You can identify a
 		specific object by its distinguished name (DN) or by its relative name (RN).
 	

 	[image: ../images/note.gif]
Note
 	

 		
 You cannot rename an existing object. To simplify references to an
 		 object or group of objects, you can assign an alias or a tag.
 		

 	

 Distinguished
 		 Name

 		
 		
 The DN enables you
 		 to unambiguously identify a specific target object. The DN consists of a series
 		 of RNs:
 		

 		
dn = {rn}/{rn}/{rn}/{rn}...

 		In this example, the
 		 DN provides a fully qualified path for
 		 fabport-1 from the top of the object tree to the
 		 object. The DN specifies the exact managed object on which the API call is
 		 operating.
 		

 		
< dn =”sys/ch/lcslot-1/lc/fabport-1” />

 	

 Relative
 		 Name

 		
 		
 The RN identifies an
 		 object from its siblings within the context of its parent object. The DN
 		 contains a sequence of RNs.
 		

 		
 For example, this
 		 DN:
 		

 		
<dn = "sys/ch/lcslot-1/lc/fabport-1"/>

 		contains these RNs:
 		

 		

 	Relative Name
 				

 	Class
 				

 	Description
 				

 	sys
 				

 	top:System
 				

 	Top level of this system
 				

 	ch
 				

 	eqpt:Ch
 				

 	Hardware chassis container
 				

 	lcslot-1
 				

 	eqpt:LCSlot
 				

 	Line module slot 1
 				

 	lc
 				

 	eqpt:LC
 				

 	Line (I/O) module
 				

 	fabport-1
 				

 	eqpt:FabP
 				

 	Fabric-facing external I/O
 					 port 1
 				

 	

 Read and Write Operations and Filters

 Read Operations

 After the object payloads are properly encoded as XML or JSON, they can be used in create, read, update, or delete operations
 on the REST API. The following diagram shows the syntax for a read operation from the REST API.

 REST syntax

[image: ../images/349945.jpg]

 Because the REST API is HTTP-based, defining the URI to access a certain resource type is important. The first two sections
 of the request URI simply define the protocol and access details of the APIC. Next in the request URI is the literal string /api, indicating that the API will be invoked. Generally, read operations are for an object or class, as discussed earlier, so
 the next part of the URI specifies whether the operation will be for an MO or class. The next component defines either the
 fully qualified domain name (DN) being queried for object-based queries, or the package and class name for class-based queries.
 The final mandatory part of the request URI is the encoding format: either .xml or .json. This is the only method by which
 the payload format is defined. (The APIC ignores Content-Type and other headers.)

 Write Operations

 Both create and update operations in the REST API are implemented using the POST method, so that if an object does not already
 exist, it will be created, and if it does already exist, it will be updated to reflect any changes between its existing state
 and desired state.

 Both create and update operations can contain complex object hierarchies, so that a complete tree can be defined in a single
 command so long as all objects are within the same context root and are under the 1MB limit for data payloads for the REST
 API. This limit is in place to guarantee performance and protect the system under high loads.

 The context root helps define a method by which the APIC distributes information to multiple controllers and helps ensure consistency. For the most part, the configuration should
 be transparent to the user, though very large configurations may need to be broken into smaller pieces if they result in a
 distributed transaction.

 REST Payload

[image: ../images/349946.jpg]

 Create and update operations use the same syntax as read operations, except that they are always targeted at an object level,
 because you cannot make changes to every object of a specific class (nor would you want to). The create or update operation
 should target a specific managed object, so the literal string /mo indicates that the DN of the managed object will be provided, followed next by the actual DN. Filter strings can be applied
 to POST operations; if you want to retrieve the results of your POST operation in the response, for example, you can pass
 the rsp-subtree=modified query string to indicate that you want the response to include any objects that have been modified by your POST operation.

 The payload of the POST operation will contain the XML or JSON encoded data representing the MO that defines the Cisco API
 command body.

 Filters

 The REST API supports a wide range of flexible filters, useful for narrowing the scope of your search to allow information
 to be located more quickly. The filters themselves are appended as query URI options, starting with a question mark (?) and
 concatenated with an ampersand (&). Multiple conditions can be joined together to form complex filters.

 The following query filters are available:

 Query Filters

 	

 Filter Type

 	

 Syntax

 	

 Cobra Query Property

 	

 Description

 	

 query-target

 	

 {self | children | subtree}

 	

 AbstractQuery.queryTarget

 	

 Define the scope of a query

 	

 target-subtree-class

 	

 class name

 	

 AbstractQuery.classFilter

 	

 Respond-only elements including the specified class

 	

 query-target-filter

 	

 filter expressions

 	

 AbstractQuery.propFilter

 	

 Respond-only elements matching conditions

 	

 rsp-subtree

 	

 {no | children | full}

 	

 AbstractQuery.subtree

 	

 Specifies child object level included in the response

 	

 rsp-subtree-class

 	

 class name

 	

 AbstractQuery.subtreeClassFilter

 	

 Respond only specified classes

 	

 rsp-subtree-filter

 	

 filter expressions

 	

 AbstractQuery.subtreePropFilter

 	

 Respond only classes matching conditions

 	

 rsp-subtree-include

 	

 {faults | health :stats :…}

 	

 AbstractQuery.subtreeInclude

 	

 Request additional objects

 	

 order-by

 	

 classname.property | {asc | desc}

 	

 Not Implemented

 	

 Sort the response based on the property values

 Using Classes in REST API Commands

 The Application Policy Infrastructure Controller (APIC) classes are crucial from an operational perspective to understand
 how system events and faults relate to objects within the object model. Each event and/or fault in the system is a unique
 object that can be accessed for configuration, health, fault, and/or statistics.

 All the physical and logical components that make up the Cisco Application Centric Infrastructure (ACI) fabric are represented
 in a hierarchical management information tree (MIT). Each node in the tree represents a managed object (MO) or group of objects
 that contains its administrative state and its operational state.

 To access the complete list of classes, point to the APIC and reference the doc/html directory at the end of the URL:

 https://apic-ip-address/doc/html/

 Using Managed Objects in REST API Commands

 Before performing an API operation on a managed object (MO) or its properties, you should view the object's class definition
 in the Cisco APIC Management Information Model Reference, which is a web-based document. The Management Information Model (MIM) serves as a schema that defines rules such as the
 following:

 	

 The classes of parent objects to which an MO can be attached

 	

 The classes of child objects that can be attached to an MO

 	

 The number of child objects of a class type that can be attached to an MO

 	

 Whether a user can create, modify, or delete an MO, and the privilege level required to do so

 	

 The properties (attributes) of an object class

 	

 The data type and range of a property

 When you send an API command, the APIC checks the command for conformance with the MIM schema. If an API command violates the MIM schema, the APIC rejects the command and returns an error message. For example, you can create an MO only if it is allowed in the path you
 have specified in the command URI and only if you have the required privilege level for that object class. You can configure
 an MO's properties only with valid data, and you cannot create properties.

 When composing an API command to create an MO, you need only include enough information in the command's URI and data structure
 to uniquely define the new MO. If you omit the configuration of a property when creating the MO, the property is populated
 with a default value if the MIM specifies one, or it is left blank.

 When modifying a property of an MO, you need only specify the property to be modified and its new value. Other properties
 will be left unchanged.

 Guidelines and Restrictions

 	

 When you modify an MO that affects APIC or switch management communication policy, you might experience a brief disruption
 of any operations in progress on any APIC or switch web interface in the fabric. Configuration changes that can result in
 disruption include the following:

 	

 Changing management port settings, such as port number

 	

 Enabling or disabling HTTPS

 	

 Changing the state of redirection to HTTPS

 	

 Public key infrastructure (PKI) changes, such as key ring

 	

 When you read an existing MO, any password property of the MO is read as blank for security reasons. If you then write the
 MO back to APIC, the password property is written as blank.

 	[image: ../images/tip.gif]
Tip
 	

If you need to store an MO with its password information, use a configuration export policy. To store a specific MO, specify
 the MO as the target distinguished name in the policy.

 Creating the API Command

 You can invoke an API command or query by sending an HTTP or HTTPS message to the APIC with a URI of this form for an operation on a managed object (MO):

 { http | https } ://host [:port] /api/mo/dn. { json | xml } [?options]

 Use this form for an
 		operation on an object class:
 	

 { http | https } ://host [:port] /api/class/className. { json | xml } [?options]

 This example shows a
 		URI for an API operation that involves an MO of class fv:Tenant:
 	

https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

 URI
 		 Components

 		
 		
 The components of
 		 the URI are as follows:
 		

 		

 	
 			
 http:// or
 				https://—Specifies HTTP or HTTPS. By default, only
 				HTTPS is enabled. HTTP or HTTP-to-HTTPS redirection, if desired, must be
 				explicitly enabled and configured, as described in
 				Configuring HTTP and HTTPS Using the GUI.
 				HTTP and HTTPS can coexist.
 			

 		

 	
 			
 host—Specifies the hostname or IP address of
 				the
 				APIC.
 			

 		

 	
 			
 :port—Specifies the port number for
 				communicating with the
 				APIC. If your system uses standard port
 				numbers for HTTP (80) or HTTPS (443), you can omit this component.
 			

 		

 	
 			
 /api/—Specifies that
 				the message is directed to the API.
 			

 		

 	
 			
 mo | class—Specifies whether the target of
 				the operation is an MO or an object class.
 			

 		

 	
 			
 dn—Specifies the distinguished name (DN) of
 				the targeted MO.
 			

 		

 	
 			
 className—Specifies the name of the targeted
 				class. This name is a concatenation of the package name of the object queried
 				and the name of the class queried in the context of the corresponding package.
 			

 			
 For example,
 				the class aaa:User results in a
 				className of aaaUser in the URI.
 			

 		

 	
 			
 json |
 					 xml—Specifies whether the encoding format of the command or
 				response HTML body is JSON or XML.
 			

 		

 	
 			
 ?options—(Optional) Specifies one or more
 				filters, selectors, or modifiers to a query. Multiple option statements are
 				joined by an ampersand (&).
 			

 		

 	

 The URI for an
 		 API Operation on an MO

 		
 		
 In an API
 		 operation to create, read, update, or delete a specific MO, the resource path
 		 consists of
 		 /mo/ followed by the DN of the MO as described in the
 		 Cisco APIC Management Information Model Reference. For example, the DN of a tenant
 		 object, as described in the reference definition of class fv:Tenant, is
 		 uni/tn-[name]. This URI specifies an operation on an
 		 fv:Tenant object named ExampleCorp:
 		

 		
https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

 		Alternatively, in
 		 a POST operation, you can POST to /api/mo and provide the DN in the body of the
 		 message, as in this example:
 		

 		
POST https://apic-ip-address/api/mo.xml

<fvTenant dn="uni/tn-ExampleCorp"/>

 		You can also provide only the name in the message body and POST to /api/mo and the remaining RN components, as in this example:

 		
POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp"/>

 	

 The URI for an
 		 API Operation on a Node MO

 		
 		
 In an API
 		 operation to access an MO on a specific node device in the fabric, the resource
 		 path consists of
 		 /mo/topology/pod-number/node-number/sys/ followed by the node component.
 		 For example, to access a board sensor in chassis slot b of node-1 in pod-1, use
 		 this URI:
 		

 		
GET https://apic-ip-address/api/mo/topology/pod-1/node-1/sys/ch/bslot/board/sensor-3.json

 	

 The URI for an
 		 API Operation on a Class

 		
 		
 In an API
 		 operation to get information about a class, the resource path consists of
 		 /class/ followed by the name of the class as described
 		 in the
 		 Cisco APIC Management Information Model Reference. In the URI, the colon in the
 		 class name is removed. For example, this URI specifies a query on the class
 		 aaa:User:
 		

 		
GET https://apic-ip-address/api/class/aaaUser.json

 	

 Composing the API
 	 Command Body

 The HTML body of a
 		POST operation must contain a JSON or XML data structure that provides the
 		essential information necessary to execute the command. No data structure is
 		sent with a GET or DELETE operation.
 	

 Guidelines for
 		 Composing the API Command Body

 		
 		

 	
 			
 The data
 				structure does not need to represent the entire set of attributes and elements
 				of the target MO or method, but it must provide at least the minimum set of
 				properties or parameters necessary to identify the MO and to execute the
 				command, not including properties or parameters that are incorporated into the
 				URI.
 			

 		

 	
 			
 The data structure is a single tree in which all child nodes are
 				unique with a unique DN. Duplicate nodes are not allowed. You cannot make two
 				changes to a node by including the same node twice. In this case, you must
 				merge your changes into a single node.
 			

 		

 	
 			
 In the data
 				structure, the colon after the package name is omitted from class names and
 				method names. For example, in the data structure for an MO of class zzz:Object,
 				label the class element as zzzObject.
 			

 		

 	
 			
 Although the
 				JSON specification allows unordered elements, the
 				APIC REST API requires that the JSON 'attributes' element precede the
 				'children' array or other elements.
 			

 		

 	
 			
 If an XML data
 				structure contains no children or subtrees, the object element can be
 				self-closing.
 			

 		

 	
 			
 The API is case
 				sensitive.
 			

 		

 	
 			
 When sending an
 				API command, with 'api' in the URL, the maximum size of the HTML body for the
 				API POST command is 1 MB.
 			

 		

 	
 			
 When uploading a
 				device package file, with 'ppi' in the URL, the maximum size of the HTML body
 				for the POST command is 10 MB.
 			

 		

 	

 Composing the API Command Body to Call a Method

 To compose a command to call a method, create a JSON or XML data structure containing the parameters of the method using the
 method description in the Cisco APIC Management Information Model Reference.

 The API reference for a typical method lists its input parameters, if any, and its return values, if any. The method is
 called with a structure containing the essential input parameters, and a successful response returns a complete structure
 containing the return values.

 The description for a hypothetical method config:Method might appear in the API reference as follows:

Method config:Method(
 	inParameter1,
 	inParameter2,
 	inParameter3,
 	outParameter1,
 	outParameter2
)

 The parameters beginning with "in" represent the input parameters. The parameters beginning with "out" represent values returned
 by the method. Parameters with no "in" or "out" prefix are input parameters.

 A JSON structure to call the method resembles the following structure:

{
 "configMethod":
 {
 "attributes":
 {
 "inParameter1":"value1",
 "inParameter2":"value2",
 "inParameter3":"value3"
 }
 }
}

 An XML structure to call the method resembles the following structure:

<configMethod
 inParameter1="value1"
 inParameter2="value2"
 inParameter3="value3"
/>

 	[image: ../images/note.gif]
Note
 	

 The parameters of some methods include a substructure, such as filter settings or configuration settings for an MO. For specific
 information, see the method description in the Cisco APIC Management Information Model Reference.

 Composing the API
 	 Command Body for an API Operation on an MO

 To compose a command
 		to create, modify, or delete an MO, create a JSON or XML data structure that
 		describes the essential properties and children of the object's class by using
 		the class description in the
 		Cisco APIC Management Information Model Reference. You can omit any attributes or
 		children that are not essential to execute the command.
 	

 A JSON structure for
 		an MO of hypothetical class zzz:Object resembles this structure:
 	

{
 "zzzObject" : {
 "attributes" : {
 "property1" : "value1",
 "property2" : "value2",
 "property3" : "value3"
 },
 "children" :
 [{
 "zzzChild1" : {
 "attributes" : {
 "childProperty1" : "childValue1",
 "childProperty2" : "childValue1"
 },
 "children" : []
 }
 }
]
 }
}

 An XML structure for
 		an MO of hypothetical class zzz:Object resembles this structure:
 	

<zzzObject
 property1 = "value1",
 property2 = "value2",
 property3 = "value3">
 <zzzChild1
 childProperty1 = "childValue1",
 childProperty2 = "childValue1">
 </zzzChild1>
</zzzObject>

 A successful operation
 		returns a complete data structure for the MO.
 	

 Using Tags and
 	 Alias

 To simplify API
 		operations, you can assign tags or an alias to an object. In an API operation,
 		you can refer to the object or group of objects by the alias or tag name
 		instead of by the distinguished name (DN). Tags and aliases differ in their
 		usage as follows:
 	

 	
 		
 Tag—A tag allows
 			 you to group multiple objects by a descriptive name. You can assign the same
 			 tag name to multiple objects and you can assign one or more tag names to an
 			 object.
 		

 		

 	
 		
 Alias—An alias
 			 can be a simpler and more descriptive name than the DN when referring to a
 			 single object. You can assign a particular alias name to only one object. The
 			 system will prevent you from assigning the same alias name to a second object.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Not every object supports a tag. To determine whether an object is
 		 taggable, inspect the class of the object in the
 		 Cisco APIC Management Information Model Reference.
 		 If the contained hierarchy of the object class includes a tag instance (such as
 		
 		 tag:AInst or a class that derives from
 		 tag:AInst), an object of that class can be tagged.
 		

 	

 Adding
 		 Tags

 		
 		
 You can add one or
 		 more tags by using the following syntax in the URI of an API POST operation:
 		

 		

 /api/tag/mo/dn. { json | xml } ?add= [, name,
 				 ...] [, name,
 				 ...]

 		
 In this syntax,
 		 name is the
 		 name of a tag and
 		 dn is the
 		 distinguished name of the object to which the tag is assigned.
 		

 		
 This example shows
 		 how to assign the tags tenants and orgs to the tenant named ExampleCorp:
 		

 		
POST https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml?add=tenants,orgs

 	

 Removing
 		 Tags

 		
 		
 You can remove one
 		 or more tags by using the following syntax in the URI of an API POST operation:
 		
 		

 		

 /api/tag/mo/dn. { json | xml } ?remove=name [, name,
 				 ...]

 		
 This example shows
 		 how to remove the tag orgs from the tenant named ExampleCorp:
 		

 		
POST https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml?remove=orgs

 		You can delete all
 		 instances of a tag by using the following syntax in the URI of an API DELETE
 		 operation:
 		

 		

 /api//tag/name. { json | xml }

 		
 This example shows
 		 how to remove the tag orgs from all objects:
 		

 		
DELETE https://apic-ip-address/api/tag/orgs.xml

 	

 Adding an
 		 Alias

 		
 		
 You can add an
 		 alias by using the following syntax in the URI of an API POST operation:
 		

 		

 /api/alias/mo/dn. { json | xml } ?set=name

 		
 In this syntax,
 		 name is the
 		 name of the alias and
 		 dn is the
 		 distinguished name of the object to which the alias is assigned.
 		

 		
 This example shows
 		 how to assign the alias tenant8 to the tenant named ExampleCorp:
 		

 		
POST https://apic-ip-address/api/alias/mo/uni/tn-ExampleCorp.xml?set=tenant8

 	

 Removing an
 		 Alias

 		
 		
 You can remove an
 		 alias by using the following syntax in the URI of an API POST operation:
 		

 		

 /api/alias/mo/dn. { json | xml } ?clear=yes

 		
 This example shows
 		 how to remove any alias from the tenant named ExampleCorp:
 		

 		
POST https://apic-ip-address/api/alias/mo/uni/tn-ExampleCorp.xml?clear=yes

 	

 Additional
 		 Examples

 		
 		

 	[image: ../images/note.gif]
Note
 	

 		
 In the examples in
 			 this section, the responses have been edited to remove attributes unrelated to
 			 tags.
 		

 		

 		
 This example shows
 		 how to find all tags assigned to the tenant named ExampleCorp:
 		

 		
GET https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml

RESPONSE:
<imdata>
 <tagInst
 dn="uni/tn-ExampleCorp/tag-tenants"
 name="tenants"
 />
 <tagInst
 dn="uni/tn-ExampleCorp/tag-orgs"
 name="orgs"
 />
</imdata>

 		This example shows
 		 how to find all objects with the tag 'tenants':
 		

 		
GET https://apic-ip-address/api/tag/tenants.xml

RESPONSE:
<imdata>
 <fvTenant
 dn="uni/tn-ExampleCorp"
 name="ExampleCorp"
 />
</imdata>

 	

 Composing Query
 	 Filter Expressions

 You can filter the
 		response to an API query by applying an expression of logical operators and
 		values.
 	

 A basic equality or
 		inequality test is expressed as follows:
 	

query-target-filter=[eq|ne](attribute,value)

 You can create a more
 		complex test by combining operators and conditions using parentheses and
 		commas:
 	

query-target-filter=[and|or]([eq|ne](attribute,value),[eq|ne](attribute,value),...)

 	[image: ../images/note.gif]
Note
 	

 		
 A scoping filter can contain a maximum of 20
 		 '(attribute,value)' filter expressions. If the limit is
 		 exceeded, the API returns an error.
 		

 	

 Available
 		 Logical Operators

 		
 		
 This table lists the
 		 available logical operators for query filter expressions.
 		

 		

 	Operator
 				

 	Description
 				

 	eq
 				

 	
 					
 Equal to
 					

 				

 	ne
 				

 	
 					
 Not equal
 						to
 					

 				

 	lt
 				

 	
 					
 Less than
 					

 				

 	gt
 				

 	
 					
 Greater
 						than
 					

 				

 	le
 				

 	
 					
 Less than
 						or equal to
 					

 				

 	ge
 				

 	
 					
 Greater
 						than or equal to
 					

 				

 	bw
 				

 	
 					
 Between
 					

 				

 	not
 				

 	
 					
 Logical
 						inverse
 					

 				

 	and
 				

 	
 					
 Logical
 						AND
 					

 				

 	or
 				

 	
 					
 Logical OR
 					

 				

 	xor
 				

 	
 					
 Logical
 						exclusive OR
 					

 				

 	true
 				

 	
 					
 Boolean
 						TRUE
 					

 				

 	false
 				

 	
 					
 Boolean
 						FALSE
 					

 				

 	anybit
 				

 	
 					
 TRUE if at
 						least one bit is set
 					

 				

 	allbits
 				

 	
 					
 TRUE if
 						all bits are set
 					

 				

 	wcard
 				

 	
 					
 Wildcard
 					

 				

 	pholder
 				

 	
 					
 Property
 						holder
 					

 				

 	passive
 				

 	
 					
 Passive
 						holder
 					

 				

 	

 Examples

 		
 		
 		
 This example returns
 		 all managed objects of class aaaUser whose last name is equal to "Washington":
 		

 		
GET https://apic-ip-address/api/class/aaaUser.json?
 query-target-filter=eq(aaaUser.lastName,"Washington")

 		This example returns
 		 endpoint groups whose fabEncap property is "vxlan-12780288":
 		

 		
GET https://apic-ip-address/api/class/fvAEPg.xml?
 query-target-filter=eq(fvAEPg.fabEncap,"vxlan-12780288")

 		This example shows
 		 all tenant objects with a current health score of less than 50:
 		

 		
GET https://apic-ip-address/api/class/fvTenant.json?
 rsp-subtree-include=health,required
 &
 rsp-subtree-filter=lt(healthInst.cur,"50")

 		This example returns
 		 all endpoint groups and their faults under the tenant ExampleCorp:
 		

 		
GET https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml?
 query-target=subtree
 &
 target-subtree-class=fvAEPg
 &
 rsp-subtree-include=faults

 		This example returns
 		 aaa:Domain objects whose names are not "infra" or "common":
 		

 		
GET https://apic-ip-address/api/class/aaaDomain.json?
 query-target-filter=
 and(ne(aaaDomain.name,"infra"),
 ne(aaaDomain.name,"common"))

 	

 Applying Query
 	 Scoping Filters

 You can limit the
 		scope of the response to an API query by applying scoping filters. You can
 		limit the scope to the first level of an object or to one or more of its
 		subtrees or children based on the class, properties, categories, or
 		qualification by a logical filter expression.
 	

 query-target={self | children | subtree}

 		
 		
 This statement
 		 restricts the scope of the query. This list describes the available scopes:
 		

 		

 	
 			
 self—(Default) Considers only the MO itself, not
 				the children or subtrees.
 			

 		

 	
 			
 children—Considers only the children of the MO,
 				not the MO itself.
 			

 		

 	
 			
 subtree—Considers the MO itself and its subtrees.
 			

 		

 	

 target-subtree-class=mo-class1[,mo-class2]...

 		
 		
 This statement
 		 specifies which object classes are to be considered when the
 		 query-target
 		 option is used with a scope other than
 		 self. You can
 		 specify multiple desired object types as a comma-separated list with no spaces.
 		
 		

 		
 To request subtree
 		 information, combine
 		 query-target=subtree with the
 		 target-subtree-class statement to indicate the
 		 specific subtree as follows:
 		

 		
query-target=subtree&target-subtree-class=className

 		This example
 		 requests information about the running firmware. The information is contained
 		 in the firmware:CtrlrRunning subtree (child) object of the
 		 APIC
 		 firmware status container firmware:CtrlrFwStatusCont:
 		

 		GET https://apic-ip-address/api/class/firmwareCtrlrFwStatusCont.json?
 query-target=subtree&target-subtree-class=firmwareCtrlrRunning

 	

 query-target-filter=filter-expression

 		
 		
 This statement
 		 specifies a logical filter to be applied to the response. This statement can be
 		 used by itself or applied after the
 		 query-target
 		 statement.
 		

 	

 rsp-subtree={no
 		 | children | full}

 		
 		
 For objects
 		 returned, this option specifies whether child objects are included in the
 		 response. This list describes the available choices:
 		

 		

 	
 			
 no—(Default) Response includes no children.
 			

 		

 	
 			
 children—Response includes only the children.
 			

 		

 	
 			
 full—Response includes the entire structure
 				including the children.
 			

 		

 	

 rsp-subtree-class=mo-class

 		
 		
 When child objects
 		 are to be returned, this statement specifies that only child objects of the
 		 specified object class are included in the response.
 		

 	

 rsp-subtree-filter=filter-expression

 		
 		
 When child objects
 		 are to be returned, this statement specifies a logical filter to be applied to
 		 the child objects.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 When an
 			 rsp-subtree-filter query statement includes a
 			 class.property
 			 operand, the specified class name is used only to identify the property and its
 			 type. The returned results are not filtered by class, and may include any child
 			 object that contains a property of the same name but belonging to a different
 			 class if that object's property matches the query condition. To filter by
 			 class, you must use additional query filters.
 		

 		

 	

 rsp-subtree-include=category1[,category2...][option]

 		
 		
 When child objects
 		 are to be returned, this statement specifies additional contained objects or
 		 options to be included in the response. You can specify one or more of the
 		 following categories in a comma-separated list with no spaces:
 		

 		

 	
 			
 audit-logs—Response includes subtrees with the
 				history of user modifications to managed objects.
 			

 		

 	
 			
 event-logs—Response includes subtrees with event
 				history information.
 			

 		

 	
 			
 faults—Response includes subtrees with currently
 				active faults.
 			

 		

 	
 			
 fault-records—Response includes subtrees with
 				fault history information.
 			

 		

 	
 			
 health—Response includes subtrees with current
 				health information.
 			

 		

 	
 			
 health-records—Response includes subtrees with
 				health history information.
 			

 		

 	
 			
 relations—Response includes relations-related
 				subtree information.
 			

 		

 	
 			
 stats—Response includes statistics-related subtree
 				information.
 			

 		

 	
 			
 tasks—Response includes task-related subtree
 				information.
 			

 		

 		
 With any of the
 		 preceding categories, you can also specify one of the following options to
 		 further refine the query results:
 		

 		

 	
 			
 count—Response includes a count of matching
 				subtrees but not the subtrees themselves.
 			

 		

 	
 			
 no-scoped—Response includes only the requested
 				subtree information. Other top-level information of the target MO is not
 				included in the response.
 			

 		

 	
 			
 required—Response includes only the managed
 				objects that have subtrees matching the specified category.
 			

 		

 		
 For example, to
 		 include fault-related subtrees, specify
 		 faults in the
 		 list. To return only fault-related subtrees and no other top-level MO
 		 information, specify
 		 faults,no-scoped in the list as shown in this
 		 example:
 		

 		
query-target=subtree&rsp-subtree-include=faults,no-scoped

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Some types of
 			 child objects are not created until the parent object has been pushed to a
 			 fabric node (leaf). Until such a parent object has been pushed to a fabric
 			 node, a query on the parent object using the
 			 rsp-subtree-include filter might return no
 			 results. For example, a class query for
 			 fvAEPg that includes the query option
 			 rsp-subtree-include=stats will return stats only for
 			 endpoint groups that have been applied to a tenant and pushed to a fabric node.
 			
 		

 		

 	

 rsp-prop-include={all | naming-only | config-only}

 		
 		
 This statement
 		 specifies what type of properties should be included in the response when the
 		 rsp-subtree
 		 option is used with an argument other than
 		 no.
 		

 		

 	
 			
 all—Response
 				includes all properties of the returned managed objects.
 			

 		

 	
 			
 naming-only—Response includes only the naming
 				properties of the returned managed objects.
 			

 		

 	
 			
 config-only—Response includes only the
 				configurable properties of the returned managed objects.
 			

 			

 	[image: ../images/note.gif]
Note
 	

 				
 If the
 				 managed object is not configurable or cannot be exported (backed up), the
 				 managed object is not returned.
 				

 			

 		

 	

 Related Concepts

 Composing Query Filter Expressions

 Related References

 Example: Using the JSON API to Get Running Firmware

 Filtering API Query
 	 Results

 You can filter the
 		results of an API query by appending one or more condition statements to the
 		query URI as a parameter in this format:
 	

https://URI?condition[&condition[&...]]

 Multiple condition
 		statements are joined by an ampersand (&).
 	

 	[image: ../images/note.gif]
Note
 	

 		
 The condition
 		 statement must not contain spaces.
 		

 	

 Options are available
 		to filter by object attributes and object subtrees.
 	

 Filter Conditional
 	 Operators

 		
 		
 The query filtering
 		 feature supports the following condition operators:
 		

 		

 	Operator
 				

 	Description
 				

 	eq
 				

 	
 					
 Equal to
 					

 				

 	ne
 				

 	
 					
 Not equal
 						to
 					

 				

 	lt
 				

 	
 					
 Less than
 					

 				

 	gt
 				

 	
 					
 Greater
 						than
 					

 				

 	le
 				

 	
 					
 Less than
 						or equal to
 					

 				

 	ge
 				

 	
 					
 Greater
 						than or equal to
 					

 				

 	bw
 				

 	
 					
 Between
 					

 				

 	not
 				

 	
 					
 Logical
 						inverse
 					

 				

 	and
 				

 	
 					
 Logical
 						AND
 					

 				

 	or
 				

 	
 					
 Logical OR
 					

 				

 	xor
 				

 	
 					
 Logical
 						exclusive OR
 					

 				

 	true
 				

 	
 					
 Boolean
 						TRUE
 					

 				

 	false
 				

 	
 					
 Boolean
 						FALSE
 					

 				

 	anybit
 				

 	
 					
 TRUE if at
 						least one bit is set
 					

 				

 	allbits
 				

 	
 					
 TRUE if
 						all bits are set
 					

 				

 	wcard
 				

 	
 					
 Wildcard
 					

 				

 	pholder
 				

 	
 					
 Property
 						holder
 					

 				

 	passive
 				

 	
 					
 Passive
 						holder
 					

 				

 	

 Sorting and
 	 Paginating Query Results

 When sending an API
 		query that returns a large quantity of data, you can have the return data
 		sorted and paginated to make it easier to find the information you need.
 	

 Sorting the
 		 Results

 		
 		
 By adding the
 		 order-by operator to the query URI, you can sort the
 		 query response by one or more properties of a class, and you can specify the
 		 direction of the order using the following syntax.
 		

 		

 order-by=classname.property [| { asc | desc }] [,classname.property [| { asc | desc }]] [,...]

 		
 Use the optional
 		 pipe delimiter ('|') to specify either ascending order (asc) or descending
 		 order (desc). If no order is specified, the default is
 		 ascending order.
 		

 		
 You can perform a
 		 multi-level sort by more than one property (for example, last name and first
 		 name), but all properties must be of the same MO or they must be inherited from
 		 the same abstract class.
 		

 		
 This example shows
 		 you how to sort users by last name, then by first name:
 		

 		
GET https://apic-ip-address/api/class/aaaUser.json?order-by=aaaUser.lastName|asc,aaaUser.firstName|asc

 	

 Paginating the
 		 Results

 		
 		
 By adding the
 		 page-size operator to the query URI, you can divide the
 		 query results into groups (pages) of objects using the following syntax. The
 		 operand specifies the number of objects in each group.
 		

 		

 page-size=number-of-objects-per-page

 		
 By adding the
 		 page
 		 operator in the query URI, you can specify a single group to be returned using
 		 the following syntax. The pages start from number 0.
 		

 		

 page=page-number

 		
 This example shows
 		 you how to specify 15 fault instances per page in descending order, returning
 		 only the first page:
 		

 		
GET https://apic-ip-address/api/class/faultInfo.json?order-by=faultInst.severity|desc&page=0&page-size=15

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Every query,
 			 whether paged or not, generates a new set of results. When you perform a query
 			 that returns only a single page, the query response includes a count of the
 			 total results, but the unsent pages are not stored and cannot be retrieved by a
 			 subsequent query. A subsequent query generates a new set of results and returns
 			 the page requested in that query.
 		

 		

 	

 Subscribing to Query
 	 Results

 When you perform an
 		API query, you have the option to create a subscription to any future changes
 		in the results of that query that occur during your active API session. When
 		any MO is created, changed, or deleted because of a user- or system-initiated
 		action, an event is generated. If that event changes the results of an active
 		subscribed query, the
 		APIC generates a push notification to the
 		API client that created the subscription.
 	

 Opening a
 		 WebSocket

 		
 		
 The API subscription
 		 feature uses the WebSocket protocol (RFC 6455) to implement a two-way
 		 connection with the API client through which the API can send unsolicited
 		 notification messages to the client. To establish this notification channel,
 		 you must first open a WebSocket connection with the API. Only a single
 		 WebSocket connection is needed to support multiple query subscriptions with
 		 multiple
 		 APIC instances. The
 		 WebSocket connection is dependent on your API session connection, and closes
 		 when your API session ends.
 		

 		
 The WebSocket
 		 connection is typically opened by a JavaScript method in an HTML5-compliant
 		 browser, as in the following example:
 		

 		
var Socket = new WebSocket(https://apic-ip-address/socket%TOKEN%);

 		In the URI, the
 		 %TOKEN% is the
 		 current API session token (cookie). This example shows the URI with a token:
 		

 		
https://apic-ip-address/socketGkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6X
l83lyoR4bLBzqbSSU1R2NIgUotCGWjZt5JX6CJF0=

 		 After the WebSocket
 		 connection is established, it is not necessary to resend the API session token
 		 when the API session is refreshed.
 		

 	

 Creating a
 		 Subscription

 		
 		
 To create a
 		 subscription to a query, perform the query with the option
 		 ?subscription=yes. This example creates a subscription
 		 to a query of the fv:Tenant class in the JSON format:
 		

 		
GET https://apic-ip-address/api/class/fvTenant.json?subscription=yes

 		The query response
 		 contains a subscription identifier,
 		 subscriptionId,
 		 that you can use to refresh the subscription and to identify future
 		 notifications from this subscription.
 		

 		
{
 "subscriptionId" : "72057611234574337",
 "imdata" : [{
 "fvTenant" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "",
 "dn" : "uni/tn-common",
 "lcOwn" : "local",
 "monPolDn" : "",
 "name" : "common",
 "replTs" : "never",
 "status" : ""
 }
 }
 }
]
}

 	

 Receiving
 		 Notifications

 		
 		
 An event
 		 notification from the subscription delivers a data structure that contains the
 		 subscription ID and the MO description. In this JSON example, a new user has
 		 been created with the name "sysadmin5":
 		

 		
{
 "subscriptionId" : ["72057598349672454", "72057598349672456"],
 "imdata" : [{
 "aaaUser" : {
 "attributes" : {
 "accountStatus" : "active",
 "childAction" : "",
 "clearPwdHistory" : "no",
 "descr" : "",
 "dn" : "uni/userext/user-sysadmin5",
 "email" : "",
 "encPwd" : "TUxISkhH$VHyidGgBX0r7N/srt/YcMYTEn5248ommFhNFzZghvAU=",
 "expiration" : "never",
 "expires" : "no",
 "firstName" : "",
 "intId" : "none",
 "lastName" : "",
 "lcOwn" : "local",
 "name" : "sysadmin5",
 "phone" : "",
 "pwd" : "",
 "pwdLifeTime" : "no-password-expire",
 "pwdSet" : "yes",
 "replTs" : "2013-05-30T11:28:33.835",
 "rn" : "",
 "status" : "created"
 }
 }
 }
]
}

 		Because multiple
 		 active subscriptions can exist for a query, a notification can contain multiple
 		 subscription IDs as in the example shown.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Notifications are
 			 supported in either JSON or XML format.
 		

 		

 	

 Refreshing the
 		 Subscription

 		
 		
 To continue to
 		 receive event notifications, you must periodically refresh each subscription
 		 during your API session. To refresh a subscription, send an HTTP GET message to
 		 the API method
 		 subscriptionRefresh with the parameter
 		 id equal to the
 		
 		 subscriptionId
 		 as in this example:
 		

 		
GET https://apic-ip-address/api/subscriptionRefresh.json?id=72057611234574337

 		The API returns an
 		 empty response to the refresh message unless the subscription has expired.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 The timeout period
 			 for a subscription is one minute. To prevent lost notifications, you must send
 			 a subscription refresh message at least once every 60 seconds.
 		

 		

 	

 Information About
 	 the API Examples

 In the examples, the
 		JSON and XML structures have been expanded with line feeds, spaces, and
 		indentations for readability.
 	

 Example: Using the
 	 JSON API to Add a Leaf Port Selector Profile

 		
 This example shows
 		 how to add a leaf port selector profile.
 		

 		
 As shown in the
 		 Cisco APIC Management Information Model Reference, this hierarchy of classes forms a
 		 leaf port selector profile:
 		

 		

 	
 			
 fabric:LePortP
 				— A leaf port profile is represented by a managed object (MO) of this class,
 				which has a distinguished name (DN) format of
 				uni/fabric/leportp-[name], in which
 				leportp-[name] is the relative name (RN). The leaf
 				port profile object is a template that can contain a leaf port selector as a
 				child object.
 			

 			

 	
 				
 fabric:LFPortS — A leaf port selector is represented by an MO of
 					 this class, which has a RN format of
 					 lefabports-[name]-typ-[type]. The
 					 leaf port selector object can contain one or more ports or ranges of ports as
 					 child objects.
 				

 				

 	
 						

 						 fabric:PortBlk — A leaf port or a range of leaf ports is represented by an MO
 						 of this class, which has a RN format of
 						 portblk-[name].
 						

 					

 				

 		

 		
 The API command that
 		 creates the new leaf port selector profile MO can also create and configure the
 		 child MOs.
 		

 		
 This example creates
 		 a leaf port selector profile with the name "MyLPSelectorProf." The example
 		 profile contains a selector named "MySelectorName" that selects leaf port 1 on
 		 leaf switch 1 and leaf ports 3 through 5 on leaf switch 1. To create and
 		 configure the new profile, send this HTTP POST message:
 		

 		
POST http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

{
 "fabricLePortP" : {
 "attributes" : {
 "descr" : "Selects leaf ports 1/1 and 1/3-5"
 },
 "children" : [{
 "fabricLFPortS" : {
 "attributes" : {
 "name" : "MySelectorName",
 "type" : "range"
 },
 "children" : [{
 "fabricPortBlk" : {
 "attributes" : {
 "fromCard" : "1",
 "toCard" : "1",
 "fromPort" : "1",
 "toPort" : "1",
 "name" : "block2"
 }
 }
 }, {
 "fabricPortBlk" : {
 "attributes" : {
 "fromCard" : "1",
 "toCard" : "1",
 "fromPort" : "3",
 "toPort" : "5",
 "name" : "block3"
 }
 }
 }
]
 }
 }
]
 }
}

 		A successful
 		 operation returns this response body:
 		

 		
{
 "imdata" : [{
 "fabricLePortP" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "deleteNonPresent",
 "descr" : "Select leaf ports 1/1 and 1/3-5",
 "dn" : "uni/fabric/leportp-MyLPSelectorProf",
 "lcOwn" : "local",
 "name" : "MyLPSelectorProf",
 "replTs" : "never",
 "rn" : "",
 "status" : "created"
 },
 "children" : [{
 "fabricLFPortS" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "deleteNonPresent",
 "dn" : "",
 "lcOwn" : "local",
 "name" : "MySelectorName",
 "replTs" : "never",
 "rn" : "lefabports-MySelectorName-typ-range",
 "status" : "created",
 "type" : "range"
 },
 "children" : [{
 "fabricPortBlk" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "deleteNonPresent",
 "dn" : "",
 "fromCard" : "1",
 "fromPort" : "3",
 "lcOwn" : "local",
 "name" : "block3",
 "replTs" : "never",
 "rn" : "portblk-block3",
 "status" : "created",
 "toCard" : "1",
 "toPort" : "5"
 }
 }
 }, {
 "fabricPortBlk" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "deleteNonPresent",
 "dn" : "",
 "fromCard" : "1",
 "fromPort" : "1",
 "lcOwn" : "local",
 "name" : "block2",
 "replTs" : "never",
 "rn" : "portblk-block2",
 "status" : "created",
 "toCard" : "1",
 "toPort" : "1"
 }
 }
 }
]
 }
 }
]
 }
 }
]
}

 		To delete the new
 		 profile, send an HTTP POST message with a fabricLePortP attribute of
 		 "status":"deleted", as in this example:
 		

 		
POST http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

{
 "fabricLePortP" : {
 "attributes" : {
 "status" : "deleted"
 }
 }
}

 		Alternatively, you
 		 can send this HTTP DELETE message:
 		

 		
DELETE http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

 	

 Example: Using the
 	 JSON API to Get Information About a Node

 		
 This example shows
 		 how to query the
 		 APIC to access a node in
 		 the system.
 		

 		
 To direct an API
 		 operation to a specific node device in the fabric, the resource path consists
 		 of
 		 /mo/topology/pod-number/node-number/sys/ followed by the node component.
 		 For example, this URI accesses board sensor 3 in chassis slot B of node 1:
 		

 		
GET http://apic-ip-address/api/mo/topology/pod-1/node-1/sys/ch/bslot/board/sensor-3.json

 		A successful
 		 operation returns a response body similar to this example:
 		

 		
{
 "imdata" :
 [{
 "eqptSensor" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "",
 "dn" : "topology/pod-1/node-1/sys/ch/bslot/board/sensor-3",
 "id" : "3",
 "majorThresh" : "0",
 "mfgTm" : "not-applicable",
 "minorThresh" : "0",
 "model" : "",
 "monPolDn" : "",
 "rev" : "0",
 "ser" : "",
 "status" : "",
 "type" : "dimm",
 "vendor" : "Cisco Systems, Inc."
 }
 }
 }
]
}

 	

 Example: Using the
 	 JSON API to Get Running Firmware

 		
 This example shows
 		 how to query the
 		 APIC to determine which
 		 firmware images are running.
 		

 		
 The detailed information on running firmware is contained in an object of class firmware:CtrlrRunning, which is a child class
 (subtree) of the APIC firmware status container class firmware:CtrlrFwStatusCont. Because there can be multiple running firmware instances (one
 per APIC instance), you can query the container class and filter the response for the subtree of running firmware objects.

 		
 This example shows
 		 the API query message:
 		

 		
GET http://apic-ip-address/api/class/firmware:CtrlrFwStatusCont.json?
 query-target=subtree
 &
 target-subtree-class=firmwareCtrlrRunning

 		A successful
 		 operation returns a response body similar to this example:
 		

 		
{
 "imdata" : [{
 "firmwareCtrlrRunning" : {
 "attributes" : {
 "instanceId" : "0:0",
 "applId" : "3",
 "childAction" : "",
 "dn" : "Ctrlrfwstatuscont/ctrlrrunning-3",
 "lcOwn" : "local",
 "replTs" : "never",
 "rn" : "",
 "status" : "",
 "ts" : "2012-12-31T16:00:00.000",
 "type" : "ifc",
 "version" : "1.1"
 }
 }
 }, {
 "firmwareCtrlrRunning" : {
 "attributes" : {
 "instanceId" : "0:0",
 "applId" : "1",
 "childAction" : "",
 "dn" : "ctrlrfwstatuscont/ctrlrrunning-1",
 "lcOwn" : "local",
 "replTs" : "never",
 "rn" : "",
 "status" : "",
 "ts" : "2012-12-31T16:00:00.000",
 "type" : "ifc",
 "version" : "1.1"
 }
 }
 }, {
 "firmwareCtrlrRunning" : {
 "attributes" : {
 "instanceId" : "0:0",
 "applId" : "2",
 "childAction" : "",
 "dn" : "ctrlrfwstatuscont/ctrlrrunning-2",
 "lcOwn" : "local",
 "replTs" : "never",
 "rn" : "",
 "status" : "",
 "ts" : "2012-12-31T16:00:00.000",
 "type" : "ifc",
 "version" : "1.1"
 }
 }
 }
]
}

 		This response
 		 describes three running instances of
 		 APIC firmware version
 		 1.1.
 		

 	

 Example: Using the
 	 JSON API to Get Top Level System Elements

 		
 This example shows
 		 how to query the
 		 APIC to determine what
 		 system devices are present.
 		

 		
 General information
 		 about the system elements (APICs, spines, and leafs)
 		 is contained in an object of class top:System.
 		

 		
 This example shows
 		 the API query message:
 		

 		
GET http://apic-ip-address/api/class/topSystem.json

 		A successful
 		 operation returns a response body similar to this example:
 		

 		
{
 "imdata" :
 [{
 "topSystem" : {
 "attributes" : {
 "instanceId" : "0:0",
 "address" : "10.0.0.32",
 "childAction" : "",
 "currentTime" : "2013-06-14T04:13:05.584",
 "currentTimeZone" : "",
 "dn" : "topology/pod-1/node-17/sys",
 "fabricId" : "0",
 "id" : "17",
 "inbMgmtAddr" : "0.0.0.0",
 "lcOwn" : "local",
 "mode" : "unspecified",
 "name" : "leaf0",
 "nodeId" : "0",
 "oobMgmtAddr" : "0.0.0.0",
 "podId" : "1",
 "replTs" : "never",
 "role" : "leaf",
 "serial" : "FOX-270308",
 "status" : "",
 "systemUpTime" : "00:00:02:03"
 }
 }
 }, {
 "topSystem" : {
 "attributes" : {
 "instanceId" : "0:0",
 "address" : "10.0.0.1",
 "childAction" : "",
 "currentTime" : "2013-06-14T04:13:29.301",
 "currentTimeZone" : "PDT",
 "dn" : "topology/pod-1/node-1/sys",
 "fabricId" : "0",
 "id" : "1",
 "inbMgmtAddr" : "0.0.0.0",
 "lcOwn" : "local",
 "mode" : "unspecified",
 "name" : "apic0",
 "nodeId" : "0",
 "oobMgmtAddr" : "0.0.0.0",
 "podId" : "0",
 "replTs" : "never",
 "role" : "apic",
 "serial" : "",
 "status" : "",
 "systemUpTime" : "00:00:02:26"
 }
 }
 }
]
}

 		This response
 		 indicates that the system consists of one
 		 APIC (node-1) and one
 		 leaf (node-17).
 		

 	

 Example: Using the XML API and OwnerTag to Add Audit Log Information
 	 to Actions

 		
 This example shows how to use the
 		 ownerTag or
 		 ownerKey property to add custom audit log
 		 information when an object is created or modified.
 		

 		
 All configurable objects contain the properties
 		 ownerTag and
 		 ownerKey, which are user-configurable string
 		 properties. When any configurable object is created or modified by a user
 		 action, an audit log record object (aaa:ModLR) is
 		 automatically created to contain information about the change to be reported in
 		 the audit log. The audit log record object includes a list (the
 		 changeSet property) of the configured
 		 object's properties that were changed by the action. In the command to create
 		 or modify the configurable object, you can add your own specific tracking
 		 information, such as a job ticket number or the name of the person making the
 		 change, to the
 		 ownerTag or
 		 ownerKey property of the configurable object.
 		 This tracking information will then be included in the audit log record along
 		 with the details of the change.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 The
 			 ownerTag information will appear in the log
 			 only when the
 			 ownerTag contents have been changed. To
 			 include the same information in a subsequent configuration change, you can
 			 clear the
 			 ownerTag contents before making the next
 			 configuration change. This condition applies also to the
 			 ownerKey property.
 		

 		

 		
 In the following example, a domain reference is added to a tenant
 		 configuration. As part of the command, the operator's name is entered as the
 		 ownerKey and a job number is entered as the
 		 ownerTag.
 		

 		
POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name=“ExampleCorp" ownerKey=“georgewa" ownerTag=“chg:00033">
 <aaaDomainRef name=“ExampleDomain" ownerKey=“georgewa" ownerTag="chg:00033"/>
</fvTenant>

 		In this case, two
 		 aaa:ModLR records are generated — one for the
 		
 		 fv:Tenant object and one for the
 		 aaa:DomainRef object. Unless the
 		 ownerKey or
 		 ownerTag properties are unchanged from a
 		 previous configuration, their new values will appear in the
 		 changeSet list of the
 		 aaa:ModLR records, and this information will
 		 appear in the audit log record that reports this configuration change.
 		

 	

 Example: XML Get Endpoints (Devices) with IP and MAC Addresses

 The fvCEp class can be used to derive a list of endpoints (devices) attached to the fabric and the associated IP and MAC address
 and the encapsulation for each object.

Procedure

 	
 Use an XML query, such as the following example, to get a list of endpoints with the IP and MAC address for each one:

Example:
 GET https://apic-ip-address/api/node/class/fvCEp.xml

 Example: Monitoring Using the REST API

 In the examples in this topic, the JSON and XML structures have been expanded with line feeds, spaces, and indentations for
 readability.

 XML Example: Get the Current List of Faults in the Fabric

 You can use the faultInst class to derive all faults associated with the fabric, tenant, or individual managed objects within the APIC. Send a query
 with XML such as this example: GET https://apic-ip-address/api/node/class/faultInst.xml?
query-target-filter=and(eq(faultInst.cause,"config-failure"))

 XML Example: Get the Current List of Faults in the Fabric That Were Caused by a Failed Configuration

 You can also use the fault Inst class with filters to limit the response to faults that were caused by a failed configuration, with XML such as this example:

 GET https://apic-ip-address/api/node/class/faultInst.xml?
query-target-filter=and(e(stultification,"config-failure"))

 XML Example: Get the Properties for a Specific Managed Object, DN

 You can use a MO query to obtain the properties of the tenant name, with XML such as the following example:

 GET https://apic-ip-address/api/node/mo/uni/tn-common.xml?query-target=self

 Accessing the REST
 	 API

Procedure

 	
 By using a script or a browser-based REST client, you can send an API POST or GET message of the form: https://apic-ip-address/api/api-message-url
 				
 					
 Use the out-of-band management IP address that you configured during the initial setup.

 					

 	Note

 	
 						

 	
 								
 Only https is enabled by default. By default, http and http-to-https redirection are disabled.

 							

 	
 								
 You must send an authentication message to initiate an API session. Use the administrator login name and password that you
 configured during the initial setup.

 							

 					

 				

 Invoking the
 	 API

 You can invoke an API
 		function by sending an HTTP/1.1 or HTTPS POST, GET, or DELETE message to the
 		Application Policy Infrastructure Controller (APIC). The HTML body of the POST
 		message contains a Javascript Object Notation (JSON) or XML data structure that
 		describes an MO or an API method. The HTML body of the response message
 		contains a JSON or XML structure that contains requested data, confirmation of
 		a requested action, or error information.
 	

 	[image: ../images/note.gif]
Note
 	

The root element of
 		the response structure is imdata. This element is merely a container for the
 		response; it is not a class in the management information model (MIM).
 	

 Configuring the HTTP
 	 Request Method and Content Type

 API commands and
 		queries must use the supported HTTP or HTTPS request methods and header fields,
 		as described in the following sections.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 For
 				 security, only HTTPS is enabled as the default mode for API communications.
 				HTTP and HTTP-to-HTTPS redirection can be enabled if desired, but are less
 				secure. For simplicity, this document refers to HTTP in descriptions of
 				protocol components and interactions.
 			

 	

 Request
 		 Methods

 		
 		
 The API supports
 		 HTTP POST, GET, and DELETE request methods as follows:
 		

 		

 	
 			
 An API command
 				to create or update an MO, or to execute a method, is sent as an HTTP POST
 				message.
 			

 		

 	
 			
 An API query to
 				read the properties and status of an MO, or to discover objects, is sent as an
 				HTTP GET message.
 			

 		

 	
 			
 An API command
 				to delete an MO is sent as either an HTTP POST or DELETE message. In most
 				cases, you can delete an MO by setting its status to deleted in a POST
 				operation.
 			

 		

 		
 Other HTTP methods,
 		 such as PUT, are not supported.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Although the DELETE method is supported, the HTTP header might show only these: Access-Control-Allow-Methods: POST, GET, OPTIONS

 		

 	

 Content
 		 Type

 		
 		
 The API supports
 		 either JSON or XML data structures in the HTML body of an API request or
 		 response. You must specify the content type by terminating the URI pathname
 		 with a suffix of either .json or .xml to indicate the format to be used. The
 		 HTTP
 		 Content-Type
 		 and
 		 Accept headers
 		 are ignored by the API.
 		

 	

 Configuring HTTP and
 	 HTTPS Using the GUI

 		
 This procedure configures the supported communication protocol for
 		 access to the GUI and the REST API.
 		

 		
 By default, only HTTPS is enabled.
 		 HTTP or HTTP-to-HTTPS redirection, if desired, must be explicitly enabled and
 		 configured. HTTP and HTTPS can coexist.
 		

 	

Procedure

 	Step 1

 	On the menu bar, click
 			 FABRIC >
 			 Fabric Policies.
 		

 	Step 2

 	 In the
 			 Navigation pane, expand
 			 Pod Policies >
 			 Policies >
 			 Communication.
 		

 	Step 3

 	Under
 			 Communication, click the default policy.
 		

 	Step 4

 	In the
 			 Work pane, in the HTTP or HTTPS areas, enable or
 			 disable the protocol by selecting the desired state from the
 			 Admin State drop-down list.
 		

 	Step 5

 	In the HTTP area, enable or disable HTTP-to-HTTPS redirection by
 			 selecting the desired state from the
 			 Redirect drop-down list.
 		

 	Step 6

 	Click
 			 Submit.
 		

 Configuring a Custom
 	 Certificate for Cisco ACI HTTPS Access Using the GUI

 		
 CAUTION: PERFORM THIS TASK ONLY DURING A MAINTENANCE WINDOW AS THERE IS A POTENTIAL FOR DOWNTIME. The downtime affects access
 to the APIC cluster and switches from external users or systems and not the APIC to switch connectivity. The NGINX process
 on the switches will also be impacted but that will be only for external connectivity and not for the fabric data plane. Access
 to the APIC, configuration, management, troubleshooting and such will be impacted. Expect a restart of all web servers in
 the fabric during this operation.

 	

 Before You Begin

 		
 Determine from
 		 which authority you will obtain the trusted certification so that you can
 		 create the appropriate Certificate Authority.
 		

 	

Procedure

 	Step 1

 	On the menu bar, choose Admin > AAA.

 	Step 2

 	 In the Navigation pane, choose Public Key Management > Certificate Authorities.

 	Step 3

 	In the Work pane, choose Actions > Create Certificate Authority.

 	Step 4

 	In the Create Certificate Authority dialog box, in the Name field, enter a name for the certificate authority.

 	Step 5

 	In the Certificate Chain field, copy the intermediate and root certificates for the certificate authority that will sign the Certificate Signing Request
 (CSR) for the Application Policy Infrastructure Controller (APIC).
 					
 The certificate should be in Base64 encoded X.509 (CER) format. The intermediate certificate is placed before the root CA
 certificate. It should look similar to the following example: -----BEGIN CERTIFICATE-----
<Intermediate Certificate>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Root CA Certificate>
-----END CERTIFICATE-----

 					

 				

 	Step 6

 	Click Submit.

 	Step 7

 	In the Navigation pane, choose Public Key Management > Key Rings.

 	Step 8

 	In the Work pane, choose Actions > Create Key Ring.

 	Step 9

 	In the Create Key Ring dialog box, in the Name field, enter a name.

 	Step 10

 	In the Certificate field, do not add any content.

 	Step 11

 	In the Modulus field, click the radio button for the desired key strength.

 	Step 12

 	In the Certificate Authority field, from the drop-down list, choose the certificate authority that you created earlier. Click Submit.
 					

 	Note

 	
 						
 Do not delete the key ring. Deleting the key ring will automatically delete the associated private key used with CSRs.

 					

 				 In the Work pane, in the Key Rings area, the Admin State for the key ring created displays Started.

 	Step 13

 	In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.

 	Step 14

 	In the Work pane, choose Actions > Create Certificate Request.

 	Step 15

 	In the Subject field, enter the fully qualified domain name (FQDN) of the APIC.

 	Step 16

 	Fill in the remaining fields as appropriate.
 					

 	Note

 	
 						
 Check the online help information available in the Create Certificate Request dialog box for a description of the available parameters.

 					

 				

 	Step 17

 	Click Submit. The object is created and displayed in the Navigation pane under the key ring you created earlier. In the Navigation pane, click the object and in the Work pane, in the Properties area, in the Request field the CSR is displayed. Copy the contents from the field to submit to the Certificate Authority.

 	Step 18

 	In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.

 	Step 19

 	In the Work pane, in the Certificate field, paste the signed certificate that you received from the certificate authority.

 	Step 20

 	Click Submit.
 					

 	Note

 	
 						
 If the CSR was not signed by the Certificate Authority indicated in the key ring, or if the certificate has MS-DOS line endings,
 an error message is displayed and the certificate is not accepted. Remove the MS-DOS line endings.

 					

 				 The key is verified, and in the Work pane, the Admin State changes to Completed and is now ready for use in the HTTP policy.

 	Step 21

 	On the menu bar, choose Fabric > Fabric Policies.

 	Step 22

 	In the Navigation pane, choose Pod Policies > Policies > Management Access > default.

 	Step 23

 	In the Work pane, in the Admin Key Ring drop-down list, choose the desired key ring.

 	Step 24

 	Click Submit. All web servers restart. The certificate is activated, and the non-default key ring is associated with HTTPS access.

 What to Do Next

 		
 You must remain aware of the expiration date of the certificate and take action before it expires. To preserve the same key
 pair for the renewed certificate, you must preserve the CSR as it contains the public key that pairs with the private key
 in the key ring. Before the certificate expires, the same CSR must be resubmitted. Do not delete or create a new key ring
 as deleting the key ring will delete the private key stored internally on the APIC.

 	

 Authenticating and
 	 Maintaining an API Session

 Before you can access
 		the API, you must first log in with the name and password of a configured user.
 		
 	

 When a login message
 		is accepted, the API returns a data structure that includes a session timeout
 		period in seconds and a token that represents the session. The token is also
 		returned as a cookie in the HTTP response header. To maintain your session, you
 		must send login refresh messages to the API if no other messages are sent for a
 		period longer than the session timeout period. The token changes each time that
 		the session is refreshed.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 The default session
 		 timeout period is 300 seconds or 5 minutes.
 		

 	

 These API methods
 		enable you to manage session authentication:
 	

 	
 		
 aaaLogin—Sent as a POST message, this method logs
 			 in a user and opens a session. The message body contains an aaa:User object
 			 with the name and password attributes, and the response contains a session
 			 token and cookie. If multiple AAA login domains are configured, you must
 			 prepend the user's name with
 			 apic:domain\\.
 		

 		

 	
 		
 aaaRefresh—Sent as a GET message with no message
 			 body or as a POST message with the
 			 aaaLogin
 			 message body, this method resets the session timer. The response contains a new
 			 session token and cookie.
 		

 		

 	
 		
 aaaLogout—Sent as a POST message, this method logs
 			 out the user and closes the session. The message body contains an aaa:User
 			 object with the name attribute. The response contains an empty data structure.
 		

 		

 	
 		
 aaaListDomains—Sent as a GET message, this method
 			 returns a list of valid AAA login domains. You can send this message without
 			 logging in.
 		

 		

 You can call the
 		authentication methods using this syntax, specifying either JSON or XML data
 		structures:
 	

 { http | https } ://host [:port] /api/methodName. { json | xml }

 This example shows a
 		user login message that uses a JSON data structure:
 	

POST https://apic-ip-address/api/aaaLogin.json

{
 "aaaUser" : {
 "attributes" : {
 "name" : "georgewa",
 "pwd" : "paSSword1"
 }
 }
}

 This example shows
 		part of the response upon a successful login, including the token and the
 		refresh timeout period:
 	

RESPONSE:
{
 "imdata" : [{
 "aaaLogin" : {
 "attributes" : {
 "token" :
 "GkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
 Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3
 bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6Xl83lyoR4bLBzqbSSU1R2N
 IgUotCGWjZt5JX6CJF0=",
 "refreshTimeoutSeconds" : "300",
 "lastName" : "Washington",
 "firstName" : "George"
 },
 "children" : [{
 ...
[TRUNCATED]
 ...
}

 In the preceding
 		example, the
 		refreshTimeoutSeconds attribute indicates that the
 		session timeout period is 300 seconds.
 	

 This example shows how
 		to request a list of valid login domains:
 	

GET https://apic-ip-address/api/aaaListDomains.json

RESPONSE:
{
 "imdata": [{
 "name": "ExampleRadius"
 },
 {
 "name": "local",
 "guiBanner": "San Jose Fabric"
 }]
}

 In the preceding
 		example, the response data shows two possible login domains, 'ExampleRadius'
 		and 'local.' The following example shows a user login message for the
 		ExampleRadius login domain:
 	

POST https://apic-ip-address/api/aaaLogin.json

{
 "aaaUser" : {
 "attributes" : {
 "name" : "apic:ExampleRadius\\georgewa",
 "pwd" : "paSSword1"
 }
 }
}

 Requiring a
 	 Challenge Token for an API Session

 For stronger API
 		session security, you can require your session to use a challenge token. When
 		you request this feature during login, the API returns a token string that you
 		must include in every subsequent message to the API. Unlike the normal session
 		token, the challenge token is not stored as a cookie to be automatically
 		provided by your browser. Your API commands and queries must provide the
 		challenge token using one of the following methods:
 	

 	
 		
 The challenge
 			 token is sent as a 'challenge' parameter in the URI of your API message.
 		

 		

 	
 		
 The challenge
 			 token is part of the HTTP or HTTPS header using 'APIC-challenge'.
 		

 		

 To initiate a session
 		that requires a challenge token, include the URI parameter statement
 		?gui-token-request=yes in your login message, as shown
 		in this example:
 	

POST https://192.0.20.123/api/aaaLogin.json?gui-token-request=yes

 The response message
 		body contains an attribute of the form
 		"urlToken":"token",
 		where
 		token is a
 		long string of characters representing the challenge token. All subsequent
 		messages to the API during this session must include the challenge token, as
 		shown in this example where it is sent as a 'challenge' URI parameter:
 	

GET https://192.0.20.123/api/class/aaaUser.json?challenge=fa47e44df54562c24fef6601dc...

 This example shows how
 		the challenge token is sent as an 'APIC-challenge' field in the HTTP header:
 	

GET //api/class/aaaUser.json
 HTTP/1.1
 Host: 192.0.20.123
 Connection: keep-alive
 Accept: text/html,application/xhtml+xml,application/xml,application/json
 APIC-challenge: fa47e44df54562c24fef6601dcff72259299a077336aecfc5b012b036797ab0f
.
.
.

 Logging In

 You can log in to the
 		APIC REST API
 		by sending a valid username and password in a data structure to the
 		aaaLogin API
 		method, as described in
 		Authenticating and Maintaining an API Session.
 		Following a successful login, you must periodically refresh the session.
 	

 The following examples
 		show how to log in as an administrator, refresh the session during
 		configuration, and log out using XML and JSON.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 At this time, the
 		 aaaLogout
 		 method returns a response but does not end a session. Your session ends after a
 		 refresh timeout when you stop sending
 		 aaaRefresh
 		 messages.
 		

 	

 Changing Your Own
 	 User Credentials

 		
 When logged in to
 		 APIC, you can change your own user credentials, including your password, SSH
 		 key, and X.509 certificate. The following API methods are provided for changing
 		 the user credentials of the logged-in user:
 		

 		

 	
 			
 changeSelfPassword
 			

 		

 	
 			
 changeSelfSshKey
 			

 		

 	
 			
 changeSelfX509Cert
 			

 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Using these
 			 methods, you can change the credentials only for the account under which you
 			 are logged in.
 		

 		

 		
 The message body of
 		 each method contains the properties of the object to be modified. The
 		 properties are shown in the
 		 Cisco APIC Management Information Model Reference.
 		
 		

 	

 Changing Your Password

 		
 		
 To change your password, send the
 		 changeSelfPassword API method, which modifies the
 		 aaa:changePassword object. The following object
 		 properties are required in the message body:
 		

 		

 	
 			
 userName — Your login ID.
 			

 		

 	
 			
 oldPassword — Your current password.
 			

 		

 	
 			
 newPassword — Your new password.
 			

 		

 		
 This example, when
 		 sent by User1, changes the password for User1.
 		

 		
POST http://192.0.20.123/api/changeSelfPassword.json

{
 "aaaChangePassword" : {
 "attributes" : {
 "userName" : "User1",
 "oldPassword" : "p@$sw0rd",
 "newPassword" : "dr0ws$@p"
 }
 }
}

 		A successful
 		 operation returns an empty
 		 imdata element, as in this example:
 		

 		
{
 "totalCount" : "0",
 "imdata" : []
}

 	

 Changing Your SSH Key

 		
 		
 To change your SSH key, send the
 		 changeSelfSshKey API method, which modifies the
 		 aaa:changeSshKey object. The following object
 		 properties are required in the message body:
 		

 		

 	
 			
 userName — Your login ID.
 			

 		

 	
 			
 name — The symbolic name of the key. APIC
 				supports up to 32 SSH keys for a single user.
 			

 		

 	
 			
 data — Your new SSH key.
 			

 		

 		
 This example, when
 		 sent by User1, changes the SSH key for User1.
 		

 		
POST http://192.0.20.123/api/changeSelfSshKey.json

{
 "aaaChangeSshKey" : {
 "attributes" : {
 "userName" : "User1",
 "name" : "A",
 "data" : "ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAuKxY5E4we6uCR2z== key@example.com"
 }
 }
}

 		A successful operation returns an empty
 		 imdata element.
 		

 	

 Changing Your X.509 Certificate

 		
 		
 To change your X.509 certificate, send the
 		 changeSelfX509Cert API method, which modifies the
 		 aaa:changeX509Cert object. The following object
 		 properties are required in the message body:
 		

 		

 	
 			
 userName — Your login ID.
 			

 		

 	
 			
 name — The symbolic name of the certificate. APIC
 				supports up to 32 X.509 certificates for a single user.
 			

 		

 	
 			
 data — The entire data body of your new X.509
 				certificate.
 			

 		

 		
 This example, when
 		 sent by User1, changes the X.509 certificate for User1.
 		

 		
POST http://192.0.20.123/api/changeSelfX509Cert.json

{
 "aaaChangeX509Cert" : {
 "attributes" : {
 "userName" : "User1",
 "name" : "A",
 "data" : "-----BEGIN CERTIFICATE-----\nMIIE2TCCA8GgAwIBAgIKamlnsw

[EXAMPLE TRUNCATED]

 1BCIolblPFft6QKoSJFjB6thJksaE5/k3Npf\n-----END CERTIFICATE-----"
 }
 }
}

 		A successful operation returns an empty
 		 imdata element.
 		

 	

 Deleting an SSH Key or X.509 Certificate

 		
 		
 To delete a key or certificate, send the key or certificate change
 		 method with the name of the key or certificate to be deleted and with the data
 		 attribute blank.
 		

 		
 This example, when sent by User1, deletes the SSH key for User1.
 		

 		
POST http://192.0.20.123/api/changeSelfSshKey.json

{
 "aaaChangeSshKey" : {
 "attributes" : {
 "userName" : "User1",
 "name" : "A",
 "data" : ""
 }
 }
}

 		A successful operation returns an empty
 		 imdata element.
 		

 	

 Management
 	 Information Model Reference

 The Management Information Model (MIM) contains all of the managed objects in the system and their properties. For details,
 see the Cisco APIC Management Information Model Reference Guide.

 See the following figure for an example of how an administrator can use the MIM to research an object in the MIT.
 MIM Reference

[image: ../images/348553.jpg]

 		

 Viewing an API
 	 Interchange in the GUI

 		
 When you perform a
 		 task in the
 		 APIC
 		 graphical user interface (GUI), the GUI creates and sends internal API messages
 		 to the operating system to execute the task. By using the
 		 API
 				 Inspector, which is a built-in tool of the
 		 APIC, you can view and copy these API
 		 messages. A network administrator can replicate these messages in order to
 		 automate key operations, or you can use the messages as examples to develop
 		 external applications that will use the API. .
 		

 	

Procedure

 	Step 1

 	Log in to the
 			 APIC GUI.
 		

 	Step 2

 	In the upper
 			 right corner of the
 			 APIC window, click the "welcome,
 			 <name>" message to view the drop-down list.
 		

 	Step 3

 	In the drop-down
 			 list, choose the
 			 Show API
 				Inspector.
 		
 			
 The
 				API
 				 Inspector opens in a new browser window.
 			

 		

 	Step 4

 	In the
 			 Filters toolbar of the
 			 API
 				Inspector window, choose the types of API log messages to display.
 		
 			
 The displayed
 				messages are color-coded according to the selected message types. This table
 				shows the available message types:
 			

 			

 	Name

 	Description

 	trace

 	Displays trace messages.

 	debug

 	Displays debug messages. This type includes most API commands and responses.

 	info

 	Displays informational messages.

 	warn

 	Displays warning messages.

 	error

 	Displays error messages.

 	fatal

 	Displays fatal messages.

 	all

 	Checking this checkbox causes all other checkboxes to become checked. Unchecking any other checkbox causes this checkbox
 to be unchecked.

 		

 	Step 5

 	In the
 			 Search toolbar, you can search the displayed messages
 			 for an exact string or by a regular expression.
 		
 			
 This table shows
 				the search controls:
 			

 			

 	Name

 	Description

 	Search

 	In this text box, enter a string for a direct search or enter a regular expression for a regex search. As you type, the first
 matched field in the log list is highlighted.

 	Reset

 	Click this button to clear the contents of the Search text box.

 	Regex

 	Check this checkbox to use the contents of the Search text box as a regular expression for a search.

 	Match case

 	Check this checkbox to make the search case sensitive.

 	Disable

 	Check this checkbox to disable the search and clear the highlighting of search matches in the log list.

 	Next

 	Click this button to cause the log list to scroll to the next matched entry. This button appears only when a search is active.

 	Previous

 	Click this button to cause the log list to scroll to the previous matched entry. This button appears only when a search is
 active.

 	Filter

 	Check this checkbox to hide nonmatched lines. This checkbox appears only when a search is active.

 	Highlight all

 	Check this checkbox to highlight all matched fields. This checkbox appears only when a search is active.

 		

 	Step 6

 	In the
 			 Options toolbar, you can arrange the displayed
 			 messages.
 		
 			
 This table shows
 				the available options:
 			

 			

 	Name

 	Description

 	Log

 	Check this checkbox to enable logging.

 	Wrap

 	Check this checkbox to enable wrapping of lines to avoid horizontal scrolling of the log list

 	Newest at the top

 	Check this checkbox to display log entries in reverse chronological order.

 	Scroll to latest

 	Check this checkbox to scroll immediately to the latest log entry.

 	Clear

 	Click this button to clear the log list.

 	Close

 	Click this button to close the API Inspector.

 		

 Example

 		
 		
 This example shows
 		 two debug messages in the
 		 API
 				 Inspector window:
 		

 		
13:13:36 DEBUG - method: GET url: http://192.0.20.123/api/class/infraInfra.json
response: {"imdata":[{"infraInfra":{"attributes":{"instanceId":"0:0","childAction":"",
"dn":"uni/infra","lcOwn":"local","name":"","replTs":"never","status":""}}}]}

13:13:40 DEBUG - method: GET url: http://192.0.20.123/api/class/l3extDomP.json?
query-target=subtree&subscription=yes
response: {"subscriptionId":"72057598349672459","imdata":[]}

 	

 Testing the API
 	 Using Browser Add-Ons

 Using a
 		 Browser

 		
 		
 To test an API
 		 request, you can assemble an HTTP message, send it, and inspect the response
 		 using a browser add-on utility. RESTful API clients, which are available as
 		 add-ons for most popular browsers, provide a user-friendly interface for
 		 interacting with the API. Clients include the following:
 		

 		

 	
 			
 For
 				Firefox/Mozilla—Poster, RESTClient
 			

 		

 	
 			
 For
 				Chrome—Advanced REST client, Postman
 			

 		

 		
 Browser add-ons pass the session token as a cookie so that there is no
 		 need to include the token in the payload data structure.
 		

 	

 Testing the API with
 	 cURL

 		
 You can send API
 		 messages from a console or a command-line script using cURL, which is a tool
 		 for transferring files using URL syntax.
 		

 		
 To send a POST
 		 message, create a file that contains the JSON or XML command body, and then
 		 enter the cURL command in this format:
 		

 		
curl -X POST --data "@<filename>" <URI>

 		You must specify the
 		 name of your descriptor file and the URI of the API operation.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Make sure to
 			 include the "@" symbol before the descriptor filename.
 		

 		

 		
 This example creates
 		 a new tenant named ExampleCorp using the JSON data structure in the file
 		 "newtenant.json":
 		

 		
curl -X POST --data "@newtenant.json" https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

 		To send a GET
 		 message, enter the cURL command in this format:
 		

 		
curl -X GET <URI>

 		This example reads
 		 information about a tenant in JSON format:
 		

 		
curl -X GET https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

 		

 	[image: ../images/note.gif]
Note
 	

When testing with
 		 cURL, you must log in to the API, store the authentication token, and include
 		 the token in subsequent API operations.
 		

 	

 Related References

 Example: Using the JSON API to Add a User with cURL

 Cisco APIC Python SDK

 The Python API provides a Python programming interface to the underlying REST API, allowing you to develop your own applications
 to control the APIC and the network fabric, enabling greater flexibility in infrastructure automation, management, monitoring
 and programmability.

 The Python API supports Python version 2.7.

 For more information, see Cisco APIC Python SDK Documentation, Installing the Cisco APIC Python SDK and http:/​/​www.python-requests.org.

 Using the Managed Object Browser (Visore)

 The Managed Object
 		Browser, or Visore, is a utility built into the
 		APIC that provides a graphical view of the
 		managed objects (MOs) using a browser. The Visore utility uses the
 		APIC REST API query methods to browse MOs active in
 		the
 		Application Centric
 				 Infrastructure fabric, allowing you to see the query that
 		was used to obtain the information. The Visore utility cannot be used to
 		perform configuration operations.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 Only the Firefox,
 		 Chrome, and Safari browsers are supported for Visore access.
 		

 	

 Visore Browser
 	 Page

 Filter
 		 Area

 		
 		
 The filter form is
 		 case sensitive. This area supports all simple
 		 APIC REST API query operations.
 		

 		

 	Name
 				

 	Description
 				

 	
 					

 						Class or DN field
 					

 				

 	
 					
 Object
 						class name or fully distinguished name of a managed object.
 					

 				

 	
 					

 						Property field
 					

 				

 	
 					
 The
 						property of the managed object on which you want to filter the results. If you
 						leave the
 						Property field empty, the search returns all
 						instances of the specific class.
 					

 				

 	
 					
 Op drop-down list
 						
 					

 				

 	
 					
 Operator
 						for the values of the property on which you want to filter the results. The
 						following are valid operators:
 					

 					

 	
 						
 == (equal to)
 						

 						

 	
 						
 != (not equal to)
 						

 						

 	
 						
 < (less than)
 						

 						

 	
 						
 > (greater than)
 						

 						

 	
 						
 ≤ (less than or equal to)
 						

 						

 	
 						
 ≥ (greater than or equal to)
 						

 						

 	
 						
 between
 						

 						

 	
 						
 wildcard
 						

 						

 	
 						
 anybit
 						

 						

 	
 						
 allbits
 						

 						

 				

 	
 					
 Val1 field
 					

 				

 	
 					
 The first
 						value for the property on which you want to filter.
 					

 				

 	
 					
 Val2 field
 					

 				

 	
 					
 The second
 						value on which you want to filter.
 					

 				

 	

 Display XML of Last
 			 Query Link

 		
 		
 The
 		 Display
 			 XML of last query link displays the full
 		 APIC REST API translation of the
 		 most recent query run in Visore.
 		

 	

 Results
 		 Area

 		
 		
 You can bookmark any
 		 query results page in your browser to view the results again because the query
 		 is encoded in the URL.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Many of the
 			 managed objects are only used internally and are not generally applicable to
 			 APIC REST API program development.
 			
 		

 		

 		

 	Name
 				

 	Description
 				

 	
 					
 Pink
 						background
 					

 				

 	
 					
 Separates
 						individual managed object instances and displays the class name of the object
 						below it.
 					

 				

 	
 					
 Blue or
 						green background
 					

 				

 	
 					
 Indicates
 						the property names of the managed object.
 					

 				

 	
 					
 Yellow
 						or beige background
 					

 				

 	
 					
 Indicates the value of a property name.
 					

 				

 	
 					

 						dn property
 					

 				

 	
 					
 Absolute
 						address of each managed object in the object model.
 					

 				

 	
 					

 						dn link
 					

 				

 	
 					
 When
 						clicked, displays all managed objects with that dn.
 					

 				

 	
 					

 						 Class name link
 					

 				

 	
 					
 When
 						clicked, displays all managed objects of that class.
 					

 				

 	
 					
 Left arrow
 					

 				

 	
 					
 When
 						clicked, takes you to the parent object of the managed object.
 					

 				

 	
 					
 Right arrow
 					

 				

 	
 					
 When
 						clicked, takes you to the child objects of the managed object.
 					

 				

 	
 					
 Question mark
 					

 				

 	
 					
 Links
 						you to the XML API documentation for the managed object.
 					

 				

 	

 Accessing
 	 Visore

Procedure

 	Step 1

 	Open a supported
 			 browser and enter the URL of the
 			 APIC followed by
 			 /visore.html.
 		

Example:
 			
https://apic-ip-address/visore.html

 		

 	Step 2

 	When prompted,
 			 log in using the same credentials you would use to log in to the
 			 APIC CLI or GUI user interfaces.
 		
 			
 You can use a
 				read-only account.
 			

 		

 Running a Query in
 	 Visore

Procedure

 	Step 1

 	 Enter a class
 			 or DN name of the MO in the
 			 Class or
 				DN text box.
 		

 	Step 2

 	(Optional)You can filter
 			 the query by entering a property of the MO in the
 			 Property text box, an operator in the
 			 Op text box, and one or two values in the
 			 Val1 and
 			 Val2 text boxes.
 		

 	Step 3

 	Click
 			 Run
 				Query.
 		
 			
 Visore sends a
 				query to the
 				APIC and the requested MO is displayed in a
 				tabular format.
 			

 		

 	Step 4

 	(Optional)Click the
 			 Display
 				URI of last query link to display the API call that executed the
 			 query.
 		

 	Step 5

 	(Optional)Click the
 			 Display
 				last response link to display the API response data structure from
 			 the query.
 		

 	Step 6

 	(Optional)In the
 			 dn field of the MO description table, click the
 			 < and
 			 > icons to retrieve the parent and child classes
 			 of the displayed MO.
 		
 			
 Clicking
 				> sends a query to the
 				APIC for the children of the MO. Clicking
 				< sends a query for the parent of the MO.
 			

 		

 	Step 7

 	(Optional)In the
 			 dn field of the MO description table, click the
 			 additional icons to display statistics, faults, or health information for the
 			 MO.
 		

 Part II. Part 2: Common APIC Tasks Using the REST API

 	Managing APIC Using the REST API

 	Managing Roles, Users, and Signature-Based Transactions

 	Common Tenant Tasks

 	Managing Layer 2 Networking

 	Managing Layer 3 Networking

 	Monitoring Using the REST API

 	Troubleshooting Using the REST API

 Chapter 2. Managing APIC Using the REST API

 In-Band and
 	 Out-of-Band Management Access

 The mgmt tenant
 		provides a convenient means to configure access to fabric management functions.
 		While fabric management functions are accessible through the
 		APIC, they can also be accessed directly
 		through in-band and out-of-band network policies.
 	

 About Static
 	 Management Access

 Configuring static
 		in-band and out-of-band management connectivity is simpler than configuring
 		dynamic in-band and out-of-band management connectivity. When configuring
 		in-band static management, you must specify the IP address for each node and
 		make sure to assign unique IP addresses. For simple deployments where users
 		manage the IP addresses of a few leaf and spine switches, it is easy to
 		configure a static management access. For more complex deployments, where you
 		might have a large number of leaf and spine switches that require managing many
 		IP addresses, static management access is not recommended. It is recommended
 		that you configure a dynamic management access that automatically avoids the
 		possible duplication of IP addresses.
 	

 	[image: ../images/note.gif]
Note
 	

 		

 	
 			
 We recommend
 				that you configure either in-band or out-of-band static management or in-band
 				and out-of-band dynamic management. Do not combine the two methods in your
 				deployments.
 			

 		

 	
 			
 IPv4 and IPv6
 				addresses are supported for in-band management access. IPv6 configurations are
 				supported using static configurations (for both in-band and out-of-band). IPv4
 				and IPv6 dual in-band and out-of-band configurations are supported only through
 				static configuration. For more information, see the KB article,Configuring Static Management
 				 Access in Cisco APIC.
 			

 		

 	
 					
 Using log directive on filters in management contracts is not supported. Setting the log directive will cause zoning-rule
 deployment failure.

 				

 	

 Configuring In-Band
 	 Management Access Using the REST API

 		
 		
 IPv4 and IPv6
 		 addresses are supported for in-band management access. IPv6 configurations are
 		 supported using static configurations (for both in-band and out-of-band). IPv4
 		 and IPv6 dual in-band and out-of-band configurations are supported only through
 		 static configuration. For more information, see the KB article,Configuring Static Management
 			 Access in Cisco APIC.
 		

 	

Procedure

 	Step 1

 	 Create a VLAN
 			 namespace.
 		

Example:
 			 POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
 <infraInfra>
 <!-- Static VLAN range -->
 <fvnsVlanInstP name="inband" allocMode="static">
 <fvnsEncapBlk name="encap" from="vlan-10" to="vlan-11"/>
 </fvnsVlanInstP>
 </infraInfra>
</polUni>

 		

 	Step 2

 	 Create a
 			 physical domain.
 		

Example:
 			 POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
 <physDomP name="inband">
 <infraRsVlanNs tDn="uni/infra/vlanns-inband-static"/>
 </physDomP>
</polUni>

 		

 	Step 3

 	 Create
 			 selectors for the in-band management.
 		

Example:
 			
 			 POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <infraInfra>
 <infraNodeP name="vmmNodes">
 <infraLeafS name="leafS" type="range">
 <infraNodeBlk name="single0" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-vmmPorts"/>
 </infraNodeP>

 <!-- Assumption is that VMM host is reachable via eth1/40. -->
 <infraAccPortP name="vmmPorts">
 <infraHPortS name="portS" type="range">
 <infraPortBlk name="block1"
 fromCard="1" toCard="1"
 fromPort="40" toPort="40"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
 </infraHPortS>
 </infraAccPortP>

 <infraNodeP name="apicConnectedNodes">
 <infraLeafS name="leafS" type="range">
 <infraNodeBlk name="single0" from_="101" to_="102"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-apicConnectedPorts"/>
 </infraNodeP>

 <!-- Assumption is that APIC is connected to eth1/1. -->
 <infraAccPortP name="apicConnectedPorts">
 <infraHPortS name="portS" type="range">
 <infraPortBlk name="block1"
 fromCard="1" toCard="1"
 fromPort="1" toPort="3"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccPortGrp name="inband">
 <infraRsAttEntP tDn="uni/infra/attentp-inband"/>
 </infraAccPortGrp>
 </infraFuncP>

 <infraAttEntityP name="inband">
 <infraRsDomP tDn="uni/phys-inband"/>
 </infraAttEntityP>
 </infraInfra>
</polUni>

 		

 	Step 4

 	 Configure an
 			 in-band bridge domain and endpoint group (EPG).
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <fvTenant name="mgmt">
 <!-- Configure the in-band management gateway address on the
 in-band BD. -->
 <fvBD name="inb">
 <fvSubnet ip="10.13.1.254/24"/>
 </fvBD>

 <mgmtMgmtP name="default">
 <!-- Configure the encap on which APICs will communicate on the
 in-band network. -->
 <mgmtInB name="default" encap="vlan-10">
 <fvRsProv tnVzBrCPName="default"/>
 </mgmtInB>
 </mgmtMgmtP>
 </fvTenant>
</polUni>

 		

 	Step 5

 	 Create an
 			 address pool.
 		

Example:
 			 POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <fvTenant name="mgmt">
 <!-- Adresses for APIC in-band management network -->
 <fvnsAddrInst name="apicInb" addr="10.13.1.254/24">
 <fvnsUcastAddrBlk from="10.13.1.1" to="10.13.1.10"/>
 </fvnsAddrInst>

 <!-- Adresses for switch in-band management network -->
 <fvnsAddrInst name="switchInb" addr="10.13.1.254/24">
 <fvnsUcastAddrBlk from="10.13.1.101" to="10.13.1.120"/>
 </fvnsAddrInst>
 </fvTenant>
</polUni>

 		
 			

 	Note

 	
 				
 Dynamic
 				 address pools for IPv6 is not supported.
 				

 			

 		

 	Step 6

 	 Create
 			 management groups.
 		

Example:
 			 POST
https://apic-ip-address/api/mo/uni.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <infraInfra>
 <!-- Management node group for APICs -->
 <mgmtNodeGrp name="apic">
 <infraNodeBlk name="all" from_="1" to_="3"/>
 <mgmtRsGrp tDn="uni/infra/funcprof/grp-apic"/>
 </mgmtNodeGrp>

 <!-- Management node group for switches-->
 <mgmtNodeGrp name="switch">
 <infraNodeBlk name="all" from_="101" to_="104"/>
 <mgmtRsGrp tDn="uni/infra/funcprof/grp-switch"/>
 </mgmtNodeGrp>

 <!-- Functional profile -->
 <infraFuncP>
 <!-- Management group for APICs -->
 <mgmtGrp name="apic">
 <!-- In-band management zone -->
 <mgmtInBZone name="default">
 <mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
 <mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-apicInb"/>
 </mgmtInBZone>
 </mgmtGrp>

 <!-- Management group for switches -->
 <mgmtGrp name="switch">
 <!-- In-band management zone -->
 <mgmtInBZone name="default">
 <mgmtRsInbEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
 <mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-switchInb"/>
 </mgmtInBZone>
 </mgmtGrp>
 </infraFuncP>
 </infraInfra>
</polUni>

 		
 			

 	Note

 	
 				
 Dynamic
 				 address pools for IPv6 is not supported.
 				

 			

 		

 Configuring Static
 	 In-Band Management Access Using the REST API

Procedure

 	Step 1

 	 Create a VLAN
 			 namespace.
 		

Example:
 			 <?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
 <infraInfra>
 <!-- Static VLAN range -->
 <fvnsVlanInstP name="inband" allocMode="static">
 <fvnsEncapBlk name="encap" from="vlan-10" to="vlan-11"/>
 </fvnsVlanInstP>
 </infraInfra>
</polUni>

 		

 	Step 2

 	 Create a
 			 physical domain.
 		

Example:
 			 <?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/uni.xml -->
<polUni>
 <physDomP name="inband">
 <infraRsVlanNs tDn="uni/infra/vlanns-inband-static"/>
 </physDomP>
</polUni>

 		

 	Step 3

 	 Create
 			 selectors for the in-band management.
 		

Example:
 			 <?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <infraInfra>
 <infraNodeP name="vmmNodes">
 <infraLeafS name="leafS" type="range">
 <infraNodeBlk name="single0" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-vmmPorts"/>
 </infraNodeP>

 <!-- Assumption is that VMM host is reachable via eth1/40. -->
 <infraAccPortP name="vmmPorts">
 <infraHPortS name="portS" type="range">
 <infraPortBlk name="block1"
 fromCard="1" toCard="1"
 fromPort="40" toPort="40"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
 </infraHPortS>
 </infraAccPortP>

 <infraNodeP name="apicConnectedNodes">
 <infraLeafS name="leafS" type="range">
 <infraNodeBlk name="single0" from_="101" to_="102"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-apicConnectedPorts"/>
 </infraNodeP>

 <!-- Assumption is that APIC is connected to eth1/1. -->
 <infraAccPortP name="apicConnectedPorts">
 <infraHPortS name="portS" type="range">
 <infraPortBlk name="block1"
 fromCard="1" toCard="1"
 fromPort="1" toPort="3"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-inband" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccPortGrp name="inband">
 <infraRsAttEntP tDn="uni/infra/attentp-inband"/>
 </infraAccPortGrp>
 </infraFuncP>

 <infraAttEntityP name="inband">
 <infraRsDomP tDn="uni/phys-inband"/>
 </infraAttEntityP>
 </infraInfra>
</polUni>

 		

 	Step 4

 	 Configure an
 			 in-band bridge domain and endpoint group (EPG).
 		

Example:
 			 <?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <fvTenant name="mgmt">
 <!-- Configure the in-band management gateway address on the
 in-band BD. -->
 <fvBD name="inb">
 <fvSubnet ip="<subnet_ip_address>"/>
 </fvBD>

 <mgmtMgmtP name="default">
 <!-- Configure the encap on which APICs will communicate on the
 in-band network. -->
 <mgmtInB name="default" encap="vlan-10">
 <fvRsProv tnVzBrCPName="default"/>
 </mgmtInB>
 </mgmtMgmtP>
 </fvTenant>
</polUni>

 		

 	Step 5

 	 Create static
 			 in-band management IP addresses and assign them to node IDs.
 		

Example:
 			 <polUni>
 <fvTenant name="mgmt">
 <mgmtMgmtP name="default">
 <mgmtInB name="default">
 <mgmtRsInBStNode tDn="topology/pod-1/node-101"
 addr="<ip_address_1>"
 gw="<gw_address>”
			 v6Addr = “<ip6_address_1>”
			 v6Gw = “<ip6_gw_address>"/>
 <mgmtRsInBStNode tDn="topology/pod-1/node-102"
 addr="<ip_address_2>"
 gw="<gw_address>”
			 v6Addr = “<ip6_address_2>"
			 v6Gw = “<ip6_gw_address>"/>
 <mgmtRsInBStNode tDn="topology/pod-1/node-103"
 addr="<ip_address_3>"
 gw="<gw_address>”
			 v6Addr = “<ip6_address_3>"
			 v6Gw = “<ip6_gw_address>"/>
 <mgmtRsInBStNode tDn="topology/pod-1/node-104"
 addr="<ip_address_4>"
 gw="<gw_address>”
			 v6Addr = “<ip6_address_4>"
			 v6Gw = “<ip6_gw_address>"/>

 <mgmtRsInBStNode tDn="topology/pod-1/node-105"
 addr="<ip_address_5>"
 gw="<gw_address>”
			 v6Addr = “<ip6_address_5>"
			 v6Gw = “<ip6_gw_address>"/>

 </mgmtInB>
 </mgmtMgmtP>
 </fvTenant>
</polUni>

 		

 Configuring
 	 Out-of-Band Management Access Using the REST API

 		
 IPv4 and IPv6
 		 addresses are supported for out-of-band management access.
 		

 	

 Before You Begin

 		
 The
 		 APIC
 		 out-of-band management connection link must be 1 Gbps.
 		

 	

Procedure

 	Step 1

 	 Create an
 			 out-of-band contract.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml

<polUni>
 <fvTenant name="mgmt">
 <!-- Contract -->
 <vzOOBBrCP name="oob-default">
 <vzSubj name="oob-default">
 <vzRsSubjFiltAtt tnVzFilterName="default" />
 </vzSubj>
 </vzOOBBrCP>
 </fvTenant>
</polUni>

 		

 	Step 2

 	 Associate the
 			 out-of-band contract with an out-of-band EPG.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml

<polUni>
 <fvTenant name="mgmt">
 <mgmtMgmtP name="default">
 <mgmtOoB name="default">
 <mgmtRsOoBProv tnVzOOBBrCPName="oob-default" />
 </mgmtOoB>
 </mgmtMgmtP>
 </fvTenant>
</polUni>

 		

 	Step 3

 	 Associate the
 			 out-of-band contract with an external management EPG.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml

<polUni>
 <fvTenant name="mgmt">
 <mgmtExtMgmtEntity name="default">
 <mgmtInstP name="oob-mgmt-ext">
 <mgmtRsOoBCons tnVzOOBBrCPName="oob-default" />
 <!-- SUBNET from where switches are managed -->
 <mgmtSubnet ip="10.0.0.0/8" />
 </mgmtInstP>
 </mgmtExtMgmtEntity>
 </fvTenant>
</polUni>

 		

 	Step 4

 	 Create a
 			 management address pool.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml

<polUni>
 <fvTenant name="mgmt">
 <fvnsAddrInst name="switchOoboobaddr" addr="172.23.48.1/21">
 <fvnsUcastAddrBlk from="172.23.49.240" to="172.23.49.244"/>
 </fvnsAddrInst>
 </fvTenant>
</polUni>

 		

 	Step 5

 	 Create node
 			 management groups.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml

<polUni>
 <infraInfra>
 <infraFuncP>
 <mgmtGrp name="switchOob">
 <mgmtOoBZone name="default">
 <mgmtRsAddrInst tDn="uni/tn-mgmt/addrinst-switchOoboobaddr" />
 <mgmtRsOobEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default" />
 </mgmtOoBZone>
 </mgmtGrp>
 </infraFuncP>
 <mgmtNodeGrp name="switchOob">
 <mgmtRsGrp tDn="uni/infra/funcprof/grp-switchOob" />
 <infraNodeBlk name="default" from_="101" to_="103" />
 </mgmtNodeGrp>
 </infraInfra>
</polUni>

 		
 			

 	Note

 	
 				
 You can configure the APIC server to use out-of-band management
 				 connectivity as the default connectivity mode.
 				

 				POST https://apic-ip-address/api/node/mo/.xml
<polUni>
<fabricInst>
 <mgmtConnectivityPrefs interfacePref=“ooband"/>
</fabricInst>
</polUni>

 			

 		

 Configuring Static
 	 Out-of-Band Management Access Using the REST API

 Before You Begin

 		
 The
 		 APIC out-of-band management connection link
 		 must be 1 Gbps.
 		

 	

Procedure

 	Step 1

 	 Create an
 			 out-of-band contract.
 		

Example:
 			 <polUni>
 <fvTenant name="mgmt">
 <!-- Contract -->
 <vzOOBBrCP name="oob-default">
 <vzSubj name="oob-default">
 <vzRsSubjFiltAtt tnVzFilterName="default" />
 </vzSubj>
 </vzOOBBrCP>
 </fvTenant>
</polUni>

 		

 	Step 2

 	 Associate the
 			 out-of-band contract with an out-of-band EPG.
 		

Example:
 			 <polUni>
 <fvTenant name="mgmt">
 <mgmtMgmtP name="default">
 <mgmtOoB name="default">
 <mgmtRsOoBProv tnVzOOBBrCPName="oob-default" />
 </mgmtOoB>
 </mgmtMgmtP>
 </fvTenant>
</polUni>

 		

 	Step 3

 	 Associate the
 			 out-of-band contract with an external management EPG.
 		

Example:
 			 <polUni>
 <fvTenant name="mgmt">
 <mgmtExtMgmtEntity name="default">
 <mgmtInstP name="oob-mgmt-ext">
 <mgmtRsOoBCons tnVzOOBBrCPName="oob-default" />
 <!-- SUBNET from where switches are managed -->
 <mgmtSubnet ip="<mgmt_subnet_ip_address>" />
 </mgmtInstP>
 </mgmtExtMgmtEntity>
 </fvTenant>
</polUni>

 		

 	Step 4

 	 Create static
 			 out-of-band management IP addresses and assign them to node IDs.
 		
 			
 CHECK IP
 				Addresses
 			

 		

Example:
 			 <polUni>
 <fvTenant name="mgmt">
 <mgmtMgmtP name="default">
 <mgmtOoB name="default">
 <mgmtRsOoBStNode tDn="topology/pod-1/node-101"
 addr="<ip_address_1>"
 gw="<gw_address>"/>
 <mgmtRsOoBStNode tDn="topology/pod-1/node-102"
 addr="<ip_address_2>"
 gw="<gw_address>"/>
 <mgmtRsOoBStNode tDn="topology/pod-1/node-103"
 addr="<ip_address_3>"
 gw="<gw_address>"/>
 </mgmtOoB>
 </mgmtMgmtP>
 </fvTenant>
</polUni>

 		

 Overview

 This topic provides
 		information on:
 	

 	

 	
 		
 How to use
 			 configuration Import and Export to recover configuration states to the last
 			 known good state using the Cisco APIC
 		

 		

 	
 		
 How to encrypt
 			 secure properties of Cisco APIC configuration files
 		

 		

 	

 You can do both
 		scheduled and on-demand backups of user configuration. Recovering configuration
 		states (also known as "roll-back") allows you to go back to a known state that
 		was good before. The option for that is called an Atomic Replace. The
 		configuration import policy (configImportP) supports atomic + replace
 		(importMode=atomic, importType=replace). When set to these values, the imported
 		configuration overwrites the existing configuration, and any existing
 		configuration that is not present in the imported file is deleted. As long as
 		you do periodic configuration backups and exports, or explicitly trigger export
 		with a known good configuration, then you can later restore back to this
 		configuration using the following procedures for the CLI, REST API, and GUI.
 	

 For more detailed
 		conceptual information about recovering configuration states using the Cisco
 		APIC, please refer to the
 		
 		 Cisco Application
 			 Centric Infrastructure Fundamentals Guide.
 		
 	

 The following section
 		provides conceptual information about encrypting secure properties of
 		configuration files:
 	

 Backing Up, Restoring, and Rolling Back Configuration Files Workflow

 	

 This section describes
 		the workflow of the features for backing up, restoring, and rolling back
 		configuration files. All of the features described in this document follow the
 		same workflow pattern. Once the corresponding policy is configured,
 		admintSt must be
 		set to
 		triggered in
 		order to trigger the job.
 	

 Once triggered, an object of type configJob (representing that run) is created under a container object of type configJobCont. (The naming property value is set to the policy DN.) The container's lastJobName field can be used to determine the last job that was triggered for that policy.

 	[image: ../images/note.gif]
Note
 	

 Up to five configJob objects are kept under a single job container at a time, with each new job triggered. The oldest job is removed to ensure
 this.

 The
 		configJob object
 		contains the following information:
 	

 	
 		
 Execution time

 		

 	
 		
 Name of the file being processed/generated

 		

 	
 		
 Status, as follows:

 		

 	
 				
 Pending

 			

 	
 				
 Running

 			

 	
 				
 Failed

 			

 	
 				
 Fail-no-data

 			

 	
 				
 Success

 			

 	
 				
 Success-with-warnings

 			

 		

 	
 		
 Details string (failure messages and warnings)

 		

 	
 		
 Progress percentage = 100 * lastStepIndex/totalStepCount

 		

 	
 		
 Field lastStepDescr indicating what was being done last

 		

 About Configuration Export to Controllers

 Configuration export extracts user-configurable managed object (MO) trees from all 32 shards in the cluster, writes them into
 separate files, then compresses them into a tar gzip file. The configuration export then uploads the tar gzip file to a preconfigured
 remote location (configured through configRsRemotePath pointing to a fileRemotePath object) or stores it as a snapshot on the controller(s).

 	[image: ../images/note.gif]
Note
 	

 See the Snapshots section for more details.

 The configExportP policy is configured as follows:

 	

 name—Policy name.

 	

 format—Format in which the data is stored inside the exported archive (xml or json).

 	

 targetDn—The domain name (DN) of the specific object you want to export. (Empty means everything.)

 	

 snapshot—When true, the file is stored on the controller; no remote location configuration is needed.

 	

 includeSecureFields—Set to true by default, this indicates whether the encrypted fields (passwords, etc.) should be included in the export archive.

 	[image: ../images/note.gif]
Note
 	

The configSnapshot object is created holding the information about this snapshot. (See the Snapshots section.)

 Scheduling Exports

 An export policy can be linked with a scheduler, which triggers the export automatically based on a preconfigured schedule.
 This is done through the configRsExportScheduler relation from the policy to a trigSchedP object. (See the Sample Configuration section.)

 	[image: ../images/note.gif]
Note
 	

A scheduler is optional. A policy can be triggered at any time by setting the adminSt to triggered.

 About Configuration Import to Controller

 Configuration import downloads, extracts, parses, analyzes, and applies the specified, previously exported archive one shard
 at a time in the following order: infra, fabric, tn-common, then everything else. The fileRemotePath configuration is performed
 the same way as for export (through configRsRemotePath). Importing snapshots is also supported.

 The configImportP policy is configured as follows:

 	

 name—Policy name

 	

 fileName—Name of the archive file (not the path file) to be imported

 	

 importMode

 	

 Best-effort mode: Each MO is applied individually, and errors only cause the invalid MOs to be skipped.

 	[image: ../images/note.gif]
Note
 	

If the object is not present on the controller, none of the children of the object get configured. Best-effort mode attempts
 to configure the children of the object.

 	

 Atomic mode: configuration is applied by whole shards. A single error causes the whole shard to be rolled back to its original
 state.

 	

 importType

 	

 Replace—Current system configuration is replaced with the contents or the archive being imported. (Only atomic mode is supported.)

 	

 Merge—Nothing is deleted, and archive content is applied on top the existing system configuration.

 	

 snapshot—When true, the file is taken from the controller and no remote location configuration is needed.

 	

 failOnDecryptErrors—(true by default) The file fails to import if the archive was encrypted with a different key than the one that is currently
 set up in the system.

 Troubleshooting

 The following scenarios may need troubleshooting:

 	

 If the generated archive could not be downloaded from the remote location, refer to the Connectivity Issues section.

 	

 If the import succeeded with warnings, check the details.

 	

 If a file could not be parsed, refer to the following scenarios:

 	

 If the file is not a valid XML or JSON file, check whether the files from the exported archive were manually modified.

 	

 If an object property has an unknown property or property value, it may be because:

 	

 The property was removed or an unknown property value was manually entered.

 	

 The model type range was modified (non-backward compatible model change).

 	

 The naming property list was modified.

 	

 If an MO could not be configured, note the following:

 	

 Best-effort mode logs the error and skips the MO.

 	

 Atomic mode logs the error and skips the shard.

 Configuration File
 	 Encryption

 As of release 1.1(2),
 		the secure properties of
 		APIC
 		configuration files can be encrypted by enabling AES-256 encryption. AES
 		encryption is a global configuration option; all secure properties conform to
 		the AES configuration setting. It is not possible to export a subset of the ACI
 		fabric configuration such as a tenant configuration with AES encryption while
 		not encrypting the remainder of the fabric configuration. See the Cisco
 		Application Centric Infrastructure Fundamentals Appendix K: Secure Properties
 		for the list of secure properties.
 	

 The
 		APIC
 		uses a 16 to 32 character passphrase to generate the AES-256 keys. The
 		APIC
 		GUI displays a hash of the AES passphrase. This hash can be used to see if the
 		same passphrases was used on two ACI fabrics. This hash can be copied to a
 		client computer where it can be compared to the passphrase hash of another ACI
 		fabric to see if they were generated with the same passphrase. The hash cannot
 		be used to reconstruct the original passphrase or the AES-256 keys.
 	

 Observe the following
 		guidelines when working with encrypted configuration files:
 	

 	
 		
 Backward
 			 compatibility is supported for importing old ACI configurations into ACI
 			 fabrics that use the AES encryption configuration option.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 			
 Reverse
 				compatibility is not supported; configurations exported from ACI fabrics that
 				have enabled AES encryption cannot be imported into older versions of the APIC
 				software.
 			

 		

 		

 	
 		
 Always enable AES
 			 encryption when performing fabric backup configuration exports. Doing so will
 			 assure that all the secure properties of the configuration will be successfully
 			 imported when restoring the fabric.
 			

 	[image: ../images/note.gif]
Note
 	

 				
 If a fabric
 				 backup configuration is exported without AES encryption enabled, none of the
 				 secure properties will be included in the export. Since such an unencrypted
 				 backup would not include any of the secure properties, it is possible that
 				 importing such a file to restore a system could result in the administrator
 				 along with all users of the fabric being locked out of the system.
 				

 			

 		

 		

 	
 		
 The AES passphrase
 			 that generates the encryption keys cannot be recovered or read by an ACI
 			 administrator or any other user. The AES passphrase is not stored. The
 			 APIC
 			 uses the AES passphrase to generate the AES keys, then discards the passphrase.
 			 The AES keys are not exported. The AES keys cannot be recovered since they are
 			 not exported and cannot be retrieved via the REST API.
 		

 		

 	
 		
 The same AES-256
 			 passphrase always generates the same AES-256 keys. Configuration export files
 			 can be imported into other ACI fabrics that use the same AES passphrase.
 		

 		

 	
 		
 For
 			 troubleshooting purposes, export a configuration file that does not contain the
 			 encrypted data of the secure properties. Temporarily turning off encryption
 			 before performing the configuration export removes the values of all secure
 			 properties from the exported configuration. To import such a configuration file
 			 that has all secure properties removed, use the import merge mode; do not use
 			 the import replace mode. Using the import merge mode will preserve the existing
 			 secure properties in the ACI fabric.
 		

 		

 	
 		
 By default, the
 			 APIC
 			 rejects configuration imports of files that contain fields that cannot be
 			 decrypted. Use caution when turning off this setting. Performing a
 			 configuration import inappropriately when this default setting is turned off
 			 could result in all the passwords of the ACI fabric to be removed upon the
 			 import of a configuration file that does not match the AES encryption settings
 			 of the fabric.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 			
 Failure to
 				observe this guideline could result in all users, including fabric
 				administrations, being locked out of the system.
 			

 		

 		

 About the fileRemotePath Object

 	

 The fileRemotePath object holds the following remote location-path parameters:

 	
 		
 Hostname or IP

 		

 	
 		
 Port

 		

 	
 		
 Protocol: FTP, SCP, and others

 		

 	
 		
 Remote directory (not file path)

 		

 	
 		
 Username

 		

 	
 		
 Password

 		

 	[image: ../images/note.gif]
Note
 	

The password must be resubmitted every time changes are made.

 		

 Sample
 		 Configuration

 		
 		
 The following is a
 		 sample configuration:
 		

 		
 Under fabricInst (uni/fabric), enter:

 		

 		
<fileRemotePath name="path-name" host="host name or ip" protocol="scp"
remotePath="path/to/some/folder" userName="user-name" userpasswd="password" />

 		

 	

 Configuring a Remote Location Using the REST API

 		
 This procedure
 		 explains how to create a remote location using the REST API.
 		

 			<fileRemotePath name="local" host=“host or ip" protocol=“ftp|scp|sftp" remotePath=“path to folder" userName=“uname" userPasswd=“pwd" />

 	

 Configuring Configuration File Export to Controller Using the REST API

 Before You Begin

Create a remote path and scheduling policy.

 	[image: ../images/note.gif]
Note
 	

 When providing a remote location, if you set the snapshot to True, the backup ignores the remote path and stores the file on the controller.

Procedure

 	
 Create a configuration export policy by sending a POST request with XML such as the following example.

Example:
 <configExportP name="policy-name" format="xml" targetDn="/some/dn or empty which means everything"
snapshot="false" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
<configRsExportScheduler tnTrigSchedPName="some scheduler name" />
</configExportP>

 Configuring a Configuration File Import Policy Using the REST API

Procedure

 	
 Configure a configuration file import policy, send a post with XML such as the following example:

Example:
 <configImportP name="policy-name" fileName="someexportfile.tgz" importMode="atomic"
 importType="replace" snapshot="false" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
</configImportP>

 Encrypting
 	 Configuration Files Using the REST API

Procedure

 	
 To encrypt a configuration file using the REST API, send a post with XML such as the following example:

Example:
 					https://apic-ip-address/api/mo/uni/fabric.xml
<pkiExportEncryptionKey passphrase="abcdefghijklmnopqrstuvwxyz" strongEncryptionEnabled="true"/>

 				

 Snapshots

 		
 Snapshots are configuration backup archives, stored (and replicated)
 		 in a controller managed folder. To create one, an export can be performed with
 		 the
 		 snapshot property set to true. In this case, no remote path
 		 configuration is needed. An object of
 		 configSnapshot type is created to expose the snapshot to the
 		 user.
 		

 		
 configSnapshot objects provide the following:
 		

 		

 	
 			
 file name
 			

 		

 	
 			
 file size
 			

 		

 	
 			
 creation date
 			

 		

 	
 			
 root DN indicating what the snapshot is of (fabric, infra,
 				specific tenant, and so on)
 			

 		

 	
 			
 ability to remove a snapshot (by setting the retire field to true)
 			

 		

 		
 To import a snapshot, set the import policy snapshot property to true
 		 and provide the name of the snapshot file (from configSnapshot).
 		

 	

 About Rollbacks

 The configRollbackP policy is used to undo the changes made between two snapshots. Managed Objects (MOs) are processed as follows:

 	

 Deleted MOs are recreated.

 	

 Created MOs are deleted.

 	

 Modified MOs are reverted.

 	[image: ../images/note.gif]
Note
 	

The rollback feature operates only on snapshots. Remote archives are not supported. If you want to use the data in a remote
 archive, use the snapshot manager to create a snapshot from from the data for the rollback. The policy does not require a
 remote path configuration.

 Rollback Workflow

 The policy snapshotOneDN and snapshotTwoDn fields must be set and the first snapshot (S1) must precede snapshot two (S2).
 Once triggered, snapshots are extracted and analyzed, and the difference between them is calculated and applied.

 MOs are located that are:

 	

 Present in S1 but not present in S2—These MOs are deleted and rollback re-creates them.

 	

 Not present in S1 but not present in S2—These MOs are created after S1 and rollback deletes them if:

 	

 These MOs are not modified after S2 is taken.

 	

 None of the MO descendants are created or modified after S2 is taken.

 	

 Present in both S1 and S2, but with different property values—These MO properties are reverted to S1, unless the property
 was modified to a different value after S2 is taken. In this case, it is left as is.

 The rollback feature also generates a diff file that contains the configuration generated as a result of these calculations.
 Applying this configuration is the last step of the rollback process. The content of this file can be retrieved through a
 special REST API called readiff: apichost/mqapi2/snapshots.readiff.xml?jobdn=SNAPSHOT_JOB_DN.

 Rollback (which is difficult to predict) also has a preview mode (set preview to true), which prevents rollback from making
 any actual changes. It calculates and generates the diff file, allowing you to preview what exactly is going to happen once
 the rollback is actually performed.

 Diff Tool

 Another special REST API is available, which provides diff functionality between two snapshots: apichost/mqapi2/snapshots.diff.xml?s1dn=SNAPSHOT_ONE_DN&s2dn=SNAPSHOT_TWO_DN.

 Uploading and Downloading Snapshots Using the REST API

 The configSnapshotManagerP policy allows you to create snapshots from remotely stored export archives. You can attach a remote path to the policy, provide
 the file name (same as with configImportP), set the mode to download, and trigger. The manager downloads the file, analyzes
 it to make sure that the archive is valid, stores it on the controller, and creates the corresponding configSnapshot object.
 The snapshot manager also allow you to upload a snapshot archive to a remote location. In this case, the mode must be set
 to upload.

 Before You Begin

 Set up remotely stored archives.

Procedure

 	
 To download or upload a snapshot policy, send a POST request with XML such as the following:

Example:
 <configSnapshotManagerP name="policy-name" fileName="someexportfile.tgz"
 mode="upload|download" adminSt="triggered">
<configRsRemotePath tnFileRemotePathName="some remote path name" />
</configSnapshotManagerP>

 Configuring and Executing a Configuration Rollback Using the REST API

 Before You Begin

Create a rollback policy and a snapshot.

Procedure

 	
 To configure and execute a rollback, send a POST request with XML such as the following:

Example:
 <configRollbackP name="policy-name" snapshotOneDn="dn/of/snapshot/one"
snapshotOneDn="dn/of/snapshot/two" preview="false" adminSt="triggered" />

 Configuration Zones

 Configuration zones divide the ACI fabric into different zones that can be updated with configuration changes at different
 times. This limits the risk of deploying a faulty fabric-wide configuration that might disrupt traffic or even bring the fabric
 down. An administrator can deploy a configuration to a non-critical zone, and then deploy it to critical zones when satisfied
 that it is suitable.

 The following policies specify configuration zone actions:

 	
 infrazone:ZoneP is automatically created upon system upgrade. It cannot be deleted or modified.

 	
 infrazone:Zone contains one or more pod groups (PodGrp) or one or more node groups (NodeGrp).

 	[image: ../images/note.gif]
Note
 	

You can only choose PodGrp or NodeGrp; both cannot be chosen.

 A node can be part of only one zone (infrazone:Zone). NodeGrp has two properties: name, and deployment mode. The deployment mode property can be:

 	
 enabled - Pending updates are sent immediately.

 	
 disabled - New updates are postponed.

 	[image: ../images/note.gif]
Note
 	

 Do not upgrade, downgrade, commission, or decommission nodes in a disabled configuration zone.

 	
 triggered - pending updates are sent immediately, and the deployment mode is automatically reset to the value it had before the change
 to triggered.

 When a policy on a given set of nodes is created, modified, or deleted, updates are sent to each node where the policy is
 deployed. Based on policy class and infrazone configuration the following happens:.

 	
 For policies that do not follow infrazone configuration, the APIC sends updates immediately to all the fabric nodes.

 	
 For policies that follow infrazone configuration, the update proceeds according to the infrazone configuration:

 	
 If a node is part of an infrazone:Zone, the update is sent immediately if the deployment mode of the zone is set to enabled; otherwise the update is postponed.

 	
 If a node is not part of aninfrazone:Zone, the update is done immediately, which is the ACI fabric default behavior.

 	Configuration Zone Supported Policies

 Configuration Zone Supported Policies

 The following policies are supported for configuration zones:

 analytics:CfgSrv
bgp:InstPol
callhome:Group
callhome:InvP
callhome:QueryGroup
cdp:IfPol
cdp:InstPol
comm:Pol
comp:DomP
coop:Pol
datetime:Pol
dbgexp:CoreP
dbgexp:TechSupP
dhcp:NodeGrp
dhcp:PodGrp
edr:ErrDisRecoverPol
ep:ControlP
ep:LoopProtectP
eqptdiagp:TsOdFabP
eqptdiagp:TsOdLeafP
fabric:AutoGEp
fabric:ExplicitGEp
fabric:FuncP
fabric:HIfPol
fabric:L1IfPol
fabric:L2IfPol
fabric:L2InstPol
fabric:L2PortSecurityPol
fabric:LeCardP
fabric:LeCardPGrp
fabric:LeCardS
fabric:LeNodePGrp
fabric:LePortP
fabric:LePortPGrp
fabric:LFPortS
fabric:NodeControl
fabric:OLeafS
fabric:OSpineS
fabric:PodPGrp
fabric:PortBlk
fabric:ProtGEp
fabric:ProtPol
fabric:SFPortS
fabric:SpCardP
fabric:SpCardPGrp
fabric:SpCardS
fabric:SpNodePGrp
fabric:SpPortP
fabric:SpPortPGrp
fc:DomP
fc:FabricPol
fc:IfPol
fc:InstPol
file:RemotePath
fvns:McastAddrInstP
fvns:VlanInstP
fvns:VsanInstP
fvns:VxlanInstP
infra:AccBaseGrp
infra:AccBndlGrp
infra:AccBndlPolGrp
infra:AccBndlSubgrp
infra:AccCardP
infra:AccCardPGrp
infra:AccNodePGrp
infra:AccPortGrp
infra:AccPortP
infra:AttEntityP
infra:CardS
infra:ConnFexBlk
infra:ConnFexS
infra:ConnNodeS
infra:DomP
infra:FexBlk
infra:FexBndlGrp
infra:FexGrp
infra:FexP
infra:FuncP
infra:HConnPortS
infra:HPathS
infra:HPortS
infra:LeafS
infra:NodeBlk
infra:NodeGrp
infra:NodeP
infra:OLeafS
infra:OSpineS
infra:PodBlk
infra:PodGrp
infra:PodP
infra:PodS
infra:PolGrp
infra:PortBlk
infra:PortP
infra:PortS
infra:PortTrackPol
infra:Profile
infra:SHPathS
infra:SHPortS
infra:SpAccGrp
infra:SpAccPortGrp
infra:SpAccPortP
infra:SpineP
infra:SpineS
isis:DomPol
l2ext:DomP
l2:IfPol
l2:InstPol
l2:PortSecurityPol
l3ext:DomP
lacp:IfPol
lacp:LagPol
lldp:IfPol
lldp:InstPol
mcp:IfPol
mcp:InstPol
mgmt:NodeGrp
mgmt:PodGrp
mon:FabricPol
mon:InfraPol
phys:DomP
psu:InstPol
qos:DppPol
snmp:Pol
span:Dest
span:DestGrp
span:SpanProv
span:SrcGrp
span:SrcTargetShadow
span:SrcTargetShadowBD
span:SrcTargetShadowCtx
span:TaskParam
span:VDest
span:VDestGrp
span:VSpanProv
span:VSrcGrp
stormctrl:IfPol
stp:IfPol
stp:InstPol
stp:MstDomPol
stp:MstRegionPol
trig:SchedP
vmm:DomP
vpc:InstPol
vpc:KAPol

 Creating
 	 Configuration Zones Using the REST API

 Before You Begin

 		
 This procedure
 		 explains how to create a configuration zone using the REST API.
 		

 	

Procedure

 	
 Create a configuration zone using the REST API leaf switch or pod examples below.

Example:Creating a Config Zone with Leaf Switches
<infraInfra>
<infrazoneZoneP name="default">
<infrazoneZone name="Group1" deplMode="disabled">
<infrazoneNodeGrp name="nodeGroup">
<infraNodeBlk name="nodeblk1" from_=101 to_=101/>
<infraNodeBlk name="nodeblk2" from_=103 to_=103/>
</infrazoneNodeGrp>
</infrazoneZone>
<infrazoneZone name="Group2" deplMode="enabled">
<infrazoneNodeGrp name="nodeGroup2">
<infraNodeBlk name="nodeblk" from_=102 to_=102/>
</infrazoneNodeGrp>
</infrazoneZone>
</infrazoneZoneP>
</infraInfra>

Example:Creating a Config Zone with Pods
<infraInfra>
 <infrazoneZoneP name="default">
 <infrazoneZone name="testZone" descr="testZone-Description" deplMode="enabled">
 <infrazonePodGrp name="podGroup1">
 <infraPodBlk name="group1" from_=101 to_=101/>
 <infraPodBlk name="group2" from_=103 to_=103/>
 </infrazonePodGrp>
 <infrazonePodGrp name="podGroup2">
 <infraPodBlk name="group" from_=102 to_=102/>
 </infrazonePodGrp>
 </infrazoneZone>
 </infrazoneZoneP>
</infraInfra>

 Chapter 3. Managing Roles, Users, and Signature-Based Transactions

 User Access,
 	 Authorization, and Accounting

 Application Policy Infrastructure Controller (APIC) policies manage the authentication, authorization, and accounting (AAA) functions of the Cisco Application Centric
 				 Infrastructure (ACI) fabric. The combination of user privileges, roles, and domains with access rights inheritance enables administrators to
 configure AAA functions at the managed object level in a granular fashion. These configurations can be implemented using the
 REST API, the CLI, or the GUI.

 Accounting

 ACI fabric accounting
 		is handled by these two managed objects (MO) that are processed by the same
 		mechanism as faults and events:
 	

 	
 		
 The aaaSessionLR MO tracks user account login and logout sessions on the APIC and switches, and token refresh. The ACI fabric session alert
 feature stores information such as the following:

 		

 	
 				
 Username
 				

 			

 	
 				
 IP address
 				 initiating the session
 				

 			

 	
 				
 Type (telnet,
 				 https, REST etc.)
 				

 			

 	
 				
 Session time
 				 and length
 				

 			

 	
 				
 Token refresh
 				 – a user account login event generates a valid active token which is required
 				 in order for the user account to exercise its rights in the ACI fabric.
 				

 				

 				

 	[image: ../images/note.gif]
Note
 	

 Token
 					 expiration is independent of login; a user could log out but the token expires
 					 according to the duration of the timer value it contains.
 				

 				

 			

 		

 	
 		
 The
 			 aaaModLR MO tracks the changes users make to objects
 			 and when the changes occurred.
 		

 		

 	
 				
 If the AAA server is not pingable, it is marked unavailable and a fault is seen.

 			

 Both the aaaSessionLR and aaaModLR event logs are stored in APIC shards. Once the data exceeds the pre-set storage allocation size, it overwrites records on
 a first-in first-out basis.

 		

 	[image: ../images/note.gif]
Note
 	

In the event of a
 		 destructive event such as a disk crash or a fire that destroys an APIC cluster
 		 node, the event logs are lost; event logs are not replicated across the
 		 cluster.
 		

 	

 The aaaModLR and aaaSessionLR MOs can be queried by class or by distinguished name (DN). A class query provides all the log records for the whole fabric.
 All aaaModLR records for the whole fabric are available from the GUI at the Fabric > Inventory > POD > History > Audit Log section, The APIC GUI History > Audit Log options enable viewing event logs for a specific object identified in the GUI.

 The standard syslog, callhome, REST query, and CLI export mechanisms are fully supported for aaaModLR and aaaSessionLR MO query data. There is no default policy to export this data.

 There are no
 		pre-configured queries in the
 		APIC
 		that report on aggregations of data across a set of objects or for the entire
 		system. A fabric administrator can configure export policies that periodically
 		export
 		aaaModLR and
 		aaaSessionLR query data to a syslog server. Exported
 		data can be archived periodically and used to generate custom reports from
 		portions of the system or across the entire set of system logs.
 	

 Multiple Tenant
 	 Support

 A core Application Policy Infrastructure Controller (APIC) internal data access control system provides multitenant isolation and prevents information privacy from being compromised
 across tenants. Read/write restrictions prevent any tenant from seeing any other tenant's configuration, statistics, faults,
 or event data. Unless the administrator assigns permissions to do so, tenants are restricted from reading fabric configuration,
 policies, statistics, faults, or events.

 User Access: Roles,
 	 Privileges, and Security Domains

 The APIC provides access according to a user’s role through role-based access control (RBAC). An Cisco Application Centric
 				 Infrastructure (ACI) fabric user is associated with the following:

 	
 				
 A set of roles

 			

 	
 				
 For each role, a privilege type: no access, read-only, or read-write

 			

 	
 				
 One or more security domain tags that identify the portions of the management information tree (MIT) that a user can access

 			

 The ACI fabric manages access privileges at the managed object (MO) level. A privilege is an MO that enables or restricts access
 to a particular function within the system. For example, fabric-equipment is a privilege bit. This bit is set by the Application Policy Infrastructure Controller (APIC) on all objects that correspond to equipment in the physical fabric.

 A role is a
 		collection of privilege bits. For example, because an “admin” role is
 		configured with privilege bits for “fabric-equipment” and “tenant-security,”
 		the “admin” role has access to all objects that correspond to equipment of the
 		fabric and tenant security.
 	

 A security domain is a tag associated with a certain subtree in the ACI MIT object hierarchy. For example, the default tenant “common” has a domain tag common. Similarly, the special domain tag all includes the entire MIT object tree. An administrator can assign custom domain tags to the MIT object hierarchy. For example,
 an administrator could assign the “solar” domain tag to the tenant named solar. Within the MIT, only certain objects can be
 tagged as security domains. For example, a tenant can be tagged as a security domain but objects within a tenant cannot.

 Creating a user and assigning a role to that user does not enable access rights. It is necessary to also assign the user
 to one or more security domains. By default, the ACI fabric includes two special pre-created domains:

 	
 		
 All—allows access to the entire MIT
 		

 		

 	
 		

 			 Infra— allows access to fabric infrastructure
 			 objects/subtrees, such as fabric access policies
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 For read operations to the managed objects that a user's credentials do not allow, a "DN/Class Not Found" error is returned,
 not "DN/Class Unauthorized to read." For write operations to a managed object that a user's credentials do not allow, an HTTP
 401 Unauthorized error is returned. In the GUI, actions that a user's credentials do not allow, either they are not presented,
 or they are grayed out.

 	

 A set of predefined managed object classes can be associated with domains. These classes should not have overlapping containment.
 Examples of classes that support domain association are as follows:

 	
 		
 Layer 2 and Layer 3 network managed objects
 		

 		

 	
 		
 Network profiles (such as physical, Layer 2, Layer 3, management)
 		

 		

 	
 		
 QoS policies
 		

 		

 When an object that can be associated with a domain is created, the
 		user must assign domain(s) to the object within the limits of the user's access
 		rights. Domain assignment can be modified at any time.
 	

 If a virtual machine management (VMM) domain is tagged as a security
 		domain, the users contained in the security domain can access the
 		correspondingly tagged VMM domain. For example, if a tenant named solar is
 		tagged with the security domain called sun and a VMM domain is also tagged with
 		the security domain called sun, then users in the solar tenant can access the
 		VMM domain according to their access rights.
 	

 Configuring a Custom Role Using the REST API

Procedure

 	
 To configure a custom role, send a POST request with XML as in the following example:

Example:
 <aaaRoleresetToFactory="no"
 priv="aaa,access-connectivity-l1,access-connectivity-l2,access-connectivity-l3,access-connectivity-mgmt,
 access-connectivity-util,access-equipment,access-protocol-l1,access-protocol-l2,access-protocol-l3,access-protocol-mgmt,
 access-protocol-ops,access-protocol-util,access-qos,fabric-connectivity-l1,fabric-connectivity-l2,
 fabric-connectivity-l3,fabric-connectivity-mgmt,fabric-connectivity-util,fabric-equipment,
 fabric-protocol-l1,fabric-protocol-l2,fabric-protocol-l3,fabric-protocol-mgmt,fabric-protocol-ops,
 fabric-protocol-util,nw-svc-device,nw-svc-devshare,nw-svc-policy,ops,tenant-connectivity-l1,
 tenant-connectivity-l2,tenant-connectivity-l3,tenant-connectivity-mgmt,tenant-connectivity-util,
 tenant-epg,tenant-ext-connectivity-l1,tenant-ext-connectivity-l2,tenant-ext-connectivity-l3,
 tenant-ext-connectivity-mgmt,tenant-ext-connectivity-util,tenant-ext-protocol-l1,tenant-ext-protocol-l2,
 tenant-ext-protocol-l3,tenant-ext-protocol-mgmt,tenant-ext-protocol-util,tenant-network-profile,
 tenant-protocol-l1,tenant-protocol-l2,tenant-protocol-l3,tenant-protocol-mgmt,tenant-protocol-ops,
 tenant-protocol-util,tenant-qos,tenant-security,vmm-connectivity,vmm-ep,vmm-policy,vmm-protocol-ops,
 vmm-security" ownerTag="" ownerKey="" name="tenant-admin" dn="uni/userext/role-tenant-admin" descr=""/>

 Configuring a Local
 	 User

 In the initial
 		configuration script, the admin account is configured and the admin is the only
 		user when the system starts. The
 		APIC supports a granular, role-based access
 		control system where user accounts can be created with various roles including
 		non-admin users with fewer privileges.
 	

 Configuring a Local
 	 User Using the REST API

Procedure

 	
 Create a local
 			 user.
 		

Example:
 			 URL: https://apic-ip-address/api/policymgr/mo/uni/userext.xml
POST CONTENT:
 <aaaUser name="operations" phone="" pwd="<strong_password>" >
 <aaaUserDomain childAction="" descr="" name="all" rn="userdomain-all" status="">
 <aaaUserRole childAction="" descr="" name="Ops" privType="writePriv"/>
 </aaaUserDomain>
 </aaaUser>

 		

 Configuring a Remote
 	 User

 Instead of configuring
 		local users, you can point the
 		APIC at the centralized enterprise
 		credential datacenter. The
 		APIC supports Lightweight Directory Access
 		Protocol (LDAP), active directory, RADIUS, and TACACS+.
 	

 	[image: ../images/note.gif]
Note
 	

 			
 When an APIC is in minority (disconnected from the cluster), remote logins can fail because the ACI is a distributed system
 and the user information is distributed across APICS. Local logins, however, continue to work because they are local to the
 APIC.

 		

 To configure a remote
 		user authenticated through an external authentication provider, you must meet
 		the following prerequisites:
 	

 	
 		
 The DNS
 			 configuration should have already been resolved with the hostname of the RADIUS
 			 server.
 		

 		

 	
 		
 You must configure
 			 the management subnet.
 		

 		

 Configuring a Remote
 	 User Using the REST API

Procedure

 	Step 1

 	 Create a RADIUS
 			 provider.
 		

Example:
 			 URL: https://apic-ip-address/api/policymgr/mo/uni/userext/radiusext.xml
POST Content:
<aaaRadiusProvider name="radius-auth-server.org.com" key="test123" />

 		

 	Step 2

 	Create a login
 			 domain.
 		

Example:
 			 URL: https://apic-ip-address/api/policymgr/mo/uni/userext.xml
POST Content:
<aaaLoginDomain name="rad"> <aaaDomainAuth realm="radius"/> </aaaLoginDomain>

 		

 About
 	 Signature-Based Transactions

 The APIC controllers
 		in a Cisco ACI fabric offer different methods to authenticate users.
 	

 The primary
 		authentication method uses a username and password and the APIC REST API
 		returns an authentication token that can be used for future access to the APIC.
 		This may be considered insecure in a situation where HTTPS is not available or
 		enabled.
 	

 Another form of
 		authentication that is offered utilizes a signature that is calculated for
 		every transaction. The calculation of that signature uses a private key that
 		must be kept secret in a secure location. When the APIC receives a request with
 		a signature rather than a token, the APIC utilizes an X.509 certificate to
 		verify the signature. In signature-based authentication, every transaction to
 		the APIC must have a newly calculated signature. This is not a task that a user
 		should do manually for each transaction. Ideally this function should be
 		utilized by a script or an application that communicates with the APIC. This
 		method is the most secure as it requires an attacker to crack the RSA/DSA key
 		to forge or impersonate the user credentials.
 		

 	[image: ../images/note.gif]
Note
 	

 		
 Additionally, you must use HTTPS to prevent replay attacks.
 		

 		

 	

 Before you can use X.509 certificate-based signatures for
 		authentication, verify that the following pre-requisite tasks are completed:
 	

 	
 		
 Create an X.509
 			 certificate and private key using OpenSSL or a similar tool.
 		

 		

 	
 		
 Create a local
 			 user on the APIC. (If a local user is already available, this task is
 			 optional).
 		

 		

 	
 		
 Add the X.509
 			 certificate to the local user on the APIC.
 		

 		

 Using a Private Key
 	 to Calculate a Signature

 Before You Begin

 		
 You must have the
 		 following information available:
 		

 		

 	
 			
 HTTP method -
 				GET, POST, DELETE
 			

 		

 	
 			
 REST API URI
 				being requested, including any query options
 			

 		

 	
 			
 For POST
 				requests, the actual payload being sent to the APIC
 			

 		

 	
 			
 The private key
 				used to generate the X.509 certificate for the user
 			

 		

 	
 			
 The
 				distinguished name for the user X.509 certificate on the APIC
 			

 		

 	

Procedure

 	Step 1

 	Concatenate the
 			 HTTP method, REST API URI, and payload together in this order and save them to
 			 a file.
 		
 			
 This
 				concatenated data must be saved to a file for OpenSSL to calculate the
 				signature. In this example, we use a filename of payload.txt. Remember that the
 				private key is in a file called userabc.key.
 			

 		

Example:GET example:
 			
 			 GET http://10.10.10.1/api/class/fvTenant.json?rsp-subtree=children

 POST example:
 			 POST http://10.10.10.1/api/mo/tn-test.json{"fvTenant": {"attributes": {"status": "deleted", "name": "test"}}}

 		

 	Step 2

 	 Calculate a
 			 signature using the private key and the payload file using OpenSSL.
 		

Example:
 			 openssl dgst -sha256 -sign userabc.key payload.txt > payload_sig.bin

 		 The
 			 resulting file has the signature printed on multiple lines.
 		

 	Step 3

 	Strip the
 			 signature of the new lines using Bash.
 		

Example:
 			 $ tr -d '\n' < payload_sig.base64
P+OTqK0CeAZjl7+Gute2R1Ww8OGgtzE0wsLlx8fIXXl4V79Zl7
Ou8IdJH9CB4W6CEvdICXqkv3KaQszCIC0+Bn07o3qF//BsIplZmYChD6gCX3f7q
IcjGX+R6HAqGeK7k97cNhXlWEoobFPe/oajtPjOu3tdOjhf/9ujG6Jv6Ro=

 			

 	Note

 	
 				
 This is the
 				 signature that will be sent to the APIC for this specific request. Other
 				 requests will require to have their own signatures calculated.
 				

 			

 		

 	Step 4

 	 Place the
 			 signature inside a string to enable the APIC to verify the signature against
 			 the payload.
 		
 			
 This complete
 				signature is sent to the APIC as a cookie in the header of the request.
 			

 		

Example:
 			 APIC-Request-Signature=P+OTqK0CeAZjl7+Gute2R1Ww8OGgtzE0wsLlx8f
IXXl4V79Zl7Ou8IdJH9CB4W6CEvdICXqkv3KaQszCIC0+Bn07o3qF//BsIplZmYChD6gCX3f
7qIcjGX+R6HAqGeK7k97cNhXlWEoobFPe/oajtPjOu3tdOjhf/9ujG6Jv6Ro=;
APIC-Certificate-Algorithm=v1.0; APIC-Certificate-Fingerprint=fingerprint;
APIC-Certificate-DN=uni/userext/user-userabc/usercert-userabc.crt

 			

 	Note

 	
 				
 The DN used
 				 here must match the DN of the user certified object containing the x509
 				 certificate in the next step.
 				

 			

 		

 	Step 5

 	 Use the
 			 CertSession class in the Python SDK to communicate with an APIC using
 			 signatures.
 		
 			
 The following
 				script is an example of how to use the CertSession class in the ACI Python SDK
 				to make requests to an APIC using signatures.
 			

 		

Example:
 			
#!/usr/bin/env python
It is assumed the user has the X.509 certificate already added to
their local user configuration on the APIC
from cobra.mit.session import CertSession
from cobra.mit.access import MoDirectory

def readFile(fileName=None, mode="r"):
 if fileName is None:
 return ""
 fileData = ""
 with open(fileName, mode) as aFile:
 fileData = aFile.read()
 return fileData

pkey = readFile("/tmp/userabc.key")
csession = CertSession("https://ApicIPOrHostname/",
 "uni/userext/user-userabc/usercert-userabc.crt", pkey)

modir = MoDirectory(csession)
resp = modir.lookupByDn('uni/fabric')
pring resp.dn
End of script

 			

 	Note

 	
 				
 The DN used in
 				 the earlier step must match the DN of the user certified object containing the
 				 x509 certificate in this step.
 				

 			

 		

 Guidelines and
 	 Limitations

 Follow these
 		guidelines and limitations:
 	

 	
 		
 Local users are
 			 supported. Remote AAA users are not supported.
 		

 		

 	
 		
 The APIC GUI does
 			 not support the certificate authentication method.
 		

 		

 	
 		
 WebSockets and
 			 eventchannels do not work for X.509 requests.
 		

 		

 	
 		
 Certificates signed by a third party are not supported. Use a
 			 self-signed certificate.
 		

 		

 Creating a Local
 	 User and Adding a User Certificate Using the REST API

Procedure

 	
 Create a local
 			 user and add a user certificate.
 		

Example:
 			 method: POST
 url: http://apic/api/node/mo/uni/userext/user-userabc.json
 payload:
 {
 "aaaUser": {
 "attributes": {
 "name": "userabc",
 "firstName": "Adam",
 "lastName": "BC",
 "phone": "408-525-4766",
 "email": "userabc@cisco.com",
 },
 "children": [{
 "aaaUserCert": {
 "attributes": {
 "name": "userabc.crt",
 "data": "-----BEGIN CERTIFICATE-----\nMIICjjCCAfegAwIBAgIJAMQnbE <snipped content> ==\n-----END CERTIFICATE-----",
 },
 "children": []
 },
 "aaaUserDomain": {
 "attributes": {
 "name": "all",
 },
 "children": [{
 "aaaUserRole": {
 "attributes": {
 "name": "aaa",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "access-admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "fabric-admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "nw-svc-admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "ops",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "read-all",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "tenant-admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "tenant-ext-admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }, {
 "aaaUserRole": {
 "attributes": {
 "name": "vmm-admin",
 "privType": "writePriv",
 },
 "children": []
 }
 }]
 }
 }]
 }
 }

 		

 Chapter 4. Common Tenant Tasks

 Tenants
 	 Overview

 		

 	
 			
 A tenant
 				contains policies that enable qualified users domain-based access control.
 				Qualified users can access privileges such as tenant administration and
 				networking administration.
 			

 		

 	
 			
 A user
 				requires read/write privileges for accessing and configuring policies in a
 				domain. A tenant user can have specific privileges into one or more domains.
 			

 		

 	
 			
 In a
 				multitenancy environment, a tenant provides group user access privileges so
 				that resources are isolated from one another (such as for endpoint groups and
 				networking). These privileges also enable different users to manage different
 				tenants.
 			

 		

 		

 Tenant
 	 Creation

 A tenant contains
 		primary elements such as filters, contracts, bridge domains, and application
 		profiles that you can create after you first create a tenant.
 	

 Adding a
 	 Tenant

 A tenant is a policy
 		owner in the virtual fabric. A tenant can be either a private or a shared
 		entity. For example, you can create a securely partitioned private tenant or a
 		tenant with contexts and bridge domains shared by other tenants. A shared type
 		of tenant is typically named common, default, or infra.
 	

 In the management
 		information model, a tenant is represented by a managed object (MO) of class
 		fv:Tenant. According to the
 		Cisco APIC Management Information Model Reference, an object of the fv:Tenant class is
 		a child of the policy resolution universe (uni) class and has a distinguished
 		name (DN) format of
 		uni/tn-[name].
 	

 	[image: ../images/note.gif]
Note
 	

 			
 You can only add one tenant at a time.

 		

 The following examples
 		show how to add a new tenant named ExampleCorp using XML and JSON.
 	

 Example: Using the
 	 JSON API to Add a Tenant

 		
 To create a new
 		 tenant, you must specify the class and sufficient naming information, either in
 		 the message body or in the URI.
 		

 		
 To create a new
 		 tenant using the JSON API, send this HTTP POST message:
 		

 		
POST https://apic-ip-address/api/mo/uni.json

{
 "fvTenant" : {
 "attributes" : {
 "name" : "ExampleCorp"
 }
 }
}

 		Alternatively, you
 		 can name the tenant in the URI, as in this example:
 		

 		
POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

{
 "fvTenant" : {
 "attributes" : {
 }
 }
}

 		If a response is
 		 requested (by appending
 		 ?rsp-subtree=modified to the POST URI), a successful
 		 operation returns the following response body:
 		

 		
{
 "imdata" :
 [{
 "fvTenant" : {
 "attributes" : {
 "instanceId" : "0:0",
 "childAction" : "deleteNonPresent",
 "dn" : "uni/tn-ExampleCorp",
 "lcOwn" : "local",
 "name" : "ExampleCorp",
 "replTs" : "never",
 "rn" : "",
 "status" : "created"
 }
 }
 }
]
}

 		To delete the
 		 tenant, send this HTTP DELETE message:
 		

 		
DELETE https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

 		Alternatively, you
 		 can send an HTTP POST message with sufficient naming information and with
 		 "status" :
 			 "deleted" in the fv:Tenant attributes, as in this example:
 		

 		
POST https://apic-ip-address/api/mo/uni.json

{
 "fvTenant" : {
 "attributes" : {
 "name" : "ExampleCorp",
 "status" : "deleted"
 }
 }
}

 	

 Example: Using the
 	 XML API to Add a Tenant

 		
 To create a new
 		 tenant, you must specify the class and sufficient naming information, either in
 		 the message body or in the URI.
 		

 		
 To create a new
 		 tenant named ExampleCorp using the XML API, send this HTTP POST message:
 		

 		
POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp"/>

 		Alternatively, you
 		 can name the tenant in the URI, as in this example:
 		

 		
POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant />

 		If a response is
 		 requested (by appending
 		 ?rsp-subtree=modified to the POST URI), a successful
 		 operation returns the following response body:
 		

 		
<imdata>
 <fvTenant
 instanceId="0:0"
 childAction="deleteNonPresent"
 dn="uni/tn-ExampleCorp"
 lcOwn="local"
 name="ExampleCorp"
 replTs="never"
 rn=""
 status="created"
 />
</imdata>

 		To delete the
 		 tenant, send this HTTP DELETE message:
 		

 		
DELETE https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

 		Alternatively, you
 		 can send an HTTP POST message with sufficient naming information and with
 		 status="deleted" in the fv:Tenant attributes, as in
 		 this example:
 		

 		
POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp" status="deleted"/>

 	

 Chapter 5. Managing Layer 2 Networking

 	Creating a Port Channel Policy Using the REST API

 Bridged Interface to
 	 an External Router

 As shown in the figure
 		below, when the leaf switch interface is configured as a bridged interface, the
 		default gateway for the tenant VNID is the external router.
 		
 Bridged
 			 External Router

[image: ../images/348519.jpg]

 	

 The ACI fabric is
 		unaware of the presence of the external router and the
 		APIC statically assigns the leaf switch
 		interface to its EPG.
 	

 VRF and Bridge
 	 Domains

 You can create and
 		specify a VRF and a bridge domain for the tenant. The defined bridge domain
 		element subnets reference a corresponding Layer 3 context.
 	

 For details about enabling IPv6 Neighbor Discovery seeIPv6 and Neighbor Discovery in Cisco APIC Layer 3 Networking Guide.

 Creating a Tenant, VRF, and Bridge Domain Using the REST API

Procedure

 	Step 1

 	 Create a
 			 tenant.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni.xml
<fvTenant name="ExampleCorp"/>

 		 When the
 			 POST succeeds, you see the object that you created in the output.
 		

 	Step 2

 	 Create a VRF
 			 and bridge domain.
 		
 			

 	Note

 	
 				
 The Gateway
 				 Address can be an IPv4 or an IPv6 address. For more about details IPv6 gateway
 				 address, see the related KB article,
 				 KB:
 					 Creating a Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery
 				 .
 				

 			

 		

Example:
 			 URL for POST: https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name="ExampleCorp">
 <fvCtx name="pvn1"/>
 <fvBD name="bd1">
 <fvRsCtx tnFvCtxName="pvn1"/>
 <fvSubnet ip="10.10.100.1/24"/>
 </fvBD>
</fvTenant>

 			

 	Note

 	
 				
 If you have a
 				 public subnet when you configure the routed outside, you must associate the
 				 bridge domain with the outside configuration.
 				

 			

 		

 Statically Deploying
 	 an EPG on a Specific Port

 This topic provides a
 		typical example of how to statically deploy an EPG on a specific port when
 		using Cisco
 		APIC.
 		
 	

 Deploying an EPG on a Specific Port with APIC Using the REST
 	 API

 Before You Begin

 		
 The tenant where you deploy the EPG is created.
 		

 	

Procedure

 	
 Deploy an EPG on a specific port.
 		

Example:
 			
 			
 			 <fvTenant name="<tenant_name>" dn="uni/tn-test1" >
 <fvCtx name="<network_name>" pcEnfPref="enforced" knwMcastAct="permit"/>
 <fvBD name="<bridge_domain_name>" unkMcastAct="flood" >
 <fvRsCtx tnFvCtxName="<network_name>"/>
 </fvBD>
 <fvAp name="<application_profile>" >
 <fvAEPg name="<epg_name>" >
 <fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/13]" mode="regular" instrImedcy="immediate" encap="vlan-20"/>
 </fvAEPg>
 </fvAp>
</fvTenant>

 		

 Creating Domains,
 	 Attach Entity Profiles, and VLANs to Deploy an EPG on a Specific Port

 This topic provides a
 		typical example of how to create physical domains, Attach Entity Profiles
 		(AEP), and VLANs that are mandatory to deploy an EPG on a specific port.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 All endpoint groups
 		 (EPGs) require a domain. Interface policy groups must also be associated with
 		 Attach Entity Profile (AEP), and the AEP must be associated with a domain, if
 		 the AEP and EPG have to be in same domain. Based on the association of EPGs to
 		 domains and of interface policy groups to domains, the ports and VLANs that the
 		 EPG uses are validated. The following domain types associate with EPGs:
 		

 		

 	
 			
 Application EPGs
 				
 			

 		

 	
 			
 Layer 3 external
 				outside network instance EPGs
 			

 		

 	
 			
 Layer 2 external
 				outside network instance EPGs
 			

 		

 	
 			
 Management EPGs
 				for out-of-band and in-band access
 			

 		

 		
 The APIC checks if an EPG is associated with one or more of these types of domains. If the EPG is not associated, the system
 accepts the configuration but raises a fault. The deployed configuration may not function properly if the domain association
 is not valid. For example, if the VLAN encapsulation is not valid for use with the EPG, the deployed configuration may not
 function properly.

 	

 Creating AEP,
 	 Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST
 	 API

 Before You Begin

 		

 	
 			
 The tenant where
 				you deploy the EPG is already created.
 			

 		

 	
 			
 An EPG is
 				statically deployed on a specific port.
 			

 		

 	

Procedure

 	Step 1

 	 Create the
 			 interface profile, switch profile and the Attach Entity Profile (AEP).
 		

Example:
 			
 			
 			 <infraInfra>

 <infraNodeP name="<switch_profile_name>" dn="uni/infra/nprof-<switch_profile_name>" >
 <infraLeafS name="SwitchSeletor" descr="" type="range">
 <infraNodeBlk name="nodeBlk1" descr="" to_="1019" from_="1019"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-<interface_profile_name>"/>
 </infraNodeP>

 <infraAccPortP name="<interface_profile_name>" dn="uni/infra/accportprof-<interface_profile_name>" >
 <infraHPortS name="portSelector" type="range">
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-<port_group_name>" fexId="101"/>
 <infraPortBlk name="block2" toPort="13" toCard="1" fromPort="11" fromCard="1"/>
 </infraHPortS>
 </infraAccPortP>

 <infraAccPortGrp name="<port_group_name>" dn="uni/infra/funcprof/accportgrp-<port_group_name>" >
 <infraRsAttEntP tDn="uni/infra/attentp-<attach_entity_profile_name>"/>
 <infraRsHIfPol tnFabricHIfPolName="1GHifPol"/>
 </infraAccPortGrp>

 <infraAttEntityP name="<attach_entity_profile_name>" dn="uni/infra/attentp-<attach_entity_profile_name>" >
 <infraRsDomP tDn="uni/phys-<physical_domain_name>"/>
 </infraAttEntityP>

<infraInfra>

 		

 	Step 2

 	Create a domain.
 			
 		

Example:
 			 <physDomP name="<physical_domain_name>" dn="uni/phys-<physical_domain_name>">
 <infraRsVlanNs tDn="uni/infra/vlanns-[<vlan_pool_name>]-static"/>
</physDomP>

 		

 	Step 3

 	Create a VLAN
 			 range.
 		

Example:
 			 <fvnsVlanInstP name="<vlan_pool_name>" dn="uni/infra/vlanns-[<vlan_pool_name>]-static" allocMode="static">
 <fvnsEncapBlk name="" descr="" to="vlan-25" from="vlan-10"/>
</fvnsVlanInstP>

 		

 	Step 4

 	Associate the
 			 EPG with the domain.
 		

Example:
 			 <fvTenant name="<tenant_name>" dn="uni/tn-" >
 <fvAEPg prio="unspecified" name="<epg_name>" matchT="AtleastOne" dn="uni/tn-test1/ap-AP1/epg-<epg_name>" descr="">
 <fvRsDomAtt tDn="uni/phys-<physical_domain_name>" instrImedcy="immediate" resImedcy="immediate"/>
 </fvAEPg>
</fvTenant>

 		

 Creating a Port
 	 Channel Policy Using the REST API

 The following example REST request creates a Port Channel policy:
 	

 <lacpLagPol childAction="" ctrl="fast-sel-hot-stdby,graceful-conv,susp-individual"
 descr="" dn="uni/infra/lacplagp-LACP-Active" lcOwn="local" maxLinks="16" minLinks="1"
 modTs="2015-02-24T11:58:36.547-08:00" mode="active" name="LACP-Active" ownerKey=""
 ownerTag="" status="" uid="8131">
 <lacpRtLacpPol childAction="" lcOwn="local" modTs="2015-02-24T14:59:11.154-08:00"
 rn="rtinfraLacpPol-[uni/infra/funcprof/accbundle-ACI-VPC-IPG]" status=""
 tCl="infraAccBndlGrp" tDn="uni/infra/funcprof/accbundle-ACI-VPC-IPG"/>
</lacpLagPol>

 	[image: ../images/note.gif]
Note
 	

 	

 To enable symmetric hashing, add ctrl="symmetric-hash" to the REST request.

 	

 Symmetric hashing is not supported on the following switches:

 	

 Cisco Nexus 93128TX

 	

 Cisco Nexus 9372PX

 	

 Cisco Nexus 9372PX-E

 	

 Cisco Nexus 9372TX

 	

 Cisco Nexus 9372TX-E

 	

 Cisco Nexus 9396PX

 	

 Cisco Nexus 9396TX

 Chapter 6. Managing Layer 3 Networking

 This chapter contains the following sections:
 			

 	Configuring External Connectivity for Tenants

 	Configuring a Tenant Layer 3 Outside Network Connection Overview

 	Configuring Layer 3 Outside for Tenant Networks Using the REST API

 Configuring External
 	 Connectivity for Tenants

 Before you can
 		distribute the static route to the other leaf switches on the Application
 		Centric Infrastructure (ACI) fabric, a multiprotocol BGP (MP-BGP) process must
 		first be operating, and the spine switches must be configured as BGP route
 		reflectors.
 	

 To integrate the ACI
 		fabric into an external routed network, you can configure Open Shortest Path
 		First (OSPF) for management tenant Layer 3 connectivity.
 	

 Configuring a Tenant
 	 Layer 3 Outside Network Connection Overview

 This topic provides a
 		typical example of how to configure a Layer 3 Outside for tenant networks when
 		using Cisco
 		APIC.
 		
 	

 	[image: ../images/note.gif]
Note
 	

 				
 				
 				
 When you configure Layer 3 Outside (L3Out) connections to external routers, or multipod connections through an Inter-Pod Network
 (IPN), it is critical that the MTU be set appropriately on both sides. On some platforms, such as ACI, Cisco NX-OS, and Cisco IOS, the configurable MTU value takes into account packet headers (resulting in a max packet size to be set as
 9000 bytes), whereas other platforms such as IOS-XR configure the MTU value exclusive of packet headers (resulting in a max
 packet size of 8986 bytes).

 				
 For the appropriate MTU values for each platform, see the relevant configuration guides.

 				
 Cisco highly recommends you test the MTU using CLI-based commands. For example, on the Cisco NX-OS CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

 			

 Configuring Layer 3
 	 Outside for Tenant Networks Using the REST API

 		
 The external routed
 		 network configured in the example can also be extended to support IPv4. Both
 		 IPv4 and IPv6 routes can be advertised to and learned from the external routed
 		 network.
 		

 	

 Before You Begin

 		

 	
 			
 The tenant,
 				private network, and bridge domain are created.
 			

 		

 	
 			
 The external
 				routed domain is created.
 			

 		

 	

Procedure

 	
 Configure L3
 			 Outside for tenant networks and associate the bridge domain with the Layer3
 			 Outside.
 		

Example:
 			
<fvTenant name='TenantName'>
<rtctrlAttrP descr="" name="relattrp" nameAlias="">
<rtctrlSetComm community="regular:as2-nn2:4:15" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<rtctrlSetAddComm community="regular:as2-nn4:4:16" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<rtctrlSetAddComm community="regular:as4-nn2:4:17" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<rtctrlSetAddComm community="regular:as2-nn2:4:18" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<!-- <rtctrlSetAddComm community="regular:ipv4-nn2:4:15" descr="" name="" nameAlias="" setCriteria="append" type="community"/> -->
<rtctrlSetAddComm community="regular:nn4-nn4:4:15" descr="" name="" nameAlias="" setCriteria="append" type="community"/>

<rtctrlSetAddComm community="extended:as2-nn2:4:15" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<rtctrlSetAddComm community="extended:as2-nn4:4:16" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<rtctrlSetAddComm community="extended:as4-nn2:4:17" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
<rtctrlSetAddComm community="extended:nn4-nn4:4:15" descr="" name="" nameAlias="" setCriteria="append" type="community"/>
</rtctrlAttrP>
<l3extOut name="L3Out1" enforceRtctrl="import,export">
<rtctrlProfile descr="" name="rtProfile" nameAlias="" ownerKey="" ownerTag="" type="combinable">
 <rtctrlCtxP descr="" name="rtCtxp" nameAlias="" order="1">
 <rtctrlScope descr="" name="" nameAlias="">
 <rtctrlRsScopeToAttrP tnRtctrlAttrPName="relattrp"/>
 </rtctrlScope>
 </rtctrlCtxP>
</rtctrlProfile>
<l3extRsL3DomAtt tDn="uni/l3dom-l3DomP"/>
<l3extLNodeP name="LNodeP1" >
<l3extRsNodeL3OutAtt rtrId="1.2.3.4" tDn="topology/pod-1/node-101">
<l3extLoopBackIfP addr="10.10.11.1" />
<l3extLoopBackIfP addr="2000::3" />
</l3extRsNodeL3OutAtt>
<l3extLIfP name="IFP1" >
<l3extRsPathL3OutAtt addr="10.11.12.10/24" ifInstT="l3-port"
tDn="topology/pod-1/paths-103/pathep-[eth1/17]" />
</l3extLIfP>
<l3extLIfP name="IFP2" >
<l3extRsPathL3OutAtt addr="2001::3/64" ifInstT="l3-port" tDn="topology/
pod-1/paths-103/pathep-[eth1/17]" />
</l3extLIfP>
</l3extLNodeP>
<l3extRsEctx tnFvCtxName="VRF1"/>
<l3extInstP name="InstP1" >
<l3extSubnet ip="192.168.1.0/24" scope="import-security" aggregate=""/>
<l3extSubnet ip="0.0.0.0/0" scope="export-rtctrl,import-rtctrl,importsecurity"
aggregate="export-rtctrl,import-rtctrl"/>
<l3extSubnet ip="192.168.2.0/24" scope="export-rtctrl" aggregate=""/>
<l3extSubnet ip="::/0" scope="import-rtctrl,import-security"
aggregate="import-rtctrl"/>
<l3extSubnet ip="2001:17a::/64" scope="export-rtctrl" aggregate=""/>
</l3extInstP>
</l3extOut>
</fvTenant>

 			

 	Note

 	
 						

 	
 								
 The "enforceRtctrl=import" is not applicable for EIGRP.

 							

 	
 								
 This example displays support for set additional community.

 							

 						
 			

 		

 Chapter 7. Monitoring Using the REST API

 Monitoring APIC Using the REST API

 Proactive monitoring is an important piece of the network administrator's job but is often neglected because solving urgent
 problems in the network usually takes priority. However, the Application Policy Infrastructure Controller (APIC) will save
 network administrators time and frustration because it makes it easy to gather statistics and perform analyses. Because statistics
 are gathered automatically and policies are used and can be re-used in other places, human effort and error are minimized.

 The following examples using the REST API can be used to drill into APIC fabric and switch components.

 Monitoring APIC CPU and Memory Usage Using the REST API

 The easiest way to quickly verify the health of the controllers is the APIC. Controllers provide information regarding the
 current status of CPU and memory utilization by creating instances of the procEntity class. The procEntity is a container of processes in the system. This object holds detailed information about various processes
 running on the APIC. The procEntity objects contain the following useful properties:

 	

 cpuPct—CPU utilization

 	

 maxMemAlloc—The maximum memory allocated for the system

 	

 memFree—The maximum amount of available memory for the system

Procedure

 	
 Retrieve information about CPU and memory usage using the following REST API call:

Example:
 https://apic-ip-address/api/node/class/procEntity.xml?

 Monitoring APIC Disk Utilization Using the REST API

 There are several disks and file systems present on the APIC. The REST API provides ready access to disk space utilization
 of all partitions on the system and can be used for monitoring this information.

Procedure

 	
 Monitor the disk and file systems on the APIC, by sending a REST API post, such as the following:

Example:
 https://apic-ip-address/api/node/class/eqptStorage.xml?

 Monitoring Physical Interface Statistics and Link State Using the REST API

 You can use the REST API interface to poll for interface statistics. Several counters are available (for example, RX/TX, input/output
 / duplex, 30 second rates, 5 minute rate, unicast packets, multicast packets). Using the parent managed object, the children
 can be derived from it. To do this, you must have a good understanding of the object model and be able to navigate through
 the model to obtain the information desired using the example below.

Procedure

 	Step 1

 	Use the following base API call to get physical interface statistics:

Example:
 https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/phys-[eth1/1].json

 	Step 2

 	To determine the total ingress bytes on Leaf 101 port Eth1/1, you can issue the following API call:

Example:
 /topology/pod-1/node-101/sys/phys-[eth1/1].json

 	Step 3

 	Visore allows you to dig deeper into the hierarchical tree. From the prior command, the operator can see children of the interface
 object, such as ingress and egress bytes. The child objects include the following:

Example:
 /topology/pod-1/node-101/sys/phys-[eth1/1]/dbgEtherStats

 Monitoring LLDP and CDP Neighbor Status Using the REST API

 The APIC enables you to determine all LLDP or CDP neighbors in a fabric, using the REST API.

Procedure

 	Step 1

 	 To determine the LLDP neighbors, send a POST such as the following:

Example:
 https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/lldp/inst/if-[eth1/1]

 	Step 2

 	 To determine the CDP neighbors, send a POST such as the following:

Example:
 https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/cdp/inst/if-[eth1/1]

 Monitoring Physical and Bond Interfaces Using the REST API

 The APIC uses a bonded interface that is typically dual-homed to two leaf switches for connectivity to the Cisco ACI fabric.
 It also can use a bonded interface that can be dual-homed to the out-of-band management network.

 	

 Bond0 is the bond interface used to connect to the fabric itself (to connect to leaf switches that connect into the fabric).

 	

 Bond1 is the bond interface used to connect to the out-of-band segment (to connect to an OOB segment that allows setup of the APIC
 itself).

 The bond interfaces rely on underlying physical interfaces. It is important to note that the REST API provides link information
 for both the physical and logical bond interfaces.

Procedure

 	
 Collect information about both the bond interfaces by sending a POST request such as the following example:

Example:
 https://apic-ip-address/api/node/mo/topology/pod-1/node-1/sys.json?querytarget=
subtree&target-subtree-class=l3EncRtdIf

 Monitoring EPG-Level Statistics Using the REST API

 To monitor network-related information for an application, you can investigate the aggregate amount of traffic to a specific
 tier. For example, you can monitor the amount of traffic to the web tier of a given EPG application with the REST API.

Procedure

 	
 To monitor the traffic for a new project for the epg-web-epg, send a POST request such as the following example:

Example:
 https://apic-ip-address/api/node/mo/uni/tn-newproject/ap-app1/epg-web-epg.xml?querytarget=
self&rsp-subtree-include=stats

 Monitoring Switch CPU Utilization Using the REST API

 Spine and leaf switch CPU utilization can be monitored using the following classes, based on the desired timescale and granularity:

 	

 proc:SysCPU5min—A class that represents the most current statistics for system CPU in a 5-minute sampling interval. This class updates every
 10 seconds.

 	

 proc:SysCPU15min—A class that represents the most current statistics for system CPU in a 15-minute sampling interval. This class updates
 every 5 minutes.

 	

 proc:SysCPU1h—A class that represents the most current statistics for system CPU in a 1-hour sampling interval. This class updates every
 15 minutes.

 	

 proc:SysCPU1d—A class that represents the most current statistics for system CPU in a 1-day sampling interval. This class updates every
 hour.

 	

 proc:SysCPU1w—A class that represents the most current statistics for system CPU in a 1-week sampling interval. This class updates every
 day.

 	

 proc:SysCPU1mo—A class that represents the most current statistics for system CPU in a 1-month sampling interval. This class updates every
 day.

 	

 proc:SysCPU1qtr—A class that represents the most current statistics for system CPU in a 1-quarter sampling interval. This class updates every
 day.

 	

 proc:SysCPU1year—A class that represents the most current statistics for system CPU in a 1-year sampling interval. This class updates every
 day.

 The following example shows how to use these classes for monitoring:

Procedure

 	
 To view the average CPU utilization of all of the fabric switches over the last day, use XML such as in the following example:

Example:

https://apic-ip-address//api/node/class/procSysCPU1d.xml?

 Monitoring Switch Fan Status Using the REST API

 The following REST API call(s) and their child objects can be used to monitor the state of the fans on a leaf switch (note
 that there are 3 slots on this particular switch).

Procedure

 	
 To retrieve the status of the fan trays on the leaf switches, use XML such as the following example:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/ftslot-1
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/ftslot-2
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/ftslot-3

 Monitoring Switch Memory Utilization Using the REST API

 Spine and leaf switch memory utilization can be monitored using the following classes, based on the desired timescale and
 granularity:

 	

 proc:SysMem5min—A class that represents the most current statistics for system memory in a 5-minute sampling interval. This class updates
 every 10 seconds.

 	

 proc:SysMem15min—A class that represents the most current statistics for system memory in a 15-minute sampling interval. This class updates
 every 5 minutes.

 	

 proc:SysMem1h—A class that represents the most current statistics for system memory in a 1-hour sampling interval. This class updates every
 15 minutes.

 	

 proc:SysMem1d—A class that represents the most current statistics for system memory in a 1-day sampling interval. This class updates every
 hour.

 	

 proc:SysMem1w—A class that represents the most current statistics for system memory in a 1-week sampling interval. This class updates every
 day.

 	

 proc:SysMem1mo—A class that represents the most current statistics for system memory in a 1-month sampling interval. This class updates
 every day.

 	

 proc:SysMem1qtr—A class that represents the most current statistics for system memory in a 1-quarter sampling interval. This class updates
 every day.

 	

 proc:SysMem1year—A class that represents the most current statistics for system memory in a 1-year sampling interval. This class updates every
 day.

 The following example shows how to use one of the classes:

Procedure

 	
 To monitor memory over the last day, use the following REST call:

Example:

https://apic-ip-address/api/node/class/procSysMem1d.xml?

 Monitoring Switch Module Status Using the REST API

 Even though the leaves are considered fixed switches, they have a supervisor component that refers to the CPU complex. From
 a forwarding perspective, there are two data-plane components: the NFE (Network Forwarding Engine) ASIC, which provides the
 front panel ports; and the ALE or ALE2 (Application Leaf Engine) ASIC—depending on the generation of switch hardware—which
 provides uplink connectivity to the spines. The following REST API example can be used to determine the status of the modules
 in the switch:

Procedure

 	
 To monitor the state of the supervisor and the module, use a REST API call such as the following:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/supslot-1/sup
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/lcslot-1/lc

 Monitoring Switch Power Supply Status Using the REST API

 You can use the REST API to retrieve the status of the power supplies on the leaf switches.

Procedure

 	
 To monitor the state of the power supplies on a leaf switch, use XML such as the following example:

Example:
 https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/psuslot-1
https://apic-ip-address/api/node/mo/topology/pod-1/node-101/sys/ch/psuslot-2

 Note that there are 2 power supplies on this particular switch.

 Monitoring Switch Inventory Using the REST API

 You can use the REST API to retrieve switch hardware information such as the model and serial numbers.

Procedure

 	
 To retrieve switch hardware information, use the REST API as shown in the following example:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1.json?query-target=children&target-subtree-class=fabricNode

 Chapter 8. Troubleshooting Using the REST API

 About Exporting
 	 Files

 An administrator can
 		configure export policies in the
 		APIC
 		to export statistics, technical support collections, faults and events, to
 		process core files and debug data from the fabric (the
 		APIC
 		as well as the switch) to any external host. The exports can be in a variety of
 		formats, including XML, JSON, web sockets, secure copy protocol (SCP), or HTTP.
 		You can subscribe to exports in streaming, periodic, or on-demand formats.
 	

 An administrator can
 		configure policy details such as the transfer protocol, compression algorithm,
 		and frequency of transfer. Policies can be configured by users who are
 		authenticated using AAA. A security mechanism for the actual transfer is based
 		on a username and password. Internally, a policy element handles the triggering
 		of data.
 	

 Sending an On-Demand TechSupport File Using the REST API

Procedure

 	Step 1

 	Set the remote destination for a technical support file using the REST API, by sending a POST with XML such as the following
 example:

Example:
 <fileRemotePath userName="" remotePort="22" remotePath="" protocol="sftp" name="ToSupport" host="192.168.200.2"
dn="uni/fabric/path-ToSupport" descr="">

<fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</fileRemotePath>

 	Step 2

 	 Generate an on-demand technical support file using the REST API by sending a POST with XML such as the following:

Example:
 <dbgexpTechSupOnD upgradeLogs="no" startTime="unspecified" name="Tech_Support_9-20-16" exportToController="no"
endTime="unspecified" dn="uni/fabric/tsod-Tech_Support_9-20-16" descr="" compression="gzip"
category="forwarding" adminSt="untriggered">

<dbgexpRsExportDest tDn="uni/fabric/path-ToSupport"/>

<dbgexpRsTsSrc tDn="topology/pod-1/node-102/sys"/>

<dbgexpRsTsSrc tDn="topology/pod-1/node-103/sys"/>

<dbgexpRsTsSrc tDn="topology/pod-1/node-101/sys"/>

<dbgexpRsData tDn="uni/fabric/tscont"/>

</dbgexpTechSupOnD>

 Atomic
 	 Counters

 Atomic Counters are useful for troubleshooting connectivity between
 		endpoints, EPGs, or an application within the fabric. A user reporting
 		application may be experiencing slowness, or atomic counters may be needed for
 		monitoring any traffic loss between two endpoints. One capability provided by
 		atomic counters is the ability to place a trouble ticket into a proactive
 		monitoring mode, for example when the problem is intermittent, and not
 		necessarily happening at the time the operator is actively working the ticket.
 	

 Atomic counters can help detect packet loss in the fabric and allow the
 		quick isolation of the source of connectivity issues. Atomic counters require
 		NTP to be enabled on the fabric.
 	

 Leaf-to-leaf (TEP to TEP) atomic counters can provide the following:
 	

 	Counts of drops, admits, and
 		 excess packets
 		

 	Short-term data collection
 		 such as the last 30 seconds, and long-term data collection such as 5 minutes,
 		 15 minutes, or more
 		

 	A breakdown of per-spine
 		 traffic (available when the number of TEPs, leaf or VPC, is less than 64)
 		

 	Ongoing monitoring
 		

 Leaf-to-leaf (TEP to TEP) atomic counters are cumulative and cannot be
 		cleared. However, because 30 second atomic counters reset at 30 second
 		intervals, they can be used to isolate intermittent or recurring problems.
 	

 Tenant atomic counters can provide the following:
 	

 	Application-specific
 		 counters for traffic across the fabric, including drops, admits, and excess
 		 packets
 		

 	Modes include the following:
 		

 	Endpoint to endpoint MAC
 		 address, or endpoint to endpoint IP address. Note that a single target endpoint
 		 could have multiple IP addresses associated with it.
 		

 	EPG to EPG with optional
 		 drill down
 		

 	EPG to endpoint
 		

 	EPG to * (any)
 		

 	Endpoint to external IP
 		 address
 		

 	[image: ../images/note.gif]
Note
 	

 		
 Atomic counters track the amount packets of between the two endpoints
 		 and use this as a measurement. They do not take into account drops or error
 		 counters in a hardware level.
 		

 	

 Dropped packets are calculated when there are less packets received by
 		the destination than transmitted by the source.
 	

 Excess packets are calculated when there are more packets received by
 		the destination than transmitted by the source.
 	

 Enabling Atomic Counters

 To enable using atomic counters to detect drops and misrouting in the fabric and enable quick debugging and isolation of application
 connectivity issues, create one or more tenant atomic counter policies, which can be one of the following types:

 	

 EP_to_EP—Endpoint to endpoint (dbgacEpToEp)

 	

 EP_to_EPG—Endpoint to endpoint group (dbgacEpToEpg)

 	

 EP_to_Ext—Endpoint to external IP address (dbgacEpToExt)

 	

 EPG_to_EP—Endpoint group to endpoint(dbgacEpgToEp)

 	

 EPG_to_EPG—Endpoint group to endpoing group (dbgacEpgToEpg)

 	

 EPG_to_IP—Endpoint group to IP address (dbgacEpgToIp)

 	

 Ext_to_EP—External IP address to endpoint (dbgacExtToEp)

 	

 IP_to_EPG—IP address to endpoint group (dbgacIpToEpg)

 	

 Any_to_EP—Any to endpoint (dbgacAnyToEp)

 	

 EP_to_Any—Endpoint to any (dbgacEpToAny)

Procedure

 	Step 1

 	To create an EP_to_EP policy using the REST API, use XML such as the following example:

Example:
 <dbgacEpToEp name="EP_to_EP_Policy" ownerTag="" ownerKey=""
dn="uni/tn-Tenant64/acEpToEp-EP_to_EP_Policy" descr="" adminSt="enabled">
<dbgacFilter name="EP_to_EP_Filter" ownerTag="" ownerKey="" descr=""
srcPort="https" prot="tcp" dstPort="https"/>
</dbgacEpToEp>

 	Step 2

 	To create an EP_to_EPG policy using the REST API, use XML such as the following example:

Example:
 <dbgacEpToEpg name="EP_to_EPG_Pol" ownerTag="" ownerKey=""
dn="uni/tn-Tenant64/epToEpg-EP_to_EPG_Pol" descr="" adminSt="enabled">
<dbgacFilter name="EP_to_EPG_Filter" ownerTag="" ownerKey="" descr=""
srcPort="http" prot="tcp" dstPort="http"/>
<dbgacRsToAbsEpg tDn="uni/tn-Tenant64/ap-VRF64_app_prof/epg-EPG64"/>
</dbgacEpToEpg>

 Troubleshooting Using Atomic Counters with the REST API

Procedure

 	Step 1

 	To get a list of the endpoint-to-endpoint atomic counters deployed within the fabric and the associated details such as dropped
 packet statistics and packet counts, use the dbgEpToEpTsIt class in XML such as the following example:

Example:
 https://apic-ip-address/api/node/class/dbgEpToEpRslt.xml

 	Step 2

 	To get a list of external IP-to-endpoint atomic counters and the associated details, use the dbgacExtToEp class in XML such as the following example:

Example:
 https://apic-ip-address/api/node/class/dbgExtToEpRslt.xml

 Understanding APIC Faults

 From a management point of view we look at the Application Policy Infrastructure Controller (APIC) from two perspectives:

 	

 Policy Controller - Where all fabric configuration is created, managed and applied. It maintains a comprehensive, up-to-date
 run-time representation of the administrative or configured state.

 	

 Telemetry device - All devices (Fabric Switches, Virtual Switches, integrated Layer 4 to Layer 7 devices) in an Cisco Application Centric
 				 Infrastructure (ACI) fabric report faults, events and statistics to the APIC.

 Faults, events, and statistics in the ACI fabric are represented as a collection of Managed Objects (MOs) within the overall ACI Object Model/Management Information Tree (MIT). All objects within ACI can be queried, including faults. In this model, a fault is represented as a mutable, stateful, and persistent MO.

 Fault Lifecycle

[image: ../images/349942.jpg]

 When a specific condition occurs, such as a component failure or an alarm, the system creates a fault MO as a child object
 to the MO that is primarily associated with the fault. For a fault object class, the fault conditions are defined by the fault
 rules of the parent object class. Fault MOs appear as regular MOs in MIT; they have a parent, a DN, RN, and so on. The Fault
 "code" is an alphanumerical string in the form FXXX. For more information about fault codes, see the Cisco APIC Faults, Events, and System Messages Management Guide.

 Troubleshooting Using Faults with the REST API

 MOs can be queried by class and DN, with property filters, pagination, and so on.

 In most cases, a fault MO is automatically created, escalated, de-escalated, and deleted by the system as specific conditions
 are detected. There can be at most one fault with a given code under an MO. If the same condition is detected multiple times
 while the corresponding fault MO is active, no additional instances of the fault MO are created. For example, if the same condition is detected multiple times for the same affected object, only one fault is raised while a counter for the recurrence of that fault will be incremented.

 A fault MO remains in the system until the fault condition is cleared. For a fault to be removed, the condition raising the fault must be cleared, whether by configuration or a change in the
 run time state of the fabric. An exception to this is if the fault is in the cleared or retained state, in which case the
 fault can be deleted by the user by acknowledging it.

 Severity provides an indication of the estimated impact of the condition on the capability of the system or component to provide
 service.

 Possible values are:

 	

 Warning (possibly no impact)

 	

 Minor

 	

 Major

 	

 Critical (system or component completely unusable)

 The creation of a fault MO can be triggered by internal processes such as:

 	

 Finite state machine (FSM) transitions or detected component failures

 	

 Conditions specified by various fault policies, some of which are user-configurable

 	[image: ../images/note.gif]
Note
 	

You can set fault thresholds on statistical measurements such as health scores, data traffic, or temperatures.

Procedure

 	Step 1

 	 To retrieve the health score for a tenant named "3tierapp", send a REST query to the fabric such as the following:

Example:

https://apic-ip-address/api/node/mo/uni/tn-3tierapp.xml?query-target=self&rsp-subtreeinclude=
health

 	Step 2

 	To retrieve statistics for a tenant named "3tierapp", send a REST query to the fabric such as the following:

Example:

https://apic-ip-address/api/node/mo/uni/tn-3tierapp.xml?query-target=self&rsp-subtreeinclude=
stats

 	Step 3

 	To retrieve the faults for a leaf node, send a REST query to the fabric such as the following:

Example:

https://apic-ip-address/api/node/mo/topology/pod-1/node-103.xml?query-target=self&rspsubtree-
include=faults

 Configuring a Stats Monitoring Policy Using the REST API

 To use statistics for monitoring and troubleshooting the fabric, you can configure a stats collection policy and a stats
 export policy to monitor many objects in the APIC.

Procedure

 	Step 1

 	To create a stats collection policy using the REST API, send a POST request with XML such as the following:

Example:
 <monEPGPol name="MonPol1" dn="uni/tn-tenant64/monepg-MonPol1">
 <monEPGTarget name="" descr="" scope="eventSevAsnP"/>
 <monEPGTarget name="" descr="" scope="faultSevAsnP"/>
 <monEPGTarget name="" descr="" scope="fvBD">
 <statsHierColl name="" descr="" histRet="inherited" granularity="5min" adminState="inherited"/>
</monEPGTarget>
<monEPGTarget name="" descr="" scope="syslogRsDestGroup"/>
<monEPGTarget name="" descr="" scope="syslogSrc"/>
<monEPGTarget name="" descr="" scope="fvCtx"/>
<statsHierColl name="" descr="" histRet="none" granularity="1w" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="none" granularity="1qtr" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="1w" granularity="1h" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="1d" granularity="15min" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="none" granularity="1year" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="none" granularity="1mo" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="1h" granularity="5min" adminState="enabled"/>
<statsHierColl name="" descr="" histRet="10d" granularity="1d" adminState="enabled"/>
<syslogSrc name="VRF64_SyslogSource" descr="" minSev="warnings" incl="faults">
<syslogRsDestGroup tDn="uni/fabric/slgroup-tenant64_SyslogDest"/>
</syslogSrc>
</monEPGPol>

 	Step 2

 	To configure a stats export policy send a post with XML such as the following (you can use either JSON or XML format):

Example:
 <statsExportP
 name="" descr="" frequency="stream" format="xml" compression="gzip">
 <statsDestP name="tenant64_statsExportDest" descr="" userName="" remotePort="0"
 remotePath="192.168.100.20" protocol="sftp" host="192.168.100.1">
 <fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>
 </statsDestP>
</statsExportP>

 Recovering a Disconnected Leaf

 If all fabric interfaces on a leaf are disabled (interfaces connecting a leaf to the spine) due to a configuration pushed
 to the leaf, connectivity to the leaf is lost forever and the leaf becomes inactive in the fabric. Trying to push a configuration
 to the leaf does not work because connectivity has been lost. This chapter describes how to recover a disconnected leaf.

 Recovering a Disconnected Leaf Using the REST API

 			
 To recover a disconnected leaf, at least one of the fabric interfaces must be enabled using the following process. The remaining
 interfaces can be enabled using the GUI, REST API, or CLI.

 			
 To enable the first interface, post a policy using the REST API to delete the policy posted and bring the fabric ports Out-of-Service.
 You can post a policy to the leaf to bring the port that is Out-of-Service to In-Service as follows:

 	[image: ../images/note.gif]
Note
 	

 					
 In the following examples, the assumption is that 1/49 is one of the leaf ports connecting to the spine.

 				

 			

 	

Procedure

 	Step 1

 	 Clear the
 			 blacklist policy from the APIC (using the REST API).
 		

Example:
 			 $APIC_Address/api/policymgr/mo/.xml
<polUni>
 <fabricInst>
 <fabricOOServicePol>
 <fabricRsOosPath tDn="topology/pod-1/paths-$LEAF_Id/pathep-[eth1/49]" lc="blacklist" status ="deleted" />
 </fabricOOServicePol>
 </fabricInst>
</polUni>

 		

 	Step 2

 	 Post a local
 			 task to the node itself to bring up the interfaces you want using
 			 l1EthIfSetInServiceLTask.
 		

Example:
 			 $LEAF_Address/api/node/mo/topology/pod-1/node-$LEAF_Id/sys/action.xml
<actionLSubj oDn="sys/phys-[eth1/49]">
<l1EthIfSetInServiceLTask adminSt='start'/>
</actionLSubj>

 		

 Verifying Contracts, Taboo Contracts, and Filters Using the REST API

 This topic provides the REST API XML to verify contracts, taboo contracts, and filters.

Procedure

 	Step 1

 	Verify a contract for an EPG or an external network with XML such as the following example for a provider:

Example:
 QUERY https://apic-ip-address/api/node/class/fvRsProv.xml

 	Step 2

 	Verify a contract on an EPG with XML such as the following example for a consumer:

Example:
 QUERY https://apic-ip-address/api/node/class/fvRsCons.xml

 	Step 3

 	Verify exported contracts using XML such as the following example:

Example:
 QUERY https://apic-ip-address/api/node/class/vzCPif.xml

 	Step 4

 	Verify contracts for a VRF with XML such as the following example:

Example:
 QUERY https://apic-ip-address/api/node/class/vzBrCP.xml

 	Step 5

 	Verify taboo contracts with XML such as the following example:

Example:
 QUERY https://apic-ip-address/api/node/class/vzTaboo.xml

 For taboo contracts for an EPG, use the same query as for contracts for EPGs.

 	Step 6

 	Verify filters using XML such as the following example:

Example:
 QUERY https://apic-ip-address/api/node/class/vzFilter.xml

 Viewing ACL Permit and Deny Logs Using the REST API

 The following example shows how to view permit and deny log data for traffic flows, using the REST API:

 Before You Begin

 You must enable permit or deny logging, before you can view ACL contract permit and deny log data.

Procedure

 	
 Send the following query using the REST API:
 GET https://apic-ip-address/api/node/mo/uni/tn-sgladwin_t1.json?rsp-subtree-include=stats&rsp-subtree-class=fvOverallHealthHist15min
{
"totalCount":"1",
"imdata":[{
"fvTenant":{
 "attributes":{
 "childAction":"",
 "descr":"",
 "dn":"uni/tn-sgladwin_t1",
 "lcOwn":"local",
 "modTs":"2016-06-22T15:46:30.745+00:00",
 "monPolDn":"uni/tn-common/monepg-default",
 "name":"sgladwin_t1",
 "ownerKey":"",
 "ownerTag":"",
 "status":"",
 "uid":"15374"
}}}]}

 Troubleshooting Using Digital Optical Monitoring With the REST API

 To view DOM statistics using an XML REST API query:

 Before You Begin

 You must have previously enabled digital optical monitoring (DOM) on an interface, before you can view the DOM statistics
 for it.

Procedure

 	
 The following example shows how to view DOM statistics on a physical interface, eth1/25 on node-104, using a REST API query:

 GET https://apic-ip-address/api/node/mo/topology/pod-1/node-104/sys/phys-[eth1/25]/phys/domstats.xml?
query-target=children&target-subtree-class=ethpmDOMRxPwrStats&subscription=yes

 The following response is returned:
response : {
 "totalCount":"1",
 "subscriptionId":"72057611234705430",
 "imdata":[
{"ethpmDOMRxPwrStats":{
 "attributes":{
 "alert":"none",
 "childAction":"",
 "dn":"topology/pod-1/node-104/sys/phys[eth1/25]/phys/domstats/rxpower",
 "hiAlarm":"0.158490",
 "hiWarn":"0.079430",
 "loAlarm":"0.001050",
 "loWarn":"0.002630",
 "modTs":"never",
 "status":"",
 "value":"0.139170"}}}]}

 Port Tracking Policy for Uplink Failure Detection

 Uplink failure detection can be enabled in the fabric access global port tracking policy. The port tracking policy monitors
 the status of links between leaf switches and spine switches. When an enabled port tracking policy is triggered, the leaf
 switches take down all access interfaces on the switch that have EPGs deployed on them.

 	[image: ../images/note.gif]
Note
 	

 In the advanced GUI, port tracking is located under Fabric > Access Policies > Global Policies > Port Tracking.

 In the basic GUI, port tracking is located under System > System Settings > Port Tracking.

 Depending on the model of leaf switch, each leaf switch can have 6, 8, or 12 uplink connections to each spine switch. The
 port tracking policy specifies the number of uplink connections that trigger the policy, and a delay timer for bringing the
 leaf switch access ports back up after the number of specified uplinks is exceeded.

 The following example illustrates how a port tracking policy behaves:

 	
 The leaf switches each have 6 active uplink connections to the spine switches.

 	
 The port tracking policy specifies that the threshold of active uplink connections each leaf switch that triggers the policy
 is 2.

 	
 The port tracking policy triggers when the number of active uplink connections from the leaf switch to the spine switches
 drops to 2.

 	
 Each leaf switch monitors its uplink connections and triggers the port tracking policy according to the threshold specified
 in the policy.

 	
 When the uplink connections come back up, the leaf switch waits for the delay timer to expire before bringing its access ports
 back up. This gives the fabric time to reconverge before allowing traffic to resume on leaf switch access ports. Large fabrics
 may need the delay timer to be set for a longer time.

 	[image: ../images/note.gif]
Note
 	

 		
 Use caution when configuring this policy. If the port tracking setting for the number of active spine links that triggers
 port tracking is too high, all leaf switch access ports will be brought down.

 		

 Port Tracking Using
 	 the REST API

 Before You Begin

 		
 This procedure
 		 explains how to use the Port Tracking feature using the REST API.
 		

 	

Procedure

 	Step 1

 	Turn on the Port
 			 Tracking feature using the REST API as follows (admin state: on):
 		
 			 <polUni>
<infraInfra dn="uni/infra">
<infraPortTrackPol name="default" delay="5" minlinks="4" adminSt="on">

</infraPortTrackPol>
</infraInfra>
</polUni>

 		

 	Step 2

 	Turn off the
 			 Port Tracking feature using the REST API as follows (admin state: off):
 		
 			 <polUni>
<infraInfra dn="uni/infra">
<infraPortTrackPol name="default" delay="5" minlinks="4" adminSt=“off">

</infraPortTrackPol>
</infraInfra>
</polUni>

 		

 Removing Unwanted _ui_ Objects Using the REST API

 If you make changes with the Basic GUI or the NX-OS CLI before using the Advanced GUI, and objects appear in the Advanced
 GUI (with names prepended with _ui_), these objects can be removed by performing a REST API request to the API, containing the following:

 	

 The Class name, for example infraAccPortGrp

 	

 The Dn attribute, for example dn="uni/infra/funcprof/accportgrp-__ui_l101_eth1--31"

 	

 The Status attribute set to status="deleted"

 Perform the POST to the API with the following steps:

Procedure

 	Step 1

 	 Log on to a user account with write access to the object to be removed.

 	Step 2

 	Send a POST to the API such as the following example:
 POST https://192.168.20.123/api/mo/uni.xml
Payload:<infraAccPortGrp dn="uni/infra/funcprof/accportgrp-__ui_l101_eth1--31" status="deleted"/>

 Part III. Part 3: Setting Up APIC and the Fabric Using the REST API

 	Managing APIC Clusters

 	Configuring Tenant Policies

 	Provisioning Core Services

 	Provisioning Layer 2 Networks

 	Provisioning Layer 3 Outside Connections

 	Managing Layer 4 to Layer 7 Services

 	Configuring QoS

 	Configuring Security

 	Creating Quota Management

 Chapter 9. Managing APIC Clusters

 Cluster Management
 	 Guidelines

 The
 		APIC
 		cluster is comprised of multiple
 		APIC
 		controllers that provide operators a unified real time monitoring, diagnostic,
 		and configuration management capability for the ACI fabric. To assure optimal
 		system performance, follow the guidelines below for making changes to the
 		APIC
 		cluster.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 Prior to initiating
 		 a change to the cluster, always verify its health. When performing planned
 		 changes to the cluster, all controllers in the cluster should be healthy. If
 		 one or more of the
 		 APIC
 		 controllers' health status in the cluster is not "fully fit", remedy that
 		 situation before proceeding. Also, assure that cluster controllers added to the
 		
 		 APIC
 		 are running the same version of firmware as the other controllers in the
 		 APIC
 		 cluster. See the
 		 Cisco
 			 APIC
 			 Troubleshooting Guide for more information on resolving
 		 APIC
 		 cluster health issues.
 		

 	

 Follow these general
 		guidelines when managing clusters:
 	

 	
 				
 It is recommended that you have at least 3 active APICs in a cluster, and one or more standby APICs.

 			

 	
 		
 Disregard cluster
 			 information from
 			 APICs
 			 that are not currently in the cluster; they do not provide accurate cluster
 			 information.
 		

 		

 	
 		
 Cluster slots
 			 contain an
 			 APIC
 			
 			 ChassisID. Once you configure a slot, it remains
 			 unavailable until you decommission the
 			 APIC
 			 with the assigned
 			 ChassisID.
 		

 		

 	
 		
 If an
 			 APIC
 			 firmware upgrade is in progress, wait for it to complete and the cluster to be
 			 fully fit before proceeding with any other changes to the cluster.
 		

 		

 	
 Always decommission an APIC
 		 cluster controller before doing a power cycle, then add it back to the cluster. Failure to follow this guideline can corrupt
 the APIC
 		 cluster database shards residing on the cluster, which will require doing a wipe of the controller, then a cluster synchronization
 to restore a valid copy of the APIC
 		 cluster database from the other APIC
 		 controllers in the cluster.

 	
 				
 When an APIC cluster is split into two or more groups, the ID of a node is changed and the changes are not synchronized across
 all APICs. This can cause inconsistency in the node IDs between APICs and also the affected leaf nodes may not appear in the
 inventory in the APIC GUI. When you split an APIC cluster, decommission the affected leaf nodes from APIC and register them
 again, so that the inconsistency in the node IDs is resolved and the health status of the APICs in a cluster are in a fully
 fit state

 				
 			

 This section contains the following topics:

 Expanding the
 	 APIC
 	 Cluster Size

 Follow these
 		guidelines to expand the
 		APIC
 		cluster size:
 	

 	
 		
 Schedule the
 			 cluster expansion at a time when the demands of the fabric workload will not be
 			 impacted by the cluster expansion.
 		

 		

 	
 		
 If one or more of the
 			 APIC
 			 controllers' health status in the cluster is not "fully fit", remedy that
 			 situation before proceeding.
 		

 		

 	
 		
 Stage the new
 			 APIC
 			 controller(s) according to the instructions in their hardware installation
 			 guide. Verify in-band connectivity with a PING test.
 		

 		

 	
 		
 Increase the cluster target size to be equal to the existing cluster size controller count plus the new controller count.
 For example, if the existing cluster size controller count is 3 and you are adding 3 controllers, set the new cluster target
 size to 6. The cluster proceeds to sequentially increase its size one controller at a time until all new the controllers are
 included in the cluster.

 				

 	[image: ../images/note.gif]
Note
 	

 Cluster expansion stops if an existing APIC controller becomes unavailable. Resolve this issue before attempting to proceed with the cluster expansion.

 		

 	
 		
 Depending on the amount of data the APIC must synchronize upon the addition of each appliance, the time required to complete the expansion could be more than 10 minutes
 per appliance. Upon successful expansion of the cluster, the APIC operational size and the target size will be equal.

 				

 	[image: ../images/note.gif]
Note
 	

 Allow the APIC to complete the cluster expansion before making additional changes to the cluster.

 		

 Expanding the Cisco
 	 APIC Cluster

 Expanding the Cisco
 		APIC cluster is the operation to increase
 		any size mismatches, from a cluster size of N to size N+1, within legal
 		boundaries. The operator sets the administrative cluster size and connects the
 		APICs with the appropriate cluster IDs, and
 		the cluster performs the expansion.
 	

 During cluster
 		expansion, regardless of in which order you physically connect the
 		APIC controllers, the discovery and
 		expansion takes place sequentially based on the
 		APIC ID numbers. For example,
 		APIC2 is discovered after
 		APIC1, and
 		APIC3 is discovered after
 		APIC2 and so on until you add all the
 		desired
 		APICs
 		to the cluster. As each sequential
 		APIC
 		is discovered, a single data path or multiple data paths are established, and
 		all the switches along the path join the fabric. The expansion process
 		continues until the operational cluster size reaches the equivalent of the
 		administrative cluster size.
 	

 Expanding the
 	 APIC Cluster Using the REST API

 		
 The cluster drives
 		 its actual size to the target size. If the target size is higher than the
 		 actual size, the cluster size expands.
 		

 	

Procedure

 	Step 1

 	Set the target
 			 cluster size to expand the
 			 APIC cluster size.
 		

Example:
 			 POST
https://<IP address>/api/node/mo/uni/controller.xml
<infraClusterPol name='default' size=3/>

 		

 	Step 2

 	Physically
 			 connect the
 			 APIC controllers that you want to add to
 			 the cluster.
 		
 		

 Contracting the
 	 Cisco
 	 APIC Cluster

 Contracting the Cisco
 		APIC cluster is the operation to decrease
 		any size mismatches, from a cluster size of N to size N -1, within legal
 		boundaries. As the contraction results in increased computational and memory
 		load for the remaining
 		APICs in the cluster, the decommissioned
 		APIC cluster slot becomes unavailable by
 		operator input only.
 	

 During cluster
 		contraction, you must begin decommissioning the last
 		APIC in the cluster first and work your way
 		sequentially in reverse order. For example,
 		APIC4 must be decommissioned before
 		APIC3, and
 		APIC3 must be decommissioned before
 		APIC2.
 	

 Contracting the
 	 APIC Cluster Using the REST API

 		
 The cluster drives
 		 its actual size to the target size. If the target size is lower than the actual
 		 size, the cluster size contracts.
 		

 	

Procedure

 	Step 1

 	Set the target
 			 cluster size so as to contract the
 			 APIC cluster size.
 		

Example:
 			 POST
https://<IP address>/api/node/mo/uni/controller.xml
<infraClusterPol name='default' size=1/>

 		

 	Step 2

 	Decommission
 			 APIC3 on
 			 APIC1 for cluster contraction.
 		

Example:
 			 POST
https://<IP address>/api/node/mo/topology/pod-1/node-1/av.xml
<infraWiNode id=3 adminSt='out-of-service'/>

 		

 	Step 3

 	Decommission
 			 APIC2 on
 			 APIC1 for cluster contraction.
 		

Example:
 			 POST
https://<IP address>/api/node/mo/topology/pod-1/node-1/av.xml
<infraWiNode id=2 adminSt='out-of-service'/>

 		

 About High Availability for APIC Cluster

 The High Availability functionality for an APIC cluster enables you to operate the APICs in a cluster in an Active/Standby
 mode. In an APIC cluster, the designated active APICs share the load and the designated standby APICs can act as a replacement
 for any of the APICs in an active cluster.

 As an admin user, you can set up the High Availability functionality when the APIC is launched for the first time. We recommend
 that you have at least three active APICs in a cluster, and one or more standby APICs. As an admin user, you can initiate
 the switch over to replace an active APIC with a standby APIC.

 Important Notes

 	

 The standby APIC is automatically updated with firmware updates to keep the backup APIC at same firmware version as the active
 cluster.

 	

 During an upgrade process, once all the active APICs are upgraded, the standby APIC is also be upgraded automatically.

 	

 Temporary IDs are assigned to standby APICs. After a standby APIC is switched over to an active APIC, a new ID is assigned.

 	

 Admin login is not enabled on standby APIC. To troubleshoot HA, you must log in to the standby using SSH as rescue-user.

 	

 During switch over the replaced active APIC is powered down, to prevent connectivity to the replaced APIC.

 	

 Switch over fails under the following conditions:

 	

 If there is no connectivity to the standby APIC.

 	

 If the firmware version of the standby APIC is not the same as that of the active cluster.

 	

 After switching over a standby APIC to active, if it was the only standby, you must configure a new standby.

 	

 The following limitations are observed for retaining out of band address for standby APIC after a fail over.

 	

 Standby(new active) APIC may not retain its out of band address if more than 1 active APICs are down or unavailable.

 	

 Standby(new active) APIC may not retain its out of band address if it is in a different subnet than active APIC.

 	

 Standby(new active) APIC may not retain its IPv6 out of band address.

 	[image: ../images/note.gif]
Note
 	

 In case you observe any of the limitations, in order to retain standby APICs out of band address, you must manually change
 the OOB policy for replaced APIC after the replace operation is completed successfully.

 	

 We recommend keeping standby APICs in same POD as the active APICs it may replace.

 	

 There must be three active APICs in order to add a standby APIC.

 	

 The standby APIC does not participate in policy configuration or management.

 	

 No information is replicated to standby controllers, including admin credentials.

 Switching Over Active APIC with Standby APIC Using REST API

 Use this procedure to switch over an active APIC with standby APIC using REST API.

Procedure

 	
 Switch over active APIC with standby APIC.

 URL for POST: https://ip address/api/node/mo/topology/pod-initiator_pod_id/node-initiator_id/av.xml
Body: <infraWiNode id=outgoing_apic_id targetMbSn=backup-serial-number/>
where initiator_id = id of an active APIC other than the APIC being replaced.
pod-initiator_pod_id = pod ID of the active APIC
backup-serial-number = serial number of standby APIC

Example:
 https://ip address/api/node/mo/topology/pod-1/node-1/av.xml
<infraWiNode id=2 targetMbSn=FCH1750V00Q/>

 Chapter 10. Configuring Tenant Policies

 About Multiple Private Networks with Inter-Tenant Communication

 	

 This use case may be typical for environments where an ACI administrator wishes to create multiple tenants with the ability
 to support inter-tenant communications.

 This method has the following advantages and disadvantages:

 Advantages:

 	Each tenant container can be managed separately

 	Allows for maximum isolation between tenants

 Disadvantages:

 	Tenant address space must be unique

 From a containment and relationship perspective, this topology looks as follows:

 Multiple Private Networks with Inter-Tenant Communication

[image: ../images/349933.jpg]

 Configuring Multiple Private Networks with Inter-Tenant Communication Using the REST API

 Configure the Cisco-1 and Cisco-2 private networks, with communication between them, using the REST API in the following steps:

Procedure

 	Step 1

 	Configure Cisco-1 tenant using the following XML posted to the APIC REST API:

Example:

<fvTenant dn="uni/tn-Cisco1" name="Cisco1">

<vzBrCP name="ICMP" scope="global">
<vzSubj consMatchT="AtleastOne" name="icmp" provMatchT="AtleastOne"
revFltPorts="yes">
<vzRsSubjFiltAtt tnVzFilterName="icmp"/>
</vzSubj>
</vzBrCP>

<vzCPIf dn="uni/tn-Cisco1/cif-ICMP" name="ICMP">

<vzRsIf consMatchT="AtleastOne" name="icmp" provMatchT="AtleastOne"
revFltPorts="yes">
<vzRsSubjFiltAtt tDn="uni/tn-Cisco2/brc-default"/>
</vzRsIf>
</vzCPIf>
<fvCtx knwMcastAct="permit" name="CiscoCtx" pcEnfPref="enforced"/>

<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD2" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx2"/>
</fvBD>
<fvBD arpFlood="yes" name="CiscoBD" unicastRoute="yes" unkMacUcastAct="flood"
unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvAp name="CCO">
<fvAEPg matchT="AtleastOne" name="EPG1">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-202/pathep-[eth1/2]"/>
<fvSubnet ip="172.16.1.1/24" scope="private,shared"/>

<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>

<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsProv matchT="AtleastOne" tnVzBrCPName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsProv matchT="AtleastOne" tnVzBrCPName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

 	Step 2

 	Configure Cisco-2 tenanat using the following XML posted to the APIC REST API:

Example:

<fvTenant dn="uni/tn-Cisco2" name="Cisco2">
<fvCtx knwMcastAct="permit" name="CiscoCtx" pcEnfPref="enforced"/>
<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD2" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvBD arpFlood="yes" name="CiscoBD" unicastRoute="yes" unkMacUcastAct="flood"
unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvAp name="CCO">
<fvAEPg matchT="AtleastOne" name="EPG2">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-201/pathep-[eth1/2]"/>
<fvSubnet ip="172.16.1.1/24" scope="private,shared"/>

<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>

<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsConsIf matchT="AtleastOne" tnVzBrCPIfName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

 About Multiple Private Networks with Intra-Tenant Communication

 Another use case that may be desirable to support is the option to have a single tenant with multiple private networks. This
 may be a result of needing to provide multitenancy at a network level, but not at a management level. It may also be caused
 by needing to support overlapping subnets within a single tenant, due to mergers and acquisitions or other business changes.

 This method has the following advantages and disadvantages:

 Advantages:

 	

 Ability to have overlapping subnets within a single tenant

 Disadvantages:

 	

 EPGs residing in overlapping subnets cannot have policy applied between one another

 The object containment for this particular setup can be depicted as shown below:

 Multiple Private Networks with Intra-Tenant Communication

[image: ../images/349932.jpg]

 Configuring Multiple Tenants with Intra-Tenant Communication Using the REST API

Procedure

 	
 Configure the Tenant Cisco, with Cisco-1 and Cisco-2 networks, using the following XML posted to the APIC REST API:

Example:

<fvTenant dn="uni/tn-Cisco" name="Cisco">
<vzBrCP name="ICMP" scope="tenant">
<vzSubj consMatchT="AtleastOne" name="icmp" provMatchT="AtleastOne"
revFltPorts="yes">
<vzRsSubjFiltAtt tnVzFilterName="icmp"/>
</vzSubj>
</vzBrCP>
<fvCtx knwMcastAct="permit" name="CiscoCtx" pcEnfPref="enforced"/>
<fvCtx knwMcastAct="permit" name="CiscoCtx2" pcEnfPref="enforced"/>
<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD2" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx2"/>
</fvBD>
<fvBD arpFlood="yes" mac="00:22:BD:F8:19:FF" name="CiscoBD" unicastRoute="yes"
unkMacUcastAct="flood" unkMcastAct="flood">
<fvRsCtx tnFvCtxName="CiscoCtx"/>
</fvBD>
<fvAp name="CCO">
<fvAEPg matchT="AtleastOne" name="Web">
<fvRsCons tnVzBrCPName="ICMP"/>
<fvRsPathAtt encap="vlan-1201" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-201/pathep-[eth1/16]"/>
<fvSubnet ip="172.16.2.1/24" scope="private,shared"/>
<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>
<fvRsBd tnFvBDName="CiscoBD2"/>
</fvAEPg>
<fvAEPg matchT="AtleastOne" name="App">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/paths-202/pathep-[eth1/2]"/>
<fvSubnet ip="172.16.1.1/24" scope="private,shared"/>
<fvRsDomAtt instrImedcy="lazy" resImedcy="lazy" tDn="uni/phys-
PhysDomainforCisco"/>
<fvRsBd tnFvBDName="CiscoBD"/>
<fvRsProv matchT="AtleastOne" tnVzBrCPName="ICMP"/>
</fvAEPg>
</fvAp>
</fvTenant>

 Tenant Policy
 	 Example Overview

 		
 The description of
 		 the tenant policy example in this appendix uses XML terminology
 		 (http://en.wikipedia.org/wiki/XML#Key_terminology). This example demonstrates
 		 how basic
 		 APIC policy model constructs are rendered
 		 into the XML code. The following figure provides an overview of the tenant
 		 policy example.
 		

 			 EPGs and
 				Contract Contained in Tenant Solar

[image: ../images/349134.jpg]

 		

 		
 In the figure,
 		 according to the contract called webCtrct and the EPG labels, the green-labeled
 		 EPG:web1 can communicate with green-labeled EPG:app using both http and https,
 		 the red -abeled EPG:web2 can communicate with the red-labeled EPG:db using only
 		 https.
 		

 	

 Tenant Policy
 	 Example XML Code

 		
<polUni>
 <fvTenant name="solar">

 <vzFilter name="Http">
 <vzEntry name="e1"
	
 etherT="ipv4"
 prot="tcp"
 dFromPort="80"
 dToPort="80"/>
 </vzFilter>

 <vzFilter name="Https">
 <vzEntry name="e1"
 etherT="ipv4"
 prot="tcp"
 dFromPort="443"
 dToPort="443"/>
 </vzFilter>

 <vzBrCP name="webCtrct">
 <vzSubj name="http" revFltPorts="true" provmatchT="All">
 <vzRsSubjFiltAtt tnVzFilterName="Http"/>
 <vzRsSubjGraphAtt graphName="G1" termNodeName="TProv"/>
 <vzProvSubjLbl name="openProv"/>
 <vzConsSubjLbl name="openCons"/>
 </vzSubj>
 <vzSubj name="https" revFltPorts="true" provmatchT="All">
 <vzProvSubjLbl name="secureProv"/>
 <vzConsSubjLbl name="secureCons"/>
 < vzRsSubjFiltAtt tnVzFilterName="Https"/>
 <vzRsOutTermGraphAtt graphName="G2" termNodeName="TProv"/>
 </vzSubj>
 </vzBrCP>

 <fvCtx name="solarctx1"/>

 <fvBD name="solarBD1">
 <fvRsCtx tnFvCtxName="solarctx1" />
 <fvSubnet ip="11.22.22.20/24">
 <fvRsBDSubnetToProfile
 tnL3extOutName="rout1"
 tnRtctrlProfileName="profExport"/>
 </fvSubnet>
 <fvSubnet ip="11.22.22.211/24">
 <fvRsBDSubnetToProfile
 tnL3extOutName="rout1"
 tnRtctrlProfileName="profExport"/>
 </fvSubnet>
 </fvBD>

  <fvAp name="sap">
 <fvAEPg name="web1">
 <fvRsBd tnFvBDName="solarBD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsProv tnVzBrCPName="webCtrct" matchT="All">
	 	 <vzProvSubjLbl name="openProv"/>
	 	 <vzProvSubjLbl name="secureProv"/>
 <vzProvLbl name="green"/>
 </fvRsProv>
 </fvAEPg>
 <fvAEPg name="web2">
 <fvRsBd tnFvBDName="solarBD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsProv tnVzBrCPName="webCtrct" matchT="All">
 <vzProvSubjLbl name="secureProv"/>
 <vzProvLbl name="red"/>
 </fvRsProv>
 </fvAEPg>
 <fvAEPg name="app">
 <fvRsBd tnFvBDName="solarBD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsCons tnVzBrCPName="webCtrct">
		 <vzConsSubjLbl name="openCons"/>
		 <vzConsSubjLbl name="secureCons"/>
 <vzConsLbl name="green"/>
 </fvRsCons>
 </fvAEPg>
 <fvAEPg name="db">
 <fvRsBd tnFvBDName="solarBD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsCons tnVzBrCPName="webCtrct">
 <vzConsSubjLbl name="secureCons"/>
 <vzConsLbl name="red"/>
 </fvRsCons>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 	

 Tenant Policy
 	 Example Explanation

 		
 This section
 		 contains a detailed explanation of the tenant policy example.
 		

 	

 	Policy Universe

 	Tenant Policy Example

 	Filters

 	Contracts

 	Subjects

 	Labels

 	VRF

 	Bridge Domains

 	Application Profiles

 	Endpoints and Endpoint Groups (EPGs)

 	Closing

 Policy
 	 Universe

 		
 The policy universe
 		 contains all the tenant-managed objects where the policy for each tenant is
 		 defined.
 		

 		
 <polUni>
 		

 		
 This starting tag,
 		 <polUni>, in the first line indicates the
 		 beginning of the policy universe element. This tag is matched with
 		 </polUni> at the end of the policy. Everything in
 		 between is the policy definition.
 		

 	

 Tenant Policy
 	 Example

 		
 The
 		 <fvTenant> tag identifies the beginning of the
 		 tenant element.
 		

 		
 <fvTenant
 			 name="solar">
 		

 		
 All of the policies
 		 for this tenant are defined in this element. The name of the tenant in this
 		 example is solar. The tenant name must be unique in the system. The primary
 		 elements that the tenant contains are filters, contracts, outside networks,
 		 bridge domains, and application profiles that contain EPGs.
 		

 	

 Filters

 		
 The filter element
 		 starts with a
 		 <vzFilter> tag and contains elements that are
 		 indicated with a
 		 <vzEntry> tag.
 		

 		
 The following
 		 example defines "Http" and "Https" filters. The first attribute of the filter
 		 is its name and the value of the name attribute is a string that is unique to
 		 the tenant. These names can be reused in different tenants. These filters are
 		 used in the subject elements within contracts later on in the example.
 		

 		
 <vzFilter name="Http">
 <vzEntry name="e1" etherT="ipv4" prot="tcp" dFromPort="80" dToPort="80"/>
 </vzFilter>

 <vzFilter name="Https">
 <vzEntry name="e1" etherT="ipv4" prot="tcp" dFromPort="443" dToPort="443"/>
 </vzFilter>

 		This example defines
 		 these two filters: Http and Https. The first attribute of the filter is its
 		 name and the value of the name attribute is a string that is unique to the
 		 tenant, i.e. these names can be reused in different tenants. These filters will
 		 be used in the subject elements within contracts later on in the example.
 		

 		
 Each filter can have
 		 one or more entries where each entry describes a set of Layer 4 TCP or UDP port
 		 numbers. Some of the possible attributes of the
 		 <vzEntry> element are as follows:
 		

 		

 	
 			
 name
 			

 		

 	
 			
 prot
 			

 		

 	
 			
 dFromPort
 			

 		

 	
 			
 dToPort
 			

 		

 	
 			
 sFromPort
 			

 		

 	
 			
 sToPort
 			

 		

 	
 			
 etherT
 			

 		

 	
 			
 ipFlags
 			

 		

 	
 			
 arpOpc
 			

 		

 	
 			
 tcpRules
 			

 		

 		
 In this example,
 		 each entry’s name attribute is specified. The name is an ASCII string that must
 		 be unique within the filter but can be reused in other filters. Because this
 		 example does not refer to a specific entry later on, it is given a simple name
 		 of “e1”.
 		

 		
 The EtherType
 		 attribute,
 		 etherT, is next. It is assigned the value of ipv4 to
 		 specify that the filter is for IPv4 packets. There are many other possible
 		 values for this attribute. Common ones include
 		 ARP,
 		
 		 RARP, andIPv6. The default is
 		 unspecified so it is important to assign it a value.
 		

 		
 Following the
 		 EtherType attribute is the
 		 prot
 		 attribute that is set to
 		 tcp
 		 to indicate that this filter is for TCP traffic. Alternate protocol attributes
 		 include
 		 udp,
 		
 		 icmp, and
 		 unspecified (default).
 		

 		
 After the protocol,
 		 the destination TCP port number is assigned to be in the range from 80 to 80
 		 (exactly TCP port 80) with the
 		 dFromPort and
 		 dToPort attributes. If the from and to are different,
 		 they specify a range of port numbers.
 		

 		
 In this example,
 		 these destination port numbers are specified with the attributes
 		 dFromPort and
 		 dToPort. However, when they are used in the contract,
 		 they should be used for the destination port from the TCP client to the server
 		 and as the source port for the return traffic. See the attribute
 		 revFltPorts later in this example for more information.
 		
 		

 		
 The second filter
 		 does essentially the same thing, but for port 443 instead.
 		

 		
 Filters are referred
 		 to by subjects within contracts by their target distinguished name,
 		 tDn. The
 		 tDn name is constructed as follows:
 		

 		
 uni/tn-<tenant
 			 name>/flt-<filter name>
 		

 		
 For example, the
 		 tDn
 		 of the first filter above is
 		 uni/tn-coke/flt-Http. The second filter has the name
 		 uni/tn-coke/flt-Https. In both cases,
 		 solar comes from the tenant name.
 		

 	

 Contracts

 		
 The contract element
 		 is tagged
 		 vzBrCP and it has a
 		 name
 		 attribute.
 		

 		
 <vzBrCP name="webCtrct">
 <vzSubj name="http" revFltPorts="true" provmatchT="All">
 <vzRsSubjFiltAtt tnVzFilterName="Http"/>
 <vzRsSubjGraphAtt graphName="G1" termNodeName="TProv"/>
 <vzProvSubjLbl name="openProv"/>
 <vzConsSubjLbl name="openCons"/>
 </vzSubj>
 <vzSubj name="https" revFltPorts="true" provmatchT="All">
 <vzProvSubjLbl name="secureProv"/>
 <vzConsSubjLbl name="secureCons"/>
 <vzRsFiltAtt tnVzFilterName="Https "/>
 <vzRsOutTermGraphAtt graphName="G2" termNodeName="TProv"/>
 </vzSubj>
 </vzBrCP>

 		Contracts are the
 		 policy elements between EPGs. They contain all of the filters that are applied
 		 between EPGs that produce and consume the contract. The contract element is
 		 tagged
 		 vzBrCP and it has a name attribute. Refer to the object
 		 model reference documentation for other attributes that can be used in the
 		 contract element. This example has one contract named
 		 webCtrct.
 		

 		
 The contract
 		 contains multiple subject elements where each subject contains a set of
 		 filters. In this example, the two subjects are
 		 http
 		 and
 		 https.
 		

 		
 The contract is later
 		 referenced by EPGs that either provide or consume it. They reference it by its
 		 name in in the following manner:
 		

 		
 uni/tn-[tenant-name]/brc-[contract-name]
 		

 		
 tenant-name is the
 		 name of the tenant, “solar” in this example, and the contract-name is the name
 		 of the contract. For this example, the
 		 tDn
 		 name of the contract is
 		 uni/tn-solar/brc-webCtrct.
 		

 	

 Subjects

 		
 The subject element
 		 starts with the tag
 		 vzSubj and has three attributes:
 		 name,
 		 revFltPorts, and
 		 matchT. The
 		 name
 		 is simply the ASCII name of the subject.
 		

 		
 revFltPorts is a
 		 flag that indicates that the Layer 4 source and destination ports in the
 		 filters of this subject should be used as specified in the filter description
 		 in the forward direction (that is, in the direction of from consumer to
 		 producer EPG), and should be used in the opposite manner for the reverse
 		 direction. In this example, the “http” subject contains the “Http” filter that
 		 defined TCP destination port 80 and did not specify the source port. Because
 		 the
 		 revFltPorts flag is set to true, the policy will be TCP
 		
 		 destination port
 			 80 and any source port for traffic from the consumer to the producer, and
 		 it will be TCP destination port any and
 		 source port 80
 		 for traffic from the producer to the consumer. The assumption is that the
 		 consumer initiates the TCP connection to the producer (the consumer is the
 		 client and the producer is the server).
 		

 		
 The default value
 		 for the
 		 revFltPrts attribute is
 		 false if it is not specified.
 		

 	

 Labels

 		
 The match type
 		 attribute,
 		 provmatchT (for provider matching) and
 		 consmatchT (for consumer matching) determines how the
 		 subject labels are compared to determine if the subject applies for a given
 		 pair of consumers and producers. The following match type values are available:
 		
 		

 		

 	
 			
 All
 			

 		

 	
 			
 AtLeastOne (default)
 				
 			

 		

 	
 			
 None
 			

 		

 	
 			
 ExactlyOne
 			

 		

 		
 When deciding
 		 whether a subject applies to the traffic between a producer and consumer EPG,
 		 the match attribute determines how the subject labels that are defined (or not)
 		 in those EPGs should be compared to the labels in the subject. If the match
 		 attribute value is set to
 		 All,
 		 it only applies to the providers whose provider subject labels,
 		 vzProvSubjLbl, match all of the
 		 vzProvSubjLbl labels that are defined in the subject.
 		 If two labels are defined, both must also be in the provider. If a provider EPG
 		 has 10 labels, as long as all of the provider labels in the subject are
 		 present, a match is confirmed. A similar criteria is used for the consumers
 		 that use the
 		 vzConsSubjLbl. If the
 		 matchT attribute value is
 		 AtLeastOne, only one of the labels must match. If the
 		 matchT attribute is
 		 None, the match only occurs if none of the provider
 		 labels in the subject match the provider labels of the provider EPGs and
 		 similarly for the consumer.
 		

 		
 If the producer or
 		 consumer EPGs do not have any subject labels and the subject does not have any
 		 labels, a match occurs for
 		 All,
 		
 		 AtLeastOne, and
 		 None
 		 (if you do not use labels, the subject is used and the
 		 matchT attribute does not matter).
 		

 		
 An optional
 		 attribute of the subject not shown in the example is
 		 prio
 		 where the priority of the traffic that matches the filter is specified.
 		 Possible values are
 		 gold,
 		 silver,
 		 bronze, or
 		 unspecified (default).
 		

 		
 In the example, the
 		 subject element contains references to filter elements, subject label elements,
 		 and graph elements.
 		 <vzRsSubjFiltAtt tDn=“uni/tn-coke/flt-Http”/> is
 		 a reference to a previously defined filter. This element is identified by the
 		 vzRsSubjFiltAtt tag.
 		

 		
 <vzRsSubjGraphAtt
 			 graphName=“G1” termNodeName=“TProv”/> defines a terminal
 		 connection.
 		

 		
 <vzProvSubjLbl
 			 name=“openProv”/> defines a provider label named “openProv”. The
 		 label is used to qualify or filter which subjects get applied to which EPGs.
 		 This particular one is a provider label and the corresponding consumer label is
 		 identified by the tag
 		 vzConsSubjLbl. These labels are matched with the
 		 corresponding label of the provider or consumer EPG that is associated with the
 		 current contract. If a match occurs according to the
 		 matchT criteria described above, a particular subject
 		 applies to the EPG. If no match occurs, the subject is ignored.
 		

 		
 Multiple provider
 		 and consumer subject labels can be added to a subject to allow more complicated
 		 matching criteria. In this example, there is just one label of each type on
 		 each subject. However, the labels on the first subject are different from the
 		 labels on the second subject, which allows these two subjects to be handled
 		 differently depending on the labels of the corresponding EPGs. The order of the
 		 elements within the subject element does not matter.
 		

 	

 VRF

 		
 The Virtual Routing and Forwarding (VRF) (also known as a context or private network) is identified by the fvCtx tag and contains a name attribute.

 		
 A tenant can contain multiple VRFs. For this example, the tenant uses one VRF named “solartx1”. The name must be unique within
 the tenant.

 		
 The VRF defines a Layer 3 address domain. All of the endpoints within the Layer 3 domain must have unique IPv4 or IPv6 addresses,
 because it is possible to directly forward packets between these devices if the policy allows it.

 		
 Although a VRF defines a unique IP address space, the corresponding subnets are defined within bridge domains. Each bridge
 domain is then associated with the VRF.

 	

 Bridge
 	 Domains

 		
 The bridge domain
 		 element is identified with the
 		 fvBD
 		 tag and has a name attribute.
 		

 		

 		
 <fvBD name="solarBD1">
 <fvRsCtx tnFvCtxName="solarctx1" />
 <fvSubnet ip="11.22.22.20/24">
 <fvRsBDSubnetToProfile
 tnL3extOutName="rout1"
 tnRtctrlProfileName="profExport" />
 </fvSubnet>
 <fvSubnet ip="11.22.23.211/24">
 <fvRsBDSubnetToProfile
 tnL3extOutName="rout1"
 tnRtctrlProfileName="profExport"/>
 </fvSubnet>
 </fvBD>

 		

 		
 Within the bridge domain element, subnets are defined and a reference is made to the corresponding Virtual Routing and Forwarding
 (VRF) instance (also known as a context or private network). Each bridge domain must be linked to a VRF and have at least
 one subnet.

 		
 This example uses one bridge domain named “solarBD1”. In this example, the “solarctx1” VRF is referenced by using the element
 tagged fvRsCtx and the tnFvCtxName attribute is given the value “solarctx1”. This name comes from the VRF defined above.

 		
 The subnets are contained within the bridge domain and a bridge domain can contain multiple subnets. This example defines
 two subnets. All of the addresses used within a bridge domain must fall into one of the address ranges that is defined by
 the subnets. However, the subnet can also be a supernet which is a very large subnet that includes many addresses that might
 never be used. Specifying one giant subnet that covers all current future addresses can simplify the bridge domain specification.
 However, different subnets must not overlap within a bridge domain or with subnets defined in other bridge domains that are
 associated with the same VRF. Subnets can overlap with other subnets that are associated with other VRFs.

 		
 The subnets described above are 11.22.22.xx/24 and 11.22.23.xx/24. However, the full 32 bits of the address is given even
 though the mask says that only 24 are used, because this IP attribute also identifies the full IP address for the router in
 that subnet. In the first case, the router IP address (default gateway) is 11.22.22.20 and for the second subnet, it is 11.22.23.211.

 		
 The entry
 		 11.22.22.20/24 is equivalent to the following, but in compact form:
 		

 		

 	
 			
 Subnet:
 				11.22.22.00
 			

 		

 	
 			
 Subnet Mask:
 				255.255.255.0
 			

 		

 	
 			
 Default gateway:
 				11.22.22.20
 			

 		

 	

 Application
 	 Profiles

 		
 The start of the
 		 application profile is indicated by the
 		 fvAp
 		 tag and has a name attribute.
 		

 		
 <fvAp
 			 name="sap">
 		

 		
 This example has one
 		 application network profile and it is named “sap.”
 		

 		
 The application
 		 profile is a container that holds the EPGs. EPGs can communicate with other
 		 EPGs in the same application profile and with EPGs in other application
 		 profiles. The application profile is simply a convenient container that is used
 		 to hold multiple EPGs that are logically related to one another. They can be
 		 organized by the application they provide such as “sap,” by the function they
 		 provide such as “infrastructure,” by where they are in the structure of the
 		 data center such as “DMZ,” or whatever organizing principle the administrator
 		 chooses to use.
 		

 		
 The primary object
 		 that the application profile contains is an endpoint group (EPG). In this
 		 example, the “sap” application profile contains 4 EPGs: web1, web2, app, and
 		 db.
 		

 	

 Endpoints and
 	 Endpoint Groups (EPGs)

 		
 EPGs begin with the
 		 tag
 		 fvAEPg and have a name attribute.
 		

 		

 		
 <fvAEPg name="web1">
 <fvRsBd tnFvBDName="solarBD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsProv tnVzBrCPName="webCtrct" matchT ="All">
	 	 <vzProvSubjLbl name="openProv"/>
	 	 <vzProvSubjLbl name="secureProv"/>
 <vzProvLbl name="green"/>
 </fvRsProv>
 </fvAEPg>

 		

 		
 The EPG is the most
 		 important fundamental object in the policy model. It represents a collection of
 		 endpoints that are treated in the same fashion from a policy perspective.
 		 Rather than configure and manage those endpoints individually, they are placed
 		 within an EPG and are managed as a collection or group.
 		

 		
 The EPG object is
 		 where labels are defined that govern what policies are applied and which other
 		 EPGs can communicate with this EPG. It also contains a reference to the bridge
 		 domain that the endpoints within the EPG are associated with as well as which
 		 virtual machine manager (VMM) domain they are associated with. VMM allows
 		 virtual machine mobility between two VM servers instantaneously with no
 		 application downtime.
 		

 		
 The first EPG in the
 		 example is named “web1.” The
 		 fvRsBd element within the EPG defines which bridge
 		 domain that it is associated with. The bridge domain is identified by the value
 		 of the
 		 tnFxBDName attribute. This EPG is associated with the
 		 “solarBD1” bridge domain named in the “Bridge Domain” section above. The
 		 binding to the bridge domain is used by the system to understand what the
 		 default gateway address should be for the endpoints in this EPG. It does not
 		 imply that the endpoints are all in the same subnet or that they can only
 		 communicate through bridging. Whether an endpoint’s packets are bridged or
 		 routed is determined by whether the source endpoint sends the packet to its
 		 default gateway or the final destination desired. If it sends the packet to the
 		 default gateway, the packet is routed.
 		

 		
 The VMM domain used
 		 by this EPG is identified by the
 		 fvRsDomAtt tag. This element references the VMM domain
 		 object defined elsewhere. The VMM domain object is identified by its
 		 tDn
 		 name attribute. This example shows only one VMM domain called
 		 “uni/vmmp-VMware/dom-mininet.”
 		

 		
 The next element in
 		 the “web1” EPG defines which contract this EPG provides and is identified by
 		 the
 		 fvRsProv tag. If “web1” were to provide multiple
 		 contracts, there would be multiple
 		 fvRsProv elements. Similarly, if it were to consume one
 		 or more contracts, there would be
 		 fvRsCons elements as well.
 		

 		
 The
 		 fvRsProv element has a required attribute that is the
 		 name of the contract that is being provided. “web1” is providing the contract
 		 “webCtrct” that was defined earlier that was called
 		 tDn=“uni/tn-coke/brc-webCtrct”.
 		

 		
 The next attribute
 		 is the
 		 matchT attribute, which has the same semantics for
 		 matching provider or consumer labels as it did in the contract for subject
 		 labels (it can take on the values of
 		 All,
 		
 		 AtLeastOne, or
 		 None). This criteria applies to the provider labels as
 		 they are compared to the corresponding consumer labels. A match of the labels
 		 implies that the consumer and provider can communicate if the contract between
 		 them allows it. In other words, the contract has to allow communication and the
 		 consumer and provider labels have to match using the match criteria specified
 		 at the provider.
 		

 		
 The consumer has no
 		 corresponding match criteria. The match type used is always determined by the
 		 provider.
 		

 		
 Inside the provider
 		 element,
 		 fvRsProv, an administrator needs to specify the labels
 		 that are to be used. There are two kinds of labels, provider labels and
 		 provider subject labels. The provider labels,
 		 vzProvLbl, are used to match consumer labels in other
 		 EPGs that use the
 		 matchT criteria described earlier. The provider subject
 		 labels,
 		 vzProvSubjLbl, are used to match the subject labels
 		 that are specified in the contract. The only attribute of the label is its name
 		 attribute.
 		

 		
 In the “web1” EPG,
 		 two provider subject labels,
 		 openProv and
 		 secureProv, are specified to match with the “http” and
 		 “https” subjects of the “webCtrct” contract. One provider label, “green” is
 		 specified with a match criteria of
 		 All
 		 that will match with the same label in the “App” EPG.
 		

 		
 The next EPG in the
 		 example, “web2,” is very similar to “web1” except that there is only one
 		 vzProvSubjLbl and the labels themselves are different.
 		

 		
 The third EPG is one
 		 called “app” and it is defined as follows:
 		

 		

 		
 <fvAEPg name="app">
 <fvRsBd tnFvBDName="solarBD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsCons tnVzBrCPName="webCtrct">
		 <vzConsSubjLbl name="openCons"/>
		 <vzConsSubjLbl name="secureCons"/>
 <vzConsLbl name="green"/>
 </fvRsCons>
 </fvAEPg>

 		

 		
 The first part is
 		 nearly the same as the “web1” EPG. The major difference is that this EPG is a
 		 consumer of the “webCtrct” and has the corresponding consumer labels and
 		 consumer subject labels. The syntax is nearly the same except that “Prov” is
 		 replaced by “Cons” in the tags. There is no match attribute in the
 		 FvRsCons element because the match type for matching
 		 the provider with consumer labels is specified in the provider.
 		

 		
 In the last EPG,
 		 “db” is very similar to the “app” EPG in that it is purely a consumer.
 		

 		
 While in this
 		 example, the EPGs were either consumers or producers of a single contract, it
 		 is typical for an EPG to be at once a producer of multiple contracts and a
 		 consumer of multiple contracts.
 		

 	

 Closing

 		

 		
 </fvAp>
 </fvTenant>
</polUni>

 		

 		
 The final few lines
 		 complete the policy.
 		

 	

 What the Example
 	 Tenant Policy Does

 		
 The following figure
 		 shows how contracts govern endpoint group (EPG) communications.
 		

 			 Labels and
 				Contract Determine EPG to EPG Communications

[image: ../images/348514.jpg]

 		

 		
 The four EPGs are
 		 named EPG:web1, EPG:web2, EPG:app, and EPG:db. EPG:web1 and EPG:web2 provide a
 		 contract called webCtrct. EPG:app and EPG:db consume that same contract.
 		

 		
 EPG:web1 can only
 		 communicate with EPG:app and EPG:web2 can only communicate with EPG:db. This
 		 interaction is controlled through the provider and consumer labels “green” and
 		 “red”.
 		

 		
 When EPG:web1
 		 communicates with EPG:app, they use the webCtrct contract. EPG:app can initiate
 		 connections to EPG:web1 because it consumes the contract that EPG:web1
 		 provides.
 		

 		
 The subjects that
 		 EPG:web1 and EPG:app can use to communicate are both http and https because
 		 EPG:web1 has the provider subject label “openProv” and the http subject also
 		 has it. EPG:web1 has the provider subject label “secureProv” as does the
 		 subject https. In a similar fashion, EPG:app has subject labels “openCons” and
 		 “secureCons” that subjects http and https have.
 		

 		
 When EPG:web2
 		 communicates with EPG:db, they can only use the https subject because only the
 		 https subject carries the provider and consumer subject labels. EPG:db can
 		 initiate the TCP connection to EPG:web2 because EPG:db consumes the contract
 		 provided by EPG:web2.
 		

 						Bridge Domain, Subnets, and Layer 3 VRF
 					

[image: ../images/348515.jpg]

 		

 		
 The example policy specifies the relationship between EPGs, application profiles, bridge domains, and Layer 3 Virtual Routing
 and Forwarding (VRF) instances in the following manner: the EPGs EPG:web1, EPG:web2, EPG:app, and EPG:db are all members of
 the application profile called “sap.”

 		
 These EPGs are also linked to the bridge domain “solarBD1.” solarBD1 has two subnets, 11.22.22.XX/24 and 11.22.23.XX/24. The
 endpoints in the four EPGs must be within these two subnet ranges. The IP address of the default gateway in those two subnets
 will be 11.22.22.20 and 11.22.23.211. The solarBD1 bridge domain is linked to the “solarctx1” Layer 3 VRF.

 		
 All these policy
 		 details are contained within a tenant called “solar.”
 		

 	

 Deploying an
 	 Application EPG through an AEP or Interface Policy Group to Multiple
 	 Ports

 Through the APIC
 		Advanced GUI and REST API, you can associate attached entity profiles directly
 		with application EPGs. By doing so, you deploy the associated application EPGs
 		to all those ports associated with the attached entity profile in a single
 		configuration.
 	

 Through the APIC REST API or the NX-OS style CLI, you can deploy an application EPG to multiple ports through an Interface
 Policy Group.

 Deploying an EPG
 	 through an AEP to Multiple Interfaces Using the REST API

 			
 The interface selectors in the AEP enable you to configure multiple paths for an AEPg. The following can be selected:

 			

 	
 					
 A node or a group of nodes

 				

 	
 					
 An interface or a group of interfaces

 					
 The interfaces consume an interface policy group (and so an infra:AttEntityP).

 				

 	
 					
 The infra:AttEntityP is associated to the AEPg, thus specifying the VLANs to use.

 					
 An infra:AttEntityP can be associated with multiple AEPgs with different VLANs.

 				

 			
 When you associate the infra:AttEntityP with the AEPg, as in 3, this deploys the AEPg on the nodes selected in 1, on the interfaces
 in 2, with the VLAN provided by 3.

 			
 In this example, the AEPg uni/tn-Coke/ap-AP/epg-EPG1 is deployed on interfaces 1/10, 1/11, and 1/12 of nodes 101 and 102, with vlan-102.

 		

 Before You Begin

 			

 	
 					
 Create the target application EPG (AEPg).

 				

 	
 					
 Create the VLAN pool containing the range of VLANs you wish to use for EPG deployment with the Attached Entity Profile (AEP).

 				

 	
 					
 Create the physical domain and link it to the VLAN pool and AEP.

 				

 		

Procedure

 	
 To deploy an AEPg on selected nodes and interfaces, send a post with XML such as the following:

Example:
 					 <infraInfra dn="uni/infra">
 <infraNodeP name=“NodeProfile">
 <infraLeafS name=“NodeSelector" type="range">
 <infraNodeBlk name=“NodeBlok" from_="101" to_=“102”/>
 <infraRsAccPortP tDn="uni/infra/accportprof-InterfaceProfile"/>
 </infraLeafS>
 </<infraNodeP>

 <infraAccPortP name="InterfaceProfile">
 <infraHPortS name="InterfaceSelector" type="range">
 <infraPortBlk name=“ InterfaceBlock" fromCard="1" toCard="1" fromPort="10" toPort=“12"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-PortGrp" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccPortGrp name="PortGrp”>
 <infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfile"/>
 </infraAccPortGrp>
 </infraFuncP>

 <infraAttEntityP name=“AttEntityProfile” >
 <infraGeneric name=“default” >
 <infraRsFuncToEpg tDn=“uni/tn-Coke/ap-AP/epg-EPG1” encap=“vlan-102"/>
 </infraGeneric>
 </infraAttEntityP>
</infraInfra>

 				

 Intra-EPG Isolation for Bare Metal Servers

 Intra-EPG endpoint isolation
 		policies can be applied to directly connected
 		endpoints such as bare metal servers.
 		

 Examples use
 		cases include the following:
 	

 	
 		
 Backup clients
 			 have the same communication requirements for accessing the backup service, buy
 			 they don't need to communicate with each other.
 		

 		

 	
 		
 Servers behind a
 			 load balancer have the same communication requirements, but isolating them from
 			 each other protects against a server that is compromised or infected.
 		

 		

 	

 Intra-EPG Isolation for Bare Metal Servers

[image: ../images/500656.jpg]

 	

 Bare metal EPG isolation is enforced at the leaf switch. Bare metal servers use VLAN encapsulation. All unicast, multicast
 and broadcast traffic is dropped (denied) within isolation enforced EPGs. ACI bridge-domains can have a mix of isolated and
 regular EPGs. Each Isolated EPG can have multiple VLANs where intra-vlan traffic is denied.

 Configuring Intra-EPG Isolation for Bare Metal Servers Using the REST API

 Before You Begin

 The port the EPG uses must be associated with a bare metal server interface in the physical domain.

 		
 	

Procedure

 	Step 1

 	 Send this HTTP POST message to deploy the application using the XML API.

Example:
 			
 			
 			 POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

 		

 	Step 2

 	Include this XML structure in the body of the POST message.
 			
 		

Example:
 			 <fvTenant name="Tenant_BareMetal" >
 	<fvAp name="Web">
 	 	<fvAEPg name="IntraEPGDeny" pcEnfPref="enforced">
 	 	 <!-- pcEnfPref="enforced" ENABLES ISOLATION-->
	 	 	 <fvRsBd tnFvBDName="bd" /> 	
 	 	 <fvRsDomAtt tDn="uni/phys-Dom1" />
 	 	 <!-- PATH ASSOCIATION -->
 	 	 <fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/2]" encap="vlan-51" primaryEncap="vlan-100" instrImedcy='immediate'/>
	 </fvAEPg> 	
 </fvAp>
</fvTenant>

 		

 Intra-EPG
 	 Isolation for VMware vDS

 Intra-EPG
 		Isolation is an option to prevent physical or virtual endpoint devices that are
 		contained in the same base EPG or uSeg EPG from communicating with each other.
 		By default endpoint devices included in the same EPG are allowed to communicate
 		with one another; however, conditions exist in which total isolation of the
 		endpoint devices from on another within an EPG is desirable. For example, if
 		the endpoint VMs in the same EPG belong to multiple tenants, or if you want to
 		prevent the possible spread of a virus that might infect one VM from spreading
 		to all VMs in an EPG, intra-EPG isolation might be desirable to enforce.
 	

 An ACI virtual
 		machine manager (VMM) domain creates an isolated PVLAN port group at the VMware
 		vDS switch for each EPG that has intra-EPG isolation enabled. A fabric
 		administrator specifies primary encapsulation or the fabric dynamically
 		specifies primary encapsulation at the time of EPG-to-VMM domain association.
 		When the fabric administrator selects the VLAN-pri and VLAN-sec values
 		statically, the VMM domain validates that the VLAN-pri and VLAN-sec are part of
 		a static block in the domain pool.
 	

 	[image: ../images/note.gif]
Note
 	

 			
 		
 When intra-EPG isolation is not enforced, the VLAN-pri value is ignored even if it is specified in the configuration.

 	

 VLAN-pri/VLAN-sec
 		pairs for the vDS switch are selected per VMM domain during the EPG-to-domain
 		association. The port group created for the intra-EPG isolation EPGs uses the
 		VLAN-sec tagged with type set to
 		PVLAN. The vDS and fabric swap the VLAN-pri/VLAN-sec
 		encapsulation:
 	

 	
 		
 Communication
 			 from the ACI fabric to the vDS switch uses VLAN-pri.
 		

 		

 	
 		
 Communication
 			 from the vDS switch to the ACI fabric uses VLAN-sec.
 		

 		

 	
 Intra-EPG
 		 Isolation for VMware vDS

[image: ../images/500655.jpg]

 	

 Note these details
 		regarding this illustration:
 	

 	
 		
 EPG-DB sends
 			 VLAN traffic to the ACI leaf switch. The ACI egress leaf switch encapsulates
 			 traffic with a primary VLAN (PVLAN) tag and forwards it to the Web-EPG
 			 endpoint.
 		

 		

 	
 		
 The vDS switch
 			 sends traffic to the ACI leaf switch using VLAN-sec. The ACI leaf switch drops
 			 all intra-EPG traffic because isolation is enforced for all intra VLAN-sec
 			 traffic within the Web-EPG.
 		

 		

 	
 		
 The vDS VLAN-sec
 			 uplink to the ACI Leaf is in isolated trunk mode. The ACI leaf switch uses
 			 VLAN-pri for downlink traffic to the vDS switch.
 		

 		

 	
 		
 The PVLAN map is
 			 configured in the vDS and ACI leaf switches. VM traffic from WEB-EPG is
 			 encapsulated in VLAN-sec. The vDS switch denies local intra-WEB EPG VM traffic
 			 according to the PVLAN tag. All intra-ESXi host VM traffic is sent to the ACI
 			 leaf using VLAN-sec
 		

 		

 Related
 		 Topics

 		
 		
 For information on configuring intra-EPG isolation in a Cisco AVS environment, see Intra-EPG Isolation Enforcement for Cisco AVS.

 	

 Configuring
 	 Intra-EPG Isolation for VMware vDS using the REST API

 Before You Begin

 	

Procedure

 	Step 1

 	 Send this HTTP
 			 POST message to deploy the application using the XML API.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

 		

 	Step 2

 	For a VMware vDS
 			 VMM deployment, include this XML structure in the body of the POST message.
 		

Example:
 			 <fvTenant name="Tenant_VMM" >
 	<fvAp name="Web">
 	 	<fvAEPg name="IntraEPGDeny" pcEnfPref="enforced">
 	 	 <!-- pcEnfPref="enforced" ENABLES ISOLATION-->
	 	 	 <fvRsBd tnFvBDName="bd" /> 	
 	 	 <fvRsPathAtt tDn="topology/pod-1/paths-1017/pathep-[eth1/2]" encap="vlan-51" primaryEncap="vlan-100" instrImedcy='immediate'/>
 <!-- STATIC ENCAP ASSOCIATION TO VMM DOMAIN-->
 <fvRsDomAtt encap="vlan-2001" instrImedcy="lazy" primaryEncap="vlan-2002" resImedcy="immediate" tDn="uni/vmmp-VMware/dom-DVS1”>
	 </fvAEPg> 	
 </fvAp>
</fvTenant>

 		

 Using
 	 Microsegmentation with Network-based Attributes on Bare Metal

 You can use Cisco
 		APIC to configure Microsegmentation with Cisco ACI to create a new,
 		attribute-based EPG using a network-based attribute, a MAC address or one or
 		more IP addresses. You can configure Microsegmentation with Cisco ACI using
 		network-based attributes to isolate VMs or physical endpoints within a single
 		base EPG or VMs or physical endpoints in different EPGs.
 	

 Using an
 		 IP-based Attribute

 		
 		
 You can use an
 		 IP-based filter to isolate a single IP address, a subnet, or multiple of
 		 noncontiguous IP addresses in a single microsegment. You might want to isolate
 		 physical endpoints based on IP addresses as a quick and simply way to create a
 		 security zone, similar to using a firewall.
 		

 	

 Using a
 		 MAC-based Attribute

 		
 		
 You can use a
 		 MAC-based filter to isolate a single MAC address or multiple MAC addresses. You
 		 might want to do this if you have a server sending bad traffic int he network.
 		 By creating a microsegment with a MAC-based filter, you can isolate the server.
 		
 		

 	

 Configuring an
 	 IP-based Microsegmented EPG as a Shared Resource Using the REST API

 		
 You can configure
 		 a microsegmented EPG with an IP-Address with 32 bit mask as a shared service,
 		 accessible by clients outside of the VRF and the current fabric.
 		

 	

Procedure

 	
 To configure an IP address-attribute microsegmented EPG epg3 with a shared subnet, with an IP address and 32-bit mask, send a post with XML such as the following example. In the IP
 attributes, the attribute usefvSubnet is set to "yes."

Example:
 					<fvAEPg descr="" dn="uni/tn-t0/ap-a0/epg-epg3" fwdCtrl=""
 isAttrBasedEPg="yes" matchT="AtleastOne" name="epg3" pcEnfPref="unenforced" prefGrMemb="exclude"prio="unspecified">
 <fvRsCons prio="unspecified" tnVzBrCPName="ip-epg"/>
 <fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular" tDn="topology/pod-2/node-106"/>
 <fvSubnet ctrl="" descr="" ip="56.4.0.2/32" name="" preferred="no"
 scope="public,shared" virtual="no"/>
 <fvRsDomAtt classPref="encap" delimiter="" encap="unknown" encapMode="auto" instrImedcy="immediate"
 primaryEncap="unknown" resImedcy="immediate" tDn="uni/phys-vpc"/>
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <fvRsBd tnFvBDName="b2"/>
 <fvCrtrn descr="" match="any" name="default" ownerKey="" ownerTag="" prec="0">
 <fvIpAttr descr="" ip="1.1.1.3" name="ipv4" ownerKey="" ownerTag="" usefvSubnet="yes”/>
 </fvCrtrn>
 <fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="ip-epg"/>
 <fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="shared-svc"/>
</fvAEPg>

 				

 Configuring a
 	 Network-Based Microsegmented EPG in a Bare-Metal Environment Using the REST
 	 API

 		

 		 This section describes how to configure network attribute
 		 microsegmentation with Cisco ACI in a bare-metal environment using the REST
 		 API.
 		

 	

Procedure

 	Step 1

 	 Log in to the
 			 Cisco APIC.
 		

 	Step 2

 	Post the policy to https://apic-ip-address/api/node/mo/.xml.

Example:

 A: The following example configures a microsegment named 41-subnet using an IP-based attribute.

 <polUni>
 <fvTenant dn="uni/tn-User-T1" name="User-T1">
 <fvAp dn="uni/tn-User-T1/ap-Base-EPG" name="Base-EPG">
 <fvAEPg dn="uni/tn-User-T1/ap-Base-EPG/epg-41-subnet" name="41-subnet" pcEnfPref="enforced” isAttrBasedEPg="yes" >
 <fvRsBd tnFvBDName="BD1" />
 <fvCrtrn name="Security1">
 <fvIpAttr name="41-filter" ip="12.41.0.0/16"/>
 </fvCrtrn>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

Example:

 This example is for base EPG for Example A: .

 <polUni>
 <fvTenant dn="uni/tn-User-T1" name="User-T1">
 <fvAp dn="uni/tn-User-T1/ap-Base-EPG" name="Base-EPG">
 <fvAEPg dn="uni/tn-User-T1/ap-Base-EPG/baseEPG” name=“baseEPG” pcEnfPref="enforced” >
 <fvRsBd tnFvBDName="BD1" />
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

Example:B: The following example configures a microsegment named useg-epg using a MAC-based attribute. <polUni>
 <fvTenant name="User-T1">
 <fvAp name="customer">
 <fvAEPg name="useg-epg" isAttrBasedEPg="true">
 <fvRsBd tnFvBDName="BD1"/>
 <fvRsDomAtt instrImedcy="immediate" resImedcy="immediate" tDn="uni/phys-phys" />
 <fvRsNodeAtt tDn="topology/pod-1/node-101" instrImedcy="immediate" />
 <fvCrtrn name="default">
 <fvMacAttr name="mac" mac="00:11:22:33:44:55" />
 </fvCrtrn>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 Configuring Microsegmentation on Virtual Switches

 Microsegmentation with the Cisco Application Centric Infrastructure (ACI) provides the ability to automatically assign endpoints
 to logical security zones called endpoint groups (EPGs) based on various network-based or virtual machine (VM)-based attributes.
 This section contains instructions for configuring microsegment (uSeg) EPGs on virtual switches.

 Microsegmentation with Cisco ACI provides support for virtual endpoints attached to the following:

 	

 VMware vSphere Distributed Switch (VDS)

 	

 Cisco Application Virtual Switch (AVS)

 	

 Microsoft vSwitch

 See the Cisco ACI Virtualization Guide for information about how Microsegmentation with Cisco ACI works, prerequisites, guidelines, and scenarios.

 	Configuring Microsegmentation with Cisco ACI Using the REST API

 Configuring
 	 Microsegmentation with Cisco ACI Using the REST API

 		

 This section describes how to configure Microsegmentation with Cisco ACI for Cisco AVS, VMware VDS, or Microsoft vSwitch using
 the REST API.

 	

Procedure

 	Step 1

 	 Log in to the
 			 Cisco APIC.
 		

 	Step 2

 	Post the policy to https://apic-ip-address/api/node/mo/.xml.

Example:This example configures a uSeg EPG with the attributes VM Name containing "vm" and Operating System attributes containing
 values of "CentOS" and "Linux," with matching for all attributes and with an EPG Match Precedence of 1.<fvAEPg name="Security" isAttrBasedEPg="yes" pcEnfPref="unenforced" status="">
 <fvRsBd tnFvBDName="BD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet”/>
 <fvCrtrn name="default" match=“all” prec=“1”>
 <fvVmAttr name="foo" type="vm-name" operator="contains" value="vm"/>
 	 <fvSCrtrn name="sub-def" match=“any”>
 <fvVmAttr name="foo1" type="guest-os" operator="contains" value="CentOS"/>
 <fvVmAttr name="foo2" type="guest-os" operator="contains" value="Linux"/>
 </fvSCrtrn>
 </fvCrtrn>
 </fvAEPg>

Example:

 					
 This example is for an application EPG with microsegmentation enabled.

 					<polUni>
 <fvTenant dn="uni/tn-User-T1" name="User-T1">
 <fvAp dn="uni/tn-User-T1/ap-Application-EPG" name="Application-EPG">
 <fvAEPg dn="uni/tn-User-T1/ap-Application-EPG/applicationEPG” name=“applicationEPG” pcEnfPref="enforced” >
 <fvRsBd tnFvBDName="BD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-cli-vmm1" classPref=“useg”/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 				

 In the example above, the string <fvRsDomAtt tDn="uni/vmmp-VMware/dom-cli-vmm1" classPref=“useg”/> is relevant only for VMware VDS and not for Cisco AVS or Microsoft vSwitch.

 Three-Tier
 	 Application Deployment

 A
 		 filter specifies the data protocols to be allowed or denied by a contract that
 		 contains the filter. A contract can contain multiple subjects. A subject can be
 		 used to realize uni- or bidirectional filters. A unidirectional filter is a
 		 filter that is used in one direction, either from consumer-to-provider (IN) or
 		 from provider-to-consumer (OUT) filter. A bidirectional filter is the same
 		 filter that is used in both directions. It is not reflexive.
 		

 Contracts
 		 are policies that enable inter-End Point Group (inter-EPG) communication. These
 		 policies are the rules that specify communication between application tiers. If
 		 no contract is attached to the EPG, inter-EPG communication is disabled by
 		 default. No contract is required for intra-EPG communication because intra-EPG
 		 communication is always allowed.
 		

 		 Application profiles enable you to model application requirements that
 		 the
 		 APIC
 		 then automatically renders in the network and data center infrastructure. The
 		 application profiles enable administrators to approach the resource pool in
 		 terms of applications rather than infrastructure building blocks. The
 		 application profile is a container that holds EPGs that are logically related
 		 to one another. EPGs can communicate with other EPGs in the same application
 		 profile and with EPGs in other application profiles.
 		

 To deploy an
 		application policy, you must create the required application profiles, filters,
 		and contracts. Typically, the
 		APIC fabric hosts a three-tier application
 		within a tenant network. In this example, the application is implemented by
 		using three servers (a web server, an application server, and a database
 		server). See the following figure for an example of a three-tier application.
 	

 The web server has the
 		HTTP filter, the application server has the Remote Method Invocation (RMI)
 		filter, and the database server has the Structured Query Language (SQL) filter.
 		The application server consumes the SQL contract to communicate with the
 		database server. The web server consumes the RMI contract to communicate with
 		the application server. The traffic enters from the web server and communicates
 		with the application server. The application server then communicates with the
 		database server, and the traffic can also communicate externally.
 	

 Three-Tier
 		 Application Diagram

[image: ../images/304258.jpg]

 Parameters to Create
 	 a Filter for http

 		
 The parameters to
 		 create a filter for http in this example is as follows:
 		

 		

 	Parameter Name
 				

 	Filter for http
 				

 	
 					
 Name
 					

 				

 	
 					
 http
 					

 				

 	
 					
 Number of
 						Entries
 					

 				

 	
 					
 2
 					

 				

 	
 					
 Entry Name
 						
 					

 				

 	
 					
 Dport-80
 					

 					
 Dport-443
 					

 				

 	
 					
 Ethertype
 					

 				

 	
 					
 IP
 					

 				

 	
 					
 Protocol
 					

 				

 	
 					
 tcp
 					

 					
 tcp
 					

 				

 	
 					
 Destination Port
 					

 				

 	
 					
 http
 					

 					
 https
 					

 				

 	

 Parameters to Create
 	 Filters for rmi and sql

 		
 The parameters to
 		 create filters for rmi and sql in this example are as follows:
 		

 		

 	Parameter Name
 				

 	Filter for rmi
 				

 	Filter for sql
 				

 	
 					
 Name
 					

 				

 	
 					
 rmi
 					

 				

 	
 					
 sql
 					

 				

 	
 					
 Number of
 						Entries
 					

 				

 	
 					
 1
 					

 				

 	
 					
 1
 					

 				

 	
 					
 Entry Name
 						
 					

 				

 	
 					
 Dport-1099
 						
 					

 				

 	
 					
 Dport-1521
 						
 					

 				

 	
 					
 Ethertype
 					

 				

 	
 					
 IP
 					

 				

 	
 					
 IP
 					

 				

 	
 					
 Protocol
 					

 				

 	
 					
 tcp
 					

 				

 	
 					
 tcp
 					

 				

 	
 					
 Destination Port
 					

 				

 	
 					
 1099
 					

 				

 	
 					
 1521
 					

 				

 	

 Deploying an Application Profile Using the REST API

 		

 		 The port the EPG uses must belong to one of the VM Managers (VMM) or
 		 physical domains associated with the EPG.
 		

 	

Procedure

 	Step 1

 	Send this HTTP
 			 POST message to deploy the application using the XML API.
 		

Example:
 			 POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

 		

 	Step 2

 	Include this XML
 			 structure in the body of the POST message.
 		

Example:
 			
<fvTenant name="ExampleCorp">

 <fvAp name="OnlineStore">
 <fvAEPg name="web">
 <fvRsBd tnFvBDName="bd1"/>
 <fvRsCons tnVzBrCPName="rmi"/>
 <fvRsProv tnVzBrCPName="web"/>
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"delimiter=@/>
 </fvAEPg>

 <fvAEPg name="db">
 <fvRsBd tnFvBDName="bd1"/>
 <fvRsProv tnVzBrCPName="sql"/>
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"/>
 </fvAEPg>

 <fvAEPg name="app">
 <fvRsBd tnFvBDName="bd1"/>
 <fvRsProv tnVzBrCPName="rmi"/>
 <fvRsCons tnVzBrCPName="sql"/>
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"/>
 </fvAEPg>
 </fvAp>

<vzFilter name="http" >
<vzEntry dFromPort="80" name="DPort-80" prot="tcp" etherT="ip"/>
<vzEntry dFromPort="443" name="DPort-443" prot="tcp" etherT="ip"/>
</vzFilter>
<vzFilter name="rmi" >
<vzEntry dFromPort="1099" name="DPort-1099" prot="tcp" etherT="ip"/>
</vzFilter>
<vzFilter name="sql">
<vzEntry dFromPort="1521" name="DPort-1521" prot="tcp" etherT="ip"/>
</vzFilter>
 <vzBrCP name="web">
 <vzSubj name="web">
 <vzRsSubjFiltAtt tnVzFilterName="http"/>
 </vzSubj>
 </vzBrCP>

 <vzBrCP name="rmi">
 <vzSubj name="rmi">
 <vzRsSubjFiltAtt tnVzFilterName="rmi"/>
 </vzSubj>
 </vzBrCP>

 <vzBrCP name="sql">
 <vzSubj name="sql">
 <vzRsSubjFiltAtt tnVzFilterName="sql"/>
 </vzSubj>
 </vzBrCP>
</fvTenant>

 		
 			 In the string
 				fvRsDomAtt
 				 tDn="uni/vmmp-VMware/dom-datacenter"delimiter=@/,
 				delimiter=@ is optional. If you do not enter a
 				delimiter, the system will use the default | delimiter.
 			

 		

 		
 In the XML
 		 structure, the first line modifies, or creates if necessary, the tenant named
 		 ExampleCorp.
 		

 		
<fvTenant name="ExampleCorp">

 		This line creates an
 		 application network profile named OnlineStore.
 		

 		
<fvAp name="OnlineStore">

 		The elements within
 		 the application network profile create three endpoint groups, one for each of
 		 the three servers. The following lines create an endpoint group named web and
 		 associate it with an existing bridge domain named bd1. This endpoint group is a
 		 consumer, or destination, of the traffic allowed by the binary contract named
 		 rmi and is a provider, or source, of the traffic allowed by the binary contract
 		 named web. The endpoint group is associated with the VMM domain named
 		 datacenter.
 		

 		
<fvAEPg name="web">
 <fvRsBd tnFvBDName="bd1"/>
 <fvRsCons tnVzBrCPName="rmi"/>
 <fvRsProv tnVzBrCPName="web"/>
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-datacenter"/>
</fvAEPg>

 		The remaining two
 		 endpoint groups, for the application server and the database server, are
 		 created in a similar way.
 		

 		
 The following lines
 		 define a traffic filter named http that specifies TCP traffic of types HTTP
 		 (port 80) and HTTPS (port 443).
 		

 		
<vzFilter name="http" >
<vzEntry dFromPort="80" name="DPort-80" prot="tcp" etherT="ip"/>
<vzEntry dFromPort="443" name="DPort-443" prot="tcp" etherT="ip"/>
</vzFilter>

 		The remaining two
 		 filters, for application data and database (sql) data, are created in a similar
 		 way.
 		

 		
 The following lines
 		 create a binary contract named web that incorporates the filter named http:
 		

 		
<vzBrCP name="web">
 <vzSubj name="web">
 <vzRsSubjFiltAtt tnVzFilterName="http"/>
 </vzSubj>
</vzBrCP>

 		The remaining two
 		 contracts, for rmi and sql data protocols, are created in a similar way.
 		

 		
 The final line
 		 closes the structure:
 		

 		
</fvTenant>

 	

 Security Policy
 	 Enforcement

 As traffic enters the
 		leaf switch from the front panel interfaces, the packets are marked with the
 		EPG of the source EPG. The leaf switch then performs a forwarding lookup on the
 		packet destination IP address within the tenant space. A hit can result in any
 		of the following scenarios:
 	

 	
 		
 A unicast (/32)
 			 hit provides the EPG of the destination endpoint and either the local interface
 			 or the remote leaf switch VTEP IP address where the destination endpoint is
 			 present.
 		

 		

 	
 		
 A unicast hit of a
 			 subnet prefix (not /32) provides the EPG of the destination subnet prefix and
 			 either the local interface or the remote leaf switch VTEP IP address where the
 			 destination subnet prefix is present.
 		

 		

 	
 		
 A multicast hit
 			 provides the local interfaces of local receivers and the outer destination IP
 			 address to use in the VXLAN encapsulation across the fabric and the EPG of the
 			 multicast group.
 		

 		

 		

 	[image: ../images/note.gif]
Note
 	

Multicast and
 		 external router subnets always result in a hit on the ingress leaf switch.
 		 Security policy enforcement occurs as soon as the destination EPG is known by
 		 the ingress leaf switch.
 		

 	

 A miss result in the
 		forwarding table causes the packet to be sent to the forwarding proxy in the
 		spine switch. The forwarding proxy then performs a forwarding table lookup. If
 		it is a miss, the packet is dropped. If it is a hit, the packet is sent to the
 		egress leaf switch that contains the destination endpoint. Because the egress
 		leaf switch knows the EPG of the destination, it performs the security policy
 		enforcement. The egress leaf switch must also know the EPG of the packet
 		source. The fabric header enables this process because it carries the EPG from
 		the ingress leaf switch to the egress leaf switch. The spine switch preserves
 		the original EPG in the packet when it performs the forwarding proxy function.
 	

 On the egress leaf
 		switch, the source IP address, source VTEP, and source EPG information are
 		stored in the local forwarding table through learning. Because most flows are
 		bidirectional, a return packet populates the forwarding table on both sides of
 		the flow, which enables the traffic to be ingress filtered in both directions.
 	

 Contracts Contain
 	 Security Policy Specifications

 In the ACI security
 		model, contracts contain the policies that govern the communication between
 		EPGs. The contract specifies what can be communicated and the EPGs specify the
 		source and destination of the communications. Contracts link EPGs, as shown
 		below.
 	

 EPG 1 ---------------
 		CONTRACT --------------- EPG 2
 	

 Endpoints in EPG 1
 		can communicate with endpoints in EPG 2 and vice versa if the contract allows
 		it. This policy construct is very flexible. There can be many contracts between
 		EPG 1 and EPG 2, there can be more than two EPGs that use a contract, and
 		contracts can be reused across multiple sets of EPGs, and more.
 	

 There is also
 		directionality in the relationship between EPGs and contracts. EPGs can either
 		provide or consume a contract. An EPG that provides a contract is typically a
 		set of endpoints that provide a service to a set of client devices. The
 		protocols used by that service are defined in the contract. An EPG that
 		consumes a contract is typically a set of endpoints that are clients of that
 		service. When the client endpoint (consumer) tries to connect to a server
 		endpoint (provider), the contract checks to see if that connection is allowed.
 		Unless otherwise specified, that contract would not allow a server to initiate
 		a connection to a client. However, another contract between the EPGs could
 		easily allow a connection in that direction.
 	

 This
 		providing/consuming relationship is typically shown graphically with arrows
 		between the EPGs and the contract. Note the direction of the arrows shown
 		below.
 	

 EPG 1
 		<-------consumes-------- CONTRACT <-------provides-------- EPG 2
 	

 The contract is
 		constructed in a hierarchical manner. It consists of one or more subjects, each
 		subject contains one or more filters, and each filter can define one or more
 		protocols.
 		
 Contract
 			 Filters

[image: ../images/500013.jpg]

 	

 The following figure
 		shows how contracts govern EPG communications.
 		

 		 Contracts
 			 Determine EPG to EPG Communications

[image: ../images/348514.jpg]

 For example, you may define a filter called HTTP that specifies TCP
 		port 80 and port 8080 and another filter called HTTPS that specifies TCP port
 		443. You might then create a contract called webCtrct that has two sets of
 		subjects. openProv and openCons are the subjects that contain the HTTP filter.
 		secureProv and secureCons are the subjects that contain the HTTPS filter. This
 		webCtrct contract can be used to allow both secure and non-secure web traffic
 		between EPGs that provide the web service and EPGs that contain endpoints that
 		want to consume that service.
 	

 These same constructs also apply for policies that govern virtual machine hypervisors. When an EPG is placed in a virtual
 machine manager (VMM) domain, the APIC downloads all of the policies that are associated with the EPG to the leaf switches with interfaces connecting to the VMM
 domain. For a full explanation of VMM domains, see the Virtual Machine Manager Domains chapter of Application Centric Infrastructure Fundamentals. When this policy is created, the APIC pushes it (pre-populates it) to a VMM domain that specifies which switches allow connectivity for the endpoints in the EPGs.
 The VMM domain defines the set of switches and ports that allow endpoints in an EPG to connect to. When an endpoint comes
 on-line, it is associated with the appropriate EPGs. When it sends a packet, the source EPG and destination EPG are derived
 from the packet and the policy defined by the corresponding contract is checked to see if the packet is allowed. If yes, the
 packet is forwarded. If no, the packet is dropped.

 Contracts consist of 1 or more subjects. Each subject contains 1 or more filters. Each filter contains 1 or more entries.
 Each entry is equivalent to a line in an Access Control List (ACL) that is applied on the Leaf switch to which the endpoint
 within the endpoint group is attached.

 In detail, contracts are comprised of the following items:

 	
 				
 Name—All contracts that are consumed by a tenant must have different names (including contracts created under the common tenant
 or the tenant itself).

 			

 	
 				
 Subjects—A group of filters for a specific application or service.

 			

 	
 				
 Filters—Used to classify traffic based upon layer 2 to layer 4 attributes (such as Ethernet type, protocol type, TCP flags
 and ports).

 			

 	
 				
 Actions—Action to be taken on the filtered traffic. The following actions are supported:

 				

 	
 						
 Permit the traffic (regular contracts, only)

 					

 	
 						
 Mark the traffic (DSCP/CoS) (regular contracts, only)

 					

 	
 						
 Redirect the traffic (regular contracts, only, through a service graph)

 					

 	
 						
 Copy the traffic (regular contracts, only, through a service graph or SPAN)

 					

 	
 						
 Block the traffic (taboo contracts, only)

 					

 	
 						
 Log the traffic (taboo contracts, only)

 					

 			

 	
 				
 Aliases—(Optional) A changeable name for an object. Although the name of an object, once created, cannot be changed, the Alias
 is a property that can be changed.

 			

 Thus, the contract allows more complex actions than just allow or deny. The contract can specify that traffic that matches
 a given subject can be re-directed to a service, can be copied, or can have its QoS level modified. With pre-population of
 the access policy in the concrete model, endpoints can move, new ones can come on-line, and communication can occur even if
 the APIC is off-line or otherwise inaccessible. The APIC is removed from being a single point of failure for the network. Upon packet ingress to the ACI fabric, security policies
 are enforced by the concrete model running in the switch.

 Contracts

 In addition to EPGs, contracts (vzBrCP) are key objects in the policy model. EPGs can only communicate with other EPGs according to contract rules. The following
 figure shows the location of contracts in the management information tree (MIT) and their relation to other objects in the
 tenant.

 Contracts

[image: ../images/348508.jpg]

 An administrator uses
 		a contract to select the type(s) of traffic that can pass between EPGs,
 		including the protocols and ports allowed. If there is no contract, inter-EPG
 		communication is disabled by default. There is no contract required for
 		intra-EPG communication; intra-EPG communication is always implicitly allowed.
 	

 You can also configure contract preferred groups that enable greater control of communication between EPGs in a VRF. If most
 of the EPGs in the VRF should have open communication, but a few should only have limited communication with the other EPGs,
 you can configure a combination of a contract preferred group and contracts with filters to control communication precisely.

 Contracts govern the
 		following types of endpoint group communications:
 	

 	
 		
 Between ACI fabric application EPGs (fvAEPg), both intra-tenant and inter-tenant

 		

 			

 	[image: ../images/note.gif]
Note
 	

In the case of a shared service mode, a contract is required for inter-tenant communication. A contract is used to specify
 static routes across VRFs, even though the tenant VRF does not enforce a policy.

 		

 		

 	
 		
 Between ACI fabric
 			 application EPGs and Layer 2 external outside network instance EPGs (l2extInstP)
 		

 		

 	
 		
 Between ACI fabric
 			 application EPGs and Layer 3 external outside network instance EPGs (l3extInstP)
 		

 		

 	
 		
 Between ACI fabric
 			 out-of-band (mgmtOoB) or in-band (mgmtInB)
 			 management EPGs
 		

 		

 Contracts govern the communication between EPGs that are labeled providers, consumers, or both. EPG providers expose contracts
 with which a would-be consumer EPG must comply. The relationship between an EPG and a contract can be either a provider or
 consumer. When an EPG provides a contract, communication with that EPG can be initiated from other EPGs as long as the communication
 complies with the provided contract. When an EPG consumes a contract, the endpoints in the consuming EPG may initiate communication
 with any endpoint in an EPG that is providing that contract.

 		

 	[image: ../images/note.gif]
Note
 	

 An EPG can both
 		 provide and consume the same contract. An EPG can also provide and consume
 		 multiple contracts simultaneously.
 		

 	

 Configuring a Contract Using the REST API

Procedure

 	
 Configure a contract using an XML POST request similar to the following example:

Example:

 <vzBrCP name="webCtrct">
 <vzSubj name="http" revFltPorts="true" provmatchT="All">
 <vzRsSubjFiltAtt tnVzFilterName="Http"/>
 <vzRsSubjGraphAtt graphName="G1" termNodeName="TProv"/>
 <vzProvSubjLbl name="openProv"/>
 <vzConsSubjLbl name="openCons"/>
 </vzSubj>
 <vzSubj name="https" revFltPorts="true" provmatchT="All">
 <vzProvSubjLbl name="secureProv"/>
 <vzConsSubjLbl name="secureCons"/>
 < vzRsSubjFiltAtt tnVzFilterName="Https"/>
 <vzRsOutTermGraphAtt graphName="G2" termNodeName="TProv"/>
 </vzSubj>
 </vzBrCP>

 Configuring a Taboo Contract Using the REST API

 Before You Begin

 The following objects must be created:

 	

 The tenant that will be associated with this Taboo Contract

 	

 An application profile for the tenant

 	

 At least one EPG for the tenant

Procedure

 	
 To create a taboo contract with the REST API, use XML such as in the following example:

Example:
 <vzTaboo ownerTag="" ownerKey="" name="VRF64_Taboo_Contract"
dn="uni/tn-Tenant64/taboo-VRF64_Taboo_Contract" descr=""><vzTSubj
name="EPG_subject" descr=""><vzRsDenyRule tnVzFilterName="default"
directives="log"/>
</vzTSubj>
</vzTaboo>

 About Contract Inheritance

 To streamline associating contracts to new EPGs, you can now enable an EPG to inherit all the (provided/consumed) contracts
 associated directly to another EPG in the same tenant. Contract inheritance can be configured for application, microsegmented,
 L2Out, and L3Out EPGs. You can enable an EPG to inherit all the contracts associated directly to another EPG, using the APIC
 GUI, NX-OS style CLI, and the REST API.

 Contract Inheritance

[image: ../images/501340.jpg]

 In the diagram above, EPG A is configured to inherit Provided-Contract 1 and 2 and Consumed-Contract 3 from EPG B (contract
 master for EPG A).

 Use the following guidelines when configuring contract inheritance:

 	

 Contract inheritance can be configured for application, microsegmented (uSeg), external L2Out EPGs, and external L3Out EPGs.
 The relationships must be between EPGs of the same type.

 	

 Both provided and consumed contracts are inherited from the contract master when the relationship is established.

 	

 Contract masters and the EPGs inheriting contracts must be within the same tenant.

 	

 Changes to the masters’ contracts are propagated to all the inheritors. If a new contract is added to the master, it is also
 added to the inheritors.

 	

 An EPG can inherit contracts from multiple contract masters.

 	

 Contract inheritance is only supported to a single level (cannot be chained) and a contract master cannot inherit contracts.

 	

 Contract subject label and EPG label inheritance is supported.

 	

 Whether an EPG is directly associated to a contract or inherits a contract, it consumes entries in TCAM. So contract scale
 guidelines still apply. For more information, see the Verified Scalability Guide for your release.

 	

 vzAny security contracts and taboo contracts are not supported.

 For information about configuring Contract Inheritance and viewing inherited and standalone contracts, see Cisco APIC Basic Configuration Guide.

 Configuring Application EPG Contract Inheritance Using the REST API

 Before You Begin

 Configure the tenant and application profile to be used by the EPGs.

 Configure the application EPG, to serve as the EPG Contract Master.

 Configure the contracts to be shared, and associate them to the contract master.

Procedure

 	
 To configure contract inheritance using the REST API, send a post with XML such as the following XML and JSON examples, with
 a URL directed to the EPG that will inherit the contracts:

Example:

 XML Example

 <?xml version="1.0" encoding="UTF-8"?>
<!-- /api/node/mo/uni/tn-coke/ap-AP/epg-EPg_B.xml -->
<polUni>
 <fvEPg>
 <fvRsSecInherited tDn="uni/tn-coke/ap-AP/epg-EPg_B/>
 </fvEPg>
</polUni>

 JSON Example

 https://192.168.200.10/api/node/mo/uni/tn-coke/ap-AP/epg-EPg_B.json
fvAEPg":{"attributes":{
 "dn":"uni/tn-coke/ap-AP/epg-EPg_B","name":"EPg_C",
 "rn":"epg-EPg_C",
 "status":"created"},
 "children":[{
 "fvRsBd":{"attributes":{
 "tnFvBDName":"default",
 "status":"created,modified"},
 "children":[]}},{
 "fvRsSecInherited":{"attributes":{
 "tDn":"uni/tn-coke/ap-AP/epg-EPg_B",
 "status":"created"},
 "children":[]}}]}}

 Configuring uSeg EPG Contract Inheritance Using the REST API

 Before You Begin

 Configure the tenant and application profile to be used by the EPGs.

 Configure the application EPG, to serve as the EPG Contract Master.

 Configure the contracts to be shared, and associate them to the contract master.

Procedure

 	
 To configure uSeg contract inheritance using the REST API, send a post with XML such as the following example:

Example:
 <polUni>
 <fvTenant name="Tn1" >
 <fvAEPg descr="" dn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_120" fwdCtrl="" isAttrBasedEPg="yes" matchT="AtleastOne" name="uSeg1_301_120" pcEnfPref="unenforced" prefGrMemb="exclude" prio="unspecified">
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_100" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_110" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_50" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_60" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_30" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_10" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_40" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_70" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_90" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_20" />
 <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_80" />
 <fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular" tDn="topology/pod-1/node-108" />
 <fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular" tDn="topology/pod-1/node-109" />
 <fvRsDomAtt classPref="encap" delimiter="" encap="vlan-301" encapMode="auto" instrImedcy="immediate" netflowPref="disabled" primaryEncap="unknown" resImedcy="immediate" tDn="uni/phys-PhysDom1" />
 <fvRsCustQosPol tnQosCustomPolName="" />
 <fvRsBd tnFvBDName="T1BD21" />
 <fvCrtrn descr="" match="any" name="default" nameAlias="" ownerKey="" ownerTag="" prec="0">
 <fvIpAttr descr="" ip="192.14.1.120" name="0" nameAlias="" ownerKey="" ownerTag="" usefvSubnet="no" />
 </fvCrtrn>
 </fvAEPg>
 </fvTenant>
</polUni>

 What to Do Next

 Configuring L2Out EPG Contract Inheritance Using the REST API

 Before You Begin

 Configure the tenant and application profile to be used by the EPGs.

 Configure the L2Out EPG, to serve as the L2Out Contract Master.

 Configure the contracts to be shared, and associate them to the contract master.

Procedure

 	
 To configure L2Out EPG contract inheritance using the REST API, send a post with XML such as the following example:

Example:
 <polUni>
 <fvTenant name="Tn1" >
 <l2extOut name="l2out1">
 <l2extRsEBd encap="vlan-51" tnFvBDName="T1BD1" />
 <l2extRsL2DomAtt tDn="uni/l2dom-l2Dom1" />
 <l2extLNodeP name="default" >
 <l2extLIfP name="default" >
 <l2extRsPathL2OutAtt tDn="topology/pod-1/protpaths-108-109/pathep-[VPC83]" />
 </l2extLIfP>
 </l2extLNodeP>
 <l2extInstP matchT="AtleastOne" name="l2Ext1">
 <fvSubnet ctrl="nd" ip="192.13.1.10/24" preferred="no" scope="public,shared" virtual="no" />
 <fvRsProv tnVzBrCPName="T1ctr_tcp" />
 </l2extInstP>
 </l2extOut>

 <l2extOut name="l2out2">
 <l2extRsEBd encap="vlan-53" tnFvBDName="T1BD3" />
 <l2extRsL2DomAtt tDn="uni/l2dom-l2Dom1" />
 <l2extLNodeP name="default" >
 <l2extLIfP name="default" >
 <l2extRsPathL2OutAtt tDn="topology/pod-1/protpaths-108-109/pathep-[VPC84]" />
 </l2extLIfP>
 </l2extLNodeP>
 <l2extInstP matchT="AtleastOne" name="l2Ext3" prefGrMemb="exclude">
 <fvSubnet ctrl="nd" ip="192.13.2.10/24" preferred="no" scope="public,shared" virtual="no" />
 <fvRsSecInherited tDn="uni/tn-Tn1/l2out-l2out1/instP-l2Ext1" />
 </l2extInstP>
 </l2extOut>

 </fvTenant>
</polUni>

 Configuring L3Out EPG Contract Inheritance Using the REST API

 Before You Begin

 Configure the tenant and application profile to be used by the EPGs.

 Configure the L3Out EPG, to serve as the L3Out Contract Master.

 Configure the contracts to be shared, and associate them to the contract master.

Procedure

 	
 To configure L3Out EPG contract inheritance using the REST API, send a post with XML such as the following example:

Example:
 <polUni>
 <fvTenant name="Tn6" >

 <!— L3out creation -->
 <ospfIfPol deadIntvl="40" helloIntvl="10" name="ospf1" pfxSuppress="inherit" prio="1" rexmitIntvl="5" xmitDelay="1" />
 <l3extOut enforceRtctrl="export" name="T6L3out821">
 <ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.1" areaType="regular" />
 <l3extRsL3DomAtt tDn="uni/l3dom-L3Dom1" />
 <l3extRsEctx tnFvCtxName="T6ctx21" />
 <l3extLNodeP name="l3out_vpc82_prof" >
 <l3extRsNodeL3OutAtt rtrId="1.1.1.8" rtrIdLoopBack="yes" tDn="topology/pod-1/node-108">
 <l3extInfraNodeP fabricExtCtrlPeering="no" />
 </l3extRsNodeL3OutAtt>
 <l3extRsNodeL3OutAtt rtrId="1.1.1.9" rtrIdLoopBack="yes" tDn="topology/pod-1/node-109">
 <l3extInfraNodeP fabricExtCtrlPeering="no" />
 </l3extRsNodeL3OutAtt>
 <l3extLIfP name="ospf1" >
 <ospfIfP authKeyId="1" authType="none" >
 <ospfRsIfPol tnOspfIfPolName="ospf1" />
 </ospfIfP>
 <l3extRsPathL3OutAtt encap="vlan-551" ifInstT="ext-svi" mode="regular" mtu="1500" tDn="topology/pod-1/protpaths-108-109/pathep-[VPC82]" >
 <l3extMember addr="192.16.51.1/24" llAddr="0.0.0.0" side="B" />
 <l3extMember addr="192.16.51.2/24" llAddr="0.0.0.0" side="A" />
 </l3extRsPathL3OutAtt>
 <l3extRsNdIfPol tnNdIfPolName="" />
 </l3extLIfP>
 </l3extLNodeP>

 <l3extInstP matchT="AtleastOne" name="T6l3Ext821">
 <fvRsProv tnVzBrCPName="T6ctr_UDP_TCP2" />
 <fvRsCons tnVzBrCPName="T6ctr_UDP_TCP1" />
 <l3extSubnet ip="192.16.51.0/24" scope="import-security,shared-rtctrl,shared-security" />
 <l3extSubnet ip="192.16.61.0/24" scope="import-security,shared-rtctrl,shared-security" />
 <vzConsSubjLbl name="tcp" tag="green" />
 <vzProvSubjLbl name="tcp" tag="green" />
 </l3extInstP>

 <l3extInstP matchT="AtleastOne" name="T6l3Ext823">
 <fvRsSecInherited tDn="uni/tn-Tn6/out-T6L3out821/instP-T6l3Ext821" />
 <l3extSubnet ip="192.16.63.0/24" scope="import-security,shared-rtctrl,shared-security" />
 </l3extInstP>
 </l3extOut>

 </fvTenant>
</polUni>

 About Contract Preferred Groups

 There are two types of policy enforcements available for EPGs in a VRF with a contract preferred group configured:

 	

 Included EPGs: EPGs can freely communicate with each other without contracts, if they have membership in a contract preferred
 group. This is based on the source-any-destination-any-permit default rule.

 	

 Excluded EPGs: EPGs that are not members of preferred groups require contracts to communicate with each other. Otherwise,
 the default source-any-destination-any-deny rule applies.

 The contract preferred group feature enables greater control of communication between EPGs in a VRF. If most of the EPGs in
 the VRF should have open communication, but a few should only have limited communication with the other EPGs, you can configure
 a combination of a contract preferred group and contracts with filters to control inter-EPG communication precisely.

 EPGs that are excluded from the preferred group can only communicate with other EPGs if there is a contract in place to override
 the source-any-destination-any-deny default rule.

 Contract Preferred Group Overview

[image: ../images/501168.jpg]

 Configuring Contract Preferred Groups Using the REST API

 The following example creates a contract preferred group in vrf64, and creates three EPGs in the VRF:

 	

 epg-ldap—Included in the preferred group

 	

 mail—Included in the preferred group

 	

 radius—Excluded from the preferred group

 Before You Begin

 Create the tenants, VRFs, and the EPGs in the VRF.

Procedure

 	
 Create a contract preferred group by sending a post, with XML such as the example:

Example:
 <polUni>
 <fvTenant name="tenant64">
 <fvCtx name="vrf64"> <vzAny prefGrMemb="enabled"/> </fvCtx>
 <fvBD name="bd64"> <fvRsCtx tnFvCtxName="vrf64"/> </fvBD>
 <fvAp name="app-lldp">
 <fvAEPg name="epg-ldap" prefGrMemb="include">
 <fvRsBd tnFvBDName="bd64"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" encap="vlan-113" instrImedcy="immediate"/>
 </fvAEPg>
 <fvAEPg name="mail" prefGrMemb="include">
 <fvRsBd tnFvBDName="bd64"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/4]" encap="vlan-114" instrImedcy="immediate"/>
 </fvAEPg>
 <fvAEPg name="radius" prefGrMemb="exclude">
 <fvRsBd tnFvBDName="bd64"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/5]" encap="vlan-115" instrImedcy="immediate"/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 What to Do Next

 Create a contract governing the communication of the radius EPG with other EPGs.

 Chapter 11. Provisioning Core Services

 Configuring a DHCP
 	 Relay Policy

 A DHCP relay policy may be used when the DHCP client and server are in
 		different subnets. If the client is on an ESX hypervisor with a deployed
 		vShield Domain profile, then the use of a DHCP relay policy configuration is
 		mandatory.
 	

 When a vShield controller deploys a Virtual Extensible Local Area
 		Network (VXLAN), the hypervisor hosts create a kernel (vmkN, virtual tunnel
 		end-point [VTEP]) interface. These interfaces need an IP address in the
 		infrastructure tenant that uses DHCP. Therefore, you must configure a DHCP
 		relay policy so that the
 		APIC
 		can act as the DHCP server and provide these IP addresses.
 	

 When an
 		ACI
 		
 		fabric
 		acts as a DHCP relay, it inserts the DHCP Option 82 (the DHCP Relay Agent
 		Information Option) in DHCP requests that it proxies on behalf of clients. If a
 		response (DHCP offer) comes back from a DHCP server without Option 82, it is
 		silently dropped by the fabric. Therefore, when the
 		ACI
 		
 		fabric
 		acts as a DHCP relay, DHCP servers providing IP addresses to compute nodes
 		attached to the
 		ACI
 		
 		fabric
 		must support Option 82.
 	

 Configuring a DHCP
 	 Server Policy for the
 	 APIC
 	 Infrastructure Using the REST API

 		

 	
 			
 This task is a
 				prerequisite for users who want to create a vShield Domain Profile.
 			

 		

 	
 			
 The port and the encapsulation used by the application Endpoint Group must belong to a physical or VM Manager (VMM) domain.
 If no such association with a domain is established, the APIC continues to deploy the EPG but raises a fault.

 		

 	
 			
 Cisco
 				APIC
 				supports DHCP relay for both IPv4 and IPv6 tenant subnets. DHCP server
 				addresses can be IPv4 or IPv6. DHCPv6 relay will occur only if IPv6 is enabled
 				on the fabric interface and one or more DHCPv6 relay servers are configured.
 			

 		

 	

 Before You Begin

 		
 Make sure that Layer
 		 2 or Layer 3 management connectivity is configured.
 		

 	

Procedure

 	
 Configure the
 			 APIC
 			 as the DHCP server policy for the infrastructure tenant.
 		
 			

 	Note

 	
 				
 This relay
 				 policy will be pushed to all the leaf ports that are connected hypervisors
 				 using the attach entity profile configuration. For details about configuring
 				 with attach entity profile, see the examples related to creating VMM domain
 				 profiles.
 				

 			

 		

Example:DHCP Relay Policy for EPG<!-- api/policymgr/mo/.xml -->
<polUni>

POST https://apic-ip-address/api/mo/uni.xml

 <fvTenant name="infra">

 <dhcpRelayP name="DhcpRelayP" owner="tenant">
 <dhcpRsProv tDn="uni/tn-infra/ap-access/epg-default" addr="10.0.0.1" />
 </dhcpRelayP>

 <fvBD name="default">
 <dhcpLbl name="DhcpRelayP" owner="tenant"/>
 </fvBD>

 </fvTenant>
</polUni>

Example:DHCP Relay Policy for Layer 3 Outside

 	Note

 	
 						
 You must specify DHCP Relay label under l3extLIfP with an appropriate name and owner.

 					

 <polUni>
 <fvTenant name="dhcpTn">
 <l3extOut name="Out1" >
 <l3extLNodeP name="NodeP" >
 <l3extLIfP name="Intf1">
 <dhcpLbl name="DhcpRelayPol" owner="tenant" />
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
 </fvTenant>
<polUni>

POST https://apic-ip-address/api/mo/uni.xml

 Layer 2 and Layer 3
 	 DHCP Relay Sample Policies

 		
 This sample policy provides an example of a consumer tenant L3extOut DHCP relay configuration:

 		

 		 <polUni>
 <!-- Consumer Tenant 2 -->
	<fvTenant
		dn="uni/tn-tenant1"
		name="tenant1">
		<fvCtx name="dhcp"/>
		
 <!-- DHCP client bridge domain -->
		<fvBD name="cons2">
 <fvRsBDToOut tnL3extOutName='L3OUT'/>
			<fvRsCtx tnFvCtxName="dhcp" />
 <fvSubnet ip="20.20.20.1/24"/>
 <dhcpLbl name="DhcpRelayP" owner="tenant"/>
		</fvBD>
 <!-- L3Out EPG DHCP -->
		<l3extOut name="L3OUT">
 	<l3extRsEctx tnFvCtxName="dhcp"/>
 	<l3extInstP name="l3extInstP-1">
 	<!-- Allowed routes to L3out to send traffic -->
 	<l3extSubnet ip="100.100.100.0/24" />
 	</l3extInstP>
 	<l3extLNodeP name="l3extLNodeP-pc">
 		<!-- VRF External loopback interface on node -->
 	<l3extRsNodeL3OutAtt
 tDn="topology/pod-1/node-1018"
 rtrId="10.10.10.1" />
 		<l3extLIfP name='l3extLIfP-pc'>
 <l3extRsPathL3OutAtt
 tDn="topology/pod-1/paths-1018/pathep-[eth1/7]"
 encap='vlan-900'
 ifInstT='sub-interface'
 addr="100.100.100.50/24"
 mtu="1500"/>
 	</l3extLIfP>
 	</l3extLNodeP>
 	</l3extOut>
		<!-- Static DHCP Client Configuration -->
		<fvAp name="cons2">
	 <fvAEPg name="APP">
	 	<fvRsBd tnFvBDName="cons2"/>	
 	<fvRsDomAtt tDn="uni/phys-mininet"/>
 	<fvRsPathAtt
 tDn="topology/pod-1/paths-1017/pathep-[eth1/3]"
 encap="vlan-1000"
 instrImedcy='immediate'
 mode='native'/>
 </fvAEPg>				
		</fvAp>	
 <!-- DHCP Server Configuration -->
 <dhcpRelayP
 name="DhcpRelayP"
 owner="tenant"
 mode="visible">
 		 <dhcpRsProv
 tDn="uni/tn-tenant1/out-L3OUT/instP-l3extInstP-1"
 addr="100.100.100.1"/>
 	 </dhcpRelayP>
	</fvTenant>
</polUni>

 		

 		
 This sample policy provides an example of a consumer tenant L2extOut DHCP relay configuration:

 		

 		 <fvTenant
		dn="uni/tn-dhcpl2Out"
		name="dhcpl2Out">
		<fvCtx name="dhcpl2Out"/>
 <!-- bridge domain -->

		<fvBD name="provBD">
			<fvRsCtx tnFvCtxName="dhcpl2Out" />
 <fvSubnet ip="100.100.100.50/24" scope="shared"/>
		</fvBD>
		
		<!-- Consumer bridge domain -->
		<fvBD name="cons2">
			<fvRsCtx tnFvCtxName="dhcpl2Out" />
 <fvSubnet ip="20.20.20.1/24"/>
 <dhcpLbl name="DhcpRelayP" owner="tenant"/>
		</fvBD>

 <vzFilter name='t0f0' >
 	 <vzEntry name='t0f0e9'></vzEntry>
 </vzFilter>

 <vzBrCP name="webCtrct" scope="global">
 	 <vzSubj name="app">
 	 <vzRsSubjFiltAtt tnVzFilterName="t0f0"/>
 </vzSubj>
 </vzBrCP>

	 <l2extOut name="l2Out">
 		 <l2extLNodeP name='l2ext'>
 		<l2extLIfP name='l2LifP'>
 			<l2extRsPathL2OutAtt tDn="topology/pod-1/paths-1018/pathep-[eth1/7]"/>
 		</l2extLIfP>
 		 </l2extLNodeP>
 			 <l2extInstP name='l2inst'>
 <fvRsProv tnVzBrCPName="webCtrct"/>
 			 </l2extInstP>
 			<l2extRsEBd tnFvBDName="provBD" encap='vlan-900'/>
 		</l2extOut>
 		
 		<fvAp name="cons2">
	 <fvAEPg name="APP">
	 	<fvRsBd tnFvBDName="cons2" />	
 	<fvRsDomAtt tDn="uni/phys-mininet" />
 <fvRsBd tnFvBDName="SolarBD2" />
 <fvRsPathAtt tDn="topology/pod-1/paths-1018/pathep-[eth1/48]" encap="vlan-1000" instrImedcy='immediate' mode='native'/>
 </fvAEPg>				
		</fvAp>	
 <dhcpRelayP name="DhcpRelayP" owner="tenant" mode="visible">
 		<dhcpRsProv tDn="uni/tn-dhcpl2Out/l2out-l2Out/instP-l2inst" addr="100.100.100.1"/>
 	</dhcpRelayP>
</fvTenant>

 		

 	

 DNS

 The ACI fabric DNS service is contained in the fabric managed object. The fabric global default DNS profile can be accessed
 throughout the fabric. The figure below shows the logical relationships of the DNS-managed objects within the fabric.

 DNS

[image: ../images/349355.jpg]

 A VRF (context) must contain a dnsLBL object in order to use the global default DNS service. Label matching enables tenant VRFs to consume the global DNS provider.
 Because the name of the global DNS profile is “default,” the VRF label name is "default" (dnsLBL name = default).

 Configuring a DNS
 	 Service Policy to Connect with DNS Providers Using the REST API

 Before You Begin

 		
 Make sure that Layer
 		 2 or Layer 3 management connectivity is configured.
 		

 	

Procedure

 	Step 1

 	 Configure the
 			 DNS service policy.
 		

Example:
 			 POST URL :
https://apic-IP-address/api/node/mo/uni/fabric.xml

<dnsProfile name="default">

 <dnsProv addr="172.21.157.5" preferred="yes"/>
 <dnsProv addr="172.21.157.6"/>

 <dnsDomain name="cisco.com" isDefault="yes"/>

 <dnsRsProfileToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>

</dnsProfile>

 		

 	Step 2

 	Configure the
 			 DNS label under the out-of-band management tenant.
 		

Example:
 			 POST URL: https://apic-IP-address/api/node/mo/uni/tn-mgmt/ctx-oob.xml
<dnsLbl name="default" tag="yellow-green"/>

 		

 DNS Policy
 	 Example

 This sample policy creates a DNS profile and associates it with a tenant.

 Create the DNS profile:
<!-- /api/policymgr/mo/.xml -->
<polUni>
<fabricInst>
<dnsProfile name="default">
 <dnsProv addr="172.21.157.5" preferred="yes"/>
 <dnsDomain name="insieme.local" isDefault="yes"/>
 <dnsRsProfileToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>
</dnsProfile>
</fabricInst>
</polUni>

Associate the profile with the tenant that will consume it:
<!-- /api/policymgr/mo/.xml -->
<polUni>
<fvTenant name=’t1’>
 <fvCtx name=’ctx0’>
 <dnsLbl name=’default’/>
 </fvCtx>
</fvTenant>
</polUni>

 Time Synchronization
 	 and NTP

 Within the Cisco Application Centric Infrastructure (ACI) fabric, time
 		synchronization is a crucial capability upon which many of the monitoring,
 		operational, and troubleshooting tasks depend. Clock synchronization is
 		important for proper analysis of traffic flows as well as for correlating debug
 		and fault time stamps across multiple fabric nodes.
 	

 An offset present on one or more devices can hamper the ability to
 		properly diagnose and resolve many common operational issues. In addition,
 		clock synchronization allows for the full utilization of the atomic counter
 		capability that is built into the ACI upon which the application health scores
 		depend. Nonexistent or improper configuration of time synchronization does not
 		necessarily trigger a fault or a low health score. You should configure time
 		synchronization before deploying a full fabric or applications so as to enable
 		proper usage of these features. The most widely adapted method for
 		synchronizing a device clock is to use Network Time Protocol (NTP).
 	

 Prior to configuring NTP, consider what management IP address scheme is
 		in place within the ACI fabric. There are two options for configuring
 		management of all ACI nodes and Application Policy Infrastructure Controllers
 		(APICs), in-band management and/or out-of-band management. Depending upon which
 		management option is chosen for the fabric, configuration of NTP will vary.
 		Another consideration in deploying time synchronization is where the time
 		source is located. The reliability of the source must be carefully considered
 		when determining if you will use a private internal clock or an external public
 		clock.
 	

 Configuring NTP
 	 Using the REST API

Procedure

 	Step 1

 	 Configure NTP.
 		

Example:
 			 POST url: https://APIC-IP/api/node/mo/uni/fabric/time-test.xml

<imdata totalCount="1">
 <datetimePol adminSt="enabled" authSt="disabled" descr="" dn="uni/fabric/time-CiscoNTPPol" name="CiscoNTPPol" ownerKey="" ownerTag="">
 <datetimeNtpProv descr="" keyId="0" maxPoll="6" minPoll="4" name="10.10.10.11" preferred="yes">
 <datetimeRsNtpProvToEpg tDn="uni/tn-mgmt/mgmtp-default/inb-default"/>
 </datetimeNtpProv>
 </datetimePol>
</imdata>

 		

 	Step 2

 	 Add the default
 			 Date Time Policy to the pod policy group.
 		

Example:
 			
POST url: https://APIC-IP/api/node/mo/uni/fabric/funcprof/podpgrp-calo1/rsTimePol.xml

POST payload: <imdata totalCount="1">
<fabricRsTimePol tnDatetimePolName=“CiscoNTPPol”>
</fabricRsTimePol>
</imdata>

 		

 	Step 3

 	 Add the pod
 			 policy group to the default pod profile.
 		

Example:
 			 POST url: https://APIC-IP/api/node/mo/uni/fabric/podprof-default/pods-default-typ-ALL/rspodPGrp.xml

payload: <imdata totalCount="1">
<fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-calo1" status="created">
</fabricRsPodPGrp>
</imdata>

 		

 Overview

 This article provides examples of how to configure Cisco Tetration Analytics when using the Cisco APIC. The following information applies when configuring Cisco Tetration Analytics.

 	
 An inband management IP address must be configured on each leaf where the Cisco Tetration Analytics agent is active.

 	

 Define an analytics policy and specify the destination IP address of the Cisco Tetration Analytics server.

 	

 Create a switch profile and include the policy group created in the previous
 step.

 Configuring Cisco Tetration Analytics Using the REST API

Procedure

 	Step 1

 	 Create the analytics policy.

Example:
 <analyticsCluster name="tetration" >
<analyticsCfgSrv name="srv1" ip="10.30.30.7" >
</analyticsCfgSrv>
</analyticsCluster>

 	Step 2

 	Associate analytics with the policy group.

Example:
 <fabricLeNodePGrp descr="" name="mypolicy6" ownerKey="" ownerTag="" rn="lenodepgrp-mypolicy6" status="">
 <fabricRsNodeCfgSrv rn="rsnodeProv" status="" tDn="uni/fabric/analytics/cluster-tetration/cfgsrv-srv1" />
</fabricLeNodePGrp>

 	Step 3

 	Associate the policy group with the switch.

Example:
 <fabricLeafP name="leafs" rn="leprof-leafs" status="" >
 <fabricLeafS name="sw" rn="leaves-sw-typ-range" status="">
 <fabricRsLeNodePGrp rn="rsleNodePGrp" tDn="uni/fabric/funcprof/lenodepgrp-mypolicy6"/>
 <fabricNodeBlk name="switches" from_="101" to_="101" />
 </fabricLeafS>
</fabricLeafP>

 About NetFlow

 The NetFlow technology provides the metering base for a key set of applications, including network traffic accounting, usage-based
 network billing, network planning, as well as denial of services monitoring, network monitoring, outbound marketing, and data
 mining for both service providers and enterprise customers. Cisco provides a set of NetFlow applications to collect NetFlow
 export data, perform data volume reduction, perform post-processing, and provide end-user applications with easy access to
 NetFlow data. If you have enabled NetFlow monitoring of the traffic flowing through your datacenters, this feature enables
 you to perform the same level of monitoring of the traffic flowing through the Cisco Application Centric
 				 Infrastructure (Cisco ACI) fabric.

 Instead of hardware directly exporting the records to a collector, the records are processed in the supervisor engine and
 are exported to standard NetFlow collectors in the required format.

 For information about configuring NetFlow with virtual machine networking, see the Cisco ACI Virtualization Guide.

 Configuring a NetFlow Exporter Policy for VM Networking Using the REST API

 The following example XML shows how to configure a NetFlow exporter policy for VM networking using the REST API:

 <polUni>
 <infraInfra>
 <netflowVmmExporterPol name=“vmExporter1” dstAddr=“2.2.2.2” dstPort=“1234” srcAddr=“4.4.4.4”/>
 </infraInfra>
</polUni>

 Configuring NetFlow Infra Selectors Using the REST API

 You can use the REST API to configure NetFlow infra selectors. The infra selectors are used for attaching a Netflow monitor
 to a PHY, port channel, virtual port channel, fabric extender (FEX), or port channel fabric extender (FEXPC) interface.

 The following example XML shows how to configure NetFlow infra selectors using the REST API:

 <infraInfra>
 <!--Create Monitor Policy /-->
 <netflowMonitorPol name='monitor_policy1' descr='This is a monitor policy.'>
 <netflowRsMonitorToRecord tnNetflowRecordPolName='record_policy1' />
 <!-- A Max of 2 exporters allowed per Monitor Policy /-->
 <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy1' />
 <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy2' />
 </netflowMonitorPol>

 <!--Create Record Policy /-->
 <netflowRecordPol name='record_policy1' descr='This is a record policy.' match='src-ipv4,src-port'/>

 <!--Create Exporter Policy /-->
 <netflowExporterPol name='exporter_policy1' dstAddr='10.10.1.1' srcAddr='10.10.1.10' ver='v9' descr='This is an exporter policy.'>
 <!--Exporter can be behind app EPG or external L3 EPG (InstP) /-->
 <netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg1'/>
 <!--This Ctx needs to be the same Ctx that EPG1’s BD is part of /-->
 <netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1'/>
 </netflowExporterPol>

 <!--Node-level Policy for collection Interval /-->
 <netflowNodePol name='node_policy1' collectIntvl='500' />

 <!-- Node Selectors - usual config /-->
 <infraNodeP name="infraNodeP-17" >
 <infraLeafS name="infraLeafS-17" type="range">
 <!-- NOTE: The nodes can also be fex nodes /-->
 <infraNodeBlk name="infraNodeBlk-17" from_="101" to_="101"/>
 <infraRsAccNodePGrp tDn='uni/infra/funcprof/accnodepgrp-nodePGrp1' />
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-infraAccPortP"/>
 </infraNodeP>

 <!-- Port Selectors - usual config /-->
 <infraAccPortP name="infraAccPortP" >
 <infraHPortS name="infraHPortS" type="range">
 <!-- NOTE: The interfaces can also be Port-channels, fex interfaces or fex PCs /-->
 <infraPortBlk name="infraPortBlk" fromCard="1" toCard="1" fromPort="8" toPort="8"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-infraAccPortGrp"/>
 </infraHPortS>
 </infraAccPortP>

 <!-- Policy Groups - usual config /-->
 <infraFuncP>
 <!-- Node Policy Group - to setup Netflow Node Policy /-->
 <infraAccNodePGrp name='nodePGrp1' >
 <infraRsNetflowNodePol tnNetflowNodePolName='node_policy1' />
 </infraAccNodePGrp>

 <!-- Access Port Policy Group - to setup Netflow Monitor Policy /-->
 <infraAccPortGrp name="infraAccPortGrp" >
 <!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
 <infraRsNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1' fltType='ipv4'/>
 <infraRsNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2' fltType='ipv6'/>
 <infraRsNetflowMonitorPol tnNetflowMonitorPolName=‘monitor_policy2' fltType=‘ce'/>
 </infraAccPortGrp>
 </infraFuncP>
</infraInfra>

 Configuring the NetFlow Tenant Hierarchy Using the REST API

 You can use the REST API to configure the NetFlow tenant hierarchy. The tenant hierarchy is used for attaching a NetFlow monitor
 to a bridge domain, Layer 3 sub-interface, or Layer 3 switched virtual interface (SVI).

 The following example XML shows how to configure the NetFlow tenant hierarchy using the REST API:

 <?xml version="1.0" encoding="UTF-8"?>

<!-- api/policymgr/mo/.xml -->
<polUni>
 <fvTenant name="t1">

 <!--Create Monitor Policy /-->
 <netflowMonitorPol name='monitor_policy1' descr='This is a monitor policy.'>
 <netflowRsMonitorToRecord tnNetflowRecordPolName='record_policy1' />
 <!-- A Max of 2 exporters allowed per Monitor Policy /-->
 <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy1' />
 <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy2' />
 </netflowMonitorPol>
 <!--Create Record Policy /-->
 <netflowRecordPol name='record_policy1' descr='This is a record policy.'/>

 <!--Create Exporter Policy /→
 <netflowExporterPol name='exporter_policy1' dstAddr='10.0.0.1' srcAddr='10.0.0.4'>

 <!--Exporter can be behind app EPG or external L3 EPG (InstP) /-->
 <netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg2'/>
 <!--netflowRsExporterToEPg tDn='uni/tn-t1/out-out1/instP-accountingInst' /-->
 <!--This Ctx needs to be the same Ctx that EPG2’s BD is part of /-->
 <netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1' />
 </netflowExporterPol>

 <!--Create 2nd Exporter Policy /-->
 <netflowExporterPol name='exporter_policy2' dstAddr='11.0.0.1' srcAddr='11.0.0.4'>
 <netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg2'/>
 <netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1' />
 </netflowExporterPol>

 <fvCtx name="ctx1" />

 <fvBD name="bd1" unkMacUcastAct="proxy" >
 <fvSubnet descr="" ip="11.0.0.0/24"\>
 <fvRsCtx tnFvCtxName="ctx1" />

 <!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
 <fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1' fltType='ipv4'/>
 <fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2' fltType='ipv6'/>
 <fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName=‘monitor_policy2' fltType='ce'/>
 </fvBD>

 <!--Create App EPG /-->
 <fvAp name="app1">
 <fvAEPg name="epg2" >
 <fvRsBd tnFvBDName="bd1" />
 <fvRsPathAtt encap="vlan-20" instrImedcy="lazy" mode="regular" tDn="topology/pod-1/paths-101/pathep-[eth1/20]"/>
 </fvAEPg>
 </fvAp>

 <!--L3 Netflow Config for sub-intf and SVI /-->
 <l3extOut name="out1">
 <l3extLNodeP name="lnodep1" >
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="1.2.3.4" />
 <l3extLIfP name='lifp1'>
 <!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
 <l3extRsLIfPToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1' fltType='ipv4' />
 <l3extRsLIfPToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2' fltType='ipv6' />
 <l3extRsLIfPToNetflowMonitorPol tnNetflowMonitorPolName=‘monitor_policy2' fltType=‘ce' />

 <!--Sub-interface 1/40.40 on node 101 /-->
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]" ifInstT='sub-interface' encap='vlan-40' />

 <!--SVI 50 attached to eth1/25 on node 101 /-->
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]" ifInstT='external-svi' encap='vlan-50' />
 </l3extLIfP>
 </l3extLNodeP>

 <!--External L3 EPG for Exporter behind external L3 Network /-->
 <l3extInstP name="accountingInst">
 <l3extSubnet ip="11.0.0.0/24" />
 </l3extInstP>
 <l3extRsEctx tnFvCtxName="ctx1"/>
 </l3extOut>
 </fvTenant>
</polUni>

 Consuming a NetFlow Exporter Policy Under a VMM Domain Using the REST API

 The following example XML shows how to consume a NetFlow exporter policy under a VMM domain using the REST API:

 <polUni>
 <vmmProvP vendor=“VMware”>
 <vmmDomP name=“mininet”>
 <vmmVSwitchPolicyCont>
 <vmmRsVswitchExporterPol tDn=“uni/infra/vmmexporterpol-vmExporter1” activeFlowTimeOut=“62” idleFlowTimeOut=“16” samplingRate=“1”/>
 </vmmVSwitchPolicyCont>
 </vmmDomP>
 </vmmProvP>
</polUni>

 Configuring the NetFlow or Tetration Analytics Priority Using the REST API

 You can specify whether to use the NetFlow or Cisco Tetration Analytics feature by setting the FeatureSel attribute of the <fabricNodeControl> element. The FeatureSel attribute can have one of the following values:

 	

 analytics—Specifies Cisco Tetration Analytics. This is the default value.

 	

 netflow—Specifies NetFlow.

 The following example REST API post specifies for the switch "test1" to use the NetFlow feature:

 http://192.168.10.1/api/node/mo/uni/fabric.xml
<fabricNodeControl name="test1" FeatureSel="netflow" />

 About ACL Contract Permit and Deny Logs

 To log and/or monitor the traffic flow for a contract rule, you can enable and view the logging of packets or flows that were
 allowed to be sent because of contract permit rules and the logging of packets or flows that were dropped because of taboo
 contract deny rules.

 Enabling Taboo Contract Deny Logging Using the REST API

 The following example shows you how to enable Taboo Contract deny logging using the REST API.

Procedure

 	
 To enable ACL deny logging, post data such as the follow example:
 POST https://192.0.20.123/api/node/mo/uni/tn-sgladwin_t1/taboo-TCP_Taboo_Contract.json
{
"vzTaboo":{
 "attributes":{
 "dn":"uni/tn-sgladwin_t1/taboo-TCP_Taboo_Contract",
 "name":"TCP_Taboo_Contract",
 "rn":"taboo-TCP_Taboo_Contract",
 "status":"created"},
 "children":[{
 "vzTSubj":{
 "attributes":{
 "dn":"uni/tn-sgladwin_t1/taboo-TCP_Taboo_Contract/tsubj-TCP_Filter_Subject",
 "name":"TCP_Filter_Subject",
 "rn":"tsubj-TCP_Filter_Subject",
 "status":"created"},
 "children":[{
 "vzRsDenyRule":{
 "attributes":{
 "tnVzFilterName":"TCP_Filter",
 "directives":"log",
 "status":"created"},
 "children":[]}}]}}]}}
response: {"totalCount":"0","imdata":[]}

 About Digital Optical Monitoring

 Real-time digital optical monitoring (DOM) data is collected from SFPs, SFP+, and XFPs periodically and compared with warning
 and alarm threshold table values. The DOM data collected are transceiver transmit bias current, transceiver transmit power,
 transceiver receive power, and transceiver power supply voltage.

 Enabling Digital Optical Monitoring Using the REST API

 			
 Before you can view digital optical monitoring (DOM) statistics about a physical interface, enable DOM on the interface.

 			
 To enable DOM using the REST API:

 		

Procedure

 	Step 1

 	 Create a fabric node control policy (fabricNodeControlPolicy) as in the following example:
 					
 				
 					<fabricNodeControl dn="uni/fabric/nodecontrol-testdom" name="testdom" control="1"
rn="nodecontrol-testdom" status="created" />

 				

 	Step 2

 	 Associate a fabric node
 			 control policy to a policy group as follows:
 		
 			
<?xml version="1.0" encoding="UTF-8" ?>
	<fabricLeNodePGrp dn="uni/fabric/funcprof/lenodepgrp-nodegrp2" name="nodegrp2"
rn="lenodepgrp-nodegrp2" status="created,modified" >

 <fabricRsMonInstFabricPol tnMonFabricPolName="default" status="created,modified" />
 <fabricRsNodeCtrl tnFabricNodeControlName="testdom" status="created,modified" />

</fabricLeNodePGrp>

 		

 	Step 3

 	 Associate a policy group to
 			 a switch (in the following example, the switch is 103) as follows:
 		
 			
<?xml version="1.0" encoding="UTF-8" ?>
	<fabricLeafP>
		<attributes>
			<dn>uni/fabric/leprof-leafSwitchProfile</dn>
			<name>leafSwitchProfile</name>
			<rn>leprof-leafSwitchProfile</rn>
			<status>created,modified</status>
		</attributes>
		<children>
			<fabricLeafS>
				<attributes>
					<dn>uni/fabric/leprof-leafSwitchProfile/leaves-test-typ-range</dn>
					<type>range</type>
					<name>test</name>
					<rn>leaves-test-typ-range</rn>
					<status>created,modified</status>
				</attributes>
				<children>
					<fabricNodeBlk>
						<attributes>
							<dn>uni/fabric/leprof-leafSwitchProfile/leaves-test-typ-range/nodeblk-09533c1d228097da</dn>
							<from_>103</from_>
							<to_>103</to_>
							<name>09533c1d228097da</name>
							<rn>nodeblk-09533c1d228097da</rn>
							<status>created,modified</status>
						</attributes>
					</fabricNodeBlk>
				</children>
				<children>
					<fabricRsLeNodePGrp>
						<attributes>
							<tDn>uni/fabric/funcprof/lenodepgrp-nodegrp2</tDn>
							<status>created</status>
						</attributes>
					</fabricRsLeNodePGrp>
				</children>
			</fabricLeafS>
		</children>
	</fabricLeafP>

 		

 About Syslog

 During operation, a fault or event in the Cisco Application Centric Infrastructure (ACI) system can trigger the sending of
 a system log (syslog) message to the console, to a local file, and to a logging server on another system. A system log message
 typically contains a subset of information about the fault or event. A system log message can also contain audit log and session
 log entries.

 	[image: ../images/note.gif]
Note
 	

 				
 For a list of syslog messages that the APIC and the fabric nodes can generate, see http:/​/​www.cisco.com/​c/​en/​us/​td/​docs/​switches/​datacenter/​aci/​apic/​sw/​1-x/​syslog/​guide/​aci_syslog/​ACI_​SysMsg.html.

 			

 		

 Many system log messages are specific to the action that a user is performing or the object that a user is configuring or
 administering. These messages can be the following:

 	
 				
 Informational messages, providing assistance and tips about the action being performed

 			

 	
 				
 Warning messages, providing information about system errors related to an object, such as a user account or service profile,
 that the user is configuring or administering

 			

 In order to receive and monitor system log messages, you must specify a syslog destination, which can be the console, a local
 file, or one or more remote hosts running a syslog server. In addition, you can specify the minimum severity level of messages
 to be displayed on the console or captured by the file or host. The local file for receiving syslog messages is /var/log/external/messages.

 A syslog source can be any object for which an object monitoring policy can be applied. You can specify the minimum severity
 level of messages to be sent, the items to be included in the syslog messages, and the syslog destination.

 You can change the display format for the Syslogs to NX-OS style format.

 Additional details about the faults or events that generate these system messages are described in the Cisco APIC Faults, Events, and System Messages Management
 					 Guide, and system log messages are listed in the Cisco ACI System Messages Reference Guide.

 	[image: ../images/note.gif]
Note
 	

 			
 Not all system log messages indicate problems with your system. Some messages are purely informational, while others may help
 diagnose problems with communications lines, internal hardware, or the system software.

 		

 Configuring a Syslog Group and Destination Using the REST API

 This procedure configures syslog data destinations for logging and evaluation. You can export syslog data to the console,
 to a local file, or to one or more syslog servers in a destination group. This example sends alerts to the console, information
 to a local file, and warnings to a remote syslog server.

Procedure

 	
 To create a syslog group and destination using the REST API, send a post with XML such as the following example:

Example:
 <syslogGroup name name="tenant64_SyslogDest" format="aci" dn="uni/fabric/slgroup-tenant64_SyslogDest">
 <syslogConsole name="" format="aci" severity="alerts" adminState="enabled"/>
 <syslogFile name="" format="aci" severity="information" adminState="enabled"/>
 <syslogProf name="syslog" adminState="enabled"/>
 <syslogRemoteDest name="Syslog_remoteDest" format="aci" severity="warnings"
 adminState="enabled" port="514" host="192.168.100.20" forwardingFacility="local7">
 <fileRsARemoteHostToEpg tDn="uni/tn-mgmt/mgmtp-default/oob-default"/>
 </syslogRemoteDest>
</syslogGroup>

 Creating a Syslog Source Using the REST API

 A syslog source can be any object for which an object monitoring policy can be applied.

 Before You Begin

 Create a syslog monitoring destination group.

Procedure

 	
 To create a syslog source, send a POST request with XML such as the following example:

Example:
 <syslogSrc
 name="VRF64_SyslogSource" minSev="warnings" incl="faults"
 dn="uni/tn-tenant64/monepg-MonPol1/slsrc-VRF64_SyslogSource">
 <syslogRsDestGroup tDn="uni/fabric/slgroup-tenant64_SyslogDest"/>
</syslogSrc>

 Enabling Syslog to Display in NX-OS CLI Format, Using the REST API

 By default the Syslog format is RFC 5424 compliant. You can change the default display of Syslogs to NX-OS type format, similar
 to the following example:apic1# moquery -c "syslogRemoteDest"
Total Objects shown: 1

syslog.RemoteDest
host : 172.23.49.77
adminState : enabled
childAction :
descr :
dn : uni/fabric/slgroup-syslog-mpod/rdst-172.23.49.77
epgDn :
format : nxos
forwardingFacility : local7
ip :
lcOwn : local
modTs : 2016-05-17T16:51:57.231-07:00
monPolDn : uni/fabric/monfab-default
name : syslog-dest
operState : unknown
port : 514
rn : rdst-172.23.49.77
severity : information
status :
uid : 15374
vrfId : 0
vrfName :

 To enable the Syslogs to display in NX-OS type format, perform the following steps, using the REST API.

Procedure

 	Step 1

 	Enable the Syslogs to display in NX-OS type format, as in the following example:
 POST https://192.168.20.123/api/node/mo/uni/fabric.xml
<syslogGroup name="DestGrp77" format="nxos">
<syslogRemoteDest name="slRmtDest77" host="172.31.138.20" severity="debugging"/>
</syslogGroup>

 The syslogGroup is the Syslog monitoring destination group, the sysLogRemoteDest is the name you previously configured for your Syslog server, and the host is the IP address for the previously configured Syslog server.

 	Step 2

 	Set the Syslog format back to the default RFC 5424 format, as in the following example:
 POST https://192.168.20.123/api/node/mo/uni/fabric.xml
<syslogGroup name="DestGrp77" format="aci">
<syslogRemoteDest name="slRmtDest77" host="172.31.138.20" severity="debugging"/>
</syslogGroup>

 Overview

 This article provides
 		an example of how to configure Data Plane Policing.
 	

 Use data plane
 		policing (DPP) to manage bandwidth consumption on ACI fabric access interfaces.
 		DPP policies can apply to egress traffic, ingress traffic, or both. DPP
 		monitors the data rates for a particular interface. When the data rate exceeds
 		user-configured values, marking or dropping of packets occurs immediately.
 		Policing does not buffer the traffic; therefore, the transmission delay is not
 		affected. When traffic exceeds the data rate, the ACI fabric can either drop
 		the packets or mark QoS fields in them.
 	

 DPP policies can be
 		single-rate, dual-rate, and color-aware. Single-rate policies monitor the
 		committed information rate (CIR) of traffic. Dual-rate policers monitor both
 		CIR and peak information rate (PIR) of traffic. In addition, the system
 		monitors associated burst sizes. Three colors, or conditions, are determined by
 		the policer for each packet depending on the data rate parameters supplied:
 		conform (green), exceed (yellow), or violate (red).
 	

 Typically, DPP
 		policies are applied to physical or virtual layer 2 connections for virtual or
 		physical devices such as servers or hypervisors, and on layer 3 connections for
 		routers. DPP policies applied to leaf switch access ports are configured in the
 		fabric access (infra) portion of the ACI fabric, and must be configured by a
 		fabric administrator. DPP policies applied to interfaces on border leaf switch
 		access ports (l3extOut or l2extOut) are configured in the tenant (fvTenant)
 		portion of the ACI fabric, and can be configured by a tenant administrator.
 	

 Only one action can be
 		configured for each condition. For example, a DPP policy can to conform to the
 		data rate of 256000 bits per second, with up to 200 millisecond bursts. The
 		system applies the conform action to traffic that falls within this rate, and
 		it would apply the violate action to traffic that exceeds this rate.
 		Color-aware policies assume that traffic has been previously marked with a
 		color. This information is then used in the actions taken by this type of
 		policer.
 	

 Configuring Data
 	 Plane Policing Using the REST API

 		
 To police the L2
 		 traffic coming in to the Leaf:
 		

 		
<!-- api/node/mo/uni/.xml -->
<infraInfra>
<qosDppPol name="infradpp5" burst="2000" rate="2000" be="400"/>
<!--
 List of nodes. Contains leaf selectors. Each leaf selector contains list of node blocks
-->
<infraNodeP name="leaf1">
<infraLeafS name="leaf1" type="range">
<infraNodeBlk name="leaf1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-portselector1"/>
</infraNodeP>
<!--
 PortP contains port selectors. Each port selector contains list of ports. It
 also has association to port group policies
-->
<infraAccPortP name="portselector1">
<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="48" toPort="49"></infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portSet2"/>
</infraHPortS>
</infraAccPortP>
<!-- FuncP contains access bundle group policies -->
<infraFuncP>
<infraAccPortGrp name="portSet2">
<infraRsQosIngressDppIfPol tnQosDppPolName="infradpp5"/>
</infraAccPortGrp>
</infraFuncP>
</infraInfra>

 		To police the L2
 		 traffic going out of the Leaf:
 		

 		<!-- api/node/mo/uni/.xml -->
<infraInfra>
<qosDppPol name="infradpp2" burst="4000" rate="4000"/>
<!--
 List of nodes. Contains leaf selectors. Each leaf selector contains list of node blocks
-->
<infraNodeP name="leaf1">
<infraLeafS name="leaf1" type="range">
<infraNodeBlk name="leaf1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-portselector2"/>
</infraNodeP>
<!--
 PortP contains port selectors. Each port selector contains list of ports. It
 also has association to port group policies
-->
<infraAccPortP name="portselector2">
<infraHPortS name="pselc" type="range">
<infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="37" toPort="38"></infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portSet2"/>
</infraHPortS>
</infraAccPortP>
<!-- FuncP contains access bundle group policies -->
<infraFuncP>
<infraAccPortGrp name="portSet2">
<infraRsQosEgressDppIfPol tnQosDppPolName="infradpp2"/>
</infraAccPortGrp>
</infraFuncP>
</infraInfra>

 		To police the L3
 		 traffic coming in to the Leaf:
 		

 		<!-- api/node/mo/uni/.xml -->
<fvTenant name="dppTenant">
<qosDppPol name="gmeo" burst="2000" rate="2000"/>
<l3extOut name="Outside">
<l3extInstP name="extroute"/>
<l3extLNodeP name="borderLeaf">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="10.0.0.1">
<ipRouteP ip="0.0.0.0">
<ipNexthopP nhAddr="192.168.62.2"/>
</ipRouteP>
</l3extRsNodeL3OutAtt>
<l3extLIfP name="portProfile">
<l3extRsPathL3OutAtt addr="192.168.40.1/30" ifInstT="l3-port" tDn="topology/pod-1/paths-101/pathep-[eth1/40]"/>
<l3extRsPathL3OutAtt addr="192.168.41.1/30" ifInstT="l3-port" tDn="topology/pod-1/paths-101/pathep-[eth1/41]"/>
<l3extRsIngressQosDppPol tnQosDppPolName="gmeo"/>
</l3extLIfP>
</l3extLNodeP>
</l3extOut>
</fvTenant>

 		To police the L3
 		 traffic going out of the Leaf:
 		

 		<!-- api/node/mo/uni/.xml -->
<fvTenant name="dppTenant">
<qosDppPol name="gmeo" burst="2000" rate="2000"/>
<l3extOut name="Outside">
<l3extInstP name="extroute"/>
<l3extLNodeP name="borderLeaf">
<l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="10.0.0.1">
<ipRouteP ip="0.0.0.0">
<ipNexthopP nhAddr="192.168.62.2"/>
</ipRouteP>
</l3extRsNodeL3OutAtt>
<l3extLIfP name="portProfile">
<l3extRsPathL3OutAtt addr="192.168.40.1/30" ifInstT="l3-port" tDn="topology/pod-1/paths-101/pathep-[eth1/40]"/>
<l3extRsPathL3OutAtt addr="192.168.41.1/30" ifInstT="l3-port" tDn="topology/pod-1/paths-101/pathep-[eth1/41]"/>
<l3extRsEgressQosDppPol tnQosDppPolName="gmeo"/>
</l3extLIfP>
</l3extLNodeP>
</l3extOut>
</fvTenant>

 	

 About Traffic Storm
 	 Control

 A traffic storm occurs
 		when packets flood the LAN, creating excessive traffic and degrading network
 		performance. You can use traffic storm control policies to prevent disruptions
 		on Layer 2 ports by broadcast, unknown multicast, or unknown unicast traffic
 		storms on physical interfaces.
 	

 By default, storm
 		control is not enabled in the ACI fabric. ACI bridge domain (BD) Layer 2
 		unknown unicast flooding is enabled by default within the BD but can be
 		disabled by an administrator. In that case, a storm control policy only applies
 		to broadcast and unknown multicast traffic. If Layer 2 unknown unicast flooding
 		is enabled in a BD, then a storm control policy applies to Layer 2 unknown
 		unicast flooding in addition to broadcast and unknown multicast traffic.
 	

 Traffic storm control
 		(also called traffic suppression) allows you to monitor the levels of incoming
 		broadcast, multicast, and unknown unicast traffic over a one second interval.
 		During this interval, the traffic level, which is expressed either as
 		percentage of the total available bandwidth of the port or as the maximum
 		packets per second allowed on the given port, is compared with the traffic
 		storm control level that you configured. When the ingress traffic reaches the
 		traffic storm control level that is configured on the port, traffic storm
 		control drops the traffic until the interval ends. An administrator can
 		configure a monitoring policy to raise a fault when a storm control threshold
 		is exceeded.
 	

 Configuring a
 	 Traffic Storm Control Policy Using the REST API

 		
 To configure a
 		 traffic storm control policy, create a
 		 stormctrl:IfPol object with the desired properties.
 		

 		
 To create a policy
 		 named MyStormPolicy, send this HTTP POST message:
 		

 		POST https://192.0.20.123/api/mo/uni/infra/stormctrlifp-MyStormPolicy.json

 		 In the body of the
 		 POST message, Include the following JSON payload structure to specify the
 		 policy by percentage of available bandwidth:
 		

 		
{"stormctrlIfPol":
 {"attributes":
 {"dn":"uni/infra/stormctrlifp-MyStormPolicy",
 "name":"MyStormPolicy",
 "rate":"75",
 "burstRate":"85",
 "rn":"stormctrlifp-MyStormPolicy",
 "status":"created"
 },
 "children":[]
 }
}

 		 In the body of the
 		 POST message, Include the following JSON payload structure to specify the
 		 policy by packets per second:
 		

 		
{"stormctrlIfPol":
 {"attributes":
 {"dn":"uni/infra/stormctrlifp-MyStormPolicy",
 "name":"MyStormPolicy",
 "ratePps":"12000",
 "burstPps":"15000",
 "rn":"stormctrlifp-MyStormPolicy",
 "status":"created"
 },
 "children":[]
 }
}

 		Apply the traffic
 		 storm control interface policy to an interface port.
 		

 		<?xml version="1.0" encoding="UTF-8"?>
<infraInfra status='created,modified'>
 <infraHPathS name='__ui_l101_eth1--3' status='created, modified'>
 <infraRsPathToAccBaseGrp tDn='uni/infra/funcprof/accportgrp-__ui_l101_eth1--3' status='created,modified'>
 </infraRsPathToAccBaseGrp>
 <infraRsHPathAtt tDn='topology/pod-1/paths-101/pathep-[eth1/3]' status='created,modified'>
 </infraRsHPathAtt>
 </infraHPathS>
 <infraFuncP status='created,modified'>
 <infraAccPortGrp name='__ui_l101_eth1--3' status='created,modified'>
 <infraRsStormctrlIfPol status='created,modified' tnStormctrlIfPolName='__ui_l101_eth1--3'>
 </infraRsStormctrlIfPol>
 </infraAccPortGrp>
 </infraFuncP>
 <stormctrlIfPol status='created,modified' uucRate=’11' uucBurstPps='0xffffffff' isUcMcBcStormPktCfgValid='1' name='__ui_l101_eth1--3' uucRatePps='0xffffffff' uucBurstRate='22'>
 </stormctrlIfPol>
</infraInfra>

 	

 Chapter 12. Provisioning Layer 2 Networks

 Networking
 	 Domains

 A fabric
 		administrator creates domain policies that configure ports, protocols, VLAN
 		pools, and encapsulation. These policies can be used exclusively by a single
 		tenant, or shared. Once a fabric administrator configures domains in the ACI
 		fabric, tenant administrators can associate tenant endpoint groups (EPGs) to
 		domains.
 	

 The following networking domain profiles can be configured:

 	
 		
 VMM domain
 			 profiles (vmmDomP) are required for virtual machine hypervisor
 			 integration.
 		

 		

 	
 		
 Physical domain
 			 profiles (physDomP) are typically used for bare metal server
 			 attachment and management access.
 		

 		

 	
 		
 Bridged outside
 			 network domain profiles (l2extDomP) are typically used to connect a bridged
 			 external network trunk switch to a leaf switch in the ACI fabric.
 		

 		

 	
 		
 Routed outside
 			 network domain profiles (l3extDomP) are used to connect a router to a leaf
 			 switch in the ACI fabric.
 		

 		

 	
 				
 Fibre Channel domain profiles (fcDomP) are used to connect Fibre Channel VLANs and VSANs.

 			

 A domain is configured
 		to be associated with a VLAN pool. EPGs are then configured to use the VLANs
 		associated with a domain.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 EPG port and VLAN
 		 configurations must match those specified in the domain infrastructure
 		 configuration with which the EPG associates. If not, the APIC will raise a
 		 fault. When such a fault occurs, verify that the domain infrastructure
 		 configuration matches the EPG port and VLAN configurations.
 		

 	

 Configuring a Physical Domain Using the REST API

 A physical domain acts as the link between the VLAN pool and the Access Entity Profile (AEP). The domain also ties the fabric
 configuration to the tenant configuration, as the tenant administrator is the one who associates domains to EPGs, while the
 domains are created under the fabric tab. When configuring in this order, only the profile name and the VLAN pool are configured.

Procedure

 	
 Configure a physical domain by sending a post with XML such as the following example:

Example:

<physDomP dn="uni/phys-bsprint-PHY" lcOwn="local" modTs="2015-02-23T16:13:21.906-08:00"
 monPolDn="uni/fabric/monfab-default" name="bsprint-PHY" ownerKey="" ownerTag="" status="" uid="8131">
 <infraRsVlanNs childAction="" forceResolve="no" lcOwn="local" modTs="2015-02-23T16:13:22.065-08:00"
 monPolDn="uni/fabric/monfab-default" rType="mo" rn="rsvlanNs" state="formed" stateQual="none"
 status="" tCl="fvnsVlanInstP" tDn="uni/infra/vlanns-[bsprint-vlan-pool]-static" tType="mo" uid="8131"/>
 <infraRsVlanNsDef forceResolve="no" lcOwn="local" modTs="2015-02-23T16:13:22.065-08:00" rType="mo"
 rn="rsvlanNsDef" state="formed" stateQual="none" status="" tCl="fvnsAInstP"
 tDn="uni/infra/vlanns-[bsprint-vlan-pool]-static" tType="mo"/>
 <infraRtDomP lcOwn="local" modTs="2015-02-23T16:13:52.945-08:00" rn="rtdomP-[uni/infra/attentp-bsprint-AEP]"
 status="" tCl="infraAttEntityP" tDn="uni/infra/attentp-bsprint-AEP"/>
</physDomP>

 Creating VLAN
 	 Pools

 In this example,
 		configuring newly-connected bare metal servers first requires creation of a
 		physical domain and then association of the domain to a VLAN pool. As mentioned
 		in the previous section, VLAN pools define a range of VLAN IDs that will be
 		used by the EPGs.
 	

 The servers are
 		connected to two different leaf nodes in the fabric. Each server will be
 		tagging using 802.1Q or VXLAN encapsulation. The range of VLANs used in the
 		configuration example is 100-199. As depicted in the following figure, the ACI
 		fabric can also act as a gateway between disparate encapsulation types such as
 		untagged traffic, 802.1Q VLAN tags, VXLAN VNIDs, and NVGRE tags. The leaf
 		switches normalize the traffic by stripping off tags and reapplying the
 		required tags on fabric egress. In ACI, it is important to understand that the
 		definition of VLANs as they pertain to the leaf switch ports is utilized only
 		for identification purposes. When a packet arrives ingress to a leaf switch in
 		the fabric, ACI has to know beforehand how to classify packets into the
 		different EPGs, using identifiers like VLANs, VXLAN, NVGRE, physical port IDs,
 		virtual port IDs.
 	

 Encapsulation
 		 normalization

[image: ../images/349905.jpg]

 Creating a VLAN Pool
 	 Using the REST API

 The following example REST request creates a VLAN pool:
 	

 <fvnsVlanInstP allocMode="static" childAction="" configIssues="" descr=""
 dn="uni/infra/vlanns-[bsprint-vlan-pool]-static" lcOwn="local" modTs="2015-02-23T15:58:33.538-08:00"
 monPolDn="uni/fabric/monfab-default" name="bsprint-vlan-pool"
 ownerKey="" ownerTag="" status="" uid="8131">
 <fvnsRtVlanNs childAction="" lcOwn="local" modTs="2015-02-25T11:35:33.365-08:00"
 rn="rtinfraVlanNs-[uni/l2dom-JC-L2-Domain]" status="" tCl="l2extDomP" tDn="uni/l2dom-JC-L2-Domain"/>
 <fvnsRtVlanNs childAction="" lcOwn="local" modTs="2015-02-23T16:13:22.007-08:00"
 rn="rtinfraVlanNs-[uni/phys-bsprint-PHY]" status="" tCl="physDomP" tDn="uni/physbsprint-PHY"/>
 <fvnsEncapBlk childAction="" descr="" from="vlan-100" lcOwn="local" modTs="2015-02-23T15:58:33.538-08:00"
 name="" rn="from-[vlan-100]-to-[vlan-199]" status="" to="vlan-199" uid="8131"/>
</fvnsVlanInstP>

 Attachable Entity
 	 Profile

 The ACI fabric
 		provides multiple attachment points that connect through leaf ports to various
 		external entities such as bare metal servers, virtual machine hypervisors,
 		Layer 2 switches (for example, the Cisco UCS fabric interconnect), or Layer 3
 		routers (for example Cisco Nexus 7000 Series switches). These attachment points
 		can be physical ports, FEX ports, port channels, or a virtual port channel
 		(vPC) on leaf switches.
 	

 	[image: ../images/note.gif]
Note
 	

 When creating a VPC domain between two leaf switches, both switches must be in the same switch generation, one of the following:

 	Generation 1 - Cisco Nexus N9K switches without “EX” on the end of the switch name; for example, N9K-9312TX

 	Generation 2 – Cisco Nexus N9K switches with “EX” on the end of the switch model name; for example, N9K-93108TC-EX

 Switches such as these two are not compatible VPC peers. Instead, use switches of the same generation

 An Attachable Entity Profile (AEP) represents a group of external entities with similar infrastructure policy requirements.
 The infrastructure policies consist of physical interface policies that configure various protocol options, such as Cisco
 Discovery Protocol (CDP), Link Layer Discovery Protocol (LLDP), or Link Aggregation Control Protocol (LACP).

 An AEP is required to
 		deploy VLAN pools on leaf switches. Encapsulation blocks (and associated VLANs)
 		are reusable across leaf switches. An AEP implicitly provides the scope of the
 		VLAN pool to the physical infrastructure.
 	

 The following AEP requirements and dependencies must be accounted for in various configuration scenarios, including network
 connectivity, VMM domains, and multipod configuration:

 	
 		
 The AEP defines
 			 the range of allowed VLANS but it does not provision them. No traffic flows
 			 unless an EPG is deployed on the port. Without defining a VLAN pool in an AEP,
 			 a VLAN is not enabled on the leaf port even if an EPG is provisioned.
 		

 		

 	
 		
 A particular VLAN
 			 is provisioned or enabled on the leaf port that is based on EPG events either
 			 statically binding on a leaf port or based on VM events from external
 			 controllers such as VMware vCenter or Microsoft Azure Service Center Virtual
 			 Machine Manager (SCVMM).
 		

 		

 	
 				
 Attached entity profiles can be associated directly with application EPGs, which deploy the associated application EPGs to
 all those ports associated with the attached entity profile. The AEP has a configurable generic function (infraGeneric), which
 contains a relation to an EPG (infraRsFuncToEpg) that is deployed on all interfaces that are part of the selectors that are
 associated with the attachable entity profile.

 			

 A virtual machine
 		manager (VMM) domain automatically derives physical interface policies from the
 		interface policy groups of an AEP.
 	

 An override policy at
 		the AEP can be used to specify a different physical interface policy for a VMM
 		domain. This policy is useful in scenarios where a VM controller is connected
 		to the leaf switch through an intermediate Layer 2 node, and a different policy
 		is desired at the leaf switch and VM controller physical ports. For example,
 		you can configure LACP between a leaf switch and a Layer 2 node. At the same
 		time, you can disable LACP between the VM controller and the Layer 2 switch by
 		disabling LACP under the AEP override policy.
 	

 Creating an
 	 Attachable Access Entity Profile Using the REST API

 The following example
 		REST request creates an attachable access entity profile (AEP):
 	

 <infraAttEntityP childAction="" configIssues="" descr="" dn="uni/infra/attentpbsprint-AEP"
 lcOwn="local" modTs="2015-02-23T16:13:52.874-08:00" monPolDn="uni/fabric/monfab-default"
 name="bsprint-AEP" ownerKey="" ownerTag="" status="" uid="8131">
 <infraContDomP childAction="" lcOwn="local" modTs="2015-02-23T16:13:52.874-08:00"
 rn="dompcont" status="">
 <infraAssocDomP childAction="" dompDn="uni/phys-bsprint-PHY" lcOwn="local"
 modTs="2015-02-23T16:13:52.961-08:00" rn="assocdomp-[uni/phys-bsprint-PHY]" status=""/>
 <infraAssocDomP childAction="" dompDn="uni/l2dom-JC-L2-Domain" lcOwn="local"
 modTs="2015-02-25T11:35:33.570-08:00" rn="assocdomp-[uni/l2dom-JC-L2-Domain]"
 status=""/>
 </infraContDomP>
 <infraContNS childAction="" lcOwn="local" modTs="2015-02-23T16:13:52.874-08:00"
 monPolDn="uni/fabric/monfab-default" rn="nscont" status="">
 <infraRsToEncapInstDef childAction="" deplSt="" forceResolve="no" lcOwn="local"
 modTs="2015-02-23T16:13:52.961-08:00" monPolDn="uni/fabric/monfabdefault"
 rType="mo" rn="rstoEncapInstDef-[allocencap-[uni/infra]/encapnsdef-
 [uni/infra/vlanns-[bsprint-vlan-pool]-static]]" state="formed" stateQual="none"
 status="" tCl="stpEncapInstDef" tDn="allocencap-[uni/infra]/encapnsdef-
 [uni/infra/vlanns-[bsprint-vlan-pool]-static]" tType="mo">
 <fabricCreatedBy childAction="" creatorDn="uni/l2dom-JC-L2-Domain"
 deplSt="" domainDn="uni/l2dom-JC-L2-Domain" lcOwn="local" modTs="2015-02-
 25T11:35:33.570-08:00" monPolDn="uni/fabric/monfab-default" profileDn=""
 rn="source-[uni/l2dom-JC-L2-Domain]" status=""/>
 <fabricCreatedBy childAction="" creatorDn="uni/phys-bsprint-PHY" deplSt=""
 domainDn="uni/phys-bsprint-PHY" lcOwn="local" modTs="2015-02-23T16:13:52.961-08:00"
 monPolDn="uni/fabric/monfab-default" profileDn="" rn="source-[uni/phys-bsprint-PHY]"
 status=""/>
 </infraRsToEncapInstDef>
 </infraContNS>
 <infraRtAttEntP childAction="" lcOwn="local" modTs="2015-02-24T11:59:37.980-08:00"
 rn="rtattEntP-[uni/infra/funcprof/accportgrp-bsprint-AccessPort]" status=""
 tCl="infraAccPortGrp" tDn="uni/infra/funcprof/accportgrp-bsprint-AccessPort"/>
 <infraRsDomP childAction="" forceResolve="no" lcOwn="local" modTs="2015-02-
 25T11:35:33.570-08:00" monPolDn="uni/fabric/monfab-default" rType="mo"
 rn="rsdomP-[uni/l2dom-JC-L2-Domain]" state="formed" stateQual="none" status=""
 tCl="l2extDomP" tDn="uni/l2dom-JC-L2-Domain" tType="mo" uid="8754"/>
 <infraRsDomP childAction="" forceResolve="no" lcOwn="local"
 modTs="2015-02-23T16:13:52.961-08:00" monPolDn="uni/fabric/monfab-default" rType="mo"
 rn="rsdomP-[uni/phys-bsprint-PHY]" state="formed" stateQual="none" status="" tCl="physDomP"
 tDn="uni/phys-bsprint-PHY" tType="mo" uid="8131"/>
</infraAttEntityP>

 Configuring a Single Port Channel Applied to Multiple Switches

 This example creates a port channel on leaf switch 17, another port channel on leaf switch 18, and a third one on leaf switch
 20. On each leaf switch, the same interfaces will be part of the port channel (interfaces 1/10 to 1/15 and 1/20 to 1/25).
 All these port channels will have the same configuration.

 Before You Begin

 	

 The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

 	

 An APIC fabric administrator account is available that will enable creating the necessary fabric infrastructure configurations.

 	

 The target leaf switch and protocol(s) are configured and available.

Procedure

 	
 To create the port channel, send a post with XML such as the following:

Example:
 <infraInfra dn="uni/infra">

 <infraNodeP name=”test">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk” from_=”17" to_=”18”/>
 <infraNodeBlk name="nblk” from_=”20" to_=”20”/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test"/>	
 </infraNodeP>

 <infraAccPortP name="test">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort="10" toPort=”15”/>
 <infraPortBlk name="blk2"
 fromCard="1" toCard="1"
 fromPort=”20" toPort=”25”/>
 	 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp"/>
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccBndlGrp name="bndlgrp" lagT="link">
 <infraRsHIfPol tnFabricHIfPolName=“default"/>
 <infraRsCdpIfPol tnCdpIfPolName=”default”/>
 <infraRsLacpPol tnLacpLagPolName=”default"/>
 </infraAccBndlGrp>
 </infraFuncP>

</infraInfra>

 Configuring a Single Virtual Port Channel Across Two Switches Using the REST API

 The two steps for creating a virtual port channel across two switches are as follows:

 	

 Create a fabricExplicitGEp: this policy specifies the leaf switch that pairs to form the virtual port channel.

 	

 Use the infra selector to specify the interface configuration.

 The APIC performs several validations of the fabricExplicitGEp and faults are raised when any of these validations fail. A leaf can be paired with only one other leaf. The APIC rejects any configuration that breaks this rule. When creating a fabricExplicitGEp, an administrator must provide the IDs of both of the leaf switches to be paired. The APIC rejects any configuration which breaks this rule. Both switches must be up when fabricExplicitGEp is created. If one switch is not up, the APIC accepts the configuration but raises a fault. Both switches must be leaf switches. If one or both switch IDs corresponds
 to a spine, the APIC accepts the configuration but raises a fault.

 Before You Begin

 	

 The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

 	

 An APIC fabric administrator account is available that will enable creating the necessary fabric infrastructure configurations.

 	

 The target leaf switch and protocol(s) are configured and available.

Procedure

 	
 To create the fabricExplicitGEp policy and use the intra selector to specify the interface, send a post with XML such as the following example:

Example:
 <fabricProtPol pairT="explicit">
<fabricExplicitGEp name="tG" id="2">
	<fabricNodePEp id=”18”/>
	<fabricNodePEp id=”25"/>
 </fabricExplicitGEp>
 </fabricProtPol>

 Configuring Two Port Channels Applied to Multiple Switches Using the REST API

 This example creates two port channels (PCs) on leaf switch 17, another port channel on leaf switch 18, and a third one on
 leaf switch 20. On each leaf switch, the same interfaces will be part of the PC (interface 1/10 to 1/15 for port channel 1
 and 1/20 to 1/25 for port channel 2). The policy uses two switch blocks because each a switch block can contain only one group
 of consecutive switch IDs. All these PCs will have the same configuration.

 	[image: ../images/note.gif]
Note
 	

Even though the PC configurations are the same, this example uses two different interface policy groups. Each Interface Policy
 Group represents a PC on a switch. All interfaces associated with a given interface policy group are part of the same PCs.

 Before You Begin

 	

 The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

 	

 An APIC fabric administrator account is available that will enable creating the necessary fabric infrastructure configurations.

 	

 The target leaf switch and protocol(s) are configured and available.

Procedure

 	
 To create the two PCs, send a post with XML such as the following:

Example:
 <infraInfra dn="uni/infra">

 <infraNodeP name=”test">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk”
 from_=”17" to_=”18”/>
 <infraNodeBlk name="nblk”
 from_=”20" to_=”20”/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test1"/>	
 <infraRsAccPortP tDn="uni/infra/accportprof-test2"/>	
 </infraNodeP>

 <infraAccPortP name="test1">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort="10" toPort=”15”/>
 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp1"/>
 </infraHPortS>
 </infraAccPortP>

 <infraAccPortP name="test2">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort=“20" toPort=”25”/>
 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp2" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccBndlGrp name="bndlgrp1" lagT="link">
 	<infraRsHIfPol tnFabricHIfPolName=“default"/>
 <infraRsCdpIfPol tnCdpIfPolName=”default”/>
	 <infraRsLacpPol tnLacpLagPolName=”default"/>
 </infraAccBndlGrp>

 <infraAccBndlGrp name="bndlgrp2" lagT="link">
 <infraRsHIfPol tnFabricHIfPolName=“default"/>
 <infraRsCdpIfPol tnCdpIfPolName=”default”/>
 <infraRsLacpPol tnLacpLagPolName=”default"/>
 </infraAccBndlGrp>
 </infraFuncP>

</infraInfra>

 Configuring a Virtual Port Channel on Selected Port Blocks of Two Switches Using the REST API

 This policy creates a single virtual port channel (VPC) on leaf switches 18 and 25, using interfaces 1/10 to 1/15 on leaf
 18, and interfaces 1/20 to 1/25 on leaf 25.

 Before You Begin

 	

 The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

 	

 An APIC fabric administrator account is available that will enable creating the necessary fabric infrastructure configurations.

 	

 The target leaf switch and protocol(s) are configured and available.

 	[image: ../images/note.gif]
Note
 	

 When creating a VPC domain between two leaf switches, both switches must be in the same switch generation, one of the following:

 	Generation 1 - Cisco Nexus N9K switches without “EX” on the end of the switch name; for example, N9K-9312TX

 	Generation 2 – Cisco Nexus N9K switches with “EX” on the end of the switch model name; for example, N9K-93108TC-EX

 Switches such as these two are not compatible VPC peers. Instead, use switches of the same generation.

Procedure

 	
 To create the VPC send a post with XML such as the following example:

Example:
 <infraInfra dn="uni/infra">

 <infraNodeP name=”test1">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk”
 from_=”18" to_=”18”/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test1"/>	
 </infraNodeP>

 <infraNodeP name=”test2">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk”
 from_=”25" to_=”25”/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test2"/>	
 </infraNodeP>

 <infraAccPortP name="test1">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort="10" toPort=”15”/>
 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp" />
 </infraHPortS>
 </infraAccPortP>

 <infraAccPortP name="test2">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort=“20" toPort=”25”/>
 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccBndlGrp name="bndlgrp" lagT=”node">
 <infraRsHIfPol tnFabricHIfPolName=“default"/>
 <infraRsCdpIfPol tnCdpIfPolName=”default”/>
 <infraRsLacpPol tnLacpLagPolName=”default"/>
 </infraAccBndlGrp>
 </infraFuncP>

</infraInfra>

 Configuring a Virtual Port Channel and Applying it to a Static Port Using the REST API

 Before You Begin

 	

 Install the APIC, verify that the APIC controllers are online, and that the APIC cluster is formed and healthy.

 	

 Verify that an APIC fabric administrator account is available that will enable you to create the necessary fabric infrastructure.

 	

 Verify that the target leaf switches are registered in the ACI fabric and available.

Procedure

 	Step 1

 	To build vPCs, send a post with XML such as the following example:

Example:
 https://apic-ip-address/api/policymgr/mo/.xml
<polUni>
<infraInfra>
<infraNodeP name="switchProfileforVPC_201">
<infraLeafS name="switchProfileforVPC_201" type="range">
<infraNodeBlk name="nodeBlk" from_="201" to_="201"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-intProfileforVPC_201"/>
</infraNodeP>
<infraNodeP name="switchProfileforVPC_202">
<infraLeafS name="switchProfileforVPC_202" type="range">
<infraNodeBlk name="nodeBlk" from_="202" to_="202"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-intProfileforVPC_202"/>
</infraNodeP>
<infraAccPortP name="intProfileforVPC_201">
<infraHPortS name="vpc201-202" type="range">
<infraPortBlk name="vpcPort1-15" fromCard="1" toCard="1" fromPort="15"
toPort="15"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-intPolicyGroupforVPC"/>
</infraHPortS>
</infraAccPortP>
<infraAccPortP name="intProfileforVPC_202">
<infraHPortS name="vpc201-202" type="range">
<infraPortBlk name="vpcPort1-1" fromCard="1" toCard="1" fromPort="1"
toPort="1"/>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-intPolicyGroupforVPC"/>
</infraHPortS>
</infraAccPortP>
<infraFuncP>
<infraAccBndlGrp name="intPolicyGroupforVPC" lagT="node">
<infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfileforCisco"/>
<infraRsCdpIfPol tnCdpIfPolName="CDP_ON" />
<infraRsLacpPol tnLacpLagPolName="LACP_ACTIVE" />
<infraRsHIfPol tnFabricHIfPolName="10GigAuto" />
</infraAccBndlGrp>
</infraFuncP>
</infraInfra>
</polUni>

 	Step 2

 	To attach the VPC to static port bindings, send a post with XML such as the following:

Example:

https://apic-ip-address/api/node/mo/uni.xml
<polUni>
<fvTenant dn="uni/tn-Cisco" name="Cisco" ownerKey="" ownerTag="">
<fvAp name="CCO" ownerKey="" ownerTag="" prio="unspecified">
<fvAEPg matchT="AtleastOne" name="Web" prio="unspecified">
<fvRsPathAtt encap="vlan-1201" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/protpaths-201-202/pathep-[vpc201-202]” />
</fvAEPg>
<fvAEPg matchT="AtleastOne" name="App" prio="unspecified">
<fvRsPathAtt encap="vlan-1202" instrImedcy="immediate" mode="native"
tDn="topology/pod-1/protpaths-201-202/pathep-[vpc201-202]” />
</fvAEPg>
</fvAp>
</fvTenant>
</polUni>

 Reflective Relay (802.1Qbg)

 Reflective relay is a switching option beginning with Cisco APIC Release 2.3(1). Reflective relay—the tagless approach of
 IEEE standard 802.1Qbg—forwards all traffic to an external switch, which then applies policy and sends the traffic back to
 the destination or target VM on the server as needed. There is no local switching. For broadcast or multicast traffic, reflective
 relay provides packet replication to each VM locally on the server.

 One benefit of reflective relay is that it leverages the external switch for switching features and management capabilities,
 freeing server resources to support the VMs. Reflective relay also allows policies that you configure on the Cisco APIC to
 apply to traffic between the VMs on the same server.

 In the Cisco ACI, you can enable reflective relay, which allows traffic to turn back out of the same port it came in on. You
 can enable reflective relay on individual ports, port channels, or virtual port channels as a Layer 2 interface policy using
 the APIC GUI, NX-OS CLI, or REST API. It is disabled by default.

 The term Virtual Ethernet Port Aggregator (VEPA) is also used to describe 802.1Qbg functionality.

 Reflective Relay Support

 Reflective relay supports the following:

 	

 IEEE standard 802.1Qbg tagless approach, known as reflective relay.

 Cisco APIC Release 2.3(1) release does not support the IEE standard 802.1Qbg S-tagged approach with multichannel technology.

 	

 Physical domains.

 Virtual domains are not supported.

 	

 Physical ports, port channels (PCs), and virtual port channels (VPCs).

 Cisco Fabric Extender (FEX) and blade servers are not supported. If reflective relay is enabled on an unsupported interface,
 a fault is raised, and the last valid configuration is retained. Disabling reflective relay on the port clears the fault.

 	

 Cisco Nexus 9000 series switches with EX or FX at the end of their model name.

 	Enabling Reflective Relay Using the REST API

 Enabling Reflective Relay Using the REST API

 Reflective relay is disabled by default; however, you can enable it on a port, port channel, or virtual port channel as a
 Layer 2 interface policy on the switch.

 Before You Begin

 This procedure assumes that you have set up the Cisco Application Centric Infrastructure (ACI) fabric and installed the physical
 switches.

Procedure

 	Step 1

 	Configure a Layer 2 Interface policy with reflective relay enabled.

Example:
 <l2IfPol name=“VepaL2IfPol” vepa=“enabled" />

 	Step 2

 	 Apply the Layer 2 interface policy to a leaf access port policy group.

Example:
 <infraAccPortGrp name=“VepaPortG">
 <infraRsL2IfPol tnL2IfPolName=“VepaL2IfPol”/>
</infraAccPortGrp>

 	Step 3

 	Configure an interface profile with an interface selector.

Example:
 <infraAccPortP name=“vepa">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="20" toPort="22">
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-VepaPortG" />
 </infraHPortS>
 </infraAccPortP>

 	Step 4

 	Configure a node profile with node selector.

Example:
 <infraNodeP name=“VepaNodeProfile">
 <infraLeafS name=“VepaLeafSelector" type="range">
 <infraNodeBlk name=“VepaNodeBlk" from_="101" to_="102"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-vepa"/>
 </infraNodeP>

 Interface
 	 Configuration Guidelines

 When configuring
 		interfaces in an ACI fabric, follow these guidelines.
 	

 Half duplex at
 		 100Mbps speed is not supported

 		
 		
 In an ACI leaf
 		 switch that supports 100Mbps speed, the 100Mbps speed is supported only if the
 		 link is in full duplex mode and if autonegotiation is configured the same on
 		 both the local and remote peer. The ACI leaf switch and the remote link should
 		 both be configured in full duplex mode with autonegotiation disabled on both
 		 devices or enabled on both devices.
 		

 	

 Connecting an
 		 SFP module requires a link speed policy

 		
 		
 When you connect an
 		 SFP module to a new card, you must create a link speed policy for the module to
 		 communicate with the card. Follow these steps to create a link speed policy.
 		

 		

 	
 			
 Create an
 				interface policy to specify the link speed, as in this example:
 			

 			
<fabricHIfPol name=”mySpeedPol” speed=”1G”/>

 		

 	
 			
 Reference the
 				link speed policy within an interface policy group, as in this example:
 			

 			
<infraAccPortGrp name=”myGroup”>
 <infraRsHIfPol tnFabricHIfPolName=”SpeedPol”/>
</infraAccPortGrp>

 		

 	

 MAC Pinning

 		
 		
 MAC pinning is used for pinning VM traffic in a round-robin fashion to
 		 each uplink based on the MAC address of the VM. In a normal virtual port
 		 channel (vPC), a hash algorithm uses the source and destination MAC address to
 		 determine which uplink will carry a packet. In a vPC with MAC pinning, VM1
 		 might be pinned to the first uplink, VM2 pinned to the second uplink, and so
 		 on.
 		

 		
 MAC pinning is the recommended option for channeling when connecting
 		 to upstream switches that do not support Multichassis EtherChannel (MEC).
 		

 		
 Consider these guidelines and restrictions when configuring MAC
 		 pinning:
 		

 		

 	
 			
 When a host is connected to two leaf switches using a vPC with MAC
 				pinning, reloading one of the two leaf switches can result in a few minutes of
 				traffic disruption.
 			

 		

 	
 			
 In the API, MAC pinning is selected in the LACP policy by setting
 				lacp:LagPol:mode to mac-pin. When the policy is applied to a vPC, the vPC
 				status as shown in pc:AggrIf:pcMode and in pc:AggrIf:operChannelMode is
 				displayed as active, not as mac-pin.
 			

 		

 	

 Changing Interface Speed

 This task creates a policy that configures the speed for a set of interfaces.

Procedure

 	
 To set the speed for a set of interfaces, send a post with XML such as the following example:

Example:
 <infraInfra dn="uni/infra">

 <infraNodeP name=”test1">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk” from_=”18" to_=”18”/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test1"/>	
 </infraNodeP>

 <infraNodeP name=”test2">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk” from_=”25" to_=”25”/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test2"/>	
 </infraNodeP>

 <infraAccPortP name="test1">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort="10" toPort=”15”/>
 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp" />
 </infraHPortS>
 </infraAccPortP>

 <infraAccPortP name="test2">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1”
 fromCard="1" toCard="1"
 fromPort=“20" toPort=”25”/>
 <infraRsAccBaseGrp
 tDn="uni/infra/funcprof/accbundle-bndlgrp" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccBndlGrp name="bndlgrp" lagT=”node">
 <infraRsHIfPol tnFabricHIfPolName=“default"/>
 <infraRsCdpIfPol tnCdpIfPolName=”default”/>
 <infraRsLacpPol tnLacpLagPolName=”default"/>
 </infraAccBndlGrp>
 </infraFuncP>

</infraInfra>

 ACI FEX Guidelines

 Observe the following guidelines when deploying a FEX:

 	
 Assuming that no leaf switch front panel ports are configured to deploy and EPG and VLANs, a maximum of 10,000 port EPGs are
 supported for being deployed using a FEX.

 	
 For each FEX port or vPC that includes FEX ports as members, a maximum of 20 EPGs per VLAN are supported.

 Configuring an FEX VPC Policy Using the REST API

 This task creates a FEX virtual port channel (VPC) policy.

 Before You Begin

 	

 The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

 	

 An APIC fabric administrator account is available that will enable creating the necessary fabric infrastructure configurations.

 	

 The target leaf switch, interfaces, and protocol(s) are configured and available.

 	

 The FEXes are configured, powered on, and connected to the target leaf interfaces

 	[image: ../images/note.gif]
Note
 	

 When creating a VPC domain between two leaf switches, both switches must be in the same switch generation, one of the following:

 	

 Generation 1 - Cisco Nexus N9K switches without “EX” on the end of the switch name; for example, N9K-9312TX

 	

 Generation 2 – Cisco Nexus N9K switches with “EX” on the end of the switch model name; for example, N9K-93108TC-EX

 Switches such as these two are not compatible VPC peers. Instead, use switches of the same generation.

Procedure

 	
 To create the policy linking the FEX through a VPC to two switches, send a post with XML such as the following example:

Example:
 <polUni>
<infraInfra dn="uni/infra">

<infraNodeP name="fexNodeP105">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="test" from_="105" to_="105"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-fex116nif105" />
</infraNodeP>

<infraNodeP name="fexNodeP101">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="test" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-fex113nif101" />
</infraNodeP>

<infraAccPortP name="fex116nif105">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1"
 fromCard="1" toCard="1" fromPort="45" toPort="48" >
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/fexprof-fexHIF116/fexbundle-fex116" fexId="116" />
</infraHPortS>
</infraAccPortP>

<infraAccPortP name="fex113nif101">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk1"
 fromCard="1" toCard="1" fromPort="45" toPort="48" >
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/fexprof-fexHIF113/fexbundle-fex113" fexId="113" />
</infraHPortS>
</infraAccPortP>

<infraFexP name="fexHIF113">
 <infraFexBndlGrp name="fex113"/>
 <infraHPortS name="pselc-fexPC" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="15" toPort="16" >
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexPCbundle" />
 </infraHPortS>
 <infraHPortS name="pselc-fexVPC" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="1" toPort="8" >
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexvpcbundle" />
 </infraHPortS>
 <infraHPortS name="pselc-fexaccess" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="47" toPort="47">
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-fexaccport" />
 </infraHPortS>

</infraFexP>

<infraFexP name="fexHIF116">
 <infraFexBndlGrp name="fex116"/>
 <infraHPortS name="pselc-fexPC" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="17" toPort="18" >
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexPCbundle" />
 </infraHPortS>
 <infraHPortS name="pselc-fexVPC" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="1" toPort="8" >
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-fexvpcbundle" />
 </infraHPortS>
 <infraHPortS name="pselc-fexaccess" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="47" toPort="47">
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-fexaccport" />
 </infraHPortS>

</infraFexP>

<infraFuncP>
<infraAccBndlGrp name="fexPCbundle" lagT="link">
 <infraRsLacpPol tnLacpLagPolName='staticLag'/>
 <infraRsHIfPol tnFabricHIfPolName="1GHIfPol" />
 <infraRsAttEntP tDn="uni/infra/attentp-fexvpcAttEP"/>
</infraAccBndlGrp>

<infraAccBndlGrp name="fexvpcbundle" lagT="node">
 <infraRsLacpPol tnLacpLagPolName='staticLag'/>
 <infraRsHIfPol tnFabricHIfPolName="1GHIfPol" />
 <infraRsAttEntP tDn="uni/infra/attentp-fexvpcAttEP"/>
</infraAccBndlGrp>
</infraFuncP>

<fabricHIfPol name="1GHIfPol" speed="1G" />
<infraAttEntityP name="fexvpcAttEP">
 <infraProvAcc name="provfunc"/>
 <infraRsDomP tDn="uni/phys-fexvpcDOM"/>
</infraAttEntityP>

<lacpLagPol dn="uni/infra/lacplagp-staticLag"
 ctrl="susp-individual,graceful-conv"
 minLinks="2"
 maxLinks="16">
</lacpLagPol>

 Supporting Fibre
 	 Channel over Ethernet Traffic on the ACI Fabric

 		
 ACI enables you to
 		 configure and manage support for Fibre Channel over Ethernet (FCoE) traffic on
 		 the ACI fabric.
 		

 		
 FCoE is a protocol
 		 that encapsulates Fibre Channel (FC) packets within Ethernet packets, thus
 		 enabling storage traffic to move seamlessly from a Fibre Channel SAN to an
 		 Ethernet network.
 		

 		
 A typical
 		 implementation of FCoE protocol support on the ACI fabric enables hosts located
 		 on the Ethernet-based ACI fabric to communicate with SAN storage devices
 		 located on an FC network. The hosts are connecting through virtual F ports
 		 deployed on an ACI leaf switch. The SAN storage devices and FC network are
 		 connected through an FCF bridge to the ACI fabric through a virtual NP port,
 		 deployed on the same ACI leaf switch as is the virtual F port. Virtual NP ports
 		 and virtual F ports are also referred to generically as virtual Fibre Channel
 		 (vFC) ports.
 		

 			

 	[image: ../images/note.gif]
Note
 	

 				
 As of release version 2.0(1), FCoE support is limited to 9300-EX hardware.

 				
 With release version 2.2(x), the N9K-CP3180LC-EX 40 Gigabit Ethernet (GE) ports can be used as F or NP ports. However, If
 they are enabled for FCoE, they cannot be enabled for 40GE port breakout. Breakout is not supported with FCoE.

 				
 As of release version 2.2(x), FCoE is also supported on the following FEX Nexus devices:

 				

 	
 						
 N2K-C2348UPQ-10GE

 					

 	
 						
 N2K-C2348TQ-10GE

 					

 	
 						
 N2K-C2248PQ-10GE

 					

 	
 						
 						
 B22 FEX for Vendor Blade Servers

 					

 			

 	

 Topology
 		 Supporting FCoE Traffic Through ACI

 		
 		
 The topology of a
 		 typical configuration supporting FCoE traffic over the ACI fabric consists of
 		 the following components:
 		

 		

 		
 		
 ACI
 				Topology Supporting FCoE Traffic

[image: ../images/500721.jpg]

 		

 		

 	
 			
 One or more
 				ACI leaf switches configured through FC SAN policies to function as an NPV
 				backbone
 			

 		

 	
 			
 Selected
 				interfaces on the NPV-configured leaf switches configured to function as F
 				ports.
 			

 			
 F ports
 				accommodate FCoE traffic to and from hosts running SAN management or
 				SAN-consuming applications.
 			

 		

 	
 			
 Selected
 				interfaces on the NPV-configured leaf switches to function as NP ports.
 			

 			
 NP ports
 				accommodate FCoE traffic to and from an FCF bridge.
 			

 		

 		
 The FCF bridge
 		 receives FC traffic from fibre channel links typically connecting SAN storage
 		 devices and encapsulates the FC packets into FCoE frames for transmission over
 		 the ACI fabric to the SAN management or SAN Data-consuming hosts. It receives
 		 FCoE traffic and repackages it back to FC for transmission over the fibre
 		 channel network.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 In the above ACI topology, FCoE traffic support requires direct connections between the hosts and F ports and direct connections
 between the FCF device and NP port.

 		

 		
 APIC servers
 		 enable an operator to configure and monitor the FCoE traffic through the APIC
 		 Basic GUI, the APIC Advanced GUI, the APIC NX-OS style CLI, or through
 		 application calls to the APIC REST API.
 		

 	

 Topology
 		 Supporting FCoE Initialization

 		
 		
 In order for
 		 FCoE traffic flow to take place as described, you'll also need to set up
 		 separate VLAN connectivity over which SAN Hosts broadcast FCoE Initialization
 		 protocol (FIP) packets to discover the interfaces enabled as F ports.
 		

 	

 vFC
 		 Interface Configuration Rules

 		
 		
 Whether you set
 		 up the vFC network and EPG deployment through the APIC Basic or Advanced GUI,
 		 NX-OS style CLI, or the REST API, the following general rules apply across
 		 platforms:
 		

 		

 	
 			
 F port mode
 				is the default mode for vFC ports. NP port mode must be specifically configured
 				in the Interface policies.
 			

 		

 	
 			
 The load
 				balancing default mode is for leaf-switch or interface level vFC configuration
 				is src-dst-ox-id.
 			

 		

 	
 			
 One VSAN
 				assignment per bridge domain is supported.
 			

 		

 	
 			
 The
 				allocation mode for VSAN pools and VLAN pools must always be static.
 			

 		

 	
 			
 vFC ports
 				require association with a VSAN domain (also called Fibre Channel domain) that
 				contains VSANS mapped to VLANS.
 			

 		

 	

 Configuring FCoE
 	 Connectivity Using the REST API

You can configure FCoE-enabled interfaces and EPGs accessing those interfaces using the FCoE protocol with the REST API.

Procedure

 	Step 1

 	 To create a VSAN pool, send a post with XML such as the following example.
 					
 The example creates VSAN pool vsanPool1 and specifies the range of VSANs to be included.

 				

Example:
 					https://apic-ip-address/api/mo/uni/infra/vsanns-[vsanPool1]-static.xml

<!-- Vsan-pool -->
<fvnsVsanInstP name="vsanPool1" allocMode="static">
 <fvnsVsanEncapBlk name="encap" from="vsan-5" to="vsan-100"/>
</fvnsVsanInstP>

 				

 	Step 2

 	 To create a VLAN pool, send a post with XML such as the following example.

 The example creates VLAN pool vlanPool1 and specifies the range of VLANs to be included.

Example:
 https://apic-ip-address/api/mo/uni/infra/vlanns-[vlanPool1]-static.xml

<!-- Vlan-pool -->
<fvnsVlanInstP name="vlanPool1" allocMode="static">
	<fvnsEncapBlk name="encap" from="vlan-5" to="vlan-100"/>
</fvnsVlanInstP>

 	Step 3

 	To create a VSAN-Attribute policy, send a post with XML such as the following example.
 					
 The example creates VSAN attribute policy vsanattri1, maps vsan-10 to vlan-43, and maps vsan-11 to vlan-44.

 				

Example:
 					https://apic-ip-address/api/mo/uni/infra/vsanattrp-[vsanattr1].xml

<fcVsanAttrP name="vsanattr1">

 <fcVsanAttrPEntry vlanEncap="vlan-43" vsanEncap="vsan-10"/>
 <fcVsanAttrPEntry vlanEncap="vlan-44" vsanEncap="vsan-11"
 lbType="src-dst-ox-id"/>
</fcVsanAttrP>

 				

 	Step 4

 	 To create a Fibre Channel domain, send a post with XML such as the following example.
 					
 The example creates VSAN domain vsanDom1.

 				

Example:
 					https://apic-ip-address/api/mo/uni/fc-vsanDom1.xml
<!-- Vsan-domain -->
<fcDomP name="vsanDom1">
 <fcRsVsanAttr tDn="uni/infra/vsanattrp-[vsanattr1]"/>
 <infraRsVlanNs tDn="uni/infra/vlanns-[vlanPool1]-static"/>
 <fcRsVsanNs tDn="uni/infra/vsanns-[vsanPool1]-static"/>
</fcDomP>

 				

 	Step 5

 	 To create the tenant, application profile, EPG and associate the FCoE bridge domain with the EPG, send a post with XML such
 as the following example.
 					
 The example creates a bridge domain bd1 under a target tenant configured to support FCoE and an application EPG epg1. It associates the EPG with VSAN domain vsanDom1 and a Fibre Channel path (to interface 1/39 on leaf switch 101. It deletes a Fibre channel path to interface 1/40 by assigning the <fvRsFcPathAtt> object with "deleted" status. Each interface is associated with a VSAN.

 					

 	Note

 	
 						
 Two other possible alternative vFC deployments are also displayed. One sample deploys vFC on a port channel. The other sample
 deploys vFC on a virtual port channel.

 					

 				

Example:
 					https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1">
 <fvCtx name="vrf1"/>

 <!-- bridge domain -->
 <fvBD name="bd1" type="fc" >
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

 <fvAp name="app1">
 <fvAEPg name="epg1">
 <fvRsBd tnFvBDName="bd1" />	
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
 vsan="vsan-11" vsanMode="native"/>
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
 vsan="vsan-10" vsanMode="regular" status="deleted"/>
 </fvAEPg>

<!-- Sample deployment of vFC on a port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDN="topology/pod-1/paths 101/pathep-pc01"/>

<!-- Sample deployment of vFC on a virtual port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-101/pathep-vpc01"/>
 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-102/pathep-vpc01"/>

 </fvAp>	
</fvTenant>

 				

 	Step 6

 	 To create a port policy group and an AEP, send a post with XML such as the following example.
 					
 The example executes the following requests:

 					

 	
 							
 Creates a policy group portgrp1 that includes an FC interface policy fcIfPol1, a priority flow control policy pfcIfPol1 and a slow-drain policy sdIfPol1.

 						

 	
 							
 Creates an attached entity profile (AEP) AttEntP1 that associates the ports in VSAN domain vsanDom1 with the settings to be specified for fcIfPol1, pfcIfPol1, and sdIfPol1.

 						

 				

Example:
 					https://apic-ip-address/api/mo/uni.xml

<polUni>
 <infraInfra>
 <infraFuncP>
 <infraAccPortGrp name="portgrp1">
 <infraRsFcIfPol tnFcIfPolName="fcIfPol1"/>
 <infraRsAttEntP tDn="uni/infra/attentp-AttEntP1" />
 <infraRsQosPfcIfPol tnQosPfcIfPolName="pfcIfPol1"/>
 <infraRsQosSdIfPol tnQosSdIfPolName="sdIfPol1"/>
 </infraAccPortGrp>
 </infraFuncP>

 <infraAttEntityP name="AttEntP1">
 <infraRsDomP tDn="uni/fc-vsanDom1"/>
 </infraAttEntityP>
 <qosPfcIfPol dn="uni/infra/pfc-pfcIfPol1" adminSt="on">
 </qosPfcIfPol>
 <qosSdIfPol dn="uni/infra/qossdpol-sdIfPol1" congClearAction="log"
 congDetectMult="5" flushIntvl="100" flushAdminSt="enabled">
 </qosSdIfPol>
 <fcIfPol dn="uni/infra/fcIfPol-fcIfPol1" portMode="np">
 </fcIfPol>

 </infraInfra>
</polUni>

 				

 	Step 7

 	 To create a node selector and a port selector, send a post with XML such as the following example.
 					
 The example executes the following requests:

 					

 	
 							
 Creates node selector leafsel1 that specifies leaf node 101.

 						

 	
 							
 Creates port selector portsel1 that specifies port 1/39.

 						

 				

Example:
 					https://apic-ip-address/api/mo/uni.xml

<polUni>
 <infraInfra>
 <infraNodeP name="nprof1">
 <infraLeafS name="leafsel1" type="range">
 <infraNodeBlk name="nblk1" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-pprof1"/>
 </infraNodeP>

 <infraAccPortP name="pprof1">
 <infraHPortS name="portsel1" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="39" toPort="39">
 </infraPortBlk>

 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portgrp1" />
 </infraHPortS>

 </infraAccPortP>
 </infraInfra>
</polUni>

 				

 	Step 8

 	To create a vPC, send a post with XML such as the following example.

Example:
 					https://apic-ip-address/api/mo/uni.xml
<polUni>
 <fabricInst>

 <vpcInstPol name="vpc01" />

 <fabricProtPol pairT="explicit" >
 <fabricExplicitGEp name="vpc01" id="100" >
 <fabricNodePEp id="101"/>
 <fabricNodePEp id="102"/>
 <fabricRsVpcInstPol tnVpcInstPolName="vpc01" />
 <!-- <fabricLagId accBndlGrp="infraAccBndlGrp_{{pcname}}" /> -->
 </fabricExplicitGEp>
 </fabricProtPol>

 </fabricInst>
</polUni>

 				

 Configuring FCoE Over FEX Using REST API

 Before You Begin

 	

 Follow the steps 1 through 4 as described in Configuring FCoE Connectivity Using the REST API

Procedure

 	Step 1

 	Configure FCoE over FEX (Selectors): Port:

Example:
 <infraInfra dn="uni/infra">
 <infraNodeP name="nprof1">
 <infraLeafS name="leafsel1" type="range">
 <infraNodeBlk name="nblk1" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-pprof1" />
 </infraNodeP>

 <infraAccPortP name="pprof1">
 <infraHPortS name="portsel1" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="17" toPort="17"></infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof1/fexbundle-fexbundle1" fexId="110" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccPortGrp name="portgrp1">
 <infraRsAttEntP tDn="uni/infra/attentp-attentp1" />
 </infraAccPortGrp>
 </infraFuncP>

 <infraFexP name="fexprof1">
 <infraFexBndlGrp name="fexbundle1"/>
 <infraHPortS name="portsel2" type="range">
 <infraPortBlk name="blk2"
 fromCard="1" toCard="1" fromPort="20" toPort="20"></infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-portgrp1"/>
 </infraHPortS>
 </infraFexP>

 <infraAttEntityP name="attentp1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>
 </infraAttEntityP>
</infraInfra>

 	Step 2

 	Tenant configuration:

Example:
 fvTenant name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
 <fvBD name="bd1" type="fc" >
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

<fvAp name="app1">
 <fvAEPg name="epg1">
 <fvRsBd tnFvBDName="bd1" />
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/extpaths-110/pathep-[eth1/17]" vsan="vsan-11" vsanMode="native"/>
 </fvAEPg>
 </fvAp>
</fvTenant>

 	Step 3

 	Configure FCoE over FEX (Selectors): Port-Channel:

Example:
 <infraInfra dn="uni/infra">
 <infraNodeP name="nprof1">
 <infraLeafS name="leafsel1" type="range">
 <infraNodeBlk name="nblk1" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-pprof1" />
 </infraNodeP>

 <infraAccPortP name="pprof1">
 <infraHPortS name="portsel1" type="range">
 <infraPortBlk name="blk1"
 fromCard="1" toCard="1" fromPort="18" toPort="18"></infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof1/fexbundle-fexbundle1" fexId="111" />
 </infraHPortS>
 </infraAccPortP>

 <infraFexP name="fexprof1">
 <infraFexBndlGrp name="fexbundle1"/>
 <infraHPortS name="portsel1" type="range">
 <infraPortBlk name="blk1"
 fromCard="1" toCard="1" fromPort="20" toPort="20"></infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-pc1"/>
 </infraHPortS>
 </infraFexP>

 <infraFuncP>
 <infraAccBndlGrp name="pc1">
 <infraRsAttEntP tDn="uni/infra/attentp-attentp1" />
 </infraAccBndlGrp>
 </infraFuncP>

 <infraAttEntityP name="attentp1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>
 </infraAttEntityP>
</infraInfra>

 	Step 4

 	Tenant configuration:

Example:
 <fvTenant name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
 <fvBD name="bd1" type="fc" >
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

<fvAp name="app1">
 <fvAEPg name="epg1">
 <fvRsBd tnFvBDName="bd1" />
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt tDn="topology/pod-1/paths-101/extpaths-111/pathep-[pc1]" vsan="vsan-11" vsanMode="native" />
 </fvAEPg>
 </fvAp>
</fvTenant>

 	Step 5

 	Configure FCoE over FEX (Selectors): VPC:

Example:
 <polUni>
<fabricInst>
<vpcInstPol name="vpc1" />
<fabricProtPol pairT="explicit" >
<fabricExplicitGEp name="vpc1" id="100" >
<fabricNodePEp id="101"/>
<fabricNodePEp id="102"/>
<fabricRsVpcInstPol tnVpcInstPolName="vpc1" />
</fabricExplicitGEp>
</fabricProtPol>
</fabricInst>
</polUni>

 	Step 6

 	Tenant configuration:

Example:
 <fvTenant name="tenant1">
<fvCtx name="vrf1"/>

<!-- bridge domain -->
 <fvBD name="bd1" type="fc" >
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

<fvAp name="app1">
 <fvAEPg name="epg1">
 <fvRsBd tnFvBDName="bd1" />
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
<fvRsFcPathAtt vsanMode="native" vsan="vsan-11" tDn="topology/pod-1/protpaths-101-102/extprotpaths-111-111/pathep-[vpc1]" />
</fvAEPg>
 </fvAp>
</fvTenant>

 	Step 7

 	Selector configuration:

Example:
 <polUni>
<infraInfra>
<infraNodeP name="nprof1">
<infraLeafS name="leafsel1" type="range">
<infraNodeBlk name="nblk1" from_="101" to_="101"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof1" />
</infraNodeP>

<infraNodeP name="nprof2">
<infraLeafS name="leafsel2" type="range">
<infraNodeBlk name="nblk2" from_="102" to_="102"/>
</infraLeafS>
<infraRsAccPortP tDn="uni/infra/accportprof-pprof2" />
</infraNodeP>

<infraAccPortP name="pprof1">
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk1"
fromCard="1" toCard="1" fromPort="18" toPort="18">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof1/fexbundle-fexbundle1" fexId="111" />
</infraHPortS>
</infraAccPortP>
<infraAccPortP name="pprof2">
<infraHPortS name="portsel2" type="range">
<infraPortBlk name="blk2"
fromCard="1" toCard="1" fromPort="18" toPort="18">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/fexprof-fexprof2/fexbundle-fexbundle2" fexId="111" />
</infraHPortS>
</infraAccPortP>

<infraFexP name="fexprof1">
<infraFexBndlGrp name="fexbundle1"/>
<infraHPortS name="portsel1" type="range">
<infraPortBlk name="blk1"
fromCard="1" toCard="1" fromPort="20" toPort="20">
</infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-vpc1"/>
</infraHPortS>
</infraFexP>

<infraFexP name="fexprof2">
<infraFexBndlGrp name="fexbundle2"/>
<infraHPortS name="portsel2" type="range">
<infraPortBlk name="blk2"
fromCard="1" toCard="1" fromPort="20" toPort="20">

</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-vpc1"/>
</infraHPortS>
</infraFexP>

<infraFuncP>
<infraAccBndlGrp name="vpc1" lagT="node">
 <infraRsAttEntP tDn="uni/infra/attentp-attentp1" />
</infraAccBndlGrp>
</infraFuncP>

<infraAttEntityP name="attentp1">
<infraRsDomP tDn="uni/fc-vsanDom1"/>
</infraAttEntityP>
</infraInfra>
</polUni>

 Undeploying FCoE
 	 Connectivity through the REST API or SDK

 		
 To undeploy FCoE connectivity through the APIC REST API or SDK , delete the following objects associated with the deployment:

 		

 	
 					
 Object
 					

 				

 	
 					
 Description
 					

 				

 	
 					
 <fvRsFcPathAtt> (Fibre Channel Path)
 					

 				

 	
 					
 The Fibre Channel path specifies the vFC path to the actual
 						interface. Deleting each object of this type removes the deployment from that
 						object's associated interfaces.
 					

 				

 	
 					
 <fcVsanAttrpP> (VSAN/VLAN map)
 					

 				

 	
 					
 The VSAN/VLAN map maps the VSANs to their associated VLANs
 						deleting this object removes the association between the VSANs that support
 						FCoE connectivity and their underlying VSANs.
 					

 				

 	
 					
 <fvnsVsanInstP> (VSAN pool)
 					

 				

 	
 					
 The VSAN pool specifies the set of VSANs available to support FCoE connectivity. Deleting this pool removes those VSANs.

 				

 	
 					
 <fvnsVlanIsntP> ((VLAN pool)
 					

 				

 	
 					
 The VLAN pool specifies the set of VLANs available for VSAN
 						mapping. Deleting the associated VLAN pool cleans up after an FCoE
 						undeployment, removing the underlying VLAN entities over which the VSAN
 						entities ran.
 					

 				

 	
 					
 <fcDomP> (VSAN or Fibre Channel domain)
 					

 				

 	
 					
 The Fibre Channel domain includes all the VSANs and their
 						mappings. Deleting this object undeploys vFC from all interfaces associated
 						with this domain.
 					

 				

 	
 					
 <fvAEPg> (application EPG)
 					

 				

 	
 					
 The application EPG associated with the FCoE connectivity.
 						If the purpose of the application EPGs was only to support FCoE-related
 						activity, you might consider deleting this object.
 					

 				

 	
 					
 <fvAp> (application profile)
 					

 				

 	
 					
 The application profile associated with the FCoE
 						connectivity. If the purpose of the application profile was only to support
 						FCoE-related activity, you might consider deleting this object.
 					

 				

 	
 					
 <fvTenant> (tenant)
 					

 				

 	
 					
 The tenant associated with the FCoE connectivity. If the
 						purpose of the tenant was only to support FCoE-related activity, you might
 						consider deleting this object.
 					

 				

 		

 	[image: ../images/note.gif]
Note
 	

 		
 If during clean up you delete the Ethernet configuration object
 			 (infraHPortS) for a vFC port, the default vFC properties remain associated with
 			 that interface. For example it the interface configuration for vFC NP port 1/20
 			 is deleted, that port remains a vFC port but with default F port setting rather
 			 than non-default NP port setting applied.
 		

 		

 		
 The following steps undeploy FCoE-enabled interfaces and EPGs accessing those interfaces using the FCoE protocol.

 	

Procedure

 	Step 1

 	 To delete the associated Fibre Channel path objects, send a post with XML such as the following example.
 					
 The example deletes all instances of the Fibre Channel path object <fvRsFcPathAtt>.

 					

 	Note

 	
 						
 Deleting the Fibre Channel paths undeploys the vFC from the ports/VSANs that used them.

 					

 				

Example:
 					https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1">
 <fvCtx name="vrf1"/>

 <!-- bridge domain -->
 <fvBD name="bd1" type="fc" >
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

 <fvAp name="app1">
 <fvAEPg name="epg1">
 <fvRsBd tnFvBDName="bd1" />	
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
 vsan="vsan-11" vsanMode="native" status="deleted"/>
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
 vsan="vsan-10" vsanMode="regular" status="deleted"/>
 </fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

 </fvAp>	
</fvTenant>

 				

 	Step 2

 	To delete the associated VSAN/VLAN map, send a post such as the following example.
 					
 The example deletes the VSAN/VLAN map vsanattri1 and its associated <fcVsanAttrpP> object.

 				

Example:
 					https://apic-ip-address/api/mo/uni/infra/vsanattrp-[vsanattr1].xml

<fcVsanAttrP name="vsanattr1" status="deleted">

 <fcVsanAttrPEntry vlanEncap="vlan-43" vsanEncap="vsan-10" status="deleted"/>
 <fcVsanAttrPEntry vlanEncap="vlan-44" vsanEncap="vsan-11"
 lbType="src-dst-ox-id" status="deleted" />
</fcVsanAttrP>

 				

 	Step 3

 	 To delete the associated VSAN pool, send a post such as the following example.
 					
 The example deletes the VSAN pool vsanPool1 and its associated <fvnsVsanInstP> object.

 				

Example:
 					https://apic-ip-address/api/mo/uni/infra/vsanns-[vsanPool1]-static.xml

<!-- Vsan-pool -->
<fvnsVsanInstP name="vsanPool1" allocMode="static" status="deleted">
	<fvnsVsanEncapBlk name="encap" from="vsan-5" to="vsan-100" />
</fvnsVsanInstP>

 				

 	Step 4

 	 To delete the associated VLAN pool, send a post with XML such as the following example.
 					
 The example deletes the VLAN pool vlanPool1 and its associated <fvnsVlanIsntP> object.

 				

Example:
 					https://apic-ip-address/api/mo/uni/infra/vlanns-[vlanPool1]-static.xml

<!-- Vlan-pool -->
<fvnsVlanInstP name="vlanPool1" allocMode="static" status="deleted">
	<fvnsEncapBlk name="encap" from="vlan-5" to="vlan-100" />
</fvnsVlanInstP>

 				

 	Step 5

 	 To delete the associated Fibre Channel domain, send a post with XML such as the following example.
 					
 The example deletes the VSAN domain vsanDom1 and its associated <fcDomP> object.

 				

Example:
 					https://apic-ip-address/api/mo/uni/fc-vsanDom1.xml
<!-- Vsan-domain -->
<fcDomP name="vsanDom1" status="deleted">
 <fcRsVsanAttr tDn="uni/infra/vsanattrp-[vsanattr1]"/>
 <infraRsVlanNs tDn="uni/infra/vlanns-[vlanPool1]-static"/>
 <fcRsVsanNs tDn="uni/infra/vsanns-[vsanPool1]-static"/>
</fcDomP>

 				

 	Step 6

 	
 					Optional: If appropriate, you can delete the associated application EPG, the associated application profile, or the associated tenant.

Example: In the following sample, the associated application EPG epg1 and its associated <fvAEPg> object is deleted. https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1"/>
 <fvCtx name="vrf1"/>

 <!-- bridge domain -->
 <fvBD name="bd1" type="fc" >
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

 <fvAp name="app1">
 <fvAEPg name="epg1" status= "deleted">
 <fvRsBd tnFvBDName="bd1" />	
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
 vsan="vsan-11" vsanMode="native" status="deleted"/>
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
 vsan="vsan-10" vsanMode="regular" status="deleted"/>
 </fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

 </fvAp>	
</fvTenant>

 				

Example: In the following example, the associated application profile app1 and its associated <fvAp> object is deleted. https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1">
 <fvCtx name="vrf1"/>

 <!-- bridge domain -->
 <fvBD name="bd1" type="fc">
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

 <fvAp name="app1" status="deleted">
 <fvAEPg name="epg1" status= "deleted">
 <fvRsBd tnFvBDName="bd1" />	
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
 vsan="vsan-11" vsanMode="native" status="deleted"/>
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
 vsan="vsan-10" vsanMode="regular" status="deleted"/>
 </fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

 </fvAp>	
</fvTenant>

 				

Example: In the following example, the entire tenant tenant1 and its associated <fvTenant> object is deleted. https://apic-ip-address/api/mo/uni/tn-tenant1.xml

<fvTenant
name="tenant1" status="deleted">
 <fvCtx name="vrf1"/>

 <!-- bridge domain -->
 <fvBD name="bd1" type="fc" status="deleted">
 <fvRsCtx tnFvCtxName="vrf1" />
 </fvBD>

 <fvAp name="app1">
 <fvAEPg name="epg1" status= "deleted">
 <fvRsBd tnFvBDName="bd1" />	
 <fvRsDomAtt tDn="uni/fc-vsanDom1" />
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/39]"
 vsan="vsan-11" vsanMode="native" status="deleted"/>
 <fvRsFcPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
 vsan="vsan-10" vsanMode="regular" status="deleted"/>
 </fvAEPg>

<!-- Sample undeployment of vFC on a port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDN="topology/pod-1/paths 101/pathep-pc01" status="deleted"/>

<!-- Sample undeployment of vFC on a virtual port channel -->

 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-101/pathep-vpc01" status="deleted"/>
 <fvRsFcPathAtt vsanMode="native" vsan="vsan-10"
 tDn="topology/pod-1/paths-102/pathep-vpc01" status="deleted"/>

 </fvAp>	
</fvTenant>

 				

 About ACI 802.1Q Tunnels

 ACI 802.1Q Tunnels

[image: ../images/501361.jpg]

 With Cisco ACI and Cisco APIC Release 2.2(1x) and higher, you can configure 802.1Q tunnels on edge (tunnel) ports to enable point-to-multi-point tunneling
 of Ethernet frames in the fabric, with Quality of Service (QoS) priority settings. A Dot1q Tunnel transports untagged, 802.1Q tagged, and 802.1ad double-tagged frames as-is across the fabric. Each tunnel carries the traffic
 from a single customer and is associated with a single bridge domain. ACI front panel ports can be part of a Dot1q Tunnel. Layer 2 switching is done based on Destination MAC (DMAC) and regular MAC learning is done in the tunnel. Edge-port Dot1q Tunnels are supported on second-generation (and later) Cisco Nexus 9000 series switches with "EX" on the end of the switch model
 name.

 With Cisco ACI and Cisco APIC Release 2.3(x) and higher, you can also configure multiple 802.1Q tunnels on the same core port to carry double-tagged traffic
 from multiple customers, each distinguished with an access encapsulation configured for each 802.1Q tunnel. You can also disable
 MAC Address Learning on 802.1Q tunnels. Both edge ports and core ports can belong to an 802.1Q tunnel with access encapsulation
 and disabled MAC Address Learning. Both edge ports and core ports in Dot1q Tunnels are supported on third-generation Cisco Nexus 9000 series switches with "FX" on the end of the switch model name.

 Terms used in this document may be different in the Cisco Nexus 9000 Series documents.

802.1Q Tunnel Terminology

 	

 ACI Documents

 	

 Cisco Nexus 9000 Series Documents

 	

 Edge Port

 	

 Tunnel Port

 	

 Core Port

 	

 Trunk Port

 The following guidelines and restrictions apply:

 	

 Layer 2 tunneling of VTP, CDP, LACP, LLDP, and STP protocols is supported with the following restrictions:

 	

 Link Aggregation Control Protocol (LACP) tunneling functions as expected only with point-to-point tunnels using individual
 leaf interfaces. It is not supported on port-channels (PCs) or virtual port-channels (vPCs).

 	

 CDP and LLDP tunneling with PCs or vPCs is not deterministic; it depends on the link it chooses as the traffic destination.

 	

 To use VTP for Layer 2 protocol tunneling, CDP must be enabled on the tunnel.

 	

 STP is not supported in an 802.1Q tunnel bridge domain when Layer 2 protocol tunneling is enabled and the bridge domain is
 deployed on Dot1q Tunnel core ports.

 	

 ACI leaf switches react to STP TCN packets by flushing the end points in the tunnel bridge domain and flooding them in the
 bridge domain.

 	

 CDP and LLDP tunneling with more than two interfaces flood packets on all interfaces.

 	

 With Cisco APIC Release 2.3(x) or higher, the destination MAC address of Layer 2 protocol packets tunneled from edge to core
 ports is rewritten as 01-00-0c-cd-cd-d0 and the destination MAC address of Layer 2 protocol packets tunneled from core to
 edge ports is rewritten with the standard default MAC address for the protocol.

 	

 If a PC or VPC is the only interface in a Dot1q Tunnel and it is deleted and reconfigured, remove the association of the PC/VPC to the Dot1q Tunnel and reconfigure it.

 	

 With Cisco APIC Release 2.2(x) the Ethertypes for double-tagged frames must be 0x9100 followed by 0x8100.

 However, with Cisco APIC Release 2.3(x) and higher, this limitation no longer applies for edge ports, on third-generation
 Cisco Nexus switches with "FX" on the end of the switch model name.

 	

 For core ports, the Ethertypes for double-tagged frames must be 0x8100 followed by 0x8100.

 	

 You can include multiple edge ports and core ports (even across leaf switches) in a Dot1q Tunnel.

 	

 An edge port may only be part of one tunnel, but a core port can belong to multiple Dot1q tunnels.

 	

 With Cisco APIC Release 2.3(x) and higher, regular EPGs can be deployed on core ports that are used in 802.1Q tunnels.

 	

 L3Outs are not supported on interfaces enabled for Dot1q Tunnels.

 	

 FEX interfaces are not supported as members of a Dot1q Tunnel.

 	

 Interfaces configured as breakout ports do not support 802.1Q tunnels.

 	

 Interface-level statistics are supported for interfaces in Dot1q Tunnels, but statistics at the tunnel level are not supported.

 Configuring 802.1Q Tunnels With Ports Using the REST API

 Create a Dot1q Tunnel, using ports, and configure the interfaces for it with steps such as the following examples.

 Before You Begin

 Configure the tenant that will use the Dot1q Tunnel.

Procedure

 	Step 1

 	 Create a Dot1q Tunnel using the REST API with XML such as the following example.

 The example configures the tunnel with the LLDP Layer 2 tunneling protocol, adds the access encapsulation VLAN, and disables
 MAC learning in the tunnel.

Example:
 <fvTnlEPg name="VRF64_dot1q_tunnel" qiqL2ProtTunMask="lldp" accEncap="vlan-10" fwdCtrl="mac-learn-disable" >
 <fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/13]"/>
</fvTnlEPg>

 	Step 2

 	Configure a Layer 2 Interface policy with static binding with XML such as the following example.

 The example configures a Layer 2 interface policy for edge-switch ports. To configure a policy for core-switch ports, use
 corePort instead of edgePort in the l2IfPol MO.

Example:
 <l2IfPol name="VRF64_L2_int_pol" qinq="edgePort" />

 	Step 3

 	Apply the Layer 2 Interface policy to a Leaf Access Port Policy Group with XML such as the following example.

Example:
 <infraAccPortGrp name="VRF64_L2_Port_Pol_Group" >
 <infraRsL2IfPol tnL2IfPolName="VRF64_L2_int_pol"/>
</infraAccPortGrp>

 	Step 4

 	Configure a Leaf Profile with an Interface Selector with XML such as the following example:

Example:
 <infraAccPortP name="VRF64_dot1q_leaf_profile" >
 <infraHPortS name="vrf64_access_port_selector" type="range">
 <infraPortBlk name="block2" toPort="15" toCard="1" fromPort="13" fromCard="1"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-VRF64_L2_Port_Pol_Group" />
 </infraHPortS>
</infraAccPortP>

 The following example shows the port configuration for edge ports in two posts.

 XML with Post 1:

 <polUni>
 <infraInfra>
 <l2IfPol name="testL2IfPol" qinq="edgePort"/>
 <infraNodeP name="Node_101_phys">
 <infraLeafS name="phys101" type="range">
 <infraNodeBlk name="test" from_="101" to_="101"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-phys21"/>
 </infraNodeP>
 <infraAccPortP name="phys21">
 <infraHPortS name="physHPortS" type="range">
 <infraPortBlk name="phys21" fromCard="1" toCard="1" fromPort="21" toPort="21"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-21"/>
 </infraHPortS>
 </infraAccPortP>
 <infraFuncP>
 <infraAccPortGrp name="21">
 <infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
 <infraRsAttEntP tDn="uni/infra/attentp-AttEntityProf1701"/>
 </infraAccPortGrp>
 </infraFuncP>
 <l2IfPol name='testL2IfPol' qinq=‘edgePort'/>
 <infraAttEntityP name="AttEntityProf1701">
 <infraRsDomP tDn="uni/phys-dom1701"/>
 </infraAttEntityP>
 </infraInfra>
</polUni>

 XML with Post 2:

 <polUni>
 <fvTenant dn="uni/tn-Coke" name="Coke">
 <fvTnlEPg name="WEB5" qiqL2ProtTunMask="lldp" accEncap="vlan-10" fwdCtrl="mac-learn-disable" >
 <fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/21]"/>
 </fvTnlEPg>
 </fvTenant>
</polUni>

 Configuring 802.1Q Tunnels With PCs Using the REST API

 Create a Dot1q Tunnel, using PCs, and configure the interfaces for it with steps such as the following examples.

 Before You Begin

 Configure the tenant that will use the Dot1q Tunnel.

Procedure

 	Step 1

 	 Create a Dot1q Tunnel using the REST API with XML such as the following example.

 The example configures the tunnel with the LLDP Layer 2 tunneling protocol, adds the access encapsulation VLAN, and disables
 MAC learning in the tunnel.

Example:
 <fvTnlEPg name="WEB" qiqL2ProtTunMask=lldp accEncap="vlan-10" fwdCtrl="mac-learn-disable" >
 <fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[po2]"/>
 </fvTnlEPg>

 	Step 2

 	Configure a Layer 2 Interface policy with static binding with XML such as the following example.

 The example configures a Layer 2 interface policy for edge-switch ports. To configure a Layer 2 interface policy for core-switch
 ports, use corePort instead of edgePort in the l2IfPol MO.

Example:
 <l2IfPol name="testL2IfPol" qinq="edgePort"/>

 	Step 3

 	Apply the Layer 2 Interface policy to a PC Interface Policy Group with XML such as the following:

Example:
 <infraAccBndlGrp name="po2" lagT="link">
 <infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
 </infraAccBndlGrp>

 	Step 4

 	Configure a Leaf Profile with an Interface Selector with XML such as the following:

Example:
 <infraAccPortP name="PC">
 <infraHPortS name="allow" type="range">
 <infraPortBlk name="block2" fromCard="1" toCard="1" fromPort="10" toPort="11" />
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-po2"/>
 </infraHPortS>
 </infraAccPortP>

 The following example shows the PC configuration in two posts.

 This example configures the PC ports as edge ports. To configure them as core ports, use corePort instead of edgePort in the l2IfPol MO, in Post 1.

 XML with Post 1:

 <infraInfra dn="uni/infra">
 <infraNodeP name="bLeaf3">
 <infraLeafS name="leafs3" type="range">
 <infraNodeBlk name="nblk3" from_="101" to_="101">
 </infraNodeBlk>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-shipping3"/>
 </infraNodeP>
 <infraAccPortP name="shipping3">
 <infraHPortS name="pselc3" type="range">
 <infraPortBlk name="blk3" fromCard="1" toCard="1" fromPort="24" toPort="25"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-accountingLag3" />
 </infraHPortS>
 </infraAccPortP>
<infraFuncP>
 <infraAccBndlGrp name="accountingLag3" lagT='link'>
 <infraRsAttEntP tDn="uni/infra/attentp-default"/>
 <infraRsLacpPol tnLacpLagPolName='accountingLacp3'/>
 <infraRsL2IfPol tnL2IfPolName="testL2IfPol3"/>
 </infraAccBndlGrp>
</infraFuncP>
<lacpLagPol name='accountingLacp3' ctrl='15' descr='accounting' maxLinks='14' minLinks='1' mode='active' />
<l2IfPol name='testL2IfPol3' qinq='edgePort'/>
<infraAttEntityP name="default">
 </infraAttEntityP>
</infraInfra>

 XML with Post 2:

 <polUni>
 <fvTenant dn="uni/tn-Coke" name="Coke">
 <!-- bridge domain -->
 <fvTnlEPg name="WEB6" qiqL2ProtTunMask="lldp" accEncap="vlan-10" fwdCtrl="mac-learn-disable" >
 <fvRsTnlpathAtt tDn="topology/pod-1/paths-101/pathep-[accountingLag1]"/>
 </fvTnlEPg>
 </fvTenant>
</polUni>

 Configuring 802.1 Q Tunnels With VPCs Using the REST API

 Create a Dot1q Tunnel, using VPCs, and configure the interfaces for it with steps such as the following examples.

 Before You Begin

 Configure the tenant that will use the Dot1q Tunnel.

Procedure

 	Step 1

 	 Create an 802.1Q tunnel using the REST API with XML such as the following example.

 The example configures the tunnel with a Layer 2 tunneling protocol, adds the access encapsulation VLAN, and disables MAC
 learning in the tunnel.

Example:
 <fvTnlEPg name="WEB" qiqL2ProtTunMask=lldp accEncap="vlan-10" fwdCtrl="mac-learn-disable" >
 <fvRsTnlpathAtt tDn="topology/pod-1/protpaths-101-102/pathep-[po4]" />
 </fvTnlEPg>

 	Step 2

 	Configure a Layer 2 interface policy with static binding with XML such as the following example.

 The example configures a Layer 2 interface policy for edge-switch ports. To configure a Layer 2 interface policy for core-switch
 ports, use the qinq="corePort" port type.

Example:
 <l2IfPol name="testL2IfPol" qinq="edgePort"/>

 	Step 3

 	Apply the Layer 2 Interface policy to a VPC Interface Policy Group with XML such as the following:

Example:
 <infraAccBndlGrp name="po4" lagT="node">
 <infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
 </infraAccBndlGrp>

 	Step 4

 	Configure a Leaf Profile with an Interface Selector with XML such as the following:

Example:
 <infraAccPortP name="VPC">
 <infraHPortS name="allow" type="range">
 <infraPortBlk name="block2" fromCard="1" toCard="1" fromPort="10" toPort="11" />
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-po4"/>
 </infraHPortS>
 </infraAccPortP>

 The following example shows the VPC configuration in three posts.

 This example configures the VPC ports as edge ports. To configure them as core ports, use corePort instead of edgePort in the l2IfPol MO, in Post 2

 XML with Post 1:

 <polUni>
 <fabricInst>
 <fabricProtPol pairT="explicit">
 <fabricExplicitGEp name="101-102-vpc1" id="30">
 <fabricNodePEp id="101"/>
 <fabricNodePEp id="102"/>
 </fabricExplicitGEp>
 </fabricProtPol>
 </fabricInst>
</polUni>

 XML with Post 2:

 <infraInfra dn="uni/infra">
 <infraNodeP name="bLeaf1">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk" from_="101" to_="101">
 </infraNodeBlk>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-shipping1"/>
 </infraNodeP>

 <infraNodeP name="bLeaf2">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="nblk" from_="102" to_="102">
 </infraNodeBlk>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-shipping2"/>
 </infraNodeP>

 <infraAccPortP name="shipping1">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="4" toPort="4"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-accountingLag1" />
 </infraHPortS>
 </infraAccPortP>

 <infraAccPortP name="shipping2">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk" fromCard="1" toCard="1" fromPort="2" toPort="2"/>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accbundle-accountingLag2" />
 </infraHPortS>
 </infraAccPortP>

<infraFuncP>
 <infraAccBndlGrp name="accountingLag1" lagT='node'>
 <infraRsAttEntP tDn="uni/infra/attentp-default"/>
 <infraRsLacpPol tnLacpLagPolName='accountingLacp1'/>
 <infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
 </infraAccBndlGrp>
 <infraAccBndlGrp name="accountingLag2" lagT='node'>
 <infraRsAttEntP tDn="uni/infra/attentp-default"/>
 <infraRsLacpPol tnLacpLagPolName='accountingLacp1'/>
 <infraRsL2IfPol tnL2IfPolName="testL2IfPol"/>
 </infraAccBndlGrp>
</infraFuncP>
<lacpLagPol name='accountingLacp1' ctrl='15' descr='accounting' maxLinks='14' minLinks='1' mode='active' />
<l2IfPol name='testL2IfPol' qinq='edgePort'/>

 <infraAttEntityP name="default">
 </infraAttEntityP>
</infraInfra>

 XML with Post 3:

 <polUni>
 <fvTenant dn="uni/tn-Coke" name="Coke">
 <!-- bridge domain -->
 <fvTnlEPg name="WEB6" qiqL2ProtTunMask="lldp" accEncap="vlan-10" fwdCtrl="mac-learn-disable" >
 <fvRsTnlpathAtt tDn="topology/pod-1/protpaths-101-102/pathep-[accountingLag2]"/>
 </fvTnlEPg>
 </fvTenant>
</polUni>

 Configuration of Dynamic Breakout Ports

 To enable a 40 Gigabit Ethernet (GE) leaf switch port to be connected to 4-10GE capable (downlink) devices (connected with
 Cisco 40-Gigabit to 4X10-Gigabit breakout cables), you configure the 40GE port to breakout (split) to 4-10GE ports.

 	[image: ../images/note.gif]
Note
 	

 This feature is supported only on the access facing ports of the N9K-C9332PQ switch.

 100GE breakout ports are currently not supported.

 Observe the following guidelines and restrictions:

 	

 You can configure ports 1 to 26 as downlink ports. Of those ports, breakout ports can be configured on port 1 to 12 and 15
 to 26. Ports 13 and 14 do not support breakout.

 	

 Breakout subports can be used in the same way other port types in the policy model are used.

 	

 When a port is enabled for dynamic breakout, other policies (expect monitoring policies) on the parent port are no longer
 valid.

 	

 When a port is enabled for dynamic breakout, other EPG deployments on the parent port are no longer valid.

 	

 A breakout sub-port can not be further broken out using a breakout policy group.

 You can configure 40GE ports for dynamic breakout using the Basic or Advanced mode APIC GUI, the NX-OS style CLI, or the REST
 API.

 Configuring Dynamic Breakout Ports Using the REST API

 Configure a Breakout Leaf Port with an Leaf Interface Profile, associate the profile with a switch, and configure the sub
 ports with the following steps.

 Procedure

 Before You Begin

 	

 The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

 	

 An APIC fabric administrator account is available that will enable creating the necessary fabric infrastructure configurations.

 	

 The target leaf switches are registered in the ACI fabric and available.

 	

 The 40GE leaf switch ports are connected with Cisco breakout cables to the downlink ports.

Procedure

 	Step 1

 	Configure a breakout policy group for the breakout port with JSON, such as the following example:

Example:

 In this example, we create an interface profile 'brkouttest' with the only port 44 underneath its port selector. The port
 selector is pointed to a breakout policy group 'new-brkoutPol'.

 {
 "infraAccPortP": {
 "attributes": {
 "dn":"uni/infra/accportprof-brkouttest",
 "name":"brkouttest",
 "rn":"accportprof-brkouttest",
 "status":"created,modified"
 },
 "children":[{
 "infraHPortS": {
 "attributes": {
 "dn":"uni/infra/accportprof-brkouttest/hports-tst1-typ-range",
 "name":"tst1",
 "rn":"hports-tst1-typ-range",
 "status":"created,modified"
 },
 "children":[{
 "infraPortBlk": {
 "attributes": {
 "dn":"uni/infra/accportprof-brkouttest/hports-tst1-typ-range/portblk-block2",
 "fromPort":"44",
 "toPort":"44",
 "name":"block2",
 "rn":"portblk-block2",
 "status":"created,modified"
 },
 "children":[] }
 }, {
 "infraRsAccBaseGrp": {
 "attributes":{
 "tDn":"uni/infra/funcprof/brkoutportgrp-new-brkoutPol",
 "status":"created,modified"
 },
 "children":[]
 }
 }
]
 }
 }
]
 }
}

 	Step 2

 	Create a new switch profile and associate it with the port profile, previously created, with JSON such as the following example:

Example:

 In this example, we create a new switch profile 'leaf1017' with switch 1017 as the only node. We associate this new switch
 profile with the port profile 'brkouttest' created above. After this, the port 44 on switch 1017 will have 4 sub ports.

Example:
 {
 "infraNodeP": {
 "attributes": {
 "dn":"uni/infra/nprof-leaf1017",
 "name":"leaf1017","rn":"nprof-leaf1017",
 "status":"created,modified"
 },
 "children": [{
 "infraLeafS": {
 "attributes": {
 "dn":"uni/infra/nprof-leaf1017/leaves-1017-typ-range",
 "type":"range",
 "name":"1017",
 "rn":"leaves-1017-typ-range",
 "status":"created"
 },
 "children": [{
 "infraNodeBlk": {
 "attributes": {
 "dn":"uni/infra/nprof-leaf1017/leaves-1017-typ-range/nodeblk-102bf7dc60e63f7e",
 "from_":"1017","to_":"1017",
 "name":"102bf7dc60e63f7e",
 "rn":"nodeblk-102bf7dc60e63f7e",
 "status":"created"
 },
 "children": [] }
 }
]
 }
 }, {
 "infraRsAccPortP": {
 "attributes": {
 "tDn":"uni/infra/accportprof-brkouttest",
 "status":"created,modified"
 },
 "children": [] }
 }
]
 }
}

 	Step 3

 	Configure the subports.

Example:

 This example configures subports 1/44/1, 1/44/2, 1/44/3, 1/44/4 on switch 1017, for instance, in the example below, we configure
 interface 1/41/3. It also creates the infraSubPortBlk object instead of the infraPortBlk object.

 {
 "infraAccPortP": {
 "attributes": {
 "dn":"uni/infra/accportprof-brkouttest1",
 "name":"brkouttest1",
 "rn":"accportprof-brkouttest1",
 "status":"created,modified"
 },
 "children": [{
 "infraHPortS": {
 "attributes": {
 "dn":"uni/infra/accportprof-brkouttest1/hports-sel1-typ-range",
 "name":"sel1",
 "rn":"hports-sel1-typ-range",
 "status":"created,modified"
 },
 "children": [{
 "infraSubPortBlk": {
 "attributes": {
 "dn":"uni/infra/accportprof-brkouttest1/hports-sel1-typ-range/subportblk-block2",
 "fromPort":"44",
 "toPort":"44",
 "fromSubPort":"3",
 "toSubPort":"3",
 "name":"block2",
 "rn":"subportblk-block2",
 "status":"created"
 },
 "children":[]}
 },
 {
 "infraRsAccBaseGrp": {
 "attributes": {
 "tDn":"uni/infra/funcprof/accportgrp-p1",
 "status":"created,modified"
 },
 "children":[]}
 }
]
 }
 }
]
 }
 }

 About Cisco APIC
 	 and IGMP Snooping

 IGMP snooping is the
 		process of listening to Internet Group Management Protocol (IGMP) network
 		traffic. The feature allows a network switch to listen in on the IGMP
 		conversation between hosts and routers and filter multicasts links that do not
 		need them, thus controlling which ports receive specific multicast traffic.
 	

 Cisco APIC provides
 		support for the full IGMP snooping feature included on a traditional switch
 		such as the N9000 standalone.
 	

 	
 		
 Policy-based
 			 IGMP snooping configuration per bridge domain
 		

 		
 APIC enables you
 			 to configure a policy in which you enable, disable, or customize the properties
 			 of IGMP Snooping on a per bridge-domain basis. You can then apply that policy
 			 to one or multiple bridge domains.
 		

 		

 	
 		
 Static port
 			 group implementation
 		

 		
 IGMP static port
 			 grouping enables you to pre-provision ports, already statically-assigned to an
 			 application EPG, as the switch ports to receive and process IGMP multicast
 			 traffic. This pre-provisioning prevents the join latency which normally occurs
 			 when the IGMP snooping stack learns ports dynamically.
 		

 		
 Static group
 			 membership can be pre-provisioned only on static ports (also called, static-binding ports)
 			 assigned to an application EPG.
 		

 		

 	
 		
 Access group
 			 configuration for application EPGs
 		

 		
 An
 			 “access-group” is used to control what streams can be joined behind a given
 			 port.
 		

 		
 An access-group
 			 configuration can be applied on interfaces that are statically assigned to an
 			 application EPG in order to ensure that the configuration can be applied on
 			 ports that will actually belong to the that EPG.
 		

 		
 Only
 			 Route-map-based access groups are allowed.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 			
 			
 You can use vzAny to enable protocols such as IGMP Snooping for all the EPGs in a VRF. For more information about vzAny, see Use vzAny to Automatically Apply Communication Rules to all EPGs in a VRF.

 			
 To use vzAny, navigate to Tenants > tenant-name > Networking > VRFs > vrf-name > EPG Collection for VRF.

 		

 How IGMP Snooping
 	 is Implemented in the ACI Fabric

 	[image: ../images/note.gif]
Note
 	

 		
 We recommend that you do not disable IGMP snooping on bridge domains. If you disable IGMP snooping, you may see reduced multicast
 performance because of excessive false flooding within the bridge domain.

 	

 IGMP snooping software examines IP multicast traffic within a bridge domain to discover the ports where interested receivers
 reside. Using the port information, IGMP snooping can reduce bandwidth consumption in a multi-access bridge domain environment
 to avoid flooding the entire bridge domain. By default, IGMP snooping is enabled on the bridge domain.

 This figure shows the IGMP
 		routing functions and IGMP snooping functions both contained on an ACI leaf
 		switch with connectivity to a host. The IGMP snooping feature snoops the IGMP
 		membership reports and Leave messages and forwards them only when necessary to
 		the IGMP router function.
 	

 IGMP Snooping
 		 function

 [image: ../images/501148.jpg]
 		

 IGMP snooping operates
 		 upon IGMPv1, IGMPv2, and IGMPv3 control plane packets where Layer 3 control
 		 plane packets are intercepted and influence the Layer 2 forwarding behavior.
 		

 IGMP snooping has the
 		 following proprietary features:
 		

 	
 			
 Source filtering that
 				allows forwarding of multicast packets based on destination and source IP
 				addresses
 			

 		

 	
 			
 Multicast forwarding based
 				on IP addresses rather than the MAC address
 			

 		

 	
 			
 Multicast forwarding
 				alternately based on the MAC address
 			

 		

 	[image: ../images/note.gif]
Note
 	

 		
 For more
 			 information about IGMP snooping, see RFC 4541.
 		

 		

 Virtualization
 	 Support

 You can define multiple
 		virtual routing and forwarding (VRF) instances for IGMP snooping.
 	

 On leaf switches, you can
 		use the
 		show commands with a VRF argument to provide a context
 		for the information displayed. The default VRF is used if no VRF argument is
 		supplied.
 	

 Configuring and Assigning an IGMP Snooping Policy to a Bridge Domain using the REST API

Procedure

 	
 To configure an IGMP Snooping policy and assign it to a bridge domain, send a post with XML such as the following example:

Example:
 					https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="mcast_tenant1">

<!-- Create an IGMP snooping template, and provide the options -->
<igmpSnoopPol name="igmp_snp_bd_21"
 adminSt="enabled"
 lastMbrIntvl="1"
 queryIntvl="125"
 rspIntvl="10"
 startQueryCnt="2"
 startQueryIntvl="31"
 />
<fvCtx name="ip_video"/>

<fvBD name="bd_21">
 <fvRsCtx tnFvCtxName="ip_video"/>

 <!-- Bind IGMP snooping to a BD -->
 <fvRsIgmpsn tnIgmpSnoopPolName="igmp_snp_bd_21"/>
</fvBD></fvTenant>

 				
 					This example creates and configures the IGMP Snooping policy, igmp_snp_bd_12 with the following properties, and binds the
 IGMP policy, igmp_snp_bd_21, to bridge domain, bd_21:

 					

 	
 							
 Administrative state is enabled

 						

 	
 							
 Last Member Query Interval is the default 1 second.

 						

 	
 							
 Query Interval is the default 125.

 						

 	
 							
 Query Response interval is the default 10 seconds

 						

 	
 							
 The Start Query Count is the default 2 messages

 						

 	
 							
 The Start Query interval is 35 seconds.

 						

 				

 Enabling Group Access to IGMP Snooping and Multicast using the REST API

 		
 After you have enabled IGMP snooping and multicast on ports that have been statically assigned to an EPG, you can then create
 and assign access groups of users that are permitted or denied access to the IGMP snooping and multicast traffic enabled on
 those ports.

 	

Procedure

 	
 To define the access group, F23broker, send a post with XML such as in the following example.
 					
 The example configures access group F23broker, associated with tenant_A, Rmap_A, application_A, epg_A, on leaf 102, interface 1/10, VLAN 202. By association with Rmap_A,
 the access group F23broker has access to multicast traffic received at multicast address 226.1.1.1/24 and is denied access to traffic received at multicast
 address 227.1.1.1/24.

 				

Example: <!-- api/node/mo/uni/.xml --> <fvTenant name="tenant_A"> <pimRouteMapPol name="Rmap_A"> <pimRouteMapEntry action="permit"
 grp="226.1.1.1/24" order="10"/> <pimRouteMapEntry action="deny" grp="227.1.1.1/24" order="20"/> </pimRouteMapPol>
 <fvAp name="application_A"> <fvAEPg name="epg_A"> <fvRsPathAtt encap="vlan-202" instrImedcy="immediate" mode="regular"
 tDn="topology/pod-1/paths-102/pathep-[eth1/10]"> <!-- IGMP snooping access group case --> <igmpSnoopAccessGroup
 name="F23broker"> <igmpRsSnoopAccessGroupFilterRMap tnPimRouteMapPolName="Rmap_A"/> </igmpSnoopAccessGroup>
 </fvRsPathAtt> </fvAEPg> </fvAp> </fvTenant>

 Enabling IGMP Snooping and Multicast on Static Ports Using the REST API

 		
 You can enable IGMP snooping and multicast processing on ports that have been statically assigned to an EPG. You can create
 and assign access groups of users that are permitted or denied access to the IGMP snoop and multicast traffic enabled on those
 ports.

 	

 Before You Begin

 	

Procedure

 	
 To configure application EPGs with static ports, enable those ports to receive and process IGMP snooping and multicast traffic,
 and assign groups to access or be denied access to that traffic, send a post with XML such as the following example.

 In the following example, IGMP snooping is enabled on leaf 102 interface 1/10 on VLAN 202. Multicast IP addresses 224.1.1.1 and 225.1.1.1 are associated with this port.

Example:
 https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="tenant_A">
 <fvAp name="application">
 <fvAEPg name="epg_A">
 <fvRsPathAtt encap="vlan-202" instrImedcy="immediate" mode="regular" tDn="topology/pod-1/paths-102/pathep-[eth1/10]">
 <!-- IGMP snooping static group case -->
 <igmpSnoopStaticGroup group="224.1.1.1" source="0.0.0.0"/>
 <igmpSnoopStaticGroup group="225.1.1.1" source="2.2.2.2"/>
 </fvRsPathAtt>
 </fvAEPg>
 </fvAp>
</fvTenant>

 About Proxy ARP

 Proxy ARP in Cisco ACI enables endpoints within a network or subnet to communicate with other endpoints without knowing the
 real MAC address of the endpoints. Proxy ARP is aware of the location of the traffic destination, and offers its own MAC address
 as the final destination instead.

 To enable Proxy ARP, intra-EPG endpoint isolation must be enabled on the EPG see the following figure for details. For more
 information about intra-EPG isolation and Cisco ACI, see the Cisco ACI Virtualization Guide.

 Proxy ARP and Cisco APIC

[image: ../images/501047.jpg]

 Proxy ARP within the Cisco ACI fabric is different from the traditional proxy ARP. As an example of the communication process,
 when proxy ARP is enabled on an EPG, if an endpoint A sends an ARP request for endpoint B and if endpoint B is learned within
 the fabric, then endpoint A will receive a proxy ARP response from the bridge domain (BD) MAC. If endpoint A sends an ARP
 request for endpoint B, and if endpoint B is not learned within the ACI fabric already, then the fabric will send a proxy
 ARP request within the BD. Endpoint B will respond to this proxy ARP request back to the fabric. At this point, the fabric
 does not send a proxy ARP response to endpoint A, but endpoint B is learned within the fabric. If endpoint A sends another
 ARP request to endpoint B, then the fabric will send a proxy ARP response from the BD MAC.

 The following example describes the proxy ARP resolution steps for communication between clients VM1 and VM2:

 	

 VM1 to VM2 communication is desired.

 VM1 to VM2 Communication is Desired.

[image: ../images/501048.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = * MAC = *

 	

 ACI fabric

 	

 IP = * MAC = *

 	

 VM2

 	

 IP = * MAC = *

 	

 VM1 sends an ARP request with a broadcast MAC address to VM2.

 VM1 sends an ARP Request with a Broadcast MAC address to VM2

[image: ../images/501049.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = VM2 IP; MAC = ?

 	

 ACI fabric

 	

 IP = VM1 IP; MAC = VM1 MAC

 	

 VM2

 	

 IP = * MAC = *

 	

 The ACI fabric floods the proxy ARP request within the bridge domain (BD).

 ACI Fabric Floods the Proxy ARP Request within the BD

[image: ../images/501050.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = VM2 IP; MAC = ?

 	

 ACI fabric

 	

 IP = VM1 IP; MAC = VM1 MAC

 	

 VM2

 	

 IP = VM1 IP; MAC = BD MAC

 	

 VM2 sends an ARP response to the ACI fabric.

 VM2 Sends an ARP Response to the ACI Fabric

[image: ../images/501051.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = VM2 IP; MAC = ?

 	

 ACI fabric

 	

 IP = VM1 IP; MAC = VM1 MAC

 	

 VM2

 	

 IP = VM1 IP; MAC = BD MAC

 	

 VM2 is learned.

 VM2 is Learned

[image: ../images/501052.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = VM2 IP; MAC = ?

 	

 ACI fabric

 	

 IP = VM1 IP; MAC = VM1 MAC

 IP = VM2 IP; MAC = VM2 MAC

 	

 VM2

 	

 IP = VM1 IP; MAC = BD MAC

 	

 VM1 sends an ARP request with a broadcast MAC address to VM2.

 VM1 Sends an ARP Request with a Broadcast MAC Address to VM2

[image: ../images/501053.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = VM2 IP MAC = ?

 	

 ACI fabric

 	

 IP = VM1 IP; MAC = VM1 MAC

 IP = VM2 IP; MAC = VM2 MAC

 	

 VM2

 	

 IP = VM1 IP; MAC = BD MAC

 	

 The ACI fabric sends a proxy ARP response to VM1.

 ACI Fabric Sends a Proxy ARP Response to VM1

[image: ../images/501054.jpg]

 ARP Table State

 	

 Device

 	

 State

 	

 VM1

 	

 IP = VM2 IP; MAC = BD MAC

 	

 ACI fabric

 	

 IP = VM1 IP; MAC = VM1 MAC

 IP = VM2 IP; MAC = VM2 MAC

 	

 VM2

 	

 IP = VM1 IP; MAC = BD MAC

 Guidelines and Limitations

 Consider these guidelines and limitations when using Proxy ARP:

 	

 Proxy ARP is supported only on isolated EPGs. If an EPG is not isolated, a fault will be raised. For communication to happen
 within isolated EPGs with proxy ARP enabled, you must configure uSeg EPGs. For example, within the isolated EPG, there could
 be multiple VMs with different IP addresses, and you can configure a uSeg EPG with IP attributes matching the IP address range
 of these VMs.

 	

 ARP requests from isolated endpoints to regular endpoints and from regular endpoints to isolated endpoints do not use proxy
 ARP. In such cases, endpoints communicate using the real MAC addresses of destination VMs.

 Configuring Proxy ARP Using the REST API

 Before You Begin

 	

 Intra-EPG isolation must be enabled on the EPG where proxy ARP has to be enabled.

Procedure

 	
 Configure proxy ARP.

Example:

<polUni>
 <fvTenant name="Tenant1" status="">
 <fvCtx name="EngNet"/>
 <!-- bridge domain -->
 <fvBD name="BD1">
 <fvRsCtx tnFvCtxName="EngNet" />
 <fvSubnet ip="1.1.1.1/24"/>
 </fvBD>
 <fvAp name="Tenant1_app">
 <fvAEPg name="Tenant1_epg" pcEnfPref-"enforced" fwdCtrl="proxy-arp">
 <fvRsBd tnFvBDName="BD1" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-dom9"/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 Chapter 13. Provisioning Layer 3 Outside Connections

 Tenant External
 	 Network Policy Example

 		
 The following XML
 		 code is an example of a Tenant Layer 3 external network policy.
 		

 		
<polUni>

 <fvTenant name='t0'>
 <fvCtx name="o1">
 <fvRsOspfCtxPol tnOspfCtxPolName="ospfCtxPol"/>
 </fvCtx>
 <fvCtx name="o2">
 </fvCtx>

 <fvBD name="bd1">
 <fvRsBDToOut tnL3extOutName='T0-o1-L3OUT-1'/>
 <fvSubnet ip='10.16.1.1/24' scope='public'/>
 <fvRsCtx tnFvCtxName="o1"/>
 </fvBD>

 <fvAp name="AP1">
 <fvAEPg name="bd1-epg1">
 <fvRsCons tnVzBrCPName="vzBrCP-1">
 </fvRsCons>
 <fvRsProv tnVzBrCPName="vzBrCP-1">
 </fvRsProv>
 <fvSubnet ip='10.16.2.1/24' scope='private'/>
 <fvSubnet ip='10.16.3.1/24' scope='private'/>
 <fvRsBd tnFvBDName="bd1"/>
 <fvRsDomAtt tDn="uni/phys-physDomP"/>
 <fvRsPathAtt
 tDn="topology/pod-1/paths-101/pathep-[eth1/40]"
 encap='vlan-100'
 mode='regular'
 instrImedcy='immediate' />
 </fvAEPg>

 <fvAEPg name="bd1-epg2">
 <fvRsCons tnVzBrCPName="vzBrCP-1">
 </fvRsCons>
 <fvRsProv tnVzBrCPName="vzBrCP-1">
 </fvRsProv>
 <fvSubnet ip='10.16.4.1/24' scope='private'/>
 <fvSubnet ip='10.16.5.1/24' scope='private'/>
 <fvRsBd tnFvBDName="bd1"/>
 <fvRsDomAtt tDn="uni/phys-physDomP"/>
 <fvRsPathAtt
 tDn="topology/pod-1/paths-101/pathep-[eth1/41]"
 encap='vlan-200'
 mode='regular'
 instrImedcy='immediate'/>
 </fvAEPg>
 </fvAp>

 <l3extOut name="T0-o1-L3OUT-1">

 <l3extRsEctx tnFvCtxName="o1"/>
 <ospfExtP areaId='60'/>
 <l3extInstP name="l3extInstP-1">
 <fvRsCons tnVzBrCPName="vzBrCP-1">
 </fvRsCons>
 <fvRsProv tnVzBrCPName="vzBrCP-1">
 </fvRsProv>
 <l3extSubnet ip="192.5.1.0/24" />
 <l3extSubnet ip="192.5.2.0/24" />
 <l3extSubnet ip="192.6.0.0/16" />
 <l3extSubnet ip="199.0.0.0/8" />
 </l3extInstP>

 <l3extLNodeP name="l3extLNodeP-1">
 <l3extRsNodeL3OutAtt
 tDn=“topology/pod-1/node-101" rtrId="10.17.1.1">
 <ipRouteP ip="10.16.101.1/32">
 <ipNexthopP nhAddr="10.17.1.99"/>
 </ipRouteP>
 <ipRouteP ip="10.16.102.1/32">
 <ipNexthopP nhAddr="10.17.1.99"/>
 </ipRouteP>
		 <ipRouteP ip="10.17.1.3/32">
 		 <ipNexthopP nhAddr="10.11.2.2"/>
 		 </ipRouteP>
 </l3extRsNodeL3OutAtt >

 <l3extLIfP name='l3extLIfP-1'>
 <l3extRsPathL3OutAtt
 tDn=“topology/pod-1/paths-101/pathep-[eth1/25]"
 encap='vlan-1001'
 ifInstT='sub-interface'
 addr="10.11.2.1/24"
 mtu="1500"/>
 <ospfIfP>
 <ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
 </ospfIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>

 <ospfIfPol name="ospfIfPol" />
 <ospfCtxPol name="ospfCtxPol" />

 <vzFilter name="vzFilter-in-1">
 <vzEntry name="vzEntry-in-1"/>
 </vzFilter>
 <vzFilter name="vzFilter-out-1">
 <vzEntry name="vzEntry-out-1"/>
 </vzFilter>

 <vzBrCP name="vzBrCP-1">
 <vzSubj name="vzSubj-1">
 <vzInTerm>
 <vzRsFiltAtt tnVzFilterName="vzFilter-in-1"/>
 </vzInTerm>
 <vzOutTerm>
 <vzRsFiltAtt tnVzFilterName="vzFilter-out-1"/>
 </vzOutTerm>
 </vzSubj>
 </vzBrCP>
 </fvTenant>
</polUni>

 	

 Cisco ACI GOLF

 The Cisco ACI GOLF feature (also known as Layer 3 EVPN Services for Fabric WAN) enables much more efficient and scalable ACI fabric WAN connectivity.
 It uses the BGP EVPN protocol over OSPF for WAN routers that are connected to spine switches.

 Cisco ACIGolf Topology

[image: ../images/500983.jpg]

 All tenant WAN connections use a single session on the spine switches where the WAN routers are connected. This aggregation
 of tenant BGP sessions towards the Data Center Interconnect Gateway (DCIG) improves control plane scale by reducing the number
 of tenant BGP sessions and the amount of configuration required for all of them. The network is extended out using Layer 3
 subinterfaces configured on spine fabric ports. Transit routing with shared services using GOLF is not supported.

 A Layer 3 external outside network (L3extOut) for EVPN physical connectivity for a spine switch is specified under the infra tenant, and includes the following:

 	
 LNodeP (l3extInstP is not required within the L3Out in Tenant Infra)

 	
 A provider label for the L3extOut for EVPN in tenant infra.

 	
 OSPF protocol policies

 	
 BGP protocol policies

 All regular tenants use the above-defined physical connectivity. The L3extOut defined in regular tenants only needs the following:

 	
 An l3extConsLbl consumer label that must be matched with the same provider label of an L3extOut for EVPN in the infra tenant. Label matching enables application EPGs in other tenants to consume the LNodeP external L3extOut EPG.

 	
 An l3extInstP with subnets and contracts. The scope of the subnet is used to control import/export route control and security policies.

 	
 The BGP EVPN session in the matching provider L3extOut in the infra tenant advertises the tenant routes defined in this L3extOut.

 Observe the following GOLF guidelines and limitations:

 	
 At this time, only a single GOLF provider policy can be deployed on spine switch interfaces for the whole fabric.

 	

 Up to APIC release 2.0(2), GOLF is not supported with multipod. In release 2.0 (2) the two features are supported in the same fabric only over Cisco Nexus
 N9000K switches without “EX” on the end of the switch name; for example, N9K-9312TX. Since the 2.1(1) release, the two features
 can be deployed together over all the switches used in the multipod and EVPN topologies.

 	
 When configuring GOLF on a spine switch, wait for the control plane to converge before configuring GOLF on another spine.

 	
 A spine switch can be added to multiple provider GOLF outside networks (GOLF Outs), but the provider labels have to be different for each GOLF Out. Also, in this case, the OSPF Area has to be different on each of the L3extOuts and use different loopback addresses.

 	
 The BGP EVPN session in the matching provider L3extOut in the infra tenant advertises the tenant routes defined in this L3extOut.

 	
 When deploying three GOLF Outs, if only 1 has a provider/consumer label for GOLF, and 0/0 export aggregation, APIC will export all routes. This is the same as existing L3extOut on leaf switches for tenants.

 	
 If there is direct peering between a spine switch and a data center interconnect (DCI) router, the transit routes from leaf
 switches to the ASR have the next hop as the PTEP of the leaf. In this case, define a static route on the ASR for the TEP
 range of that ACI pod. Also, if the DCI is dual-homed to the same pod, then the precedence (administrative distance) of the
 static route should be the same as the route received through the other link.

 	
 The default bgpPeerPfxPol policy restricts routes to 20, 000. For ACI WAN Interconnect peers, increase this as needed.

 	
 In a deployment scenario where there are two L3extOuts on one spine, and one of them has the provider label prov1 and peers with the DCI 1, the second L3extOut peers with DCI 2 with provider label prov2. If the tenant VRF has a consumer label pointing to any 1 of the provider labels
 (either prov1 or prov2), the tenant route will be sent out both DCI 1 and DCI 2.

 	[image: ../images/note.gif]
Note
 	

 				
 				
 				
 When you configure Layer 3 Outside (L3Out) connections to external routers, or multipod connections through an Inter-Pod Network
 (IPN), it is critical that the MTU be set appropriately on both sides. On some platforms, such as ACI, Cisco NX-OS, and Cisco IOS, the configurable MTU value takes into account packet headers (resulting in a max packet size to be set as
 9000 bytes), whereas other platforms such as IOS-XR configure the MTU value exclusive of packet headers (resulting in a max
 packet size of 8986 bytes).

 				
 For the appropriate MTU values for each platform, see the relevant configuration guides.

 				
 Cisco highly recommends you test the MTU using CLI-based commands. For example, on the Cisco NX-OS CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

 			

 Configuring GOLF Using the REST API

Procedure

 	Step 1

 	 The following example shows how to deploy nodes and spine switch interfaces for GOLF, using the REST API:

Example:
 POST
https://192.0.20.123/api/mo/uni/golf.xml

 	Step 2

 	The XML below configures the spine switch interfaces and infra tenant provider of the GOLF service. Include this XML structure in the body of the POST message.

Example:
 <l3extOut descr="" dn="uni/tn-infra/out-golf" enforceRtctrl="export,import"
 name="golf"
 ownerKey="" ownerTag="" targetDscp="unspecified">
 <l3extRsEctx tnFvCtxName="overlay-1"/>
 <l3extProvLbl descr="" name="golf"
 ownerKey="" ownerTag="" tag="yellow-green"/>
 <l3extLNodeP configIssues="" descr=""
 name="bLeaf" ownerKey="" ownerTag=""
 tag="yellow-green" targetDscp="unspecified">
 <l3extRsNodeL3OutAtt rtrId="10.10.3.3" rtrIdLoopBack="no"
 tDn="topology/pod-1/node-111">
 <l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
 <l3extLoopBackIfP addr="10.10.3.3" descr="" name=""/>
 </l3extRsNodeL3OutAtt>
 <l3extRsNodeL3OutAtt rtrId="10.10.3.4" rtrIdLoopBack="no"
 tDn="topology/pod-1/node-112">
 <l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
 <l3extLoopBackIfP addr="10.10.3.4" descr="" name=""/>
 </l3extRsNodeL3OutAtt>
 <l3extLIfP descr="" name="portIf-spine1-3"
 ownerKey="" ownerTag="" tag="yellow-green">
 <ospfIfP authKeyId="1" authType="none" descr="" name="">
 <ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsIngressQosDppPol tnQosDppPolName=""/>
 <l3extRsEgressQosDppPol tnQosDppPolName=""/>
 <l3extRsPathL3OutAtt addr="7.2.1.1/24" descr=""
 encap="vlan-4"
 encapScope="local"
 ifInstT="sub-interface"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mode="regular"
 mtu="1500"
 tDn="topology/pod-1/paths-111/pathep-[eth1/12]"
 targetDscp="unspecified"/>
 </l3extLIfP>
 <l3extLIfP descr="" name="portIf-spine2-1"
 ownerKey=""
 ownerTag=""
 tag="yellow-green">
 <ospfIfP authKeyId="1"
 authType="none"
 descr=""
 name="">
 <ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsIngressQosDppPol tnQosDppPolName=""/>
 <l3extRsEgressQosDppPol tnQosDppPolName=""/>
 <l3extRsPathL3OutAtt addr="7.1.0.1/24" descr=""
 encap="vlan-4"
 encapScope="local"
 ifInstT="sub-interface"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mode="regular"
 mtu="9000"
 tDn="topology/pod-1/paths-112/pathep-[eth1/11]"
 targetDscp="unspecified"/>
 </l3extLIfP>
 <l3extLIfP descr="" name="portif-spine2-2"
 ownerKey=""
 ownerTag=""
 tag="yellow-green">
 <ospfIfP authKeyId="1"
 authType="none" descr=""
 name="">
 <ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsIngressQosDppPol tnQosDppPolName=""/>
 <l3extRsEgressQosDppPol tnQosDppPolName=""/>
 <l3extRsPathL3OutAtt addr="7.2.2.1/24" descr=""
 encap="vlan-4"
 encapScope="local"
 ifInstT="sub-interface"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mode="regular"
 mtu="1500"
 tDn="topology/pod-1/paths-112/pathep-[eth1/12]"
 targetDscp="unspecified"/>
 </l3extLIfP>
 <l3extLIfP descr="" name="portIf-spine1-2"
 ownerKey="" ownerTag="" tag="yellow-green">
 <ospfIfP authKeyId="1" authType="none" descr="" name="">
 <ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsIngressQosDppPol tnQosDppPolName=""/>
 <l3extRsEgressQosDppPol tnQosDppPolName=""/>
 <l3extRsPathL3OutAtt addr="9.0.0.1/24" descr=""
 encap="vlan-4"
 encapScope="local"
 ifInstT="sub-interface"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mode="regular"
 mtu="9000"
 tDn="topology/pod-1/paths-111/pathep-[eth1/11]"
 targetDscp="unspecified"/>
 </l3extLIfP>
 <l3extLIfP descr="" name="portIf-spine1-1"
 ownerKey="" ownerTag="" tag="yellow-green">
 <ospfIfP authKeyId="1" authType="none" descr="" name="">
 <ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsIngressQosDppPol tnQosDppPolName=""/>
 <l3extRsEgressQosDppPol tnQosDppPolName=""/>
 <l3extRsPathL3OutAtt addr="7.0.0.1/24" descr=""
 encap="vlan-4"
 encapScope="local"
 ifInstT="sub-interface"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mode="regular"
 mtu="1500"
 tDn="topology/pod-1/paths-111/pathep-[eth1/10]"
 targetDscp="unspecified"/>
 </l3extLIfP>
 <bgpInfraPeerP addr="10.10.3.2"
 allowedSelfAsCnt="3"
 ctrl="send-com,send-ext-com"
 descr="" name="" peerCtrl=""
 peerT="wan"
 privateASctrl="" ttl="2" weight="0">
 <bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
 <bgpAsP asn="150" descr="" name="aspn"/>
 </bgpInfraPeerP>
 <bgpInfraPeerP addr="10.10.4.1"
 allowedSelfAsCnt="3"
 ctrl="send-com,send-ext-com" descr="" name="" peerCtrl=""
 peerT="wan"
 privateASctrl="" ttl="1" weight="0">
 <bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
 <bgpAsP asn="100" descr="" name=""/>
 </bgpInfraPeerP>
 <bgpInfraPeerP addr="10.10.3.1"
 allowedSelfAsCnt="3"
 ctrl="send-com,send-ext-com" descr="" name="" peerCtrl=""
 peerT="wan"
 privateASctrl="" ttl="1" weight="0">
 <bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
 <bgpAsP asn="100" descr="" name=""/>
 </bgpInfraPeerP>
 </l3extLNodeP>
 <bgpRtTargetInstrP descr="" name="" ownerKey="" ownerTag="" rtTargetT="explicit"/>
 <l3extRsL3DomAtt tDn="uni/l3dom-l3dom"/>
 <l3extInstP descr="" matchT="AtleastOne" name="golfInstP"
 prio="unspecified"
 targetDscp="unspecified">
 <fvRsCustQosPol tnQosCustomPolName=""/>
 </l3extInstP>
 <bgpExtP descr=""/>
 <ospfExtP areaCost="1"
 areaCtrl="redistribute,summary"
 areaId="0.0.0.1"
 areaType="regular" descr=""/>
</l3extOut>

 	Step 3

 	The XML below configures the tenant consumer of the infra part of the GOLF service. Include this XML structure in the body of the POST message.

Example:
 <fvTenant descr="" dn="uni/tn-pep6" name="pep6" ownerKey="" ownerTag="">
 <vzBrCP descr="" name="webCtrct"
 ownerKey="" ownerTag="" prio="unspecified"
 scope="global" targetDscp="unspecified">
 <vzSubj consMatchT="AtleastOne" descr=""
 name="http" prio="unspecified" provMatchT="AtleastOne"
 revFltPorts="yes" targetDscp="unspecified">
 <vzRsSubjFiltAtt directives="" tnVzFilterName="default"/>
 </vzSubj>
 </vzBrCP>
 <vzBrCP descr="" name="webCtrct-pod2"
 ownerKey="" ownerTag="" prio="unspecified"
 scope="global" targetDscp="unspecified">
 <vzSubj consMatchT="AtleastOne" descr=""
 name="http" prio="unspecified"
 provMatchT="AtleastOne" revFltPorts="yes"
 targetDscp="unspecified">
 <vzRsSubjFiltAtt directives=""
 tnVzFilterName="default"/>
 </vzSubj>
 </vzBrCP>
 <fvCtx descr="" knwMcastAct="permit"
 name="ctx6" ownerKey="" ownerTag=""
 pcEnfDir="ingress" pcEnfPref="enforced">
 <bgpRtTargetP af="ipv6-ucast"
 descr="" name="" ownerKey="" ownerTag="">
 <bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
 rt="route-target:as4-nn2:100:1256"
 type="export"/>
 <bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
 rt="route-target:as4-nn2:100:1256"
 type="import"/>
 </bgpRtTargetP>
 <bgpRtTargetP af="ipv4-ucast"
 descr="" name="" ownerKey="" ownerTag="">
 <bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
 rt="route-target:as4-nn2:100:1256"
 type="export"/>
 <bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
 rt="route-target:as4-nn2:100:1256"
 type="import"/>
 </bgpRtTargetP>
 <fvRsCtxToExtRouteTagPol tnL3extRouteTagPolName=""/>
 <fvRsBgpCtxPol tnBgpCtxPolName=""/>
 <vzAny descr="" matchT="AtleastOne" name=""/>
 <fvRsOspfCtxPol tnOspfCtxPolName=""/>
 <fvRsCtxToEpRet tnFvEpRetPolName=""/>
 <l3extGlobalCtxName descr="" name="dci-pep6"/>
 </fvCtx>
 <fvBD arpFlood="no" descr="" epMoveDetectMode=""
 ipLearning="yes"
 limitIpLearnToSubnets="no"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mcastAllow="no"
 multiDstPktAct="bd-flood"
 name="bd107" ownerKey="" ownerTag="" type="regular"
 unicastRoute="yes"
 unkMacUcastAct="proxy"
 unkMcastAct="flood"
 vmac="not-applicable">
 <fvRsBDToNdP tnNdIfPolName=""/>
 <fvRsBDToOut tnL3extOutName="routAccounting-pod2"/>
 <fvRsCtx tnFvCtxName="ctx6"/>
 <fvRsIgmpsn tnIgmpSnoopPolName=""/>
 <fvSubnet ctrl="" descr="" ip="27.6.1.1/24"
 name="" preferred="no"
 scope="public"
 virtual="no"/>
 <fvSubnet ctrl="nd" descr="" ip="2001:27:6:1::1/64"
 name="" preferred="no"
 scope="public"
 virtual="no">
 <fvRsNdPfxPol tnNdPfxPolName=""/>
 </fvSubnet>
 <fvRsBdToEpRet resolveAct="resolve" tnFvEpRetPolName=""/>
 </fvBD>
 <fvBD arpFlood="no" descr="" epMoveDetectMode=""
 ipLearning="yes"
 limitIpLearnToSubnets="no"
 llAddr="::" mac="00:22:BD:F8:19:FF"
 mcastAllow="no"
 multiDstPktAct="bd-flood"
 name="bd103" ownerKey="" ownerTag="" type="regular"
 unicastRoute="yes"
 unkMacUcastAct="proxy"
 unkMcastAct="flood"
 vmac="not-applicable">
 <fvRsBDToNdP tnNdIfPolName=""/>
 <fvRsBDToOut tnL3extOutName="routAccounting"/>
 <fvRsCtx tnFvCtxName="ctx6"/>
 <fvRsIgmpsn tnIgmpSnoopPolName=""/>
 <fvSubnet ctrl="" descr="" ip="23.6.1.1/24"
 name="" preferred="no"
 scope="public"
 virtual="no"/>
 <fvSubnet ctrl="nd" descr="" ip="2001:23:6:1::1/64"
 name="" preferred="no"
 scope="public" virtual="no">
 <fvRsNdPfxPol tnNdPfxPolName=""/>
 </fvSubnet>
 <fvRsBdToEpRet resolveAct="resolve" tnFvEpRetPolName=""/>
 </fvBD>
 <vnsSvcCont/>
 <fvRsTenantMonPol tnMonEPGPolName=""/>
 <fvAp descr="" name="AP1"
 ownerKey="" ownerTag="" prio="unspecified">
 <fvAEPg descr=""
 isAttrBasedEPg="no"
 matchT="AtleastOne"
 name="epg107"
 pcEnfPref="unenforced" prio="unspecified">
 <fvRsCons prio="unspecified"
 tnVzBrCPName="webCtrct-pod2"/>
 <fvRsPathAtt descr=""
 encap="vlan-1256"
 instrImedcy="immediate"
 mode="regular" primaryEncap="unknown"
 tDn="topology/pod-2/paths-107/pathep-[eth1/48]"/>
 <fvRsDomAtt classPref="encap" delimiter=""
 encap="unknown"
 instrImedcy="immediate"
 primaryEncap="unknown"
 resImedcy="lazy" tDn="uni/phys-phys"/>
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <fvRsBd tnFvBDName="bd107"/>
 <fvRsProv matchT="AtleastOne"
 prio="unspecified"
 tnVzBrCPName="default"/>
 </fvAEPg>
 <fvAEPg descr=""
 isAttrBasedEPg="no"
 matchT="AtleastOne"
 name="epg103"
 pcEnfPref="unenforced" prio="unspecified">
 <fvRsCons prio="unspecified" tnVzBrCPName="default"/>
 <fvRsCons prio="unspecified" tnVzBrCPName="webCtrct"/>
 <fvRsPathAtt descr="" encap="vlan-1256"
 instrImedcy="immediate"
 mode="regular" primaryEncap="unknown"
 tDn="topology/pod-1/paths-103/pathep-[eth1/48]"/>
 <fvRsDomAtt classPref="encap" delimiter=""
 encap="unknown"
 instrImedcy="immediate"
 primaryEncap="unknown"
 resImedcy="lazy" tDn="uni/phys-phys"/>
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <fvRsBd tnFvBDName="bd103"/>
 </fvAEPg>
 </fvAp>
 <l3extOut descr=""
 enforceRtctrl="export"
 name="routAccounting-pod2"
 ownerKey="" ownerTag="" targetDscp="unspecified">
 <l3extRsEctx tnFvCtxName="ctx6"/>
 <l3extInstP descr=""
 matchT="AtleastOne"
 name="accountingInst-pod2"
 prio="unspecified" targetDscp="unspecified">
 <l3extSubnet aggregate="export-rtctrl,import-rtctrl"
 descr="" ip="::/0" name=""
 scope="export-rtctrl,import-rtctrl,import-security"/>
 <l3extSubnet aggregate="export-rtctrl,import-rtctrl"
 descr=""
 ip="0.0.0.0/0" name=""
 scope="export-rtctrl,import-rtctrl,import-security"/>
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <fvRsProv matchT="AtleastOne"
 prio="unspecified" tnVzBrCPName="webCtrct-pod2"/>
 </l3extInstP>
 <l3extConsLbl descr=""
 name="golf2"
 owner="infra"
 ownerKey="" ownerTag="" tag="yellow-green"/>
 </l3extOut>
 <l3extOut descr=""
 enforceRtctrl="export"
 name="routAccounting"
 ownerKey="" ownerTag="" targetDscp="unspecified">
 <l3extRsEctx tnFvCtxName="ctx6"/>
 <l3extInstP descr=""
 matchT="AtleastOne"
 name="accountingInst"
 prio="unspecified" targetDscp="unspecified">
 <l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr=""
 ip="0.0.0.0/0" name=""
 scope="export-rtctrl,import-rtctrl,import-security"/>
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>
 </l3extInstP>
 <l3extConsLbl descr=""
 name="golf"
 owner="infra"
 ownerKey="" ownerTag="" tag="yellow-green"/>
 </l3extOut>
</fvTenant>

 Distributing BGP EVPN Type-2 Host Routes to a DCIG

 In APIC up to release 2.0(1f), the fabric control plane did not send EVPN host routes directly, but advertised public bridge
 domain (BD) subnets in the form of BGP EVPN type-5 (IP Prefix) routes to a Data Center Interconnect Gateway (DCIG). This could
 result in suboptimal traffic forwarding. To improve forwarding, in APIC release 2.1x, you can enable fabric spines to also
 advertise host routes using EVPN type-2 (MAC-IP) host routes to the DCIG along with the public BD subnets.

 To do so, you must perform the following steps:

 	

 When you configure the BGP Address Family Context Policy, enable Host Route Leak.

 	

 When you configure VRF properties:

 	

 Add the BGP Address Family Context Policy to the BGP Context Per Address Families for IPv4 and IPv6.

 	

 Configure BGP Route Target Profiles that identify routes that can be imported or exported from the VRF.

 Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API

 Enable distributing BGP EVPN type-2 host routes using the REST API, as follows:

 Before You Begin

 EVPN services must be configured.

Procedure

 	Step 1

 	 Configure the Host Route Leak policy, with a POST containing XML such as in the following example:

Example:
 <bgpCtxAfPol descr="" ctrl="host-rt-leak" name="bgpCtxPol_0 status=""/>

 	Step 2

 	Apply the policy to the VRF BGP Address Family Context Policy for one or both of the address families using a POST containing
 XML such as in the following example:

Example:
 <fvCtx name="vni-10001">
<fvRsCtxToBgpCtxAfPol af="ipv4-ucast" tnBgpCtxAfPolName="bgpCtxPol_0"/>
<fvRsCtxToBgpCtxAfPol af="ipv6-ucast" tnBgpCtxAfPolName="bgpCtxPol_0"/>
</fvCtx>

 Multipod

 Multipod enables provisioning a more fault tolerant fabric comprised of multiple pods with isolated control plane protocols.
 Also, multipod provides more flexibility with regard to the full mesh cabling between leaf and spine switches. For example,
 if leaf switches are spread across different floors or different buildings, multipod enables provisioning multiple pods per
 floor or building and providing connectivity between pods through spine switches.

 Multipod uses MP-BGP EVPN as the control-plane communication protocol between the ACI spines in different Pods. WAN routers
 can be provisioned in the IPN, directly connected to spine switches, or connected to border leaf switches. Multipod uses a
 single APIC cluster for all the pods; all the pods act as a single fabric. Individual APIC controllers are placed across the
 pods but they are all part of a single APIC cluster.

 Multipod Overview

[image: ../images/500991.jpg]

 For control plane isolation, IS-IS and COOP are not extended across pods. Endpoints synchronize across pods using BGP EVPN
 over the IPN between the pods. Two spines in each pod are configured to have BGP EVPN sessions with spines of other pods.
 The spines connected to the IPN get the endpoints and multicast groups from COOP within a pod, but they advertise them over
 the IPN EVPN sessions between the pods. On the receiving side, BGP gives them back to COOP and COOP synchs them across all
 the spines in the pod. WAN routes are exchanged between the pods using BGP VPNv4/VPNv6 address families; they are not exchanged
 using the EVPN address family.

 There are two modes of setting up the spine switches for communicating across pods as peers and route reflectors:

 	
 Automatic

 	
 Automatic mode is a route reflector based mode that does not support a full mesh where all spines peer with each other. The
 administrator must post an existing BGP route reflector policy and select IPN aware (EVPN) route reflectors. All the peer/client
 settings are automated by the APIC.

 	
 The administrator does not have an option to choose route reflectors that don’t belong to the fabric (for example, in the
 IPN).

 	
 Manual

 	
 The administrator has the option to configure full mesh where all spines peer with each other without route reflectors.

 	
 In manual mode, the administrator must post the already existing BGP peer policy.

 Observe the following multipod guidelines and limitations:

 	
 When adding a pod to the ACI fabric, wait for the control plane to converge before adding another pod.

 	
 OSPF is deployed on ACI spine switches and IPN switches to provide reachability between PODs. Layer 3 subinterfaces are created
 on spines to connect to IPN switches. OSPF is enabled on these Layer 3 subinterfaces and per POD TEP prefixes are advertised
 over OSPF. There is one subinterface created on each external spine link. Provision many external links on each spine if the
 expectation is that the amount of east-west traffic between PODs will be large. Currently, ACI spine switches support up to
 64 external links on each spine, and each subinterface can be configured for OSPF. Spine proxy TEP addresses are advertised
 in OSPF over all the subinterfaces leading to a maximum of 64 way ECMP on the IPN switch for proxy TEP addresses. Similarly,
 spines would receive proxy TEP addresses of other PODs from IPN switches over OSPF and the spine can have up to 64 way ECMP
 for remote pod proxy TEP addresses. In this way, traffic between PODs spread over all these external links provides the desired
 bandwidth.

 	
 When the all fabric links of a spine switch are down, OSPF advertises the TEP routes with the maximum metric. This will force
 the IPN switch to remove the spine switch from ECMP which will prevent the IPN from forwarding traffic to the down spine switch.
 Traffic will be received by other spines that have up fabric links.

 	

 Up to APIC release 2.0(2), multipod is not supported with GOLF. In release 2.0 (2) the two features are supported in the same fabric only over Cisco Nexus N9000K switches without “EX”
 on the end of the switch name; for example, N9K-9312TX. Since the 2.1(1) release, the two features can be deployed together
 over all the switches used in the multipod and EVPN topologies.

 	

 In a multipod fabric, if a spine in POD1 uses the infra tenant L3extOut-1, the TORs for the other pods (POD2, POD3) cannot
 use the same infra L3extOut (L3extOut-1) for Layer 3 EVPN control plane connectivity. Each POD must use their own spine switch
 and infra L3extOut.

 	
 No filtering is done for limiting the routes exchanged across pods. All end-point and WAN routes present in each pod are exported
 to other pods.

 	
 Inband management across pods is automatically configured by a self tunnel on every spine.

 Setting Up Multipod Fabric Using the REST API

Procedure

 	Step 1

 	Login:

Example:
 http://<apic-name/ip>:80/api/aaaLogin.xml

data: <aaaUser name="admin" pwd="ins3965!”/>

 	Step 2

 	Configure the TEP pool:

Example:
 http://<apic-name/ip>:80/api/policymgr/mo/uni/controller.xml

<fabricSetupPol status=''>
 <fabricSetupP podId="1" tepPool="10.0.0.0/16" />
 <fabricSetupP podId="2" tepPool="10.1.0.0/16" status='' />
</fabricSetupPol>

 	Step 3

 	Configure the node ID policy:

Example:
 http://<apic-name/ip>:80/api/node/mo/uni/controller.xml

<fabricNodeIdentPol>
<fabricNodeIdentP serial="SAL1819RXP4" name="ifav4-leaf1" nodeId="101" podId="1"/>
<fabricNodeIdentP serial="SAL1803L25H" name="ifav4-leaf2" nodeId="102" podId="1"/>
<fabricNodeIdentP serial="SAL1934MNY0" name="ifav4-leaf3" nodeId="103" podId="1"/>
<fabricNodeIdentP serial="SAL1934MNY3" name="ifav4-leaf4" nodeId="104" podId="1"/>
<fabricNodeIdentP serial="SAL1748H56D" name="ifav4-spine1" nodeId="201" podId="1"/>
<fabricNodeIdentP serial="SAL1938P7A6" name="ifav4-spine3" nodeId="202" podId="1"/>
<fabricNodeIdentP serial="SAL1938PHBB" name="ifav4-leaf5" nodeId="105" podId="2"/>
<fabricNodeIdentP serial="SAL1942R857" name="ifav4-leaf6" nodeId="106" podId="2"/>
<fabricNodeIdentP serial="SAL1931LA3B" name="ifav4-spine2" nodeId="203" podId="2"/>
<fabricNodeIdentP serial="FGE173400A9" name="ifav4-spine4" nodeId="204" podId="2"/>
</fabricNodeIdentPol>

 	Step 4

 	Configure infra L3Out and external connectivity profile:

Example:
 http://<apic-name/ip>:80/api/node/mo/uni.xml

<polUni>

<fvTenant descr="" dn="uni/tn-infra" name="infra" ownerKey="" ownerTag="">

 <l3extOut descr="" enforceRtctrl="export" name="multipod" ownerKey="" ownerTag="" targetDscp="unspecified" status=''>
 <ospfExtP areaId='0' areaType='regular' status=''/>
 <bgpExtP status='' />
 <l3extRsEctx tnFvCtxName="overlay-1"/>
 <l3extProvLbl descr="" name="prov_mp1" ownerKey="" ownerTag="" tag="yellow-green"/>

 <l3extLNodeP name="bSpine">
 <l3extRsNodeL3OutAtt rtrId="201.201.201.201" rtrIdLoopBack="no" tDn="topology/pod-1/node-201">
 <l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
 <l3extLoopBackIfP addr="201::201/128" descr="" name=""/>
 <l3extLoopBackIfP addr="201.201.201.201/32" descr="" name=""/>
 </l3extRsNodeL3OutAtt>

 <l3extRsNodeL3OutAtt rtrId="202.202.202.202" rtrIdLoopBack="no" tDn="topology/pod-1/node-202">
 <l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
 <l3extLoopBackIfP addr="202::202/128" descr="" name=""/>
 <l3extLoopBackIfP addr="202.202.202.202/32" descr="" name=""/>
 </l3extRsNodeL3OutAtt>

 <l3extRsNodeL3OutAtt rtrId="203.203.203.203" rtrIdLoopBack="no" tDn="topology/pod-2/node-203">
 <l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
 <l3extLoopBackIfP addr="203::203/128" descr="" name=""/>
 <l3extLoopBackIfP addr="203.203.203.203/32" descr="" name=""/>
 </l3extRsNodeL3OutAtt>

 <l3extRsNodeL3OutAtt rtrId="204.204.204.204" rtrIdLoopBack="no" tDn="topology/pod-2/node-204">
 <l3extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
 <l3extLoopBackIfP addr="204::204/128" descr="" name=""/>
 <l3extLoopBackIfP addr="204.204.204.204/32" descr="" name=""/>
 </l3extRsNodeL3OutAtt>

 <l3extLIfP name='portIf'>
 <l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-1/paths-201/pathep-[eth1/1]" encap='vlan-4' ifInstT='sub-interface' addr="201.1.1.1/30" />
 <l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-1/paths-201/pathep-[eth1/2]" encap='vlan-4' ifInstT='sub-interface' addr="201.2.1.1/30" />
 <l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-1/paths-202/pathep-[eth1/2]" encap='vlan-4' ifInstT='sub-interface' addr="202.1.1.1/30" />
 <l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-2/paths-203/pathep-[eth1/1]" encap='vlan-4' ifInstT='sub-interface' addr="203.1.1.1/30" />
 <l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-2/paths-203/pathep-[eth1/2]" encap='vlan-4' ifInstT='sub-interface' addr="203.2.1.1/30" />
 <l3extRsPathL3OutAtt descr='asr' tDn="topology/pod-2/paths-204/pathep-[eth4/31]" encap='vlan-4' ifInstT='sub-interface' addr="204.1.1.1/30" />

 <ospfIfP>
 <ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
 </ospfIfP>

 </l3extLIfP>
 </l3extLNodeP>

 <l3extInstP descr="" matchT="AtleastOne" name="instp1" prio="unspecified" targetDscp="unspecified">
 <fvRsCustQosPol tnQosCustomPolName=""/>
 </l3extInstP>
 </l3extOut>

 <fvFabricExtConnP descr="" id="1" name="Fabric_Ext_Conn_Pol1" rt="extended:as2-nn4:5:16" status=''>
 <fvPodConnP descr="" id="1" name="">
 <fvIp addr="100.11.1.1/32"/>
 </fvPodConnP>
 <fvPodConnP descr="" id="2" name="">
 <fvIp addr="200.11.1.1/32"/>
 </fvPodConnP>
 <fvPeeringP descr="" name="" ownerKey="" ownerTag="" type="automatic_with_full_mesh"/>
 <l3extFabricExtRoutingP descr="" name="ext_routing_prof_1" ownerKey="" ownerTag="">
 <l3extSubnet aggregate="" descr="" ip="100.0.0.0/8" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="200.0.0.0/8" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="201.1.0.0/16" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="201.2.0.0/16" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="202.1.0.0/16" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="203.1.0.0/16" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="203.2.0.0/16" name="" scope="import-security"/>
 <l3extSubnet aggregate="" descr="" ip="204.1.0.0/16" name="" scope="import-security"/>
 </l3extFabricExtRoutingP>
 </fvFabricExtConnP>
</fvTenant>
</polUni>

 About HSRP

 HSRP is a first-hop redundancy protocol (FHRP) that allows a transparent failover of the first-hop IP router. HSRP provides
 first-hop routing redundancy for IP hosts on Ethernet networks configured with a default router IP address. You use HSRP in
 a group of routers for selecting an active router and a standby router. In a group of routers, the active router is the router
 that routes packets, and the standby router is the router that takes over when the active router fails or when preset conditions
 are met.

 Many host implementations do not support any dynamic router discovery mechanisms but can be configured with a default router.
 Running a dynamic router discovery mechanism on every host is not practical for many reasons, including administrative overhead,
 processing overhead, and security issues. HSRP provides failover services to such hosts.

 When you use HSRP, you configure the HSRP virtual IP address as the default router of the host (instead of the IP address
 of the actual router). The virtual IP address is an IPv4 or IPv6 address that is shared among a group of routers that run
 HSRP.

 When you configure HSRP on a network segment, you provide a virtual MAC address and a virtual IP address for the HSRP group.
 You configure the same virtual address on each HSRP-enabled interface in the group. You also configure a unique IP address
 and MAC address on each interface that acts as the real address. HSRP selects one of these interfaces to be the active router.
 The active router receives and routes packets destined for the virtual MAC address of the group.

 HSRP detects when the designated active router fails. At that point, a selected standby router assumes control of the virtual
 MAC and IP addresses of the HSRP group. HSRP also selects a new standby router at that time.

 HSRP uses a priority designator to determine which HSRP-configured interface becomes the default active router. To configure
 an interface as the active router, you assign it with a priority that is higher than the priority of all the other HSRP-configured
 interfaces in the group. The default priority is 100, so if you configure just one interface with a higher priority, that
 interface becomes the default active router.

 Interfaces that run HSRP send and receive multicast User Datagram Protocol (UDP)-based hello messages to detect a failure
 and to designate active and standby routers. When the active router fails to send a hello message within a configurable period
 of time, the standby router with the highest priority becomes the active router. The transition of packet forwarding functions
 between the active and standby router is completely transparent to all hosts on the network.

 You can configure multiple HSRP groups on an interface. The virtual router does not physically exist but represents the common
 default router for interfaces that are configured to provide backup to each other. You do not need to configure the hosts
 on the LAN with the IP address of the active router. Instead, you configure them with the IP address of the virtual router
 (virtual IP address) as their default router. If the active router fails to send a hello message within the configurable period
 of time, the standby router takes over, responds to the virtual addresses, and becomes the active router, assuming the active
 router duties. From the host perspective, the virtual router remains the same.

 	[image: ../images/note.gif]
Note
 	

 Packets received on a routed port destined for the HSRP virtual IP address terminate on the local router, regardless of whether
 that router is the active HSRP router or the standby HSRP router. This process includes ping and Telnet traffic. Packets received
 on a Layer 2 (VLAN) interface destined for the HSRP virtual IP address terminate on the active router.

 Guidelines and Limitations

 Follow these guidelines and limitations:

 	

 The HSRP state must be the same for both HSRP IPv4 and IPv6. The priority and preemption must be configured to result in the
 same state after failovers.

 	

 Currently, only one IPv4 and one IPv6 group is supported on the same sub-interface in Cisco ACI.

 	

 BFD IPv4 and IPv6 is supported

 	

 Users must configure the same MAC address for IPv4 and IPv6 HSRP groups for dual stack configurations.

 	

 HSRP VIP must be in the same subnet as the interface IP.

 	

 It is recommended that you configure interface delay for HSRP configurations.

 	

 HSRP is only supported on routed-interface or sub-interface. HSRP is not supported on switched virtual interface (SVI).

 	

 Object tracking on HSRP is not supported.

 	

 HSRP is not supported on SVI, therefore no VPC support for HSRP is available.

 	

 HSRP Management Information Base (MIB) for SNMP is not supported.

 	

 Multiple group optimization (MGO) is not supported with HSRP.

 	

 ICMP IPv4 and IPv6 redirects are not supported.

 	

 High availability and Non-Stop Forwarding (NSF) are not supported because HSRP is non restartable in the Cisco ACI environment.

 	

 There is no extended hold-down timer support as HSRP is supported only on leaf switches. HSRP is not supported on spine switches.

 	

 HSRP version change is not supported in APIC. You must remove the configuration and reconfigure.

 	

 HSRP version 2 does not inter-operate with HSRP version 1. An interface cannot operate both version 1 and version 2 because
 both versions are mutually exclusive. However, the different versions can be run on different physical interfaces of the same
 router.

 Configuring HSRP in APIC Using REST API

 HSRP is enabled when the leaf switch is configured.

 Before You Begin

 	

 The tenant and VRF must be configured.

 	

 VLAN pools must be configured with the appropriate VLAN range defined and the appropriate Layer 3 domain created and attached
 to the VLAN pool.

 	

 The Attach Entity Profile must also be associated with the Layer 3 domain.

 	

 The interface profile for the leaf switches must be configured as required.

Procedure

 	Step 1

 	Create port selectors.

Example:
 <polUni>
 <infraInfra dn="uni/infra">
 <infraNodeP name="TenantNode_101">
 <infraLeafS name="leafselector" type="range">
 <infraNodeBlk name="nodeblk" from_="101" to_="101">
 </infraNodeBlk>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-TenantPorts_101"/>
 </infraNodeP>
 <infraAccPortP name="TenantPorts_101">
 <infraHPortS name="portselector" type="range">
 <infraPortBlk name="portblk" fromCard="1" toCard="1" fromPort="41" toPort="41">
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-TenantPortGrp_101"/>
 </infraHPortS>
 </infraAccPortP>
 <infraFuncP>
 <infraAccPortGrp name="TenantPortGrp_101">
 <infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfTenant"/>
 <infraRsHIfPol tnFabricHIfPolName="default"/>
 </infraAccPortGrp>
 </infraFuncP>
 </infraInfra>
</polUni>

 	Step 2

 	Create a tenant policy.

Example:
 <polUni>
 <fvTenant name="t9" dn="uni/tn-t9" descr="">
 <fvCtx name="t9_ctx1" pcEnfPref="unenforced">
 </fvCtx>
 <fvBD name="t9_bd1" unkMacUcastAct="flood" arpFlood="yes">
 <fvRsCtx tnFvCtxName="t9_ctx1"/>
 <fvSubnet ip="101.9.1.1/24" scope="shared"/>
 </fvBD>
 <l3extOut dn="uni/tn-t9/out-l3extOut1" enforceRtctrl="export" name="l3extOut1">
 <l3extLNodeP name="Node101">
 <l3extRsNodeL3OutAtt rtrId="210.210.121.121" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
 </l3extLNodeP>
 <l3extRsEctx tnFvCtxName="t9_ctx1"/>
 <l3extRsL3DomAtt tDn="uni/l3dom-dom1"/>
 <l3extInstP matchT="AtleastOne" name="extEpg" prio="unspecified" targetDscp="unspecified">
 <l3extSubnet aggregate="" descr="" ip="176.21.21.21/21" name="" scope="import-security"/>
 </l3extInstP>
 </l3extOut>
 </fvTenant>
</polUni>

 	Step 3

 	Create an HSRP interface policy.

Example:

<polUni>
 <fvTenant name="t9" dn="uni/tn-t9" descr="">
 <hsrpIfPol name="hsrpIfPol" ctrl="bfd" delay="4" reloadDelay="11"/>
 </fvTenant>
</polUni>

 	Step 4

 	Create an HSRP group policy.

Example:
 <polUni>
 <fvTenant name="t9" dn="uni/tn-t9" descr="">
 <hsrpIfPol name="hsrpIfPol" ctrl="bfd" delay="4" reloadDelay="11"/>
 </fvTenant>
</polUni>

 	Step 5

 	Create an HSRP interface profile and an HSRP group profile.

Example:
 <polUni>
 <fvTenant name="t9" dn="uni/tn-t9" descr="">
 <l3extOut dn="uni/tn-t9/out-l3extOut1" enforceRtctrl="export" name="l3extOut1">
 <l3extLNodeP name="Node101">
 <l3extLIfP name="eth1-41-v6" ownerKey="" ownerTag="" tag="yellow-green">
 <hsrpIfP name="eth1-41-v6" version="v2">
 <hsrpRsIfPol tnHsrpIfPolName="hsrpIfPol"/>
 <hsrpGroupP descr="" name="HSRPV6-2" groupId="330" groupAf="ipv6" ip="fe80::3" mac="00:00:0C:18:AC:01" ipObtainMode="admin">
 <hsrpRsGroupPol tnHsrpGroupPolName="G1"/>
 </hsrpGroupP>
 </hsrpIfP>
 <l3extRsPathL3OutAtt addr="2002::100/64" descr="" encap="unknown" encapScope="local" ifInstT="l3-port" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[eth1/41]" targetDscp="unspecified">
 <l3extIp addr="2004::100/64"/>
 </l3extRsPathL3OutAtt>
 </l3extLIfP>
 <l3extLIfP name="eth1-41-v4" ownerKey="" ownerTag="" tag="yellow-green">
 <hsrpIfP name="eth1-41-v4" version="v1">
 <hsrpRsIfPol tnHsrpIfPolName="hsrpIfPol"/>
 <hsrpGroupP descr="" name="HSRPV4-2" groupId="51" groupAf="ipv4" ip="177.21.21.21" mac="00:00:0C:18:AC:01" ipObtainMode="admin">
 <hsrpRsGroupPol tnHsrpGroupPolName="G1"/>
 </hsrpGroupP>
 </hsrpIfP>
 <l3extRsPathL3OutAtt addr="177.21.21.11/24" descr="" encap="unknown" encapScope="local" ifInstT="l3-port" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[eth1/41]" targetDscp="unspecified">
 <l3extIp addr="177.21.23.11/24"/>
 </l3extRsPathL3OutAtt>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
 </fvTenant>
</polUni>

 Layer 3
 	 Multicast

 In the ACI fabric, most unicast and multicast routing operate together on the same border leaf switches, with the multicast
 protocol operating over the unicast routing protocols.

 In this
 		architecture, only the border leaf switches run the full Protocol Independent
 		Multicast (PIM) protocol. Non-border leaf switches run PIM in a passive mode on
 		the interfaces. They do not peer with any other PIM routers. The border leaf
 		switches peer with other PIM routers connected to them over L3 Outs and also
 		with each other.
 	

 The following figure
 		shows the border leaf (BL) switches (BL1 and BL2) connecting to routers (R1 and
 		R2) in the multicast cloud. Each virtual routing and forwarding (VRF) in the
 		fabric that requires multicast routing will peer separately with external
 		multicast routers.
 	

 		
 Overview of
 			 Multicast Cloud

[image: ../images/500683.jpg]

 	

 Guidelines for
 	 Configuring Layer 3 Multicast

 See the following
 		guidelines:
 	

 	
 		
 The Layer 3
 			 multicast configuration is done at the VRF level so protocols function within
 			 the VRF and multicast is enabled in a VRF, and each multicast VRF can be turned
 			 on or off independently.
 		

 		

 	
 		
 Once a VRF is
 			 enabled for multicast, the individual bridge domains (BDs) and L3 Outs under
 			 the enabled VRF can be enabled for multicast configuration. By default,
 			 multicast is disabled in all BDs and Layer 3 Outs.
 		

 		

 	
 		
 Layer 3
 			 multicast is not currently supported on VRFs that are configured with a shared
 			 L3 Out.
 		

 		

 	
 		
 Any Source
 			 Multicast (ASM) and Source-Specific Multicast (SSM) are supported.
 		

 		

 	
 		
 Bidirectional
 			 PIM, Rendezvous Point (RP) within the ACI fabric, and PIM IPv6 are currently
 			 not supported.
 		

 		

 	
 		
 IGMP snooping
 			 cannot be disabled on pervasive bridge domains with multicast routing enabled.
 		

 		

 	
 		
 Multicast
 			 routers are not supported in pervasive bridge domains.
 		

 		

 	
 				
 The Layer 3 multicast feature is supported on the following -EX model leaf switches:

 	
 							
 N9K-93180YC-EX

 						

 	
 							
 N9K-93108TC-EX

 						

 	
 							
 N9K-93180LC-EX

 						

 			

 	
 		
 Layer 3 Out ports and sub-interfaces are supported while external SVIs are not supported. Since external SVIs are not supported,
 PIM cannot be enabled in L3-VPC.

 		

 	
 				
 For Layer 3 multicast support for multipod, when the ingress leaf switch receives a packet from a source attached on a bridge
 domain that is enabled for multicast routing, the ingress leaf switch sends only a routed VRF copy to the fabric (routed implies
 that the TTL is decremented by 1, and the source-mac is rewritten with a pervasive subnet MAC). The egress leaf switch also
 routes the packet into receivers in all the relevant bridge domains. Therefore, if a receiver is on the same bridge domain
 as the source, but on a different leaf switch than the source, that receiver continues to get a routed copy, even though it
 is in the same bridge domain.

 				
 For more information, see details about layer 3 multicast support for multipod that leverages existing Layer 2 design, at
 the following link Adding Pods.

 			

 	
 				
 Layer 3 multicast is not supported with FEX. Multicast sources or receivers connected to FEX ports are not supported.

 			

 	[image: ../images/note.gif]
Note
 	

 				
 				
 				
 When you configure Layer 3 Outside (L3Out) connections to external routers, or multipod connections through an Inter-Pod Network
 (IPN), it is critical that the MTU be set appropriately on both sides. On some platforms, such as ACI, Cisco NX-OS, and Cisco IOS, the configurable MTU value takes into account packet headers (resulting in a max packet size to be set as
 9000 bytes), whereas other platforms such as IOS-XR configure the MTU value exclusive of packet headers (resulting in a max
 packet size of 8986 bytes).

 				
 For the appropriate MTU values for each platform, see the relevant configuration guides.

 				
 Cisco highly recommends you test the MTU using CLI-based commands. For example, on the Cisco NX-OS CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

 			

 Configuring Layer
 	 3 Multicast Using REST API

Procedure

 	Step 1

 	Configure
 			 tenant, VRF, and enable multicast on VRF.
 		

Example:
 			

 				<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">
 <fvCtx knwMcastAct="permit" name="ctx1">
 <pimCtxP mtu="1500">
 </pimCtxP>
 </fvCtx>
 </fvTenant>

 			

 		

 	Step 2

 	Configure L3
 			 Out and enable multicast (PIM, IGMP) on L3 Out.
 		

Example:
 			

 				<l3extOut enforceRtctrl="export" name="l3out-pim_l3out1">
 <l3extRsEctx tnFvCtxName="ctx1"/>
 <l3extLNodeP configIssues="" name="bLeaf-CTX1-101">
 <l3extRsNodeL3OutAtt rtrId="200.0.0.1" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
 <l3extLIfP name="if-PIM_Tenant-CTX1" tag="yellow-green">
 <igmpIfP/>
 <pimIfP>
 <pimRsIfPol tDn="uni/tn-PIM_Tenant/pimifpol-pim_pol1"/>
 </pimIfP>
 <l3extRsPathL3OutAtt addr="131.1.1.1/24" ifInstT="l3-port" mode="regular" mtu="1500" tDn="topology/pod-1/paths-101/pathep-[eth1/46]"/>
 </l3extLIfP>
 </l3extLNodeP>
 <l3extRsL3DomAtt tDn="uni/l3dom-l3outDom"/>
 <l3extInstP name="l3out-PIM_Tenant-CTX1-1topo" >
 </l3extInstP>
 <pimExtP enabledAf="ipv4-mcast" name="pim"/>
 </l3extOut>

 			

 		

 	Step 3

 	Configure BD
 			 under tenant and enable multicast and IGMP on BD.
 		

Example:
 			

 				<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">
 <fvBD arpFlood="yes" mcastAllow="yes" multiDstPktAct="bd-flood" name="bd2" type="regular" unicastRoute="yes" unkMacUcastAct="flood" unkMcastAct="flood">
 <igmpIfP/>
 <fvRsBDToOut tnL3extOutName="l3out-pim_l3out1"/>
 <fvRsCtx tnFvCtxName="ctx1"/>
 <fvRsIgmpsn/>
 <fvSubnet ctrl="" ip="41.1.1.254/24" preferred="no" scope="private" virtual="no"/>
 </fvBD>
 </fvTenant>

 			

 		

 	Step 4

 	Configure IGMP
 			 policy and assign it to BD.
 		

Example:
 			

 				<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">
 <igmpIfPol grpTimeout="260" lastMbrCnt="2" lastMbrRespTime="1" name="igmp_pol" querierTimeout="255" queryIntvl="125" robustFac="2" rspIntvl="10" startQueryCnt="2" startQueryIntvl="125" ver="v2">
 </igmpIfPol>
 <fvBD arpFlood="yes" mcastAllow="yes" name="bd2">
 <igmpIfP>
 <igmpRsIfPol tDn="uni/tn-PIM_Tenant/igmpIfPol-igmp_pol"/>
 </igmpIfP>
 </fvBD>
 </fvTenant>

 			

 		

 	Step 5

 	Configure
 			 route map, PIM, and RP policy on VRF.
 		

Example:
 			

 				<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">
 <pimRouteMapPol name="rootMap">
 <pimRouteMapEntry action="permit" grp="224.0.0.0/4" order="10" rp="0.0.0.0" src="0.0.0.0/0"/>
 </pimRouteMapPol>
 <fvCtx knwMcastAct="permit" name="ctx1">
 <pimCtxP ctrl="" mtu="1500">
 <pimStaticRPPol>
 <pimStaticRPEntryPol rpIp="131.1.1.2">
 <pimRPGrpRangePol>
 <rtdmcRsFilterToRtMapPol tDn="uni/tn-PIM_Tenant/rtmap-rootMap"/>
 </pimRPGrpRangePol>
 </pimStaticRPEntryPol>
 </pimStaticRPPol>
 </pimCtxP>
 </fvCtx>
</fvTenant>

 			

 		

 	Step 6

 	Configure PIM
 			 interface policy and apply it on L3 Out.
 		

Example:
 			

 				<fvTenant dn="uni/tn-PIM_Tenant" name="PIM_Tenant">
 <pimIfPol authKey="" authT="none" ctrl="" drDelay="60" drPrio="1" helloItvl="30000" itvl="60" name="pim_pol1"/>
 <l3extOut enforceRtctrl="export" name="l3out-pim_l3out1" targetDscp="unspecified">
 <l3extRsEctx tnFvCtxName="ctx1"/>
 <l3extLNodeP name="bLeaf-CTX1-101">
 <l3extRsNodeL3OutAtt rtrId="200.0.0.1" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
 <l3extLIfP name="if-SIRI_VPC_src_recv-CTX1" tag="yellow-green">
 <pimIfP>
 <pimRsIfPol tDn="uni/tn-tn-PIM_Tenant/pimifpol-pim_pol1"/>
 </pimIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
 </fvTenant>

 			

 		

 Common Pervasive
 	 Gateway

 Multiple ACI fabrics
 		can be configured with an IPv4 common gateway on a per bridge domain basis.
 		Doing so enables moving one or more virtual machines (VM) or conventional hosts
 		across the fabrics while the host retains its IP address. VM host moves across
 		fabrics can be done automatically by the VM hypervisor. The ACI fabrics can be
 		co-located, or provisioned across multiple sites. The Layer 2 connection
 		between the ACI fabrics can be a local link, or can be across a routed WAN
 		link. The following figure illustrates the basic common pervasive gateway
 		topology.
 		

 		 ACI Multi-Fabric
 			 Common Pervasive Gateway

[image: ../images/349864.jpg]

 	

 The per-bridge domain
 		common pervasive gateway configuration requirements are as follows:
 	

 	
 		
 The bridge domain
 			 MAC (mac)
 			 values for each fabric must be unique.
 			

 	[image: ../images/note.gif]
Note
 	

 				
 The default
 				 bridge domain MAC (mac) address values are the same for all ACI fabrics.
 				 The common pervasive gateway requires an administrator to configure the bridge
 				 domain MAC (mac) values to be unique for each ACI fabric.
 				

 			

 		

 		

 	
 		
 The bridge domain
 			 virtual MAC (vmac) address and the subnet virtual IP address must
 			 be the same across all ACI fabrics for that bridge domain. Multiple bridge
 			 domains can be configured to communicate across connected ACI fabrics. The
 			 virtual MAC address and the virtual IP address can be shared across bridge
 			 domains.
 		

 		

 Configuring Common
 	 Pervasive Gateway Using the REST API

 Before You Begin

 		

 	
 			
 The tenant, VRF,
 				and bridge domain are created.
 			

 		

 	

Procedure

 	
 Configure Common
 			 Pervasive Gateway.
 		

Example:
 			 <!-Things that are bolded only matters-->
<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml -->
<polUni>
 <fvTenant name="test">
 <fvCtx name="test"/>

 <fvBD name="test" vmac="12:34:56:78:9a:bc">
 <fvRsCtx tnFvCtxName="test"/>
 <!-- Primary address -->
 <fvSubnet ip="192.168.15.254/24" preferred="yes"/>
 <!-- Virtual address -->
 <fvSubnet ip="192.168.15.1/24" virtual="yes"/>
 </fvBD>

 <fvAp name="test">
 <fvAEPg name="web">
 <fvRsBd tnFvBDName="test"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" encap="vlan-1002"/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 		

 About Explicit Prefix List Support for Route Maps/Profile

 In Cisco APIC, for public bridge domain (BD) subnets and external transit networks, inbound and outbound route controls are
 provided through an explicit prefix list. Inbound and outbound route control for Layer 3 Out is managed by the route map/profile
 (rtctrlProfile). The route map/profile policy supports a fully controllable prefix list for Layer 3 Out in the Cisco ACI fabric.

 The subnets in the prefix list can represent the bridge domain public subnets or external networks. Explicit prefix list presents
 an alternate method and can be used instead of the following:

 	

 Advertising BD subnets through BD to Layer 3 Out relation.

 	[image: ../images/note.gif]
Note
 	

 The subnet in the BD must be marked public for the subnet to be advertised out.

 	

 Specifying a subnet in the l3extInstP with export/import route control for advertising transit and external networks.

 Explicit prefix list is defined through a new match type that is called match route destination (rtctrlMatchRtDest). An example
 usage is provided in the API example that follows.

 	[image: ../images/note.gif]
Note
 	

 For detailed information about route maps, route import and export, route summarization, and route community match, see the
 Cisco Application Centric Infrastructure Fundamentals.

 External Policy Model of API

[image: ../images/501090.jpg]

 Additional information about match rules, set rules when using explicit prefix list are as follows:

 Match Rules

 	

 Under the tenant (fvTenant), you can create match profiles (rtctrlSubjP) for route map filtering. Each match profile can contain
 one or more match rules. Match rule supports multiple match types. Prior to Cisco APIC release 2.1(x), match types supported
 were explicit prefix list and community list.

 Starting with Cisco APIC release 2.1(x), explicit prefix match or match route destination (rtctrlMatchRtDest) is supported.

 Match prefix list (rtctrlMatchRtDest) supports one or more subnets with an optional aggregate flag. Aggregate flags are used
 for allowing prefix matches with multiple masks starting with the mask mentioned in the configuration till the maximum mask
 allowed for the address family of the prefix . This is the equivalent of the "le " option in the prefix-list in NX-OS software
 (example, 10.0.0.0/8 le 32).

 The prefix list can be used for covering the following cases:

 	

 Allow all (0.0.0.0/0 with aggregate flag. equivalent of "0.0.0.0/0 le 32")

 	

 One or more of specific prefixes (example: 10.1.1.0/24)

 	

 One or more of prefixes with aggregate flag (example, equivalent of 10.1.1.0/24 le 32).

 	

 The explicit prefix match rules can contain one of more subnets, and these subnets can be bridge domain public subnets or
 external networks. Subnets can also be aggregated up to the maximum subnet mask (/32 for IPv4 and /128 for IPv6).

 	

 When multiple match rules of different types are present (such as match community and explicit prefix match), the match rule
 is allowed only when the match statements of all individual match types match. This is the equivalent of the AND filter. The
 explicit prefix match is contained by the subject profile (rtctrlSubjP) and will form a logical AND if other match rules are
 present under the subject profile.

 	

 Within a given match type (such as match prefix list), at least one of the match rules statement must match. Multiple explicit
 prefix match (rtctrlMatchRtDest) can be defined under the same subject profile (rtctrlSubjP) which will form a logical OR.

 Set Rules

 	

 Set policies must be created to define set rules that are carried with the explicit prefixes such as set community, set tag.

 Guidelines and Limitations

 	

 You must choose one of the following two methods to configure your route maps. If you use both methods, it will result in
 double entries and undefined route maps.

 	

 Add routes under the bridge domain (BD) and configure a BD to Layer 3 Outside relation

 	

 Configure the match prefix under rtctrlSubjP match profiles.

 	

 Starting 2.3(x), deny-static implicit entry has been removed from Export Route Map. The user needs to configure explicitly the permit and deny entries
 required to control the export of static routes.

 About Route Map/Profile

 The route profile is a logical policy that defines an ordered set (rtctrlCtxP) of logical match action rules with associated
 set action rules. The route profile is the logical abstract of a route map. Multiple route profiles can be merged into a single
 route map. A route profile can be one of the following types:

 	

 Match Prefix and Routing Policy: Pervasive subnets (fvSubnet) and external subnets (l3extSubnet) are combined with a route
 profile and merged into a single route map (or route map entry). Match Prefix and Routing Policy is the default value.

 	

 Match Routing Policy Only: The route profile is the only source of information to generate a route map, and it will overwrite
 other policy attributes.

 	[image: ../images/note.gif]
Note
 	

 When explicit prefix list is used, the type of the route profile should be set to "match routing policy only".

 After the match and set profiles are defined, the route map must be created in the Layer 3 Out. Route maps can be created
 using one of the following methods:

 	

 Create a "default-export" route map for export route control, and a "default-import" route map for import route control.

 	

 Create other route maps (not named default-export or default-import) and setup the relation from one or more l3extInstPs or
 subnets under the l3extInstP.

 	

 In either case, match the route map on explicit prefix list by pointing to the rtctrlSubjP within the route map.

 In the export and import route map, the set and match rules are grouped together along with the relative sequence across the
 groups (rtctrlCtxP)). Additionally, under each group of match and set statements (rtctrlCtxP) the relation to one or more
 match profiles are available (rtctrlSubjP).

 Any protocol enabled on Layer 3 Out (for example BGP protocol), will use the export and import route map for route filtering.

 Aggregation Support for Explicit Prefix List

 Each prefix (rtctrlMatchRtDest) in the match prefixes list can be aggregated to support multiple subnets matching with one
 prefix list entry..

 Aggregated prefixes and BD private subnets: Although subnets in the explicit prefix list match may match the BD private subnets
 using aggregated or exact match, private subnets will not be advertised through the routing protocol using the explicit prefix
 list. The scope of the BD subnet must be set to "public" for the explicit prefix list feature to advertise the BD subnets.

 Configuring Route Map/Profile with Explicit Prefix List Using REST API

 Before You Begin

 	

 Tenant and VRF must be configured.

Procedure

 	
 Configure the route map/profile using explicit prefix list.

Example:
 <?xml version="1.0" encoding="UTF-8"?>
<fvTenant name="PM" status="">
 <rtctrlAttrP name="set_dest">
 <rtctrlSetComm community="regular:as2-nn2:5:24" />
 </rtctrlAttrP>
 <rtctrlSubjP name="allow_dest">
 <rtctrlMatchRtDest ip="192.169.0.0/24" />
 <rtctrlMatchCommTerm name="term1">
 <rtctrlMatchCommFactor community="regular:as2-nn2:5:24" status="" />
 <rtctrlMatchCommFactor community="regular:as2-nn2:5:25" status="" />
 </rtctrlMatchCommTerm>
 <rtctrlMatchCommRegexTerm commType="regular" regex="200:*" status="" />
 </rtctrlSubjP>
 <rtctrlSubjP name="deny_dest">
 <rtctrlMatchRtDest ip="192.168.0.0/24" />
 </rtctrlSubjP>
 <fvCtx name="ctx" />
 <l3extOut name="L3Out_1" enforceRtctrl="import,export" status="">
 <l3extRsEctx tnFvCtxName="ctx" />
 <l3extLNodeP name="bLeaf">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="1.2.3.4" />
 <l3extLIfP name="portIf">
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]" ifInstT="sub-interface" encap="vlan-1503" addr="10.11.12.11/24" />
 <ospfIfP />
 </l3extLIfP>
 <bgpPeerP addr="5.16.57.18/32" ctrl="send-com" />
 <bgpPeerP addr="6.16.57.18/32" ctrl="send-com" />
 </l3extLNodeP>
 <bgpExtP />
 <ospfExtP areaId="0.0.0.59" areaType="nssa" status="" />
 <l3extInstP name="l3extInstP_1" status="">
 <l3extSubnet ip="17.11.1.11/24" scope="import-security" />
 </l3extInstP>
 <rtctrlProfile name="default-export" type="global" status="">
 <rtctrlCtxP name="ctx_deny" action="deny" order="1">
 <rtctrlRsCtxPToSubjP tnRtctrlSubjPName="deny_dest" status="" />
 </rtctrlCtxP>
 <rtctrlCtxP name="ctx_allow" order="2">
 <rtctrlRsCtxPToSubjP tnRtctrlSubjPName="allow_dest" status="" />
 </rtctrlCtxP>
 <rtctrlScope name="scope" status="">
 <rtctrlRsScopeToAttrP tnRtctrlAttrPName="set_dest" status="" />
 </rtctrlScope>
 </rtctrlProfile>
 </l3extOut>
 <fvBD name="testBD">
 <fvRsBDToOut tnL3extOutName="L3Out_1" />
 <fvRsCtx tnFvCtxName="ctx" />
 <fvSubnet ip="40.1.1.12/24" scope="public" />
 <fvSubnet ip="40.1.1.2/24" scope="private" />
 <fvSubnet ip="2003::4/64" scope="public" />
 </fvBD>
</fvTenant>

 Overview

 The IP aging policy tracks and ages unused IPs on an endpoint. Tracking is performed using the endpoint retention policy configured
 for the BD to send ARP requests (for IPv4) and neighbor solicitations (for IPv6) at 75% of the local endpoint aging interval.
 When no response is received from an IP, that IP is aged out.

 This document explains how to configure the IP aging policy.

 Configuring IP Aging Using the REST API

 This section explains how to enable and disable the IP aging policy using the REST API.

Procedure

 	Step 1

 	To enable the IP aging policy:

Example:
 <epIpAgingP adminSt="enabled" descr="" dn="uni/infra/ipAgingP-default" name="default" ownerKey="" ownerTag=""/>

 	Step 2

 	To disable the IP aging policy:

Example:
 <epIpAgingP adminSt="disabled" descr="" dn="uni/infra/ipAgingP-default" name="default" ownerKey="" ownerTag=""/>

 Configuring Route
 	 Summarization for BGP, OSPF, and EIGRP Using the REST API

Procedure

 	Step 1

 	 Configure BGP
 			 route summarization using the REST API as follows:
 		

Example:
 			
<fvTenant name="common">
 <fvCtx name="vrf1"/>
 <bgpRtSummPol name=“bgp_rt_summ” cntrl=‘as-set'/>
 <l3extOut name=“l3_ext_pol” >
 <l3extLNodeP name="bLeaf">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId=“20.10.1.1"/>
 <l3extLIfP name='portIf'>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/31]" ifInstT=‘l3-port’ addr=“10.20.1.3/24/>
 </l3extLIfP>
 </l3extLNodeP>
 <bgpExtP />
 <l3extInstP name="InstP" >
 <l3extSubnet ip="10.0.0.0/8" scope=“export-rtctrl">
 <l3extRsSubnetToRtSumm tDn=“uni/tn-common/bgprtsum-bgp_rt_summ”/>
 <l3extRsSubnetToProfile tnRtctrlProfileName=“rtprof"/>
 </l3extSubnet>
 </l3extInstP>
 <l3extRsEctx tnFvCtxName=“vrf1”/>
 </l3extOut>
</fvTenant>

 		

 	Step 2

 	 Configure OSPF
 			 inter-area and external summarization using the following REST API:
 		

Example:
 			
<?xml version="1.0" encoding="utf-8"?>
<fvTenant name="t20">
 <!--Ospf Inter External route summarization Policy-->
 <ospfRtSummPol cost="unspecified" interAreaEnabled="no" name="ospfext"/>
 <!--Ospf Inter Area route summarization Policy-->
 <ospfRtSummPol cost="16777215" interAreaEnabled="yes" name="interArea"/>
 <fvCtx name="ctx0" pcEnfDir="ingress" pcEnfPref="enforced"/>
 <!-- L3OUT backbone Area-->
 <l3extOut enforceRtctrl="export" name="l3_1" ownerKey="" ownerTag="" targetDscp="unspecified">
 <l3extRsEctx tnFvCtxName="ctx0"/>
 <l3extLNodeP name="node-101">
 <l3extRsNodeL3OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
 <l3extLIfP name="intf-1">
 <l3extRsPathL3OutAtt addr="20.1.5.2/24" encap="vlan-1001" ifInstT="sub-interface" tDn="topology/pod-1/paths-101/pathep-[eth1/33]"/>
 </l3extLIfP>
 </l3extLNodeP>
 <l3extInstP name="l3InstP1">
 <fvRsProv tnVzBrCPName="default"/>
 <!--Ospf External Area route summarization-->
 <l3extSubnet aggregate="" ip="193.0.0.0/8" name="" scope="export-rtctrl">
 <l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-ospfext"/>
 </l3extSubnet>
 </l3extInstP>
 <ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="backbone" areaType="regular"/>
 </l3extOut>
 <!-- L3OUT Regular Area-->
 <l3extOut enforceRtctrl="export" name="l3_2">
 <l3extRsEctx tnFvCtxName="ctx0"/>
 <l3extLNodeP name="node-101">
 <l3extRsNodeL3OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
 <l3extLIfP name="intf-2">
 <l3extRsPathL3OutAtt addr="20.1.2.2/24" encap="vlan-1014" ifInstT="sub-interface" tDn="topology/pod-1/paths-101/pathep-[eth1/11]"/>
 </l3extLIfP>
 </l3extLNodeP>
 <l3extInstP matchT="AtleastOne" name="l3InstP2">
 <fvRsCons tnVzBrCPName="default"/>
 <!--Ospf Inter Area route summarization-->
 <l3extSubnet aggregate="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
 <l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-interArea"/>
 </l3extSubnet>
 </l3extInstP>
 <ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.57" areaType="regular"/>
 </l3extOut>
</fvTenant>

 		

 	Step 3

 	 Configure EIGRP
 			 summarization using the following REST API:
 		

Example:
 			
<fvTenant name="exampleCorp">
 <l3extOut name="out1">
 <l3extInstP name="eigrpSummInstp" >
 <l3extSubnet aggregate="" descr="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
 <l3extRsSubnetToRtSumm/>
 </l3extSubnet>
 </l3extInstP>
 </l3extOut>
 <eigrpRtSummPol name="pol1" />

 			

 	Note

 	
 				
 There is no route summarization policy to be configured for
 				 EIGRP. The only configuration needed for enabling EIGRP summarization is the
 				 summary subnet under the InstP.
 				

 			

 		

 Configuring a Routing Control Protocol Using Import and Export Controls
 	

 This topic provides a typical example that shows how to configure a routing control protocol using import and export controls.
 It assumes that you have configured Layer 3 outside network connections with BGP. You can also perform these tasks for a Layer
 3 outside network configured with OSPF.

 	[image: ../images/note.gif]
Note
 	

 				
 				
 				
 When you configure Layer 3 Outside (L3Out) connections to external routers, or multipod connections through an Inter-Pod Network
 (IPN), it is critical that the MTU be set appropriately on both sides. On some platforms, such as ACI, Cisco NX-OS, and Cisco IOS, the configurable MTU value takes into account packet headers (resulting in a max packet size to be set as
 9000 bytes), whereas other platforms such as IOS-XR configure the MTU value exclusive of packet headers (resulting in a max
 packet size of 8986 bytes).

 				
 For the appropriate MTU values for each platform, see the relevant configuration guides.

 				
 Cisco highly recommends you test the MTU using CLI-based commands. For example, on the Cisco NX-OS CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

 			

 Configuring a Route Control Protocol to Use Import and Export Controls, With the REST API

 This example assumes that you have configured the Layer 3 outside network connections using BGP. It is also possible to perform
 these tasks for a network using OSPF.

 Before You Begin

 		

 	
 			
 The tenant,
 				private network, and bridge domain are created.
 			

 		

 	
 			
 The Layer 3
 				outside tenant network is configured.
 			

 		

 	

Procedure

 	
 Configure the
 			 route control protocol using import and export controls.
 		

Example:
 			
<l3extOut descr="" dn="uni/tn-Ten_ND/out-L3Out1" enforceRtctrl="export" name="L3Out1" ownerKey="" ownerTag="" targetDscp="unspecified">
 <l3extLNodeP descr="" name="LNodeP1" ownerKey="" ownerTag="" tag="yellow-green" targetDscp="unspecified">
 <l3extRsNodeL3OutAtt rtrId="1.2.3.4" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101">
 <l3extLoopBackIfP addr="2000::3" descr="" name=""/>
 </l3extRsNodeL3OutAtt>
 <l3extLIfP descr="" name="IFP1" ownerKey="" ownerTag="" tag="yellow-green">
 <ospfIfP authKeyId="1" authType="none" descr="" name="">
 <ospfRsIfPol tnOspfIfPolName=""/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsPathL3OutAtt addr="10.11.12.10/24" descr="" encap="unknown" ifInstT="l3-port"
llAddr="::" mac="00:22:BD:F8:19:FF" mtu="1500" tDn="topology/pod-1/paths-101/pathep-[eth1/17]" targetDscp="unspecified"/>
 </l3extLIfP>
 </l3extLNodeP>
 <l3extRsEctx tnFvCtxName="PVN1"/>
 <l3extInstP descr="" matchT="AtleastOne" name="InstP1" prio="unspecified" targetDscp="unspecified">
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <l3extSubnet aggregate="" descr="" ip="192.168.1.0/24" name="" scope=""/>
 </l3extInstP>
 <ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.1" areaType="nssa" descr=""/>
 <rtctrlProfile descr="" name="default-export" ownerKey="" ownerTag="">
 <rtctrlCtxP descr="" name="routecontrolpvtnw" order="3">
 <rtctrlScope descr="" name="">
 <rtctrlRsScopeToAttrP tnRtctrlAttrPName="actionruleprofile2"/>
 </rtctrlScope>
 </rtctrlCtxP>
 </rtctrlProfile>
 </l3extOut>

 		

 Layer 3 Out to Layer 3 Out Inter-VRF Leaking

 Starting with Cisco APIC release 2.2(2e) , when there are two Layer 3 Outs in two different VRFs, inter-VRF leaking is supported.

 For this feature to work, the following conditions must be satisfied:

 	

 A contract between the two Layer 3 Outs is required.

 	

 Routes of connected and transit subnets for a Layer 3 Out are leaked by enforcing contracts (L3Out-L3Out as well as L3Out-EPG)
 and without leaking the dynamic or static routes between VRFs.

 	

 Dynamic or static routes are leaked for a Layer 3 Out by enforcing contracts (L3Out-L3Out as well as L3Out-EPG) and without
 advertising directly connected or transit routes between VRFs.

 	

 Shared Layer 3 Outs in different VRFs can communicate with each other.

 	

 Two Layer 3 Outs can be in two different VRFs, and they can successfully exchange routes.

 	

 This enhancement is similar to the Application EPG to Layer 3 Out inter-VRF communications. The only difference is that instead
 of an Application EPG there is another Layer 3 Out. Therefore, in this case, the contract is between two Layer 3 Outs.

 In the following figure, there are two Layer 3 Outs with a shared subnet. There is a contract between the Layer 3 external
 instance profile (l3extInstP) in both the VRFs. In this case, the Shared Layer 3 Out for VRF1 can communicate with the Shared
 Layer 3 Out for VRF2.

 Shared Layer 3 Outs Communicating Between Two VRFs

[image: ../images/501183.jpg]

 Configuring Two Shared Layer 3 Outs in Two VRFs Using REST API

 The following REST API configuration example that displays how two shared Layer 3 Outs in two VRFs communicate.

Procedure

 	Step 1

 	Configure the provider Layer 3 Out.

Example:
 <tenant name=“t1_provider”>
<fvCtx name=“VRF1">
<l3extOut name="T0-o1-L3OUT-1">
 <l3extRsEctx tnFvCtxName="o1"/>
 <ospfExtP areaId='60'/>
 <l3extInstP name="l3extInstP-1">
 <fvRsProv tnVzBrCPName="vzBrCP-1">
 </fvRsProv>
 <l3extSubnet ip="192.168.2.0/24" scope=“shared-rtctrl, shared-security" aggregate=""/>
 </l3extInstP>
</l3extOut>
</tenant>

 	Step 2

 	Configure the consumer Layer 3 Out.

Example:
 <tenant name=“t1_consumer”>
<fvCtx name=“VRF2">
<l3extOut name="T0-o1-L3OUT-1">
 <l3extRsEctx tnFvCtxName="o1"/>
 <ospfExtP areaId=‘70'/>
 <l3extInstP name="l3extInstP-2">
 <fvRsCons tnVzBrCPName="vzBrCP-1">
 </fvRsCons>
 <l3extSubnet ip="199.16.2.0/24" scope=“shared-rtctrl, shared-security" aggregate=""/>
 </l3extInstP>
</l3extOut>
</tenant>

 Overview

 This topic provides a typical example of how to configure an interleak of external routes such as OSPF when using Cisco APIC.

 Interleak from OSPF has been available in earlier releases. The feature now enables the user to set attributes, such as community,
 preference, and metric for route leaking from OSPF to BGP.

 Configuring
 	 Interleak of External Routes Using the REST API

 Before You Begin

 	

 The tenant, VRF, and bridge domain are created.

 	

 The external routed domain is created.

Procedure

 	
 Configure an
 			 interleak of external routes:
 		

Example:
 			
<l3extOut descr="" enforceRtctrl="export" name="out1" ownerKey="" ownerTag="" targetDscp="unspecified">
 <l3extLNodeP configIssues="" descr="" name="Lnodep1" ownerKey="" ownerTag="" tag="yellow-green" targetDscp="unspecified">
 <l3extRsNodeL3OutAtt rtrId="1.2.3.4" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
 <l3extLIfP descr="" name="lifp1" ownerKey="" ownerTag="" tag="yellow-green">
 <ospfIfP authKeyId="1" authType="none" descr="" name="">
 <ospfRsIfPol tnOspfIfPolName=""/>
 </ospfIfP>
 <l3extRsNdIfPol tnNdIfPolName=""/>
 <l3extRsIngressQosDppPol tnQosDppPolName=""/>
 <l3extRsEgressQosDppPol tnQosDppPolName=""/>
 <l3extRsPathL3OutAtt addr="12.12.7.16/24" descr="" encap="unknown" encapScope="local" ifInstT="l3-port" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[eth1/11]" targetDscp="unspecified"/>
 </l3extLIfP>
 </l3extLNodeP>
 <l3extRsEctx tnFvCtxName="ctx1"/>
 <l3extRsInterleakPol tnRtctrlProfileName="interleak"/>
 <l3extRsL3DomAtt tDn="uni/l3dom-Domain"/>
 <l3extInstP descr="" matchT="AtleastOne" name="InstP1" prio="unspecified" targetDscp="unspecified">
 <fvRsCustQosPol tnQosCustomPolName=""/>
 <l3extSubnet aggregate="" descr="" ip="14.15.16.0/24" name="" scope="export-rtctrl,import-security"/>
 </l3extInstP>
 <ospfExtP areaCost="1" areaCtrl="redistribute,summary" areaId="0.0.0.1" areaType="nssa" descr=""/>
 </l3extOut>

 		

 About SVI External Encapsulation Scope

 In the context of a Layer 3 Out configuration, a switch virtual interfaces (SVI), is configured to provide connectivity between
 the ACI leaf switch and a router.

 By default, when a single Layer 3 Out is configured with SVI interfaces, the VLAN encapsulation spans multiple nodes within
 the fabric. This happens because the ACI fabric configures the same bridge domain (VXLAN VNI) across all the nodes in the
 fabric where the Layer 3 Out SVI is deployed as long as all SVI interfaces use the same external encapsulation (SVI) as shown
 in the figure.

 However, when different Layer 3 Outs are deployed, the ACI fabric uses different bridge domains even if they use the same
 external encapsulation (SVI) as shown in the figure:

 Local Scope Encapsulation and One Layer 3 Out

[image: ../images/501360.jpg]

 Local Scope Encapsulation and Two Layer 3 Outs

[image: ../images/501358.jpg]

 Starting with Cisco APIC release 2.3, it is now possible to choose the behavior when deploying two (or more) Layer 3 Outs
 using the same external encapsulation (SVI).

 The encapsulation scope can now be configured as Local or VRF:

 	

 Local scope (default): The example behavior is displayed in the figure titled Local Scope Encapsulation and Two Layer 3 Outs.

 	

 VRF scope: The ACI fabric configures the same bridge domain (VXLAN VNI) across all the nodes and Layer 3 Out where the same
 external encapsulation (SVI) is deployed. See the example in the figure titled VRF Scope Encapsulation and Two Layer 3 Outs.

 VRF Scope Encapsulation and Two Layer 3 Outs

[image: ../images/501359.jpg]

 Encapsulation Scope Syntax

 The options for configuring the scope of the encapsulation used for the Layer 3 Out profile are as follows:

 	

 Ctx—The same external SVI in all Layer 3 Outs in the same VRF for a given VLAN encapsulation. This is a global value.

 	

 Local —A unique external SVI per Layer 3 Out. This is the default value.

 The mapping among the CLI, API, and GUI syntax is as follows:

 Encapsulation Scope Syntax

 	

 CLI

 	

 API

 	

 GUI

 	

 l3out

 	

 local

 	

 Local

 	

 vrf

 	

 ctx

 	

 VRF

 	[image: ../images/note.gif]
Note
 	

 The CLI commands to configure encapsulation scope are only supported when the VRF is configured through a named Layer 3 Out
 configuration.

 Configuring SVI Interface Encapsulation Scope Using the REST API

 Before You Begin

The interface selector is configured.

Procedure

 	
 Configure the SVI interface encapsulation scope.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- /api/node/mo/.xml -->
<polUni>
	<fvTenant name="coke">
		<l3extOut descr="" dn="uni/tn-coke/out-l3out1" enforceRtctrl="export" name="l3out1" nameAlias="" ownerKey="" ownerTag="" targetDscp="unspecified">
			<l3extRsL3DomAtt tDn="uni/l3dom-Dom1"/>
			<l3extRsEctx tnFvCtxName="vrf0"/>
			<l3extLNodeP configIssues="" descr="" name="__ui_node_101" nameAlias="" ownerKey="" ownerTag="" tag="yellow-green" targetDscp="unspecified">
				<l3extRsNodeL3OutAtt rtrId="1.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
				<l3extLIfP descr="" name="int1_11" nameAlias="" ownerKey="" ownerTag="" tag="yellow-green">
					<l3extRsPathL3OutAtt addr="1.2.3.4/24" descr="" encap="vlan-2001" encapScope="ctx" ifInstT="ext-svi" llAddr="0.0.0.0" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[eth1/5]" targetDscp="unspecified"/>
					<l3extRsNdIfPol tnNdIfPolName=""/>
					<l3extRsIngressQosDppPol tnQosDppPolName=""/>
					<l3extRsEgressQosDppPol tnQosDppPolName=""/>
				</l3extLIfP>
			</l3extLNodeP>
			<l3extInstP descr="" matchT="AtleastOne" name="epg1" nameAlias="" prefGrMemb="exclude" prio="unspecified" targetDscp="unspecified">
				<l3extSubnet aggregate="" descr="" ip="101.10.10.1/24" name="" nameAlias="" scope="import-security"/>
				<fvRsCustQosPol tnQosCustomPolName=""/>
			</l3extInstP>
		</l3extOut>
	</fvTenant>
</polUni>

 Guidelines for
 	 Configuring a BGP Layer 3 Outside Network Connection

 When configuring a BGP
 		external routed network, follow these guidelines:
 	

 	
 		
 Whenever a router ID is created on a leaf switch, it creates an internal loopback address. When setting up a BGP connection
 on a leaf switch, your router ID cannot be the same as the interface IP address as it is not supported on the ACI leaf switch.
 The router ID must be a different address in a different subnet. On the external Layer 3 device, the router ID can be the
 loopback address or an interface address. Ensure that the route to leaf router ID is present in the routing table of the Layer3
 device either through static route or OSPF configuration. Also, when setting up the BGP neighbor on a Layer 3 device, the
 peer IP address that is used must be the router ID of the leaf switch.

 		

 	
 		
 While configuring
 			 two external Layer 3 networks with BGP on the same node, loopback addresses
 			 must be explicitly defined. Failing to follow this guideline can prevent BGP
 			 from being established.
 		

 		

 	
 		
 By definition, the
 			 router ID is a loopback interface. To change the router ID and assign a
 			 different address for loopback, you must create a loopback interface policy.
 			 (The loopback policy can be configured as one for each address family, IPv4 and
 			 IPv6.) If you do not wish to create a loopback policy, then you can enable a
 			 router ID loopback which is enabled by default. If the router ID loopback is
 			 disabled, no loopback is created for the specific Layer 3 outside on which it
 			 is deployed.
 		

 		

 	
 		
 This configuration
 			 task is applicable for iBGP and eBGP. If the BGP configuration is on a loopback
 			 address then it can be an iBGP session or a multi-hop eBGP session. If the peer
 			 IP address is for a physical interface where the BGP peer is defined, then the
 			 physical interface is used.
 		

 		

 	
 		
 The user must
 			 configure an IPv6 address to enable peering over loopback using IPv6.
 		

 		

 	
 		
 The autonomous
 			 system feature can only be used for eBGP peers. It enables a router to appear
 			 to be a member of a second autonomous system (AS), in addition to its real AS.
 			 Local AS allows two ISPs to merge without modifying peering arrangements.
 			 Routers in the merged ISP become members of the new autonomous system but
 			 continue to use their old AS numbers for their customers.
 		

 		

 	
 		
 Starting with release 1.2(1x), tenant networking protocol policies
 			 for BGP
 			 l3extOut connections can be configured with a
 			 maximum prefix limit that enables monitoring and restricting the number of
 			 route prefixes received from a peer. Once the max prefix limit is exceeded, a
 			 log entry can be recorded, further prefixes can be rejected, the connection can
 			 be restarted if the count drops below the threshold in a fixed interval, or the
 			 connection is shut down. Only one option can be used at a time. The default
 			 setting is a limit of 20,000 prefixes, after which new prefixes are rejected.
 			 When the reject option is deployed, BGP accepts one more prefix beyond the
 			 configured limit and the APIC raises a fault.
 		

 				

 	[image: ../images/note.gif]
Note
 	

 				
 				
 				
 When you configure Layer 3 Outside (L3Out) connections to external routers, or multipod connections through an Inter-Pod Network
 (IPN), it is critical that the MTU be set appropriately on both sides. On some platforms, such as ACI, Cisco NX-OS, and Cisco IOS, the configurable MTU value takes into account packet headers (resulting in a max packet size to be set as
 9000 bytes), whereas other platforms such as IOS-XR configure the MTU value exclusive of packet headers (resulting in a max
 packet size of 8986 bytes).

 				
 For the appropriate MTU values for each platform, see the relevant configuration guides.

 				
 Cisco highly recommends you test the MTU using CLI-based commands. For example, on the Cisco NX-OS CLI, use a command such as ping 1.1.1.1 df-bit packet-size 9000 source-interface ethernet 1/1.

 			

 		

 BGP Connection Types and Loopback Guidelines

 		
 The ACI supports the following BGP connection types and summarizes the loopback guidelines for them:

 	

 	
 				
 BGP
 				 Connection Type
 				

 			

 	
 				
 Loopback
 				 required
 				

 			

 	
 				
 Loopback same
 				 as Router ID
 				

 			

 	
 				
 Static/OSPF
 				 route required
 				

 			

 	
 				
 iBGP direct
 				

 			

 	
 				
 No
 				

 			

 	
 				
 Not applicable
 				
 				

 			

 	
 				
 No
 				

 			

 	
 				
 iBGP loopback
 				 peering
 				

 			

 	
 				
 Yes, a
 				 separate loopback per BGP peer
 				

 			

 	
 				
 No, if
 				 multiple Layer 3 out are on the same node
 				

 			

 	
 				
 Yes
 				

 			

 	
 				
 eBGP direct
 				

 			

 	
 				
 No
 				

 			

 	
 				
 Not
 				 applicable
 				

 			

 	
 				
 No
 				

 			

 	
 				
 eBGP loopback
 				 peering (multi-hop)
 				

 			

 	
 				
 Yes, a
 				 separate loopback per BGP peer
 				

 			

 	
 				
 No, if
 				 multiple Layer 3 out are on the same node
 				

 			

 	
 				
 Yes
 				

 			

 Per VRF Per Node BGP Timer Values

 Prior to the introduction of this feature, for a given VRF, all nodes used the same BGP timer values.

 With the introduction of the per VRF per node BGP timer values feature, BGP timers can be defined and associated on a per
 VRF per node basis. A node can have multiple VRFs, each corresponding to a fvCtx. A node configuration (l3extLNodeP) can now contain configuration for BGP Protocol Profile (bgpProtP) which in turn refers to the desired BGP Context Policy (bgpCtxPol). This makes it possible to have a different node within the same VRF contain different BGP timer values.

 For each VRF, a node has a bgpDom concrete MO. Its name (primary key) is the VRF, <fvTenant>:<fvCtx>. It contains the BGP timer values as attributes (for example, holdIntvl, kaIntvl, maxAsLimit).

 All the steps necessary to create a valid Layer 3 Out configuration are required to successfully apply a per VRF per node
 BGP timer. For example, MOs such as the following are required: fvTenant, fvCtx, l3extOut, l3extInstP, LNodeP, bgpRR.

 On a node, the BGP timer policy is chosen based on the following algorithm:

 	

 If bgpProtP is specified, then use bgpCtxPol referred to under bgpProtP.

 	

 Else, if specified, use bgpCtxPol referred to under corresponding fvCtx.

 	

 Else, if specified, use the default policy under the tenant, for example, uni/tn-<tenant>/bgpCtxP-default.

 	

 Else, use the default policy under tenant common, for example, uni/tn-common/bgpCtxP-default. This one is pre-programmed.

 Configuring an
 	 MP-BGP Route Reflector Using the REST API

Procedure

 	Step 1

 	 Mark the spine
 			 switches as route reflectors.
 		

Example:
 			 POST https://apic-ip-address/api/policymgr/mo/uni/fabric.xml

<bgpInstPol name="default">
 <bgpAsP asn="1" />
 <bgpRRP>
 <bgpRRNodePEp id=“<spine_id1>”/>
 <bgpRRNodePEp id=“<spine_id2>”/>
 </bgpRRP>
</bgpInstPol>

 		

 	Step 2

 	Set up the pod
 			 selector using the following post.
 		

Example:
 			
 For the FuncP
 				setup—
 			

 			 POST https://apic-ip-address/api/policymgr/mo/uni.xml

<fabricFuncP>
 <fabricPodPGrp name="bgpRRPodGrp”>
 <fabricRsPodPGrpBGPRRP tnBgpInstPolName="default" />
 </fabricPodPGrp>
</fabricFuncP>

 		

Example:
 			
 For the PodP
 				setup—
 			

 			 POST https://apic-ip-address/api/policymgr/mo/uni.xml

<fabricPodP name="default">
 <fabricPodS name="default" type="ALL">
 <fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-bgpRRPodGrp"/>
 </fabricPodS>
</fabricPodP>

 		

 Configuring BGP
 	 External Routed Network Using the REST API

 Before You Begin

 		
 The tenant where you
 		 configure the BGP external routed network is already created.
 		

 	

Procedure

 	
 The following shows how to configure the BGP external routed
 			 network using the REST API:
 		

Example:
 			
<l3extOut descr="" dn="uni/tn-t1/out-l3out-bgp" enforceRtctrl="export" name="l3out-bgp" ownerKey="" ownerTag="" targetDscp="unspecified">
<l3extRsEctx tnFvCtxName="ctx3"/>
<l3extLNodeP configIssues="" descr="" name="l3extLNodeP_1" ownerKey="" ownerTag="" tag="yellow-green" targetDscp="unspecified">
<l3extRsNodeL3OutAtt rtrId="1.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<l3extLIfP descr="" name="l3extLIfP_2" ownerKey="" ownerTag="" tag="yellow-green">
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="3001::31:0:1:2/120" descr="" encap="vlan-3001" encapScope="local" ifInstT="sub-interface" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[eth1/8]" targetDscp="unspecified">
<bgpPeerP addr="3001::31:0:1:0/120" allowedSelfAsCnt="3" ctrl="send-com,send-ext-com" descr="" name="" peerCtrl="bfd" privateASctrl="remove-all,remove-exclusive,replace-as" ttl="1" weight="1000">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="3001" descr="" name=""/>
</bgpPeerP>
</l3extRsPathL3OutAtt>
</l3extLIfP>
<l3extLIfP descr="" name="l3extLIfP_1" ownerKey="" ownerTag="" tag="yellow-green">
<l3extRsNdIfPol tnNdIfPolName=""/>
<l3extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>
<l3extRsPathL3OutAtt addr="31.0.1.2/24" descr="" encap="vlan-3001" encapScope="local" ifInstT="sub-interface" llAddr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[eth1/8]" targetDscp="unspecified">
<bgpPeerP addr=“31.0.1.0/24" allowedSelfAsCnt="3" ctrl="send-com,send-ext-com" descr="" name="" peerCtrl="" privateASctrl="remove-all,remove-exclusive,replace-as" ttl="1" weight="100">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpLocalAsnP asnPropagate="none" descr="" localAsn="200" name=""/>
<bgpAsP asn="3001" descr="" name=""/>
</bgpPeerP>
</l3extRsPathL3OutAtt>
</l3extLIfP>
</l3extLNodeP>
<l3extRsL3DomAtt tDn="uni/l3dom-l3-dom"/>
<l3extRsDampeningPol af="ipv6-ucast" tnRtctrlProfileName="damp_rp"/>
<l3extRsDampeningPol af="ipv4-ucast" tnRtctrlProfileName="damp_rp"/>
<l3extInstP descr="" matchT="AtleastOne" name="l3extInstP_1" prio="unspecified" targetDscp="unspecified">
<l3extSubnet aggregate="" descr="" ip="130.130.130.0/24" name="" scope="import-rtctrl">
</l3extSubnet>
<l3extSubnet aggregate="" descr="" ip="130.130.131.0/24" name="" scope="import-rtctrl"/>
<l3extSubnet aggregate="" descr="" ip="120.120.120.120/32" name="" scope="export-rtctrl,import-security"/>
<l3extSubnet aggregate="" descr="" ip="3001::130:130:130:100/120" name="" scope="import-rtctrl"/>
</l3extInstP>
<bgpExtP descr=""/>
</l3extOut>
<rtctrlProfile descr="" dn="uni/tn-t1/prof-damp_rp" name="damp_rp" ownerKey="" ownerTag="" type="combinable">
	<rtctrlCtxP descr="" name="ipv4_rpc" order="0">
		<rtctrlScope descr="" name="">
			<rtctrlRsScopeToAttrP tnRtctrlAttrPName="act_rule"/>
		</rtctrlScope>
	</rtctrlCtxP>
</rtctrlProfile>
<rtctrlAttrP descr="" dn="uni/tn-t1/attr-act_rule" name="act_rule">
		<rtctrlSetDamp descr="" halfLife="15" maxSuppressTime="60" name="" reuse="750" suppress="2000" type="dampening-pol"/>
</rtctrlAttrP>

 		

 Configuring BFD
 	 Consumer Protocols Using the REST API

 Before You Begin

 	

Procedure

 	Step 1

 	The following
 			 example shows the interface configuration for bidirectional forwarding
 			 detection (BFD):
 		

Example:
 			
<fvTenant name="ExampleCorp">
 <bfdIfPol name=“bfdIfPol" minTxIntvl="400" minRxIntvl="400" detectMult="5" echoRxIntvl="400" echoAdminSt="disabled"/>
 <l3extOut name="l3-out">
 <l3extLNodeP name="leaf1">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
 <l3extLIfP name='portIpv4'>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port' addr="10.0.0.1/24" mtu="1500"/>
 <bfdIfP type=“sha1” key=“password">
 <bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
 </bfdIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
</fvTenant>

 		

 	Step 2

 	The following
 			 example shows the interface configuration for enabling BFD on OSPF and EIGRP:
 		

Example:
 			
<fvTenant name=“ExampleCorp">
 <ospfIfPol name="ospf_intf_pol" cost="10" ctrl="bfd”/>
 <eigrpIfPol ctrl="nh-self,split-horizon,bfd" dn="uni/tn-Coke/eigrpIfPol-eigrp_if_default"
</fvTenant>

 		

 	Step 3

 	The following
 			 example shows the interface configuration for enabling BFD on BGP:
 		

Example:
 			
<fvTenant name="ExampleCorp">
 <l3extOut name="l3-out">
 <l3extLNodeP name="leaf1">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
 <l3extLIfP name='portIpv4'>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port' addr="10.0.0.1/24" mtu="1500">
 <bgpPeerP addr="4.4.4.4/24" allowedSelfAsCnt="3" ctrl="bfd" descr="" name="" peerCtrl="" ttl="1">
 <bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
 <bgpAsP asn="3" descr="" name=""/>
 </bgpPeerP>
 </l3extRsPathL3OutAtt>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
</fvTenant>

 		

 	Step 4

 	The following example shows the interface configuration for
 			 enabling BFD on Static Routes:
 		

Example:
 			
<fvTenant name="ExampleCorp">
 <l3extOut name="l3-out">
 <l3extLNodeP name="leaf1">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2">
 <ipRouteP ip=“192.168.3.4" rtCtrl="bfd">
 <ipNexthopP nhAddr="192.168.62.2"/>
 </ipRouteP>
 </l3extRsNodeL3OutAtt>
 <l3extLIfP name='portIpv4'>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" ifInstT='l3-port' addr="10.10.10.2/24" mtu="1500" status="created,modified" />
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
</fvTenant>

 		

 Configuring BFD
 	 Globally Using the REST API

 Before You Begin

 	

Procedure

 	
 The following REST API shows the global configuration for
 			 bidirectional forwarding detection (BFD):
 		

Example:
 			
<polUni>
 <infraInfra>
 <bfdIpv4InstPol name="default" echoSrcAddr="1.2.3.4" slowIntvl="1000" minTxIntvl="150" minRxIntvl="250" detectMult="5" echoRxIntvl="200"/>
 <bfdIpv6InstPol name="default" echoSrcAddr="34::1/64" slowIntvl="1000" minTxIntvl="150" minRxIntvl="250" detectMult="5" echoRxIntvl="200"/>
 </infraInfra>
</polUni>

 		

 Configuring BFD
 	 Interface Override Using the REST API

 Before You Begin

 	

Procedure

 	
 The following
 			 REST API shows the interface override configuration for bidirectional
 			 forwarding detection (BFD):
 		

Example:
 			
<fvTenant name="ExampleCorp">
 <bfdIfPol name=“bfdIfPol" minTxIntvl="400" minRxIntvl="400" detectMult="5" echoRxIntvl="400" echoAdminSt="disabled"/>
 <l3extOut name="l3-out">
 <l3extLNodeP name="leaf1">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
 <l3extLIfP name='portIpv4'>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/11]" ifInstT='l3-port' addr="10.0.0.1/24" mtu="1500"/>
 <bfdIfP type=“sha1” key=“password">
 <bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
 </bfdIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
</fvTenant>

 		

 Configuring a Per VRF Per Node BGP Timer Using the REST API

The following example shows how to configure Per VRF Per node BGP timer in a node. Configure bgpProtP under l3extLNodeP configuration. Under bgpProtP, configure a relation (bgpRsBgpNodeCtxPol) to the desired BGP Context Policy (bgpCtxPol).

Procedure

 	
 Configure a node specific BGP timer policy on node1, and configure node2 with a BGP timer policy that is not node specific.

Example:
 POST https://apic-ip-address/mo.xml

<fvTenant name="tn1" >
 <bgpCtxPol name="pol1" staleIntvl="25" />
 <bgpCtxPol name="pol2" staleIntvl="35" />
 <fvCtx name="ctx1" >
 <fvRsBgpCtxPol tnBgpCtxPolName="pol1"/>
 </fvCtx>
 <l3extout name="out1" >
 <l3extRsEctx toFvCtxName="ctx1" />
 <l3extLNodeP name="node1" >
 <bgpProtP name="protp1" >
 <bgpRsBgpNodeCtxPol tnBgpCtxPolName="pol2" />
 </bgpProtP>
 </l3extLNodeP>
 <l3extLNodeP name="node2" >
 </l3extLNodeP>

 In this example, node1 gets BGP timer values from policy pol2, and node2 gets BGP timer values from pol1. The timer values are applied to the bgpDom corresponding to VRF tn1:ctx1. This is based upon the BGP timer policy that is chosen following the algorithm described in the Per VRF Per Node BPG Timer Values section.

 Deleting a Per VRF Per Node BGP Timer Using the REST API

The following example shows how to delete an existing Per VRF Per node BGP timer in a node.

Procedure

 	
 Delete the node specific BGP timer policy on node1.

Example:
 POST https://apic-ip-address/mo.xml

<fvTenant name="tn1" >
 <bgpCtxPol name="pol1" staleIntvl="25" />
 <bgpCtxPol name="pol2" staleIntvl="35" />
 <fvCtx name="ctx1" >
 <fvRsBgpCtxPol tnBgpCtxPolName="pol1"/>
 </fvCtx>
 <l3extout name="out1" >
 <l3extRsEctx toFvCtxName="ctx1" />
 <l3extLNodeP name="node1" >
 <bgpProtP name="protp1" status="deleted" >
 <bgpRsBgpNodeCtxPol tnBgpCtxPolName="pol2" />
 </bgpProtP>
 </l3extLNodeP>
 <l3extLNodeP name="node2" >
 </l3extLNodeP>

 The code phrase <bgpProtP name="protp1" status="deleted" > in the example above, deletes the BGP timer policy. After the deletion, node1 defaults to the BGP timer policy for the VRF with which node1 is associated, which is pol1 in the above example.

 OSPF Layer 3 Outside
 	 Connections

 OSPF Layer 3 Outside
 		connections can be normal or NSSA areas. The backbone (area 0) area is also
 		supported as an OSPF Layer 3 Outside connection area. ACI supports both OSPFv2
 		for IPv4 and OSPFv3 for IPv6. When creating an OSPF Layer 3 Outside, it is not
 		necessary to configure the OSPF version. The correct OSPF process is created
 		automatically based on the interface profile configuration (IPv4 or IPv6
 		addressing). Both IPv4 and IPv6 protocols are supported on the same interface
 		(dual stack) but it is necessary to create two separate interface profiles.
 	

 Layer 3 Outside
 		connections are supported for the routed interfaces, routed sub-interfaces, and
 		SVIs. The SVIs are used when there is a need to share the physical connect for
 		both L2 and L3 traffic. The SVIs are supported on ports, port-channels, and VPC
 		port-channels.
 	

 OSPF Layer3 Out Connections

[image: ../images/349767.jpg]

 When an SVI is used
 		for an Layer 3 Outside connection, an external bridge domain is created on the
 		border leaf switches. The external bridge domain allows connectivity between
 		the two VPC switches across the ACI fabric. This allows both the VPC switches
 		to establish the OSPF adjacencies with each other and the external OSPF device.
 		
 	

 When running OSPF over
 		a broadcast network, the time to detect a failed neighbor is the dead time
 		interval (default 40 seconds). Reestablishing the neighbor adjacencies after a
 		failure may also take longer due to designated router (DR) election.
 	

 	[image: ../images/note.gif]
Note
 	

 		
 A link or
 		 port-channel failure to one VPC Node does not cause an OSPF adjacency to go
 		 down. The OSPF adjacency can stay up via the external BD accessible through the
 		 other VPC node.
 		

 	

 Creating OSPF
 	 External Routed Network for Management Tenant Using REST API

 		

 	
 			
 You must verify
 				that the router ID and the logical interface profile IP address are different
 				and do not overlap.
 			

 		

 	
 			
 The following
 				steps are for creating an OSPF external routed network for a management tenant.
 				To create an OSPF external routed network for a tenant, you must choose a
 				tenant and create a VRF for the tenant.
 			

 		

 	
 			
 For more details, see Cisco APIC and Transit Routing.

 		

 	

Procedure

 	
 Create an OSPF
 			 external routed network for management tenant.
 		

Example:
 			 POST: https://apic-ip-address/api/mo/uni/tn-mgmt.xml

<fvTenant name="mgmt">
 <fvBD name="bd1">
 <fvRsBDToOut tnL3extOutName="RtdOut" />
 <fvSubnet ip="1.1.1.1/16" />
 <fvSubnet ip="1.2.1.1/16" />
 <fvSubnet ip="40.1.1.1/24" scope="public" />
 <fvRsCtx tnFvCtxName="inb" />
 </fvBD>
 <fvCtx name="inb" />

 <l3extOut name="RtdOut">
 <l3extRsL3DomAtt tDn="uni/l3dom-extdom"/>
 <l3extInstP name="extMgmt">
 </l3extInstP>
 <l3extLNodeP name="borderLeaf">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="10.10.10.10"/>
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-102" rtrId="10.10.10.11"/>
 <l3extLIfP name='portProfile'>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/40]" ifInstT='l3-port' addr="192.168.62.1/24"/>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-102/pathep-[eth1/40]" ifInstT='l3-port' addr="192.168.62.5/24"/>
 <ospfIfP/>
 </l3extLIfP>
 </l3extLNodeP>
 <l3extRsEctx tnFvCtxName="inb"/>
 <ospfExtP areaId="57" />
 </l3extOut>
</fvTenant>

 		

 Overview

 This article provides
 		a typical example of how to configure Enhanced Interior Gateway Routing
 		Protocol (EIGRP) when using the Cisco
 		APIC.
 		The following information applies when configuring EIGRP:
 	

 	
 		
 The tenant, VRF, and bridge domain must already be created.
 		

 		

 	
 		
 The Layer 3 outside tenant network must already be configured.
 		

 		

 	
 		
 The route control profile under routed outside must already be
 			 configured.
 		

 		

 	
 		
 The EIGRP VRF
 			 policy is the same as the EIGRP family context policy.
 		

 		

 	
 		
 EIGRP supports
 			 only export route control profile. The configuration related to route controls
 			 is common across all the protocols.
 		

 		

 You can configure
 		EIGRP to perform automatic summarization of subnet routes (route summarization)
 		into network-level routes. For example, you can configure subnet 131.108.1.0 to
 		be advertised as 131.108.0.0 over interfaces that have subnets of 192.31.7.0
 		configured. Automatic summarization is performed when there are two or more
 		network router configuration commands configured for the EIGRP process. By
 		default, this feature is enabled.
 	

 For more information
 		about route summarization, see the
 		Cisco Application Centric Infrastructure Fundamentals
 					 Guide.
 		
 	

 Configuring EIGRP
 	 Using the REST API

Procedure

 	Step 1

 	Configure an
 			 EIGRP context policy.
 		

Example:
 			

 				<polUni>
 <fvTenant name="cisco_6">
 <eigrpCtxAfPol actIntvl="3" descr="" dn="uni/tn-cisco_6/eigrpCtxAfP-eigrp_default_pol" extDist="170"
 intDist="90" maxPaths="8" metricStyle="narrow" name="eigrp_default_pol" ownerKey="" ownerTag=""/>
 </fvTenant>
</polUni>

 			

 		

 	Step 2

 	Configure an
 			 EIGRP interface policy.
 		

Example:
 			

 				<polUni>
 <fvTenant name="cisco_6">
 <eigrpIfPol bw="10" ctrl="nh-self,split-horizon" delay="10" delayUnit="tens-of-micro" descr="" dn="uni/tn-cisco_6/eigrpIfPol-eigrp_if_default"
 helloIntvl="5" holdIntvl="15" name="eigrp_if_default" ownerKey="" ownerTag=""/>
 </fvTenant>
</polUni>

 			

 		

 	Step 3

 	Configure an
 			 EIGRP VRF.
 		

Example:
 			
 IPv4:
 			

 			

 				<polUni>
 <fvTenant name="cisco_6">
 <fvCtx name="dev">
 <fvRsCtxToEigrpCtxAfPol tnEigrpCtxAfPolName="eigrp_ctx_pol_v4" af="1"/>
 </fvCtx>
 </fvTenant>
</polUni>

 			

 			
 IPv6:
 			

 			

 				<polUni>
 <fvTenant name="cisco_6">
 <fvCtx name="dev">
 <fvRsCtxToEigrpCtxAfPol tnEigrpCtxAfPolName="eigrp_ctx_pol_v6" af="ipv6-ucast"/>
 </fvCtx>
 </fvTenant>
</polUni>

 			

 		

 	Step 4

 	Configure an
 			 EIGRP Layer3 Outside.
 		

Example:
 			
 IPv4
 			

 			

 				<polUni>
 <fvTenant name="cisco_6">
 <l3extOut name="ext">
 <eigrpExtP asn="4001"/>
 <l3extLNodeP name="node1">
 <l3extLIfP name="intf_v4">
 <l3extRsPathL3OutAtt addr="201.1.1.1/24" ifInstT="l3-port"
 tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>
 <eigrpIfP name="eigrp_ifp_v4">
 <eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v4"/>
 </eigrpIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
 </fvTenant>
</polUni>

 			

 			
 IPv6
 			

 			

 				<polUni>
 <fvTenant name="cisco_6">
 <l3extOut name="ext">
 <eigrpExtP asn="4001"/>
 <l3extLNodeP name="node1">
 <l3extLIfP name="intf_v6">
 <l3extRsPathL3OutAtt addr="2001::1/64" ifInstT="l3-port"
 tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>
 <eigrpIfP name="eigrp_ifp_v6">
 <eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v6"/>
 </eigrpIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
 </fvTenant>
</polUni>

 			

 			
 IPv4 and IPv6
 			

 			

 				<polUni>
 <fvTenant name="cisco_6">
 <l3extOut name="ext">
 <eigrpExtP asn="4001"/>
 <l3extLNodeP name="node1">
 <l3extLIfP name="intf_v4">
 <l3extRsPathL3OutAtt addr="201.1.1.1/24" ifInstT="l3-port"
 tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>
 <eigrpIfP name="eigrp_ifp_v4">
 <eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v4"/>
 </eigrpIfP>
 </l3extLIfP>

 <l3extLIfP name="intf_v6">
 <l3extRsPathL3OutAtt addr="2001::1/64" ifInstT="l3-port"
 tDn="topology/pod-1/paths-101/pathep-[eth1/4]"/>
 <eigrpIfP name="eigrp_ifp_v6">
 <eigrpRsIfPol tnEigrpIfPolName="eigrp_if_pol_v6"/>
 </eigrpIfP>
 </l3extLIfP>
 </l3extLNodeP>
 </l3extOut>
 </fvTenant>
</polUni>

 			

 		

 	Step 5

 	(Optional)Configure the
 			 interface policy knobs.
 		

Example:
 			

 				<polUni>
 <fvTenant name="cisco_6">
 <eigrpIfPol bw="1000000" ctrl="nh-self,split-horizon" delay="10"
 delayUnit="tens-of-micro" helloIntvl="5" holdIntvl="15" name="default"/>
 </fvTenant>
</polUni>

 			

 			
 The
 				bandwidth (bw) attribute is defined in Kbps. The
 				delayUnit attribute can be "tens of micro" or "pico".
 			

 		

 Neighbor
 	 Discovery

 The IPv6 Neighbor Discovery (ND) protocol is responsible for address auto configuration of nodes, discovery of other nodes
 on the link, determining the link-layer addresses of other nodes, duplicate address detection, finding available routers and
 DNS servers, address prefix discovery, and maintaining reachability information about the paths to other active neighbor nodes.

 ND-specific Neighbor Solicitation/Neighbor Advertisement (NS/NA) and Router Solicitation/Router Advertisement (RS/RA) packet
 types are supported on all ACI fabric Layer 3 interfaces, including physical, L3 Sub-if, and SVI (external and pervasive).
 RS/RA packets are used for auto configuration for all L3 interfaces but are only configurable for pervasive SVIs. ACI bridge
 domain ND always operates in flood mode; unicast mode is not supported.

 The ACI fabric ND
 		support includes the following:
 	

 	
 		
 Interface policies
 			 (nd:IfPol)
 			 control ND timers and behavior for NS/NA messages.
 		

 		

 	
 		
 ND prefix policies
 			 (nd:PfxPol)
 			 controls RA messages.
 		

 		

 	
 		
 Configuration of
 			 IPv6 subnets for ND (fv:Subnet).
 		

 		

 	
 		
 ND interface
 			 policies for external networks.
 		

 		

 	
 		
 Configurable ND
 			 subnets for external networks, and arbitrary subnet configurations for
 			 pervasive bridge domains are not supported.
 		

 		

 Configuration options
 		include the following:
 	

 	
 		
 Adjacencies
 		

 		

 	
 				
 Configurable
 				 Static Adjacencies : (<vrf, L3Iface, ipv6 address> --> mac address)
 				

 			

 	
 				
 Dynamic Adjacencies : Learned via exchange of NS/NA packets

 			

 		

 	
 		
 Per Interface
 		

 		

 	
 				
 Control of ND
 				 packets (NS/NA)
 				

 				

 	
 					
 Neighbor
 						Solicitation Interval
 					

 				

 	
 					
 Neighbor
 						Solicitation Retry count
 					

 				

 			

 	
 				
 Control of RA
 				 packets
 				

 				

 	
 					
 Suppress
 						RA
 					

 				

 	
 					
 Suppress
 						RA MTU
 					

 				

 	
 					
 RA
 						Interval, RA Interval minimum, Retransmit time
 					

 				

 			

 		

 	
 		
 Per Prefix
 			 (advertised in RAs) control
 		

 		

 	
 				
 Lifetime,
 				 preferred lifetime
 				

 			

 	
 				
 Prefix Control (auto configuration, on link)

 			

 		

 Creating the Tenant,
 	 VRF, and Bridge Domain with IPv6 Neighbor Discovery Using the REST API

Procedure

 	
 Create a tenant,
 			 VRF, bridge domain with a neighbor discovery interface policy and a neighbor
 			 discovery prefix policy.
 		

Example:
 			 <fvTenant descr="" dn="uni/tn-ExampleCorp" name="ExampleCorp" ownerKey="" ownerTag="">
 <ndIfPol name="NDPol001" ctrl="managed-cfg” descr="" hopLimit="64" mtu="1500" nsIntvl="1000" nsRetries=“3" ownerKey="" ownerTag="" raIntvl="600" raLifetime="1800" reachableTime="0" retransTimer="0"/>
 <fvCtx descr="" knwMcastAct="permit" name="pvn1" ownerKey="" ownerTag="" pcEnfPref="enforced">
 </fvCtx>
 <fvBD arpFlood="no" descr="" mac="00:22:BD:F8:19:FF" multiDstPktAct="bd-flood" name="bd1" ownerKey="" ownerTag="" unicastRoute="yes" unkMacUcastAct="proxy" unkMcastAct="flood">
 <fvRsBDToNdP tnNdIfPolName="NDPol001"/>
 <fvRsCtx tnFvCtxName="pvn1"/>
 <fvSubnet ctrl="nd" descr="" ip="34::1/64" name="" preferred="no" scope="private">
 <fvRsNdPfxPol tnNdPfxPolName="NDPfxPol001"/>
 </fvSubnet>
 <fvSubnet ctrl="nd" descr="" ip="33::1/64" name="" preferred="no" scope="private">
 <fvRsNdPfxPol tnNdPfxPolName="NDPfxPol002"/>
 </fvSubnet>
 </fvBD>
 <ndPfxPol ctrl="auto-cfg,on-link" descr="" lifetime="1000" name="NDPfxPol001" ownerKey="" ownerTag="" prefLifetime="1000"/>
 <ndPfxPol ctrl="auto-cfg,on-link" descr="" lifetime="4294967295" name="NDPfxPol002" ownerKey="" ownerTag="" prefLifetime="4294967295"/>
</fvTenant>

 			

 	Note

 	
 				
 If you have a
 				 public subnet when you configure the routed outside, you must associate the
 				 bridge domain with the outside configuration.
 				

 			

 		

 Chapter 14. Managing Layer 4 to Layer 7 Services

 About Application-Centric Infrastructure Layer 4 to Layer 7 Services

 Although VLAN and virtual routing and forwarding (VRF) stitching is supported by traditional service insertion models, the
 Application Policy Infrastructure Controller (APIC) can automate service insertion while acting as a central point of policy control. The APIC policies manage both the network
 fabric and services appliances. The APIC can configure the network automatically so that traffic flows through the services. The APIC can also automatically configure
 the service according to the application's requirements, which allows organizations to automate service insertion and eliminate
 the challenge of managing the complex techniques of traditional service insertion.

 Before you begin, the following APIC objects must be configured:

 	

 The tenant that will provide/consume the Layer 4 to Layer 7 services

 	

 A Layer 3 outside network for the tenant

 	

 At least one bridge domain

 	

 An application profile

 	

 A physical domain or a VMM domain

 For a VMM domain, configure VMM domain credentials and configure a vCenter/vShield controller profile.

 	

 A VLAN pool with an encapsulation block range

 	

 At least one contract

 	

 At least one EPG

 You must perform the following tasks to deploy Layer 4 to Layer 7 services:

 	

 Import a Device Package .

 Only the provider administrator can import the device package.

 	

 Register the device and the logical interfaces.

 This task also registers concrete devices and concrete interfaces, and configures concrete device parameters.

 	

 Create a Logical Device.

 	

 Configure device parameters.

 	

 Optional. If you are configuring an ASA Firewall service, enable trunking on the device.

 	

 Configure a Device Selection Policy.

 	

 Configure a Service Graph Template.

 	

 Select the default service graph template parameters from an application profile.

 	

 Configure additional service graph template parameters, if needed.

 	

 Attach the service graph template to a contract.

 	

 Configure additional configuration parameters, if needed.

 For more information about deploying Layer 4 to Layer 7 services, see the Cisco APIC Layer 4 to Layer 7 Services Deployment Guide.

 Configure In-Band
 	 Connectivity to Devices Using Tenant's VRF Using the REST API

 The following is an
 		example of using REST APIs to configure in-band connectivity to devices using
 		tenant's VRF:
 	

 	
 		
 Define the EPG
 			 that is to be used for management.
 		

 		

 	[image: ../images/note.gif]
Note
 	

 			
 Ensure to open
 				up the ports to the domain mappings using the appropriate selectors
 				configuration.
 			

 		

 		
 In the following,
 			 the EPG "services" is used for the management of the Services Devices/VMs
 			 subnet that is used for Tenant vrf devicemanagement (3.3.3.0/24).
 		

 		
<polUni>
 <fvTenant name="tenant1">
 <fvCtx name="mgmt_ctx1"/>
 <vnsCtrlrMgmtPol ctxDn="uni/tn-tenant1/ctx-mgmt_ctx1">
 <vnsRsMgmtAddr tDn="uni/tn-tenant1/ap-services/epg-ifc/CtrlrAddrInst-ifc"/>
 </vnsCtrlrMgmtPol>
 <fvBD name="mgmt_ServicesMgmtBD">
 <fvRsCtx tnFvCtxName="mgmt_ctx1"/>
 <fvSubnet ip="3.3.3.3/24"/>
 </fvBD>
 <fvAp name="services">
 <fvAEPg name="ifc">
 <fvRsBd tnFvBDName="mgmt_ServicesMgmtBD"/>
 <vnsAddrInst name="ifc">
 <fvnsUcastAddrBlk from="3.3.3.100/24" to="3.3.3.200/24"/>
 </vnsAddrInst>
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet"/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 		

 	
 		
 Associate the EPG
 			 to the LDevVip.
 		

 		
<polUni>
 <fvTenant name="tenant1">

 <vnsLDevVip name="ADCCluster1"
 funcType="GoTo" devtype="VIRTUAL">
 <vnsRsMDevAtt tDn="uni/infra/mDev-Citrix-NetScaler-10.5"/>
 <vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-mininet"/>
 <vnsRsDevEpg tDn="uni/tn-tenant1/ap-services/epg-ifc"/>

 <vnsCMgmt name="devMgmt"
 host="3.3.3.180"
 port="80"/>

 <vnsCCred name="username"
 value="nsroot"/>

 <vnsCCredSecret name="password"
 value="nsroot"/>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 		

 Configuring In-Band
 	 Connectivity to Devices Using Management Tenant VRF Using the REST API

 The following is an
 		example of using REST APIs to configure in-band connectivity to devices using
 		management tenant VRF:
 	

 	
 		
 Create an EPG
 			 l4l7MgmtEpg in tenant management.
 			

 	[image: ../images/note.gif]
Note
 	

 				
 l4l7MgmtEpg
 				 is a part of bd access which is under inb context in tn-mgmt.
 				

 				
 contract1 is
 				 the contract between the tn-mgmt l4l7MgmtEpg and tn-mgmt inb default EPG.
 				

 			

 		

 		
<polUni>
 <fvTenant dn="uni/tn-mgmt">
 <fvAp name="services">
 <fvAEPg name="l4l7MgmtEpg">
 <fvRsBd tnFvBDName="access" />
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-mininet" />
 <fvRsCons tnVzBrCPName='contract1'>
 </fvRsCons>
 </fvAEPg>
 </fvAp>
 <fvBD name="access">
 <fvSubnet ip="3.3.3.3/24" />
 <fvRsCtx tnFvCtxName="inb"/>
 </fvBD>
 <vzFilter name='all'>
 <vzEntry name='all' ></vzEntry>
 </vzFilter>
 <vzBrCP name="contract1" scope="tenant">
 <vzSubj name='subj1'>
 <vzInTerm>
 <vzRsFiltAtt tnVzFilterName="all" />
 </vzInTerm>
 <vzOutTerm>
 <vzRsFiltAtt tnVzFilterName="all" />
 </vzOutTerm>
 </vzSubj>
 </vzBrCP>
 </fvTenant>
</polUni>

 		

 	
 		
 Ensure that the
 			 Service Device/VM has the mgmt IP address in the subnet 3.3.3.0/24.
 		

 		
 This is the same
 			 subnet that tn-mgmt access BD has been configured with. (See configuration in
 			 earlier step.)
 		

 		

 	
 		
 Add the following
 			 to the LDevVip:
 			

 	[image: ../images/note.gif]
Note
 	

 				
 This points to
 				 the EPG that was created in the earlier step
 				

 				
 <vnsRsDevEpg
 				 tDn="uni/tn-mgmt/ap-services/epg-l4l7MgmtEpg"/>.
 				

 			

 		

 		
<polUni>
 <fvTenant name="mgmt">

 <vnsLDevVip name="ADCCluster1"
 funcType="GoTo" devtype="VIRTUAL">
 <vnsRsMDevAtt tDn="uni/infra/mDev-Citrix-NetScaler-10.5"/>
 <vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-mininet"/>
 <vnsRsDevEpg tDn="uni/tn-mgmt/ap-services/epg-l4l7MgmtEpg"/>

 <vnsCMgmt name="devMgmt"
 host="3.3.3.180"
 port="80"/>

 <vnsCCred name="username"
 value="nsroot"/>

 <vnsCCredSecret name="password"
 value="nsroot"/>

 </vnsLDevVip>

 </fvTenant>
</polUni>

 		

 	
 		
 Add the route in
 			 service Device/VM to point to the IFC inband gateway.
 		

 		
 For example, on
 			 the route on netScaler, add route 3.0.0.0 255.255.255.0 3.3.3.3, where
 			 3.0.0.0/24 is the IFC inband subnet and 3.3.3.3 is the SVI IP for l4l7MgmtEpg.
 		

 		

 	
 		
 Verify the
 			 following:
 		

 		

 	
 				
 The route
 				 table on IFC has an entry for ifc inband IP.
 				

 			

 	
 				
 The IFC can
 				 ping the l4l7MgmtEpg gateway on the leaf.
 				

 			

 	
 				
 The service
 				 node can ping the l4l7MgmtEpg SVI gateway and IFC inb SVI Ip.
 				

 			

 		

 About the Device Package

 The Application Policy Infrastructure Controller (APIC) requires a device package to configure and monitor service devices. A device package manages a single class of service devices
 and provides the APIC with information about the device and its capabilities.

 For more information about device packages, see the Cisco APIC Layer 4 to Layer 7 Device Package Development Guide.

 Notes for Installing
 	 a Device Package with REST

 	
 		
 A device package can be installed using an HTTP or HTTPS POST.
 		

 		

 	
 		
 If HTTP is enabled on APIC, the URL for the POST is
 			 "http://10.10.10.10/ppi/node/mo/.xml".
 		

 		

 	
 		
 If HTTPS is enabled on APIC, the URL for the POST is
 			 "https://10.10.10.10/ppi/node/mo/.xml".
 		

 		

 	
 		
 The message must have a valid session cookie.
 		

 		

 	
 		
 The body of the POST should contain the device package being
 			 uploaded. Only one package is allowed in a POST.
 		

 		

 Uploading a Device
 	 Package File Using the API

 To install a service device, you must upload a device package file to APIC. The API command for this operation uses a special
 form of URI:

 { http | https } ://host [:port] /ppi/node/mo/. { json | xml }

 The URI path contains
 		'ppi' (package programming interface) instead of 'api', and the command is sent
 		as a POST operation with the device package file as the body of the message.
 		The device package file is a zip file.
 	

 This example shows an
 		API operation that uploads a device package file:
 	

POST https://192.0.20.123/ppi/node/mo/.json

 For more information
 		about installing L4-L7 service device packages, see
 		Cisco APIC Layer 4 to Layer 7 Services Deployment Guide.
 	

 Installing a Device Package Using the REST API

You can install a device
 		package using an HTTP or HTTPS POST.
 	

Procedure

 	
 Install the
 			 device package.
 		
 			

 	
 				
 If HTTP is
 					 enabled on the
 					 Application Policy Infrastructure Controller
 					 (APIC)
 					 , the URL for the POST is as follows:
 				

 				

 					 http://10.10.10.10/ppi/node/mo/.xml

 				

 				

 	
 				
 If HTTPS is
 					 enabled on the
 					 APIC,
 					 the URL for the POST is as follows:
 				

 				

 					 https://10.10.10.10/ppi/node/mo/.xml

 				

 				

 			
 The message must
 				have a valid session cookie.
 			

 			
 The body of the
 				POST should contain the device package being uploaded. Only one package is
 				allowed in a POST.
 			

 		

 Using an Imported Device with the REST APIs

 The following REST API
 		uses an imported device:
 		<polUni>
 <fvTenant dn="uni/tn-tenant1" name="tenant1">
 <vnsLDevIf ldev="uni/tn-mgmt/lDevVip-ADCCluster1"/>
 <vnsLDevCtx ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any">
 <vnsRsLDevCtxToLDev tDn="uni/tn-tenant1/lDevIf-[uni/tn-mgmt/lDevVip-ADCCluster1]"/>
 <vnsLIfCtx connNameOrLbl="inside">
 <vnsRsLIfCtxToLIf tDn="uni/tn-tenant1/lDevIf-[uni/tn-mgmt/lDevVip-ADCCluster1]/lDevIfLIf-inside"/>
 <fvSubnet ip="10.10.10.10/24"/>
 <vnsRsLIfCtxToBD tDn="uni/tn-tenant1/BD-tenant1BD1"/>
 </vnsLIfCtx>
 <vnsLIfCtx connNameOrLbl="outside">
 <vnsRsLIfCtxToLIf tDn="uni/tn-tenant1/lDevIf-[uni/tn-mgmt/lDevVip-ADCCluster1]/lDevIfLIf-outside"/>
 <fvSubnet ip="70.70.70.70/24"/>
 <vnsRsLIfCtxToBD tDn="uni/tn-tenant1/BD-tenant1BD4"/>
 </vnsLIfCtx>
 </vnsLDevCtx>
 </fvTenant>
</polUni>

 	

 About Trunking

 You can enable trunking for a Layer 4 to Layer 7 virtual ASA device, which uses trunk port groups to aggregate the traffic
 of endpoint groups. Without trunking, a virtual service device can have only 1 VLAN per interface and up to 10 service graphs.
 With trunking enabled, the virtual service device can have an unlimited number of service graphs.

 For more information about trunk port groups, see the Cisco ACI Virtualization Guide.

 Trunking is supported only on a virtual ASA device. The ASA device package must be version 1.2.7.8 or later.

 Enabling Trunking on a Layer 4 to Layer 7 Virtual ASA device Using the REST APIs

 The following procedure provides an example of enabling trunking on a Layer 4 to Layer 7 virtual ASA device using the REST
 APIs.

 Before You Begin

 	

 You must have configured a Layer 4 to Layer 7 virtual ASA device.

Procedure

 	
 Enable trunking on the Layer 4 to Layer 7 device named InsiemeCluster:

 <polUni>
 <fvTenant name="tenant1">
 <vnsLDevVip name="InsiemeCluster" devtype=“VIRTUAL” trunking=“yes">
 ...
 ...
 </vnsLDevVip>
 </fvTenant>
</polUni>

 About Device
 	 Selection Policies

 A device can be
 		selected based on a contract name, a graph name, or the function node name
 		inside the graph. After you create a device, you can create a device context,
 		which provides a selection criteria policy for a device.
 	

 A device selection
 		policy (also known as a device context) specifies the policy for selecting a
 		device for a service graph template. This allows an administrator to have
 		multiple device and then be able to use them for different service graph
 		templates. For example, an administrator can have a device that has
 		high-performance ADC appliances and another device that has lower-performance
 		ADC appliances. Using two different device selection policies, one for the
 		high-performance ADC device and the other for the low-performance ADC device,
 		the administrator can select the high-performance ADC device for the
 		applications that require higher performance and select the low-performance ADC
 		devices for the applications that require lower performance.
 	

 Creating a Device Selection Policy Using the REST API

 The following REST API
 		creates a device selection policy:
 	

 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vnsLDevCtx ctrctNameOrLbl="webCtrct" graphNameOrLbl="G1" nodeNameOrLbl="Node1">
 <vnsRsLDevCtxToLDev tDn="uni/tn-acme/lDevVip-ADCCluster1"/>

 <!-- The connector name C4, C5, etc.. should match the
 Function connector name used in the service graph template -->

 <vnsLIfCtx connNameOrLbl=“C4">
 <vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/LIf-ext"/>
 </vnsLIfCtx>
 <vnsLIfCtx connNameOrLbl=“C5">
 <vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/LIf-int"/>
 </vnsLIfCtx>
 </vnsLDevCtx>
 </fvTenant>
</polUni>

 	

 Adding a Logical
 	 Interface in a Device Using the REST APIs

 The following REST API adds a logical
 		interface in a device:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vnsLDevVip name="ADCCluster1">

 <!-- The LIF name defined here (such as e.g., ext, or int) should match the
 vnsRsLIfCtxToLIf ‘tDn' defined in LifCtx -->

 <vnsLIf name=“ext">

 <vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-outside"/>
 <vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-ext"/>
 </vnsLIf>
 <vnsLIf name=“int">
 <vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-inside"/>
 <vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-int"/>
 </vnsLIf>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 	

 About Service Graph
 	 Templates

 The
 		Cisco Application Centric
 				 Infrastructure
 		(ACI)
 		allows you to define a sequence of meta-devices, such a firewall of a certain
 		type followed by a load balancer of a certain make and version. This is called
 		an service graph template, also known as a abstract graph. When a service graph
 		template is referenced by a contract, the service graph template is
 		instantiated by mapping it to concrete devices, such as the firewall and load
 		balancers that are present in the fabric. The mapping happens with the concept
 		of a "context". The "device context" is the mapping configuration that allows
 		the
 		ACI
 		to identify which firewalls and which load balancers can be mapped to the
 		service graph template. Another key concept is the "logical device", which
 		represents the cluster of concrete devices. The rendering of the service graph
 		template is based on identifying the suitable logical devices that can be
 		inserted in the path that is defined by a contract.
 	

 The
 		ACI
 		treats services as an integral part of an application. Any services that are
 		required are treated as a service graph that is instantiated on the ACI fabric
 		from the Cisco
 		Application Policy Infrastructure Controller
 		(APIC).
 		Users define the service for the application, while service graph templates
 		identify the set of network or service functions that are needed by the
 		application. Once the graph is configured in the
 		APIC,
 		the
 		APIC
 		automatically configures the services according to the service function
 		requirements that are specified in the service graph template. The
 		APIC
 		also automatically configures the network according to the needs of the service
 		function that is specified in the service graph template, which does not
 		require any change in the service device.
 	

 Configuring a
 	 Service Graph Template Using the REST APIs

 You can configure a
 		service graph template using the following REST API:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <!—L3 Network-->
 <fvCtx name="MyNetwork"/>
 <!-- Bridge Domain for MySrvr EPG -->
 <fvBD name="MySrvrBD">
 <fvRsCtx tnFvCtxName="MyNetwork" />
 <fvSubnet ip="10.10.10.10/24">
 </fvSubnet>
 </fvBD>
 <!-- Bridge Domain for MyClnt EPG -->
 <fvBD name="MyClntBD">
 <fvRsCtx tnFvCtxName="MyNetwork" />
 <fvSubnet ip="20.20.20.20/24">
 </fvSubnet>
 </fvBD>
 <fvAp dn="uni/tn-acme/ap-MyAP" name="MyAP">
 <fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MyClnt" name="MyClnt">
 <fvRsBd tnFvBDName="MySrvrBD" />
 <fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs" />
 <fvRsProv tnVzBrCPName="webCtrct">
 </fvRsProv>
 <fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]" encap="vlan-202"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-18/pathep-[eth1/21]" encap="vlan-202"/>
 </fvAEPg>
 <fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MySRVR" name="MySRVR">
 <fvRsBd tnFvBDName="MyClntBD" />
 <fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs" />
 <fvRsCons tnVzBrCPName="webCtrct">
 </fvRsCons>
 <fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]" encap="vlan-203"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-18/pathep-[eth1/21]" encap="vlan-203"/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 	

 Creating a Security
 	 Policy Using the REST APIs

 You can create a
 		security policy using the following REST API:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vzFilter name="HttpIn">
 <vzEntry name="e1" prot="6" dToPort="80"/>
 		</vzFilter>
 <vzBrCP name="webCtrct">
 <vzSubj name="http">
 <vzRsSubjFiltAtt tnVzFilterName="HttpIn"/>
 </vzSubj>
 </vzBrCP>
 </fvTenant>
</polUni>

 	

 About Modifying the Configuration Parameters of a Deployed Service Graph

 When you first deploy
 		a service graph, the configuration parameters or functions for the service
 		graph must be defined before you can successfully deploy the service graph.
 		These configuration parameters or functions include device network
 		configurations, such as IP addresses, route prefix, and next hop information,
 		as well as the services configuration, such as the IP access list for a
 		firewall or server load balancing configuration for a load balancer.
 	

 You must modify the
 		service graph function as part of the day-to-day operation of the
 		Application Policy Infrastructure Controller
 		(APIC).
 		You can modify a service graph's configuration parameters and functions by
 		using the GUI or CLI of the
 		APIC.
 		Modifying functions of a service device through the
 		APIC
 		does not require changes on a service device.
 	

 Example XML POST for
 	 an Application EPG With Configuration Parameters

 The following XML
 		example shows configuration parameters inside of the device package:
 	

 <fvAEPg dn="uni/tn-acme/ap-myApp/epg-app" name="app">

 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any" key="Monitor"
 name="monitor1">
 <vnsRsFolderInstToMFolder tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Monitor"/>
 <vnsParamInst name="weight" key="weight" value="10"/>
 </vnsFolderInst>

 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any" key="Service"
 name="Service1">
 <vnsParamInst name="servicename" key="servicename" value="crpvgrtst02-8010"/>
 <vnsParamInst name="servicetype" key="servicetype" value="TCP"/>
 <vnsParamInst name="servername" key="servername" value="s192.168.100.100"/>
 <vnsParamInst name="serveripaddress" key="serveripaddress" value="192.168.100.100"/>
 <vnsParamInst name="serviceport" key="serviceport" value="8080"/>
 <vnsParamInst name="svrtimeout" key="svrtimeout" value="9000" />
 <vnsParamInst name="clttimeout" key="clttimeout" value="9000" />
 <vnsParamInst name="usip" key="usip" value="NO" />
 <vnsParamInst name="useproxyport" key="useproxyport" value="" />
 <vnsParamInst name="cip" key="cip" value="ENABLED" />
 <vnsParamInst name="cka" key="cka" value="NO" />
 <vnsParamInst name="sp" key="sp" value="OFF" />
 <vnsParamInst name="cmp" key="cmp" value="NO" />
 <vnsParamInst name="maxclient" key="maxclient" value="0" />
 <vnsParamInst name="maxreq" key="maxreq" value="0" />
 <vnsParamInst name="tcpb" key="tcpb" value="NO" />
 <vnsCfgRelInst name="MonitorConfig" key="MonitorConfig" targetName="monitor1"/>
 </vnsFolderInst>

 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any" key="Network"
 name="Network">
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any" key="vip"
 name="vip">
 <vnsParamInst name="vipaddress1" key="vipaddress" value="10.10.10.200"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any"
 devCtxLbl="C1" key="snip" name="snip1">
 <vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.200"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G2" nodeNameOrLbl="any"
 devCtxLbl="C2" key="snip" name="snip2">
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any" key="Network"
 name="Network">
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any" key="vip"
 name="vip">
 <vnsParamInst name="vipaddress1" key="vipaddress" value="10.10.10.100"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any"
 devCtxLbl="C1" key="snip" name="snip1">
 <vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.100"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any"
 devCtxLbl="C2" key="snip" name="snip2">
 <vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.101"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="G1" nodeNameOrLbl="any"
 devCtxLbl="C3" key="snip" name="snip3">
 <vnsParamInst name="snipaddress" key="snipaddress" value="192.168.1.102"/>
 </vnsFolderInst>
 </vnsFolderInst>

 <!-- SLB Configuration -->
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any" key="VServer"
 name="VServer">
 <!-- Virtual Server Configuration -->
 <vnsParamInst name="port" key="port" value="8010"/>
 <vnsParamInst name="vip" key="vip" value="10.10.10.100"/>
 <vnsParamInst name="vservername" key="vservername" value="crpvgrtst02-vip-8010"/>
 <vnsParamInst name="servicename" key="servicename" value="crpvgrtst02-8010"/>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any"
 key="VServerGlobalConfig" name="VServerGlobalConfig">
 <vnsCfgRelInst name="ServiceConfig" key="ServiceConfig" targetName="Service1"/>
 <vnsCfgRelInst name="VipConfig" key="VipConfig" targetName="Network/vip"/>
 </vnsFolderInst>
 </vnsFolderInst>
</fvAEPg>

 Example XML of
 	 Configuration Parameters Inside the Device Package

 The following XML
 		example shows configuration parameters inside of the device package:
 	

 <vnsMFolder key="VServer" scopedBy="epg">
 <vnsRsConnector tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external"/>
 <vnsMParam key="vservername" description="Name of VServer" mandatory="true"/>
 <vnsMParam key="vip" description="Virtual IP"/>
 <vnsMParam key="subnet" description="Subnet IP"/>
 <vnsMParam key="port" description="Port for Virtual server"/>
 <vnsMParam key="persistencetype" description="persistencetype"/>
 <vnsMParam key="servicename" description="Service bound to this vServer"/>
 <vnsMParam key="servicetype" description="Service bound to this vServer"/>
 <vnsMParam key="clttimeout" description="Client timeout"/>
 <vnsMFolder key="VServerGlobalConfig"
 description="This references the global configuration">
 <vnsMRel key="ServiceConfig">
 <vnsRsTarget tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Service"/>
 </vnsMRel>
 <vnsMRel key="ServerConfig">
 <vnsRsTarget tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Server"/>
 </vnsMRel>
 <vnsMRel key="VipConfig">
 <vnsRsTarget
 tDn="uni/infra/mDev-Acme-ADC-1.0/mDevCfg/mFolder-Network/mFolder-vip"/>
 <vnsRsConnector tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external"/>
 </vnsMRel>
 </vnsMFolder>
</vnsMFolder>

 Example XML POST for
 	 an Abstract Function Node With Configuration Parameters

 The following XML POST
 		example shows an abstract function node with configuration parameters:
 	

 <vnsAbsNode name = "SLB" funcType="GoTo" >
 <vnsRsDefaultScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>
 <vnsAbsFuncConn name = "C4" direction = "input">
 <vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external" />
 </vnsAbsFuncConn>
 <vnsAbsFuncConn name = "C5" direction = "output">
 <vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-internal" />
 </vnsAbsFuncConn>

 <vnsAbsDevCfg>
 <vnsAbsFolder key="Network" name="Network" scopedBy="epg">
 <!-- Following scopes this folder to input terminal or Src Epg -->
 <vnsRsScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>

 <!-- VIP address -->
 <vnsAbsFolder key="vip" name="vip" scopedBy="epg">
 <vnsAbsParam name="vipaddress" key="vipaddress" value=""/>
 </vnsAbsFolder>

 <!-- SNIP address -->
 <vnsAbsFolder key="snip" name="snip" scopedBy="epg">
 <vnsAbsParam name="snipaddress" key="snipaddress" value=""/>
 </vnsAbsFolder>

 </vnsAbsFolder>

 <vnsAbsFolder key="Service" name="Service" scopedBy="epg" cardinality="n">
 <vnsRsScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>
 <vnsAbsParam name="servicename" key="servicename" value=""/>
 <vnsAbsParam name="servername" key="servername" value=""/>
 <vnsAbsParam name="serveripaddress" key="serveripaddress" value=""/>
 </vnsAbsFolder>
 </vnsAbsDevCfg>

 <vnsAbsFuncCfg>
 <vnsAbsFolder key="VServer" name="VServer" scopedBy="epg">
 <vnsRsScopeToTerm tDn="uni/tn-tenant1/AbsGraph-G3/AbsTermNode-Output1/outtmnl"/>
 <!-- Virtual Server Configuration -->
 <vnsAbsParam name="vip" key="vip" value=""/>
 <vnsAbsParam name="vservername" key="vservername" value=""/>
 <vnsAbsParam name="servicename" key="servicename"/>
 <vnsRsCfgToConn tDn="uni/tn-tenant1/AbsGraph-G3/AbsNode-Node2/AbsFConn-C4" />
 </vnsAbsFolder>
 </vnsAbsFuncCfg>
 <vnsRsNodeToMFunc tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB"/>
</vnsAbsNode>

 Example XML POST for
 	 an Abstract Function Profile With Configuration Parameters

 The following XML POST
 		example shows an abstract function profile with configuration parameters:
 	

 <vnsAbsFuncProfContr name = "NP">
 <vnsAbsFuncProfGrp name = "Grp1">
 <vnsAbsFuncProf name = "P1">
 <vnsRsProfToMFunc tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB"/>
 <vnsAbsDevCfg name="D1">
 <vnsAbsFolder key="Service" name="Service-Default" cardinality="n">
 <vnsAbsParam name="servicetype" key="servicetype" value="TCP"/>
 <vnsAbsParam name="serviceport" key="serviceport" value="80"/>
 <vnsAbsParam name="maxclient" key="maxclient" value="1000"/>
 <vnsAbsParam name="maxreq" key="maxreq" value="100"/>
 <vnsAbsParam name="cip" key="cip" value="enable"/>
 <vnsAbsParam name="usip" key="usip" value="enable"/>
 <vnsAbsParam name="sp" key="sp" value=""/>
 <vnsAbsParam name="svrtimeout" key="svrtimeout" value="60"/>
 <vnsAbsParam name="clttimeout" key="clttimeout" value="60"/>
 <vnsAbsParam name="cka" key="cka" value="NO"/>
 <vnsAbsParam name="tcpb" key="tcpb" value="NO"/>
 <vnsAbsParam name="cmp" key="cmp" value="NO"/>
 </vnsAbsFolder>
 </vnsAbsDevCfg>
 <vnsAbsFuncCfg name="SLB">
 <vnsAbsFolder key="VServer" name="VServer-Default">
 <vnsAbsParam name="port" key="port" value="80"/>
 <vnsAbsParam name="persistencetype" key="persistencetype"
 value="cookie"/>
 <vnsAbsParam name="clttimeout" key="clttimeout" value="100"/>
 <vnsAbsParam name="servicetype" key="servicetype" value="TCP"/>
 <vnsAbsParam name="servicename" key="servicename"/>
 </vnsAbsFolder>
 </vnsAbsFuncCfg>
 </vnsAbsFuncProf>
 </vnsAbsFuncProfGrp>
</vnsAbsFuncProfContr>

 About Copy Services

 Unlike Switched Port Analyzer (SPAN), which duplicates all traffic, the Cisco Application Centric
 				 Infrastructure (ACI) copy services feature enables selectively copying portions of the traffic between endpoint groups, according to the specifications
 of the contract. Broadcast, unknown unicast and multicast (BUM), and control plan traffic not covered by the contract are
 not copied. In contrast, SPAN copies everything out of endpoint groups, access ports, or uplink ports. Unlike SPAN, copy services
 do not add headers to the copied traffic. Copy service traffic is managed internally in the switch to minimize impact on normal
 traffic forwarding.

 For more information about deploying Layer 4 to Layer 7 services, see the Cisco APIC Layer 4 to Layer 7 Services Deployment Guide.

 Configuring Copy Services Using the REST API

 A copy device is used as part of the copy services feature to create a copy node. A copy node specifies at which point of
 the data flow between endpoint groups to copy traffic.

 This procedure provides examples of using the REST API to configure copy services.

 	[image: ../images/note.gif]
Note
 	

 When you configure a copy device, the context aware parameter is not used. The context aware parameter has a default value of single context, which can be ignored.

 Before You Begin

 You must have configured a tenant.

Procedure

 	Step 1

 	Create a copy device.

Example:
 <vnsLDevVip contextAware="single-Context" devtype="PHYSICAL" funcType="None" isCopy="yes" managed="no"
 mode="legacy-Mode" name="copy0" packageModel="" svcType="COPY" trunking="no">
 <vnsRsALDevToPhysDomP tDn="uni/phys-phys_scale_copy"/>
 <vnsCDev devCtxLbl="" name="copy_Dyn_Device_0" vcenterName="" vmName="">
 <vnsCIf name="int1" vnicName="">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-104/pathep-[eth1/15]"/>
 </vnsCIf>
 <vnsCIf name="int2" vnicName="">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-105/pathep-[eth1/15]"/>
 </vnsCIf>
 </vnsCDev>
 <vnsLIf encap="vlan-3540" name="TAP">
 <vnsRsCIfAttN tDn="uni/tn-t22/lDevVip-copy0/cDev-copy_Dyn_Device_0/cIf-[int2]"/>
 <vnsRsCIfAttN tDn="uni/tn-t22/lDevVip-copy0/cDev-copy_Dyn_Device_0/cIf-[int1]"/>
 </vnsLIf>
</vnsLDevVip>

 	Step 2

 	Create a logical device context (also known as a device selection policy).

Example:
 <vnsLDevCtx ctrctNameOrLbl="c0" descr="" graphNameOrLbl="g0" name="" nodeNameOrLbl="CP1">
 <vnsRsLDevCtxToLDev tDn="uni/tn-t22/lDevVip-copy0"/>
 <vnsLIfCtx connNameOrLbl="copy" descr="" name="">
 <vnsRsLIfCtxToLIf tDn="uni/tn-t22/lDevVip-copy0/lIf-TAP"/>
 </vnsLIfCtx>
</vnsLDevCtx>

 	Step 3

 	Create and apply the copy graph template.

Example:
 <vnsAbsGraph descr="" name="g0" ownerKey="" ownerTag="" uiTemplateType="UNSPECIFIED">
 <vnsAbsTermNodeCon descr="" name="T1" ownerKey="" ownerTag="">
 <vnsAbsTermConn attNotify="no" descr="" name="1" ownerKey="" ownerTag=""/>
 <vnsInTerm descr="" name=""/>
 <vnsOutTerm descr="" name=""/>
 </vnsAbsTermNodeCon>
 <vnsAbsTermNodeProv descr="" name="T2" ownerKey="" ownerTag="">
 <vnsAbsTermConn attNotify="no" descr="" name="1" ownerKey="" ownerTag=""/>
 <vnsInTerm descr="" name=""/>
 <vnsOutTerm descr="" name=""/>
 </vnsAbsTermNodeProv>
 <vnsAbsConnection adjType="L2" connDir="provider" connType="external" descr="" name="C1"
 ownerKey="" ownerTag="" unicastRoute="yes">
 <vnsRsAbsConnectionConns tDn="uni/tn-t22/AbsGraph-g0/AbsTermNodeCon-T1/AbsTConn"/>
 <vnsRsAbsConnectionConns tDn="uni/tn-t22/AbsGraph-g0/AbsTermNodeProv-T2/AbsTConn"/>
 <vnsRsAbsCopyConnection tDn="uni/tn-t22/AbsGraph-g0/AbsNode-CP1/AbsFConn-copy"/>
 </vnsAbsConnection>
 <vnsAbsNode descr="" funcTemplateType="OTHER" funcType="None" isCopy="yes" managed="no"
 name="CP1" ownerKey="" ownerTag="" routingMode="unspecified" sequenceNumber="0" shareEncap="no">
 <vnsAbsFuncConn attNotify="no" descr="" name="copy" ownerKey="" ownerTag=""/>
 <vnsRsNodeToLDev tDn="uni/tn-t22/lDevVip-copy0"/>
 </vnsAbsNode>
</vnsAbsGraph>

 	Step 4

 	Define the relation to the copy graph in the contract that is associated with the endpoint groups.

Example:
 <vzBrCP descr="" name="c0" ownerKey="" ownerTag="" prio="unspecified" scope="tenant" targetDscp="unspecified">
 <vzSubj consMatchT="AtleastOne" descr="" name="Subject" prio="unspecified" provMatchT="AtleastOne"
 revFltPorts="yes" targetDscp="unspecified">
 <vzRsSubjFiltAtt directives="" tnVzFilterName="default"/>
 <vzRsSubjGraphAtt directives="" tnVnsAbsGraphName="g0"/>
 </vzSubj>
</vzBrCP>

 	Step 5

 	Attach the contract to the endpoint group.

Example:
 <fvAEPg name="epg2860">
 <fvRsCons tnVzBrCPName="c0"/>
 <fvRsBd tnFvBDName="bd0"/>
 <fvRsDomAtt tDn="uni/phys-phys_scale_SB"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-104/pathep-[PC_int2_g1]" encap="vlan-2860"
 instrImedcy="immediate"/>
 </fvAEPg>
 <fvAEPg name="epg2861">
 <fvRsProv tnVzBrCPName="c0"/>
 <fvRsBd tnFvBDName="bd0"/>
 <fvRsDomAtt tDn="uni/phys-phys_scale_SB"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-105/pathep-[PC_policy]" encap="vlan-2861"
 instrImedcy="immediate"/>
</fvAEPg>

 About the REST
 	 APIs

 Automation relies on
 		the
 		Application Policy Infrastructure Controller
 		(APIC)
 		northbound Representational State Transfer (REST) APIs. Anything that can be
 		done through the
 		APIC
 		UI can also be done using XML-based REST POSTs using the northbound APIs. For
 		example, you can monitor events through those APIs, dynamically enable EPGs,
 		and add policies.
 	

 You can also use the northbound REST APIs to monitor for notifications that a device has been brought onboard, and to monitor
 faults. In both cases, you can monitor events that trigger specific actions. For example, if you see faults that occur on
 a specific application tier and determine that there is a loss of connectivity and a leaf node is going down, you can trigger
 an action to redeploy those applications somewhere else. If you have certain contracts on which you detect packet drops occurring,
 you could enable some copies of those contracts on the particular application. You can also use a statistics monitoring policy,
 where you monitor certain counters because of issues that have been reported.

 For information on how
 		to construct the XML files submitted to the
 		APIC
 		northbound API, see
 		Cisco APIC Layer 4 to Layer 7 Device Package Development Guide.
 		
 	

 The following Python APIs, defined in the Cisco APIC Management Information Model Reference can be used to submit REST POST calls using the northbound API:

 	 vns:LDevVip: Upload a device cluster

 	 vns:CDev: Upload a device

 	 vns:LIf: Create logical interfaces

 	 vns:AbsGraph: Create a graph

 	 vz:BrCP: Attach a graph to a contract

 		

 Examples of
 	 Automating Using the REST APIs

 This section contains
 		examples of using the REST APIs to automate tasks.
 	

 The following REST
 		request creates a tenant with a broadcast domain, a Layer 3 network,
 		application endpoint groups, and an application profile:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">

 <!—L3 Network-->
 <fvCtx name="MyNetwork"/>

 <!-- Bridge Domain for MySrvr EPG -->
 <fvBD name="MySrvrBD">
 	<fvRsCtx tnFvCtxName="MyNetwork"/>
 	<fvSubnet ip="10.10.10.10/24">
 	</fvSubnet>
 </fvBD>

 <!-- Bridge Domain for MyClnt EPG -->
 <fvBD name="MyClntBD">
 <fvRsCtx tnFvCtxName="MyNetwork"/>
 <fvSubnet ip="20.20.20.20/24">
 </fvSubnet>
 </fvBD>

 <fvAp dn="uni/tn-acme/ap-MyAP" name="MyAP">

 <fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MyClnt" name="MyClnt">
 <fvRsBd tnFvBDName="MySrvrBD"/>
 <fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
 <fvRsProv tnVzBrCPName="webCtrct"> </fvRsProv>
 <fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]"
 encap="vlan-202"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-18/pathep-[eth1/21]"
 encap="vlan-202"/>
 </fvAEPg>

 <fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MySRVR" name="MySRVR">
 <fvRsBd tnFvBDName="MyClntBD"/>
 <fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
 <fvRsCons tnVzBrCPName="webCtrct"> </fvRsCons>
 <fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]"
 encap="vlan-203"/>
 <fvRsPathAtt tDn="topology/pod-1/paths-18/pathep-[eth1/21]"
 encap="vlan-203"/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 	

 The following REST
 		request creates a VLAN namespace:
 		<polUni>
 <infraInfra>
 <fvnsVlanInstP name="MyNS" allocMode="dynamic">
 <fvnsEncapBlk name="encap" from="vlan-201" to="vlan-300"/>
 </fvnsVlanInstP>
 </infraInfra>
</polUni>

 	

 The following REST
 		request creates a VMM domain:
 		<polUni>
 <vmmProvP vendor="Vendor1">
 <vmmDomP name="MyVMs">
 <infraRsVlanNs tDn="uni/infra/vlanns-MyNS-dynamic"/>
 <vmmUsrAccP name="admin" usr="administrator" pwd="in$1eme"/>
 <vmmCtrlrP name="vcenter1" hostOrIp="192.168.64.186">
 <vmmRsAcc tDn="uni/vmmp-Vendor1/dom-MyVMs/usracc-admin"/>
 </vmmCtrlrP>
 </vmmDomP>
 </vmmProvP>
</polUni>

 	

 The following REST
 		request creates a physical domain:
 		<polUni>
 <physDomP name="phys">
 <infraRsVlanNs tDn="uni/infra/vlanns-MyNS-dynamic"/>
 </physDomP>
</polUni>

 	

 The following REST
 		request creates a managed device cluster:
 	

 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vnsLDevVip name="ADCCluster1" contextAware=1>
 <vnsRsMDevAtt tDn="uni/infra/mDev-Acme-ADC-1.0"/>
 <vnsRsDevEpg tDn="uni/tn-acme/ap-services/epg-ifc"/>
 <vnsRsALDevToPhysDomP tDn="uni/phys-phys"/>

 <vnsCMgmt name="devMgmt" host="42.42.42.100" port="80"/>

 <vnsCCred name="username"value="admin"/>

 <vnsCCredSecret name="password" value="admin"/>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 	

 The following REST
 		request creates an unmanaged device cluster:
 	

 		<polUni>
 <fvTenant name="HA_Tenant1">

 <vnsLDevVip name="ADCCluster1" devtype="VIRTUAL" managed="no">
 <vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-mininet"/>
 </vnsLDevVip>

 </fvTenant>
</polUni>

 	

 The following REST
 		request creates a device cluster context:
 	

 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vnsLDevCtx ctrctNameOrLbl="webCtrct" graphNameOrLbl="G1" nodeNameOrLbl="Node1">
 <vnsRsLDevCtxToLDev tDn="uni/tn-acme/lDevVip-ADCCluster1"/>
 <vnsLIfCtx connNameOrLbl="ssl-inside">
 <vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-int"/>
 </vnsLIfCtx>
 <vnsLIfCtx connNameOrLbl="any">
 <vnsRsLIfCtxToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-ext"/>
 </vnsLIfCtx>
 </vnsLDevCtx>
 </fvTenant>
</polUni>

 	

 The following REST
 		request creates a device cluster context used in route peering:
 	

 		<polUni>
 <fvTenant dn="uni/tn-coke{{tenantId}}" name="coke{{tenantId}}">
 <vnsRtrCfg name="Dev1Ctx1" rtrId="180.0.0.12"/>
 <vnsLDevCtx ctrctNameOrLbl="webCtrct1" graphNameOrLbl="WebGraph"
 nodeNameOrLbl="FW">
 <vnsRsLDevCtxToLDev tDn="uni/tn-tenant1/lDevVip-Firewall"/>
 <vnsRsLDevCtxToRtrCfg tnVnsRtrCfgName="FwRtrCfg"/>
 <vnsLIfCtx connNameOrLbl="internal">
 <vnsRsLIfCtxToInstP tDn="uni/tn-tenant1/out-OspfInternal/instP-IntInstP"
 status="created,modified"/>
 <vnsRsLIfCtxToLIf tDn="uni/tn-tenant1/lDevVip-Firewall/lIf-internal"/>
 </vnsLIfCtx>
 <vnsLIfCtx connNameOrLbl="external">
 <vnsRsLIfCtxToInstP tDn="uni/tn-common/out-OspfExternal/instP-ExtInstP"
 status="created,modified"/>
 <vnsRsLIfCtxToLIf tDn="uni/tn-tenant1/lDevVip-Firewall/lIf-external"/>
 </vnsLIfCtx>
 </vnsLDevCtx>
 </fvTenant>
</polUni>

 	

 	[image: ../images/note.gif]
Note
 	

 		
 For information about configuring external connectivity for tenants (a Layer 3 outside), see the Cisco APIC Basic Configuration Guide.

 	

 The following REST
 		request adds a logical interface in a device cluster:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vnsLDevVip name="ADCCluster1">
 <vnsLIf name="C5">
 <vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-outside"/>
 <vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-int"/>
 </vnsLIf>
 <vnsLIf name="C4">
 <vnsRsMetaIf tDn="uni/infra/mDev-Acme-ADC-1.0/mIfLbl-inside"/>
 <vnsRsCIfAtt tDn="uni/tn-acme/lDevVip-ADCCluster1/cDev-ADC1/cIf-ext"/>
 </vnsLIf>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 	

 The following REST
 		request adds a concrete device in a physical device cluster:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vnsLDevVip name="ADCCluster1">
 <vnsCDev name="ADC1" devCtxLbl="C1">
 <vnsCIf name="int">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/22]"/>
 </vnsCIf>
 <vnsCIf name="ext">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/21]"/>
 </vnsCIf>
 <vnsCIf name="mgmt">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/20]"/>
 </vnsCIf>
 <vnsCMgmt name="devMgmt" host="172.30.30.100" port="80"/>
 <vnsCCred name="username" value="admin"/>
 <vnsCCred name="password" value="admin"/>
 </vnsCDev>
 <vnsCDev name="ADC2" devCtxLbl="C2">
 <vnsCIf name="int">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/23]"/>
 </vnsCIf>
 <vnsCIf name="ext">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/24]"/>
 </vnsCIf>
 <vnsCIf name="mgmt">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/30]"/>
 </vnsCIf>
 <vnsCMgmt name="devMgmt" host="172.30.30.200" port="80"/>
 <vnsCCred name="username" value="admin"/>
 <vnsCCred name="password" value="admin"/>
 </vnsCDev>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 	

 The following REST
 		request adds a concrete device in a virtual device cluster:
 	

 		<polUni>
 <fvTenant dn="uni/tn-coke5" name="coke5">
 <vnsLDevVip name="Firewall5" devtype="VIRTUAL">
 <vnsCDev name="ASA5" vcenterName="vcenter1" vmName="ifav16-ASAv-scale-05">
 <vnsCIf name="Gig0/0" vnicName="Network adapter 2"/>
 <vnsCIf name="Gig0/1" vnicName="Network adapter 3"/>
 <vnsCIf name="Gig0/2" vnicName="Network adapter 4"/>
 <vnsCIf name="Gig0/3" vnicName="Network adapter 5"/>
 <vnsCIf name="Gig0/4" vnicName="Network adapter 6"/>
 <vnsCIf name="Gig0/5" vnicName="Network adapter 7"/>
 <vnsCIf name="Gig0/6" vnicName="Network adapter 8"/>
 <vnsCIf name="Gig0/7" vnicName="Network adapter 9"/>
 <vnsCMgmt name="devMgmt" host="3.5.3.170" port="443"/>
 <vnsCCred name="username" value="admin"/>
 <vnsCCredSecret name="password" value="insieme"/>
 </vnsCDev>
 </vnsLDevVip>
 </fvTenant>
</polUni>

 	

 The following REST
 		request creates a service graph in managed mode:
 	

 		<polUni>
 <fvTenant name="acme">
 <vnsAbsGraph name = "G1">

 <vnsAbsTermNode name = "Input1">
 <vnsAbsTermConn name = "C1" direction = "output">
 </vnsAbsTermConn>
 </vnsAbsTermNode>

 <!-- Node1 Provides SLB functionality -->
 <vnsAbsNode name = "Node1" funcType="GoTo" >
 <vnsRsDefaultScopeToTerm
 tDn="uni/tn-acme/AbsGraph-G1/AbsTermNode-Output1/outtmnl"/>

 <vnsAbsFuncConn name = "C4" direction = "input">
 <vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-external"/>
 <vnsRsConnToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-C4"/>
 </vnsAbsFuncConn>

 <vnsAbsFuncConn name = "C5" direction = "output">
 <vnsRsMConnAtt tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB/mConn-internal"/>
 <vnsRsConnToLIf tDn="uni/tn-acme/lDevVip-ADCCluster1/lIf-C5"/>
 </vnsAbsFuncConn>

 <vnsRsNodeToMFunc tDn="uni/infra/mDev-Acme-ADC-1.0/mFunc-SLB"/>
 </vnsAbsNode>

 <vnsAbsTermNode name = "Output1">
 <vnsAbsTermConn name = "C6" direction = "input">
 </vnsAbsTermConn>
 </vnsAbsTermNode>

 <vnsAbsConnection name = "CON1">
 <vnsRsAbsConnectionConns
 tDn="uni/tn-acme/AbsGraph-G1/AbsTermNode-Input1/AbsTConn"/>
 <vnsRsAbsConnectionConns
 tDn="uni/tn-acme/AbsGraph-G1/AbsNode-Node1/AbsFConn-C4"/>
 </vnsAbsConnection>

 <vnsAbsConnection name = "CON3">
 <vnsRsAbsConnectionConns
 tDn="uni/tn-acme/AbsGraph-G1/AbsNode-Node1/AbsFConn-C5"/>
 <vnsRsAbsConnectionConns
 tDn="uni/tn-acme/AbsGraph-G1/AbsTermNode-Output1/AbsTConn"/>
 </vnsAbsConnection>
 </vnsAbsGraph>
 </fvTenant>
</polUni>

 	

 The following REST
 		request creates a service graph in unmanaged mode:
 	

 		<polUni>
 <fvTenant name="HA_Tenant1">
 <vnsAbsGraph name="g1">

 <vnsAbsTermNodeProv name="Input1">
 <vnsAbsTermConn name="C1">
 </vnsAbsTermConn>
 </vnsAbsTermNodeProv>

 <!-- Node1 Provides LoadBalancing functionality -->
 <vnsAbsNode name="Node1" managed="no">
 <vnsRsDefaultScopeToTerm
 tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsTermNodeProv-Input1/outtmnl"/>
 <vnsAbsFuncConn name="outside" attNotify="true">
 </vnsAbsFuncConn>
 <vnsAbsFuncConn name="inside" attNotify="true">
 </vnsAbsFuncConn>
 </vnsAbsNode>

 <vnsAbsTermNodeCon name="Output1">
 <vnsAbsTermConn name="C6">
 </vnsAbsTermConn>
 </vnsAbsTermNodeCon>

 <vnsAbsConnection name="CON2" adjType="L3" unicastRoute="yes">
 <vnsRsAbsConnectionConns
 tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsTermNodeCon-Output1/AbsTConn"/>
 <vnsRsAbsConnectionConns
 tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsNode-Node1/AbsFConn-outside"/>
 </vnsAbsConnection>

 <vnsAbsConnection name="CON1" adjType="L2" unicastRoute="no">
 <vnsRsAbsConnectionConns
 tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsNode-Node1/AbsFConn-inside"/>
 <vnsRsAbsConnectionConns
 tDn="uni/tn-HA_Tenant1/AbsGraph-g1/AbsTermNodeProv-Input1/AbsTConn"/>
 </vnsAbsConnection>

 </vnsAbsGraph>
 </fvTenant>
</polUni>

 	

 The following REST
 		request creates a security policy (contract):
 		
<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">
 <vzFilter name="HttpIn">
 <vzEntry name="e1" prot="6" dToPort="80"/>
 </vzFilter>

 <vzBrCP name="webCtrct">
 <vzSubj name="http">
 <vzRsSubjFiltAtt tnVzFilterName="HttpIn"/>
 </vzSubj>
 </vzBrCP>
 </fvTenant>
</polUni>

 	

 The following REST
 		request provides graph configuration parameters from an application EPG:
 		<polUni>
 <fvTenant dn="uni/tn-acme" name="acme">

 <!-- Application Profile -->
 <fvAp dn="uni/tn-acme/ap-MyAP" name="MyAP">

 <!-- EPG 1 -->
 <fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MyClnt" name="MyClnt">
 <fvRsBd tnFvBDName="MyClntBD"/>
 <fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
 <fvRsProv tnVzBrCPName="webCtrct">
 </fvRsProv>
 <fvRsPathAtt tDn="topology/pod-1/paths-17/pathep-[eth1/20]" encap="vlan-201"/>
 <fvSubnet name="SrcSubnet" ip="192.168.10.1/24"/>
 </fvAEPg>

 	 <!-- EPG 2 -->
 <fvAEPg dn="uni/tn-acme/ap-MyAP/epg-MySRVR" name="MySRVR">
 <fvRsBd tnFvBDName="MyClntBD"/>
 <fvRsDomAtt tDn="uni/vmmp-Vendor1/dom-MyVMs"/>
 <fvRsCons tnVzBrCPName="webCtrct">
 </fvRsCons>

 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any"
 key="Monitor" name="monitor1">
 <vnsParamInst name="weight" key="weight" value="10"/>
 </vnsFolderInst>

 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any" nodeNameOrLbl="any"
 key="Service" name="Service1">
 <vnsParamInst name="servicename" key="servicename"
 value="crpvgrtst02-8010"/>
 <vnsParamInst name="servicetype" key="servicetype" value="TCP"/>
 <vnsParamInst name="servername" key="servername"
 value="s192.168.100.100"/>
 <vnsParamInst name="serveripaddress" key="serveripaddress"
 value="192.168.100.100"/>
 <vnsParamInst name="serviceport" key="serviceport" value="8080"/>
 <vnsParamInst name="svrtimeout" key="svrtimeout" value="9000"/>
 <vnsParamInst name="clttimeout" key="clttimeout" value="9000"/>
 <vnsParamInst name="usip" key="usip" value="NO"/>
 <vnsParamInst name="useproxyport" key="useproxyport" value=""/>
 <vnsParamInst name="cip" key="cip" value="ENABLED"/>
 <vnsParamInst name="cka" key="cka" value="NO"/>
 <vnsParamInst name="sp" key="sp" value="OFF"/>
 <vnsParamInst name="cmp" key="cmp" value="NO"/>
 <vnsParamInst name="maxclient" key="maxclient" value="0"/>
 <vnsParamInst name="maxreq" key="maxreq" value="0"/>
 <vnsParamInst name="tcpb" key="tcpb" value="NO"/>
 <vnsCfgRelInst name="MonitorConfig" key="MonitorConfig"
 targetName="monitor1"/>
 </vnsFolderInst>
				
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" key="Network" name="Network">
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" key="vip" name="vip">
 <vnsParamInst name="vipaddress1" key="vipaddress"
 value="10.10.10.100"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" devCtxLbl="C1" key="snip" name="snip1">
 <vnsParamInst name="snipaddress" key="snipaddress"
 value="192.168.1.100"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" devCtxLbl="C2" key="snip" name="snip2">
 <vnsParamInst name="snipaddress" key="snipaddress"
 value="192.168.1.101"/>
 </vnsFolderInst>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" devCtxLbl="C3" key="snip" name="snip3">
 <vnsParamInst name="snipaddress" key="snipaddress"
 value="192.168.1.102"/>
 </vnsFolderInst>
 </vnsFolderInst>

 <!-- SLB Configuration -->
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" key="VServer" name="VServer">
 <!-- Virtual Server Configuration -->
 <vnsParamInst name="port" key="port" value="8010"/>
 <vnsParamInst name="vip" key="vip" value="10.10.10.100"/>
 <vnsParamInst name="vservername" key="vservername"
 value="crpvgrtst02-vip-8010"/>
 <vnsParamInst name="servicename" key="servicename"
 value="crpvgrtst02-8010"/>
 <vnsParamInst name="servicetype" key="servicetype" value="TCP"/>
 <vnsFolderInst ctrctNameOrLbl="any" graphNameOrLbl="any"
 nodeNameOrLbl="any" key="VServerGlobalConfig" name="VServerGlobalConfig">
 <vnsCfgRelInst name="ServiceConfig" key="ServiceConfig"
 targetName="Service1"/>
 <vnsCfgRelInst name="VipConfig" key="VipConfig"
 targetName="Network/vip"/>
 </vnsFolderInst>
 </vnsFolderInst>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>

 	

 The following REST
 		request attaches a service graph to a contract:
 		<polUni>
 <fvTenant name="acme">
 <vzBrCP name="webCtrct">
 <vzSubj name="http">
 <vzRsSubjGraphAtt graphName="G1" termNodeName="Input1"/>
 </vzSubj>
 </vzBrCP>
 </fvTenant>
</polUni>

 	

 Example: Configuring Layer 4 to Layer 7 Services Using the REST API

 This topic shows the steps for configuring Layer 4 to Layer 7 services (ASA Firewall) using the REST API.

 Before You Begin

 	

 Create the tenant to use the Layer 4 to Layer 7 services, with a Layer 3 outside network and bridge domains.

 	

 Create application profiles.

 	

 Configure a physical or VMM domain.

 	

 Import and register the device packages and configure parameters for them.

Procedure

 	Step 1

 	Create a Layer 4 to Layer 7 ASAv device package model, using XML such as the following example:

Example:
 <vnsLDevVip trunking="no" svcType="FW"
packageModel="ASAv" name="ASAv" mode="legacy-Mode"
managed="yes" isCopy="no" funcType="GoTo"
dn="uni/tn-Tenant-test/lDevVip-ASAv" devtype="VIRTUAL"
contextAware="single-Context">

<vnsCCred name="username" value="admin"/>
<vnsRsMDevAtt tDn="uni/infra/mDev-CISCO-ASA-1.2"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-ACI_vDS"/>
<vnsCDev name="Device1" vmName="ASAv-L3" vcenterName="vcenter" devCtxLbl="">
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsCIf name="GigabitEthernet0/1" vnicName="Network adapter 3"/>
<vnsCIf name="GigabitEthernet0/0" vnicName="Network adapter 2"/>
<vnsRsCDevToCtrlrP tDn="uni/vmmp-VMware/dom-ACI_vDS/ctrlr-vcenter"/>
</vnsCDev>

<vnsLIf name="provider" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-internal" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/1]"/>
</vnsLIf>

<vnsLIf name="consumer" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-external" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/0]"/>
</vnsLIf>
</vnsLDevVip>

 	Step 2

 	Configure a Layer 4 to Layer 7 FW-Graph using XML such as the following example:

Example:
 <vnsAbsGraph uiTemplateType="UNSPECIFIED" ownerTag="" ownerKey="" name="FW-Graph"
dn="uni/tn-Tenant-test/AbsGraph-FW-Graph" descr="">

<vnsAbsTermNodeCon ownerTag="" ownerKey="" name="T1" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeCon>

<vnsAbsTermNodeProv ownerTag="" ownerKey="" name="T2" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeProv>

<vnsAbsConnection ownerTag="" ownerKey="" name="C1" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-consumer"/>
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeCon-T1/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsConnection ownerTag="" ownerKey="" name="C2" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-provider"/>
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeProv-T2/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsNode ownerTag="" ownerKey="" name="N1" descr="" shareEncap="no" sequenceNumber="0"
routingMode="unspecified" managed="yes" isCopy="no" funcType="GoTo" funcTemplateType="FW_ROUTED">
<vnsAbsFuncConn ownerTag="" ownerKey="" name="consumer" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-external"/>
</vnsAbsFuncConn>

<vnsAbsFuncConn ownerTag="" ownerKey="" name="provider" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-internal"/>
</vnsAbsFuncConn>
<vnsRsNodeToAbsFuncProf
tDn="uni/infra/mDev-CISCO-ASA-1.2/absFuncProfContr/absFuncProfGrp-WebServiceProfileGroup/absFuncProf-WebPolicyForRoutedMode"/>
<vnsRsNodeToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>
<vnsRsNodeToMFunc tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall"/>
</vnsAbsNode>
</vnsAbsGraph>

 	Step 3

 	 Create a device selection policy, using XML such as the following example:

Example:
 <vnsLDevCtx nodeNameOrLbl="N1" name="" graphNameOrLbl="FW-Graph"
dn="uni/tn-Tenant-test/ldevCtx-c-Client-to-Web-g-FW-Graph-n-N1" descr="" ctrctNameOrLbl="Client-to-Web">
<vnsRsLDevCtxToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>

<vnsLIfCtx name="" descr="" connNameOrLbl="provider">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD2"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-provider"/>
</vnsLIfCtx>

<vnsLIfCtx name="" descr="" connNameOrLbl="consumer">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD1"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-consumer"/>
</vnsLIfCtx>
</vnsLDevCtx>

 	Step 4

 	 Configure a contract, associated with the FW-Graph service graph template, using XML such as the following example:

Example:
 <vzBrCP targetDscp="unspecified" scope="tenant" prio="unspecified" ownerTag=""
ownerKey="" name="Client-to-Web" dn="uni/tn-Tenant-test/brc-Client-to-Web" descr="">

<vzSubj targetDscp="unspecified" prio="unspecified" name="Subject" descr=""
revFltPorts="yes" provMatchT="AtleastOne" consMatchT="AtleastOne"
<vzRsSubjFiltAtt tnVzFilterName="default" directives=""/>
<vzRsSubjGraphAtt directives="" tnVnsAbsGraphName="FW-Graph"/>
</vzSubj>
</vzBrCP>

 	Step 5

 	Create the Client EPG, using XML such as the following example:

Example:
 <fvAEPg prio="unspecified" pcEnfPref="unenforced" name="Client"
matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl="" dn="uni/tn-Tenant-test/ap-ANP/epg-Client" descr="">
<fvRsCons prio="unspecified" tnVzBrCPName="Client-to-Web"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD1"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</fvAEPg>

 	Step 6

 	Create the Web EPG, using XML such as the following example:

Example:
 -<fvAEPg prio="unspecified" pcEnfPref="unenforced" name="Web" matchT="AtleastOne"
isAttrBasedEPg="no" fwdCtrl="" dn="uni/tn-Tenant-test/ap-ANP/epg-Web" descr="">
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD2"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

<vnsFolderInst name="internalIf" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="Interface"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsFolderInst name="internalIfCfg" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="InterfaceConfig"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="internal_security_level" locked="no" key="security_level" cardinality="unspecified"
value="100" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="externalIf" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="Interface"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsFolderInst name="ExtAccessGroup" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessGroup"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsCfgRelInst name="name" locked="no" key="inbound_access_list_name" cardinality="unspecified" mandatory="no"
targetName="access-list-inbound"/>
</vnsFolderInst>

<vnsFolderInst name="externalIfCfg" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="InterfaceConfig"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsParamInst name="external_security_level" locked="no" key="security_level"
cardinality="unspecified" value="50" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="IntConfig" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="InIntfConfigRelFolder"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsCfgRelInst name="InConfigrel" locked="no" key="InIntfConfigRel"
cardinality="unspecified" mandatory="no" targetName="internalIf"/>
</vnsFolderInst>

<vnsFolderInst name="ExtConfig" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="ExIntfConfigRelFolder"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsCfgRelInst name="ExtConfigrel" locked="no" key="ExIntfConfigRel" cardinality="unspecified" mandatory="no"
targetName="externalIf"/>
</vnsFolderInst>

<vnsFolderInst name="access-list-inbound" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessList"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsFolderInst name="permit-https" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessControlEntry"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified" value="permit"
validation="" mandatory="no"/>
<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10" validation="" mandatory="no"/>

<vnsFolderInst name="dest-service" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="destination_service"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified" value="eq" validation="" mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified" value="https" validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="dest-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="destination_address"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="source_address"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="protocol"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified" value="tcp" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="permit-http" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="AccessControlEntry"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified" value="permit"
validation="" mandatory="no"/>

<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10" validation="" mandatory="no"/>

<vnsFolderInst name="dest-service" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="destination_service"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified" value="eq" validation="" mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified" value="http" validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="dest-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="destination_address"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="source_address"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any" validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" scopedBy="epg" nodeNameOrLbl="N1" locked="no" key="protocol"
graphNameOrLbl="FW-Graph" devCtxLbl="" ctrctNameOrLbl="Client-to-Web" cardinality="unspecified">

<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified"
value="tcp" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>
</vnsFolderInst>

<fvRsProv prio="unspecified" matchT="AtleastOne" tnVzBrCPName="Client-to-Web"/>
</fvAEPg>

 To configure the entire Layer 4 to Layer 7 ASAv firewall services for a tenant, use XML such as the following example;<fvTenant ownerTag="" ownerKey="" name="Tenant-test" dn="uni/tn-Tenant-test" descr="">

<vnsLDevCtx name="" descr="" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web"><vnsRsLDevCtxToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>

<vnsLIfCtx name="" descr="" connNameOrLbl="provider">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD2"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-provider"/>
</vnsLIfCtx>

<vnsLIfCtx name="" descr="" connNameOrLbl="consumer">
<vnsRsLIfCtxToBD tDn="uni/tn-Tenant-test/BD-BD1"/>
<vnsRsLIfCtxToLIf tDn="uni/tn-Tenant-test/lDevVip-ASAv/lIf-consumer"/>
</vnsLIfCtx>
</vnsLDevCtx>

<vzBrCP ownerTag="" ownerKey="" name="Client-to-Web" descr="" targetDscp="unspecified"
scope="tenant" prio="unspecified">

<vzSubj name="Subject" descr="" targetDscp="unspecified" prio="unspecified" revFltPorts="yes"
provMatchT="AtleastOne" consMatchT="AtleastOne">
<vzRsSubjFiltAtt tnVzFilterName="default" directives=""/>
<vzRsSubjGraphAtt directives="" tnVnsAbsGraphName="FW-Graph"/>
</vzSubj>
</vzBrCP>

<vnsAbsGraph ownerTag="" ownerKey="" name="FW-Graph" descr="" uiTemplateType="UNSPECIFIED">
<vnsAbsTermNodeCon ownerTag="" ownerKey="" name="T1" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeCon>

<vnsAbsTermNodeProv ownerTag="" ownerKey="" name="T2" descr="">
<vnsAbsTermConn ownerTag="" ownerKey="" name="1" descr="" attNotify="no"/>
<vnsInTerm name="" descr=""/>
<vnsOutTerm name="" descr=""/>
</vnsAbsTermNodeProv>

<vnsAbsConnection ownerTag="" ownerKey="" name="C1" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-consumer"/>
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeCon-T1/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsConnection ownerTag="" ownerKey="" name="C2" descr="" unicastRoute="yes"
directConnect="no" connType="external" connDir="provider" adjType="L2">
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsNode-N1/AbsFConn-provider"/>
<vnsRsAbsConnectionConns tDn="uni/tn-Tenant-test/AbsGraph-FW-Graph/AbsTermNodeProv-T2/AbsTConn"/>
</vnsAbsConnection>

<vnsAbsNode ownerTag="" ownerKey="" name="N1" descr="" shareEncap="no" sequenceNumber="0"
routingMode="unspecified" managed="yes" isCopy="no" funcType="GoTo" funcTemplateType="FW_ROUTED">

<vnsAbsFuncConn ownerTag="" ownerKey="" name="consumer" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-external"/>
</vnsAbsFuncConn>

<vnsAbsFuncConn ownerTag="" ownerKey="" name="provider" descr="" attNotify="no">
<vnsRsMConnAtt tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall/mConn-internal"/>
</vnsAbsFuncConn>
<vnsRsNodeToAbsFuncProf
tDn="uni/infra/mDev-CISCO-ASA-1.2/absFuncProfContr/absFuncProfGrp-WebServiceProfileGroup/absFuncProf-WebPolicyForRoutedMode"/>
<vnsRsNodeToLDev tDn="uni/tn-Tenant-test/lDevVip-ASAv"/>
<vnsRsNodeToMFunc tDn="uni/infra/mDev-CISCO-ASA-1.2/mFunc-Firewall"/>
</vnsAbsNode>
</vnsAbsGraph>

<fvBD ownerTag="" ownerKey="" name="BD1" descr="" unicastRoute="yes" vmac="not-applicable"
unkMcastAct="flood" unkMacUcastAct="proxy" type="regular" multiDstPktAct="bd-flood" mcastAllow="no"
mac="00:22:BD:F8:19:FF" llAddr="::" limitIpLearnToSubnets="no" ipLearning="yes"
epMoveDetectMode="" arpFlood="no">
<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsCtx tnFvCtxName="VRF1"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvRsBdToEpRet tnFvEpRetPolName="" resolveAct="resolve"/>
</fvBD>

<fvBD ownerTag="" ownerKey="" name="BD2" descr="" unicastRoute="yes" vmac="not-applicable"
unkMcastAct="flood" unkMacUcastAct="proxy" type="regular" multiDstPktAct="bd-flood" mcastAllow="no"
mac="00:22:BD:F8:19:FF" llAddr="::" limitIpLearnToSubnets="no" ipLearning="yes"
epMoveDetectMode="" arpFlood="no">
<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsCtx tnFvCtxName="VRF1"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvRsBdToEpRet tnFvEpRetPolName="" resolveAct="resolve"/>
</fvBD>

<fvCtx ownerTag="" ownerKey="" name="VRF1" descr="" pcEnfPref="enforced" pcEnfDir="ingress"
knwMcastAct="permit">
<fvRsBgpCtxPol tnBgpCtxPolName=""/>
<fvRsCtxToExtRouteTagPol tnL3extRouteTagPolName=""/>
<fvRsOspfCtxPol tnOspfCtxPolName=""/>
<vzAny name="" descr="" matchT="AtleastOne"/>
<fvRsCtxToEpRet tnFvEpRetPolName=""/>
</fvCtx>
<vnsSvcCont/>

<fvAp ownerTag="" ownerKey="" name="ANP" descr="" prio="unspecified">

<fvAEPg name="Web" descr="" prio="unspecified" pcEnfPref="unenforced"
matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl="">
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD2"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

<vnsFolderInst name="internalIf" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web"scopedBy="epg" locked="no" key="Interface"
devCtxLbl="" cardinality="unspecified">

<vnsFolderInst name="internalIfCfg" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="InterfaceConfig"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="internal_security_level" locked="no" key="security_level"
cardinality="unspecified"
value="100" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="externalIf" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="Interface"
devCtxLbl="" cardinality="unspecified">

<vnsFolderInst name="ExtAccessGroup" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessGroup" devCtxLbl=""
cardinality="unspecified">
<vnsCfgRelInst name="name" locked="no" key="inbound_access_list_name"
cardinality="unspecified"
mandatory="no" targetName="access-list-inbound"/>
</vnsFolderInst>

<vnsFolderInst name="externalIfCfg" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="InterfaceConfig"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="external_security_level" locked="no" key="security_level"
cardinality="unspecified" value="50" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="IntConfig" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="InIntfConfigRelFolder"
devCtxLbl="" cardinality="unspecified">
<vnsCfgRelInst name="InConfigrel" locked="no" key="InIntfConfigRel" cardinality="unspecified"
mandatory="no" targetName="internalIf"/>
</vnsFolderInst>

<vnsFolderInst name="ExtConfig" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="ExIntfConfigRelFolder"
devCtxLbl="" cardinality="unspecified">
<vnsCfgRelInst name="ExtConfigrel" locked="no" key="ExIntfConfigRel" cardinality="unspecified"
mandatory="no" targetName="externalIf"/>
</vnsFolderInst>

<vnsFolderInst name="access-list-inbound" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessList" devCtxLbl=""
cardinality="unspecified">

<vnsFolderInst name="permit-https" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessControlEntry"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified"
value="permit" validation="" mandatory="no"/>
<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10"
validation="" mandatory="no"/>

<vnsFolderInst name="dest-service" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_service"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified"
value="eq" validation="" mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified"
value="https" validation="" mandatory="no"/>
</vnsFolderInst>
<vnsFolderInst name="dest-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_address"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="source_address"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="protocol" devCtxLbl=""
cardinality="unspecified">
<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified"
value="tcp" validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>

<vnsFolderInst name="permit-http" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="AccessControlEntry"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="action-permit" locked="no" key="action" cardinality="unspecified"
value="permit" validation="" mandatory="no"/>
<vnsParamInst name="order1" locked="no" key="order" cardinality="unspecified" value="10"
validation="" mandatory="no"/>

<vnsFolderInst name="dest-service" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_service"
devCtxLbl="" cardinality="unspecified">
<vnsParamInst name="op" locked="no" key="operator" cardinality="unspecified" value="eq"
validation="" mandatory="no"/>
<vnsParamInst name="port" locked="no" key="low_port" cardinality="unspecified" value="http"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="dest-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="destination_address" devCtxLbl=""
cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="src-address" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="source_address" devCtxLbl=""
cardinality="unspecified">
<vnsParamInst name="any" locked="no" key="any" cardinality="unspecified" value="any"
validation="" mandatory="no"/>
</vnsFolderInst>

<vnsFolderInst name="tcp" nodeNameOrLbl="N1" graphNameOrLbl="FW-Graph"
ctrctNameOrLbl="Client-to-Web" scopedBy="epg" locked="no" key="protocol" devCtxLbl=""
cardinality="unspecified">

<vnsParamInst name="tcp" locked="no" key="name_number" cardinality="unspecified" value="tcp"
validation="" mandatory="no"/>
</vnsFolderInst>
</vnsFolderInst>
</vnsFolderInst>
<fvRsProv prio="unspecified" matchT="AtleastOne" tnVzBrCPName="Client-to-Web"/>
</fvAEPg>

<fvAEPg name="Client" descr="" prio="unspecified" pcEnfPref="unenforced" matchT="AtleastOne"
isAttrBasedEPg="no" fwdCtrl="">
<fvRsCons prio="unspecified" tnVzBrCPName="Client-to-Web"/>
<fvRsDomAtt tDn="uni/vmmp-VMware/dom-ACI_vDS" resImedcy="lazy" primaryEncap="unknown"
instrImedcy="lazy" encap="unknown" delimiter="" classPref="encap"/>
<fvRsBd tnFvBDName="BD1"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</fvAEPg>
</fvAp>
<fvRsTenantMonPol tnMonEPGPolName=""/>

<vnsLDevVip name="ASAv" managed="yes" isCopy="no" funcType="GoTo" trunking="no"
svcType="FW" packageModel="ASAv" mode="legacy-Mode" devtype="VIRTUAL" contextAware="single-Context">
<vnsCCred name="username" value="admin"/>
<vnsRsMDevAtt tDn="uni/infra/mDev-CISCO-ASA-1.2"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsRsALDevToDomP tDn="uni/vmmp-VMware/dom-ACI_vDS"/>

<vnsCDev name="Device1" devCtxLbl="" vmName="ASAv-L3" vcenterName="vcenter">
<vnsCCred name="username" value="admin"/>
<vnsCCredSecret name="password"/>
<vnsCMgmt name="" port="443" host="172.31.184.249"/>
<vnsCIf name="GigabitEthernet0/1" vnicName="Network adapter 3"/>
<vnsCIf name="GigabitEthernet0/0" vnicName="Network adapter 2"/>
<vnsRsCDevToCtrlrP tDn="uni/vmmp-VMware/dom-ACI_vDS/ctrlr-vcenter"/>
</vnsCDev>

<vnsLIf name="provider" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-internal" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/1]"/>
</vnsLIf>

<vnsLIf name="consumer" encap="unknown">
<vnsRsMetaIf tDn="uni/infra/mDev-CISCO-ASA-1.2/mIfLbl-external" isConAndProv="no"/>
<vnsRsCIfAttN tDn="uni/tn-Tenant-test/lDevVip-ASAv/cDev-Device1/cIf-[GigabitEthernet0/0]"/>
</vnsLIf>
</vnsLDevVip>
</fvTenant>

 Configuring Layer 4 to Layer 7 Route Peering With the REST API

 These l3extOut policies specify the OSPF configurations needed to enable OSPF on the fabric leaf and are very similar to the l3extOut policies used for external communication.

 The l3extOut policies also specify the prefix-based EPGs that control which routes are distributed in/out of the fabric. The scope=import attribute controls two things: which endpoint prefixes are learned; and directs the external L4-L7 device to advertise this
 route. The scope=export attribute specifies that the fabric has to advertise this route to the L4-L7 device.

 Two sample l3extOut policies are shown below: OspfInternal deployed on eth1/23, and OspfExternal deployed on eth1/25.

 Before You Begin

 Create one or more l3extOut external network connections and deploy them on the fabric leaf nodes where the service device
 is connected.

Procedure

 	Step 1

 	 To configure OspfInternal on eth1/23, send a post with XML similar to the following example:

Example:
 <?xml version="1.0" encoding="UTF-8?>
<!-- /api/policymgr/mo.xml -->
<polUni>
 <fvTenant name="coke{{tenantId}}">
 {% if status is not defined %}
 {% set status = "created,modified" %}
 {% endif %}

 <l3extOut name="OspfInternal" status="{{status}}">

 <l3extLNodeP name="bLeaf-101">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="180.0.0.11"/>
 <l3extLifP name='portIf''>
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/23]"
 ifInstT='ext-svi' encap='vlan-3844' addr="30.30.30.100/28" mtu='1500'/>
 <!-- <ospfIfP authKey="tecom" authType="md5" authKeyId='1'> -->
 <ospfIfP>
 <ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
 </ospfIfP>
 </l3extLIfP>
 </l3extLNodeP>

 <ospfExtP areaId='111' areaType='nssa' areaCtrl='redistribute'/>

 <l3extInstP name="OspfInternalInstP">
 <l3extSubnet ip="30.30.30.100/28" scope="import"/>
 <l3extSubnet ip="20.20.20.0/24" scope="import"/>
 <l3extSubnet ip="10.10.10.0/24" scope="export"/>
 </l3extInstP>

 <l3extRsEctx tnFvCtxName="cokectx1"/>

 </l3extOut>

 <ospfIfPol name="ospfIfPol" nwT='bcast' xmitDelay='1'
 helloIntvl='10' deadIntvl='40' status="created,modified"/>
 </fvTenant>
</polUni>

 	Step 2

 	To configure OspfExternal on eth1/25, send a post with XML similar to the following example:

Example:
 <?xml version="1.0" encoding="UTF-8?>
<!-- /api/policymgr/mo.xml -->
 <polUni>
 <fvTenant name="common">
 <fvCtx name="commonctx"/>

 {% if status is not defined %}
 {% set status="created,modified" %}
 {% endif %}

 <l3extOut name=OspfExternal" status="{{status}}">
 <l3extLNodeP name="bLeaf-101">
 <l3extRsNodeL3OutAtt tDn="topology/pod-1/node-101" rtrId="180.0.0.8/28"/>
 <l3extLIfP name='portIf'>
 {% if intfType is not defined %}
 {% set intfType="ext-svi" %}
 {% endif %}
 <l3extRsPathL3OutAtt tDn="topology/pod-1/paths-101/pathep-[eth1/25]"
 ifInstT='ext-svi' encap='vlan-3843' addr="40.40.40.100/28" mtu='1500'/>
 <!-- ospfIfP authKey="tecom" authType="md5" authKeyId='1'> -->
 <ospfIfP>
 <ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
 </ospfIfP>
 </l3extIfP>
 </l3extLNodeP>

 <ospfExtP areaId='111' areaType='nssa' areaCtrl='redistribute'/>

 <l3extInstP name="OspfExternalInstP">
 <l3extSubnet ip="40.40.40.100/28" scope="import"/>
 <l3extSubnet ip="10.10.10.0/24" scope="import"/>
 <l3extSubnet ip="20.20.20.0/24" scope="export"/>
 </l3extInstP>

 <l3extRsEctx tnfvCtxName="commonctx"/>

 </l3extOut>

 <ospfIfPol name="ospfIfPol" nwT='bcast' xmitDelay='1' helloIntvl='10' deadIntvl='40' status="created,modified"/>
 </fvTenant>
 </polUni>

 The l3extInstP object specifies that prefixes 40.40.40.100/28 and 10.10.10.0/24 are to be used for prefix based endpoint association and
 indicate that the L4-L7 device should advertise these routes.

 The l3extRsPathL3OutAtt object specifies where each L3extOut is deployed.

 	Note

 	

 For route peering to work, the l3extRsPathL3OutAtt must match the RsCIfPathAtt where the L4-L7 logical device cluster is connected.

 Specifying an l3extOut Policy for Layer 4 to L7 Route Peering

 A specific l3extOut policy can be used for a logical device cluster using its selection policy vnsLIfCtx. The vnsRsLIfCtxToInstP points the LIfCtx to the appropriate OspfInternal and OspfExternal
 			l3extInstP EPGs. To configure an L3extOut policy used for Layer 4 to Layer 7 Route Peering, send a post with XML such as the following
 example:

 <vnsLDevCtx ctrctNameOrLbl="webCtrct{{graphId}}" graphNameOrLbl="WebGraph" nodeNameOrLbl="FW">
 <vnsRsLDevCtxToLDev tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall"/>
 <vnsLIfCtx connNameOrLbl="internal">
 {% if L3ExtOutInternal is not defined %}
 <fvSubnet ip="10.10.10.10/24"/>
 {% endif %}
 <vnsRsLIfCtxToBD tDn="uni/tn-solar{{tenantId}}/BD-solarBD1"/>
 <vnsRsLIfCtxToLIf tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall/lIf-internal"/>
 {% if L3ExtOutInternal is defined %}
 <vnsRsLIfCtxToInstP tDn="uni/tn-solar{{tenantId}}/out-OspfInternal/instP-OspfInternalInstP" status={{L3ExtOutInternal}}"/>
 {% endif %}
 </vnsLIfCtx>
 <vnsLIfCtx connNameOrLbl="external">
 {% if L3ExtOutExternal is not defined %}
 <fvSubnet ip="40.40.40.40/24"/>
 {% endif %}
 <vnsRsLIfCtxToBD tDn="uni/tn-solar{{tenantId}}/BD-solarBD4"/>
 <vnsRsLIfCtxToLIf tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall/lIf-external"/>
 {% if L3ExtOutExternal is defined %}
 <vnsRsLIfCtxToInstP tDn="uni/tn-solar{{tenantId}}/out-OspfExternal/instP-OspfExternalInstP" status={{L3ExtOutExternal}}"/>
 {% endif %}
 </vnsLIfCtx>
</vnsLDevCtx>

 The associated
 		concrete device needs to have a
 		vnsRsCIfPathAtt that deploys it to the same fabric leaf
 		as shown in the following example:
 	

 		<vnsCDev name="ASA">
 <vnsRsLDevCtxToLDev tDn="uni/tn-solar{{tenantId}}/lDevVip-Firewall"/>
 <vnsCIf name="Gig0/0">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-101/pathep-[eht1/23]"/>
 </vnsCIf>
 <vnsCIf name="Gig0/1">
 <vnsRsCIfPathAtt tDn="topology/pod-1/paths-101/pathep-[eht1/25]"/>
 </vnsCIf>
 <vnsCMgmt name="devMgmt" host="{{asaIp}}" port="443" />
 <vnsCCred name="username" value="admin" />
 <vnsCCredSecret name="password" value="insieme" />
</vnsCDev>

 	

 The following figure
 		shows how route peering works end-to-end.
 		
 Sample
 			 Deployment

[image: ../images/349540.jpg]

 	

 In this 2-leaf,
 		1-spine topology, the linux web server is at IP 10.10.10.101/24 and is hosted
 		on an ESX server connected to dev2-leaf1. A service graph is deployed
 		consisting of a two-arm firewall that is also connected to dev2-leaf1. The
 		service graph is associated with a contract that binds an external
 		l3extOut
 		L3OutInternet with the provider EPG (Web VM). Two
 		internal
 		l3extOut policies, an
 		L3OutExternal, and an
 		L3OutInteral are also deployed to the leaf ports
 		where the service device is connected.
 	

 Chapter 15. Configuring QoS

 Preserving 802.1P Class of Service Settings

 APIC enables preserving 802.1P class of service (CoS) settings within the fabric. Enable the fabric global QoS policy dot1p-preserve option to guarantee that the CoS value in packets which enter and transit the ACI fabric is preserved.

 802.1P CoS preservation is supported in single pod and multipod topologies.

 In multipod topologies, CoS Preservation can be used where you want to preserve the QoS priority settings of 802.1P traffic
 entering POD 1 and egressing out of POD 2, but you are not concerned with preserving the CoS/DSCP settings in interpod network
 (IPN) traffic between the pods. To preserve CoS/DSCP settings when multipod traffic is transitting an IPN, use a DSCP policy.
 For more information, see Preserving QoS Priority Settings in a Multipod Fabric.

 Observe the following 801.1P CoS preservation guidelines and limitations:

 	
 				
 The current release can only preserve the 802.1P value within a VLAN header. The DEI bit is not preserved.

 			

 	
 				
 For VXLAN encapsulated packets, the current release will not preserve the 802.1P CoS value contained in the outer header.

 				
 			

 	
 				
 802.1P is not preserved when the following configuration options are enabled:

 				

 	
 						
 Multipod QoS (using a DSCP policy) is enabled.

 					

 	
 						
 Contracts are configured that include QoS.

 					

 	
 						
 Dynamic packet prioritization is enabled.

 					

 	
 						
 The outgoing interface is on a FEX.

 					

 	
 						
 Preserving QoS CoS priority settings is not supported when traffic is flowing from an EPG with isolation enforced to an EPG
 without isolation enforced.

 					

 	
 						
 A DSCP QoS policy is configured on a VLAN EPG and the packet has an IP header. DSCP marking can be set at the filter level
 on the following with the precedence order from the innermost to the outermost:

 						

 	
 								
 Contract

 							

 	
 								
 Subject

 							

 	
 								
 In Term

 							

 	
 								
 Out Term

 							

 						

 	[image: ../images/note.gif]
Note
 	

 							
 When specifying vzAny for a contract, external EPG DSCP values are not honored because vzAny is a collection of all EPGs in
 a VRF, and EPG specific configuration cannot be applied. If EPG specific target DSCP values are required, then the external
 EPG should not use vzAny.

 						

 					

 			

 Preserving QoS CoS Settings Using the REST API

Procedure

 	Step 1

 	Enable CoS preservation, using a REST API POST statement, similar to the following:

Example:
 post https://192.0.20.123/api/node/mo/uni/infra/qosinst-default.xml
<imdata totalCount="1">

<qosInstPol ownerTag="" ownerKey="" name="default" dn="uni/infra/qosinst-default" descr="" ctrl="dot1p-preserve"/>

</imdata>

 	Step 2

 	Disable CoS preservation, using a POST statement, such as the following example, which leaves the ctrl property empty:

Example:
 post https://192.0.20.123/api/node/mo/uni/infra/qosinst-default.xml
<imdata totalCount="1">

<qosInstPol ownerTag="" ownerKey="" name="default" dn="uni/infra/qosinst-default" descr="" ctrl=""/>

</imdata>

 Preserving QoS Priority Settings in a Multipod Fabric

 This topic describes how to guarantee QoS priority settings in a multipod topology, where devices in the interpod network
 are not under APIC management, and may modify 802.1P settings in traffic transitting their network.

 	[image: ../images/note.gif]
Note
 	

 You can alternatively use CoS Preservation where you want to preserve the QoS priority settings of 802.1P traffic entering
 POD 1 and egressing out of POD 2, but you are not concerned with preserving the CoS/DSCP settings in interpod network (IPN)
 traffic between the pods. For more information, see Preserving 802.1P Class of Service Settings.

 Multipod Topology

[image: ../images/501033.jpg]

 As illustrated in this figure, traffic between pods in a multipod topology passes through an IPN, which may not be under
 APIC management. When an 802.1P frame is sent from a spine or leaf switch in POD 1, the devices in the IPN may not preserve
 the CoS setting in 802.1P frames. In this situation, when the frame reaches a POD 2 spine or leaf switch, it has the CoS level
 assigned by the IPN device, instead of the level assigned at the source in POD 1. Use a DSCP policy to ensure that the QoS
 priority levels are preserved in this case.

 Configure a DSCP policy to preserve the QoS priority settings in a multipod topology, where there is a need to do deterministic
 mapping from CoS to DSCP levels for different traffic types, and you want to prevent the devices in the IPN from changing
 the configured levels. With a DSCP policy enabled, APIC converts the CoS level to a DSCP level, according to the mapping you
 configure. When a frame is sent from POD 1 (with the PCP level mapped to a DSCP level), when it reaches POD 2, the mapped
 DSCP level is then mapped back to the original PCP CoS level.

 Creating a DSCP Policy Using the REST API

Procedure

 	Step 1

 	 Configure and enable a DSCP policy with a post, such as the following:

Example:
 post https://192.0.20.123/api/node/mo/uni/tn-infra/dscptranspol-default.xml

<imdata totalCount="1">

<qosDscpTransPol traceroute="AF43" span="AF42" policy="AF22" ownerTag="" ownerKey="" name="default"
level3="AF13" level2="AF12" level1="AF11" dn="uni/tn-infra/dscptranspol-default" descr="" control="AF21" adminSt="enabled"/>

</imdata>

 	Step 2

 	Disable the DSCP policy with a post such as the following:

Example:
 post https://192.0.20.123/api/node/mo/uni/tn-infra/dscptranspol-default.xml

<imdata totalCount="1">

<qosDscpTransPol traceroute="AF43" span="AF42" policy="AF22" ownerTag="" ownerKey="" name="default"
level3="AF13" level2="AF12" level1="AF11" dn="uni/tn-infra/dscptranspol-default" descr="" control="AF21" adminSt="disabled"/>

</imdata>

 Translating QoS Ingress Markings to Egress Markings

 APIC enables translating the 802.1P CoS field (Class of Service) based on the ingress DSCP value. 802.1P CoS translation
 is supported only if DSCP is present in the IP packet and dot1P is present in the Ethernet frames.

 This functionality enables the ACI Fabric to classify the traffic for devices that classify the traffic based only on the
 CoS value. It allows mapping the dot1P CoS value based on the ingress dot1P value. It is mainly applicable for Layer 2 packets,
 which do not have an IP header.

 Observe the following 802.1P CoS translation guidelines and limitations:

 	
 Enable the fabric global QoS policy dot1p-preserve option.

 	

 802.1P CoS translation is not supported on external L3 interfaces.

 	

 802.1P CoS translation is supported only if the egress frame is 802.1Q encapsulated.

 802.1P CoS translation is not supported when the following configuration options are enabled:

 	

 Contracts are configured that include QoS.

 	

 The outgoing interface is on a FEX.

 	

 Multipod QoS using a DSCP policy is enabled.

 	

 Dynamic packet prioritization is enabled.

 	

 If an EPG is configured with intra-EPG endpoint isolation enforced.

 	

 If an EPG is configured with allow-microsegmentation enabled.

 Translating QoS Ingress Markings to Egress Markings Using the REST API

 Create a custom QoS policy and then associate the policy with an EPG.

 Before You Begin

 Create the tenant, application, and EPGs that will consume the custom QoS policy. The example creates the vrfQos001 custom QoS policy and associates it with the ep2 EPG, that will consume it.

Procedure

 	Step 1

 	Create a custom QoS policy by sending a post with XML such as the following example:

Example:
 <qosCustomPol name="vrfQos001" dn="uni/tn-t001/qoscustom-vrfQos001">
 <qosDscpClass to="AF31" targetCos="6"
 target="unspecified" prio="unspecified" from="AF23"/>
 <qosDot1PClass to="1" targetCos="6" target="unspecified"
 prio="unspecified" from="0"/>
</qosCustomPol>

 	Step 2

 	 Associate the policy with an EPG that will consume it by sending a post with XML such as the following example:

Example:
 <fvAEPg
 prio="unspecified" prefGrMemb="exclude" pcEnfPref="unenforced"
 name="ep2" matchT="AtleastOne" isAttrBasedEPg="no" fwdCtrl=""
 dn="uni/tn-t001/ap-ap2/epg-ep2">
 <fvRsDomAtt tDn="uni/vmmp-VMware/dom-vs1" resImedcy="lazy"
 primaryEncap="unknown" netflowPref="disabled" instrImedcy="lazy" encapMode="auto"
 encap="unknown" delimiter="" classPref="encap"/>
 <fvRsCustQosPol tnQosCustomPolName="vrfQos001"/>
 <fvRsBd tnFvBDName="default"/>
</fvAEPg>

 Troubleshooting Cisco APIC QoS Policies

 The following table summarizes common troubleshooting scenarios for the Cisco APIC QoS.

 	

 Problem

 	

 Solution

 	

 Unable to update a configured QoS policy.

 	

 	

 Invoke the following API to ensure that qospDscpRule is present on the leaf.

 GET https://192.0.20.123/api/node/class/qospDscpRule.xml

 	

 Ensure that the QoS rules are accurately configured and associated to the EPG ID to which the policy is attached.

 Use the following NX-OS style CLI commands to verify the configuration.

 leaf1# show vlan
leaf1# show system internal aclqos qos policy detail

apic1# show running-config tenant tenant-name policy-map type qos custom-qos-policy-name
apic1# show running-config tenant tenant-name application application-name epg epg-name

 Chapter 16. Configuring Security

 Overview

 This article provides
 		step by step instructions on how to enable RADIUS, TACACS+, and LDAP users
 		access the
 		APIC.
 		It assumes the reader is thoroughly familiar with the Cisco Application Centric
 		Infrastructure Fundamentals manual, especially the User Access, Authentication,
 		and Accounting chapter.
 	

 Guidelines

 When configuring an external authentication server to access the Cisco
 		APIC, follow these guidelines:
 	

 	
 		
 Whenever a .
 		

 		

 	
 		
 While configuring .
 		

 		

 	
 		
 By definition, .
 		

 		

 	
 		
 This configuration task is applicable for .
 		

 		

 	
 		
 The user must configure .
 		

 		

 	
 		
 The autonomous system feature can only be .
 		

 		

 Configuring APIC for TACACS+ Using the REST API

 	

 The Cisco Application Centric
 				 Infrastructure (ACI) fabric must be installed, Application Policy Infrastructure Controllers (APICs) must be online, and the APIC cluster must be formed and healthy.

 	

 The TACACS+ server host name or IP address, port, and key must be available.

 	

 The APIC management endpoint group must be available.

Procedure

 	Step 1

 	Configure the TACACS+ Provider by sending a POST request with XML such as the following example:

Example:
 <aaaTacacsPlusProvider timeout="5" retries="1" port="49" name="192.168.200.1" monitoringUser="test" monitorServer="disabled"
dn="uni/userext/tacacsext/tacacsplusprovider-192.168.200.1" authProtocol="pap"/>

 	Step 2

 	 Configure the TACACS+ Provider Group by sending a POST request with XML such as the following example:

Example:
 <aaaTacacsPlusProviderGroup name="TENANT64_TACACS_provGrp"
dn="uni/userext/tacacsext/tacacsplusprovidergroup-TENANT64_TACACS_provGrp"/>

 	Step 3

 	 Configure the TACACS+ Login Domain by sending a POST request with XML such as the following example:

Example:
 <aaaLoginDomain name="TENANT64_TACACS_LoginDom" dn="uni/userext/logindomain-TENANT64_TACACS_LoginDom"/>

 The entire configuration can be sent in one POST request, with XML such as this example:

 <aaaTacacsPlusProvider timeout="5" retries="1" port="49"
name="192.168.200.1" monitoringUser="test" monitorServer="disabled"
dn="uni/userext/tacacsext/tacacsplusprovider-192.168.200.1" authProtocol="pap"/>
<aaaTacacsPlusProviderGroup name="TENANT64_TACACS_provGrp"
dn="uni/userext/tacacsext/tacacsplusprovidergroup-TENANT64_TACACS_provGrp"/>
<aaaLoginDomain name="TENANT64_TACACS_LoginDom"
dn="uni/userext/logindomain-TENANT64_TACACS_LoginDom"/>

 Configuring APIC for RADIUS Using the REST API

 Before You Begin

 	

 The ACI fabric must be installed, Application Policy Infrastructure Controllers (APICs) must be online, and the APIC cluster must be formed and healthy.

 	

 The RADIUS server host name or IP address, port, authorization protocol, and key must be available.

 	

 The APIC management endpoint group must be available.

Procedure

 	Step 1

 	Configure the RADIUS Provider by sending a POST request with XML such as the following example:

Example:
 <aaaRadiusProvider timeout="5" retries="1" name="TENANT64_RADIUS-host.com"
monitoringUser="test" monitorServer="disabled"
dn="uni/userext/radiusext/radiusprovider-TENANT64_RADIUS-host.com" authProtocol="pap" authPort="1812"/>

 	Step 2

 	 Configure the RADIUS Provider Group by sending a POST request with XML such as the following example:

Example:
 <aaaRadiusProviderGroup name="TENANT64_RADIUS_provGrp"
dn="uni/userext/radiusext/radiusprovidergroup-TENANT64_RADIUS_provGrp"/>

 	Step 3

 	 Configure the RADIUS Login Domain by sending a POST request with XML such as the following example:

Example:
 <aaaLoginDomain name="TENANT64_RADIUSLoginDom"
dn="uni/userext/logindomain-TENANT64_RADIUSLoginDom"/>

 The entire configuration can be sent as one POST request, with XML such as this example:

 <aaaRadiusProvider
timeout="5" retries="1" name="TENANT64_RADIUS-host.com" monitoringUser="test" monitorServer="disabled"
dn="uni/userext/radiusext/radiusprovider-TENANT64_RADIUS-host.com" authProtocol="pap" authPort="1812"/>
<aaaRadiusProviderGroup
name="TENANT64_RADIUS_provGrp" dn="uni/userext/radiusext/radiusprovidergroup-TENANT64_RADIUS_provGrp"/>
<aaaLoginDomain
name="TENANT64_RADIUSLoginDom" dn="uni/userext/logindomain-TENANT64_RADIUSLoginDom"/>

 Configuring APIC for LDAP Using the REST API

 Before You Begin

 	

 The Cisco Application Centric
 				 Infrastructure (ACI) fabric must be installed, Application Policy Infrastructure Controllers (APICs) must be online, and the APIC cluster must be formed and healthy.

 	

 The LDAP server host name or IP address, port, bind DN, Base DN, and password must be available.

 	

 The APIC management endpoint group must be available.

Procedure

 	Step 1

 	Configure the LDAP Provider by sending a POST request with XML such as the following example:

Example:
 <aaaLdapProvider timeout="30" rootdn="" retries="1" port="389" name="TENANT64_LDAP-host.com"
monitoringUser="test" monitorServer="disabled" filter="cn=$userid" enableSSL="yes"
dn="uni/userext/ldapext/ldapprovider-TENANT64_LDAP-host.com" descr="" basedn=""
attribute="CiscoAVPair" SSLValidationLevel="strict"/>

 	Step 2

 	 Configure the LDAP Provider Group by sending a POST request with XML such as the following example:

Example:
 <aaaLdapProviderGroup name="TENANT64_LDAP-ProvGrp"
dn="uni/userext/ldapext/ldapprovidergroup-TENANT64_LDAP-ProvGrp"/>

 	Step 3

 	 Configure the LDAP Login Domain by sending a POST request with XML such as the following example:

Example:
 <aaaDomainAuth realm="ldap" providerGroup="TENANT64_LDAP-ProvGrp"
dn="uni/userext/logindomain-TENANT64_LDAPLoginDom/domainauth"/>

 The entire configuration can be sent in one POST request, with XML such as the following example:

 <aaaLdapProvider
timeout="30" rootdn="" retries="1" port="389" name="TENANT64_LDAP-host.com"
monitoringUser="test" monitorServer="disabled" filter="cn=$userid" enableSSL="yes"
dn="uni/userext/ldapext/ldapprovider-TENANT64_LDAP-host.com" descr="" basedn=""
attribute="CiscoAVPair" SSLValidationLevel="strict"/>
<aaaLdapProviderGroup
name="TENANT64_LDAP-ProvGrp"dn="uni/userext/ldapext/ldapprovidergroup-TENANT64_LDAP-ProvGrp"/>
<aaaDomainAuth
realm="ldap" providerGroup="TENANT64_LDAP-ProvGrp"
dn="uni/userext/logindomain-TENANT64_LDAPLoginDom/domainauth"/>

 About Federal Information Processing Standards (FIPS)

 The Federal Information Processing Standards (FIPS) Publication 140-2, Security Requirements for Cryptographic Modules, details
 the U.S. government requirements for cryptographic modules. FIPS 140-2 specifies that a cryptographic module should be a set
 of hardware, software, firmware, or some combination that implements cryptographic functions or processes, including cryptographic
 algorithms and, optionally, key generation, and is contained within a defined cryptographic boundary.

 FIPS specifies certain cryptographic algorithms as secure, and it also identifies which algorithms should be used if a cryptographic
 module is to be called FIPS compliant.

 Guidelines and Limitations

 Follow these guidelines and limitations:

 	

 When FIPS is enabled, it is applied across Cisco APIC.

 	

 When performing a Cisco APIC software downgrade, you must disable FIPS first.

 	

 Make your passwords a minimum of eight characters in length.

 	

 Disable Telnet. Users should log in using SSH only.

 	

 Delete all SSH Server RSA1 keypairs.

 	

 Disable remote authentication through RADIUS/TACACS+. Only local and LDAP users can be authenticated.

 	

 Secure Shell (SSH) and SNMP are supported.

 	

 Disable SNMP v1 and v2. Any existing user accounts on the switch that have been configured for SNMPv3 should be configured
 only with SHA for authentication and AES/3DES for privacy.

 	

 Starting with release 2.3(1x), FIPS can be configured at the switch level.

 Configuring FIPS for Cisco APIC Using REST API

 When FIPS is enabled, it is applied across Cisco APIC.

Procedure

 	
 Configure FIPS for all tenants.

Example:

https://apic1.cisco.com/api/node/mo/uni/userext.xml
<aaaFabricSec fipsMode="enable" />

 	Note

 	

 You must reboot to complete the configuration. Anytime you change the mode, you must reboot to complete the configuration.

 Fabric Secure Mode

 Fabric secure mode prevents parties with physical access to the fabric equipment from adding a switch or APIC controller to
 the fabric without manual authorization by an administrator. Starting with release 1.2(1x), the firmware checks that switches
 and controllers in the fabric have valid serial numbers associated with a valid Cisco digitally signed certificate. This validation
 is performed upon upgrade to this release or during an initial installation of the fabric. The default setting for this feature
 is permissive mode; an existing fabric continues to run as it has after an upgrade to release 1.2(1) or later. An administrator
 with fabric-wide access rights must enable strict mode. The following table summarizes the two modes of operation:

 	

 Permissive Mode (default)

 	

 Strict Mode

 	

 Allows an existing fabric to operate normally even though one or more switches have an invalid certificate.

 	

 Only switches with a valid Cisco serial number and SSL certificate are allowed.

 	

 Does not enforce serial number based authorization .

 	

 Enforces serial number authorization.

 	

 Allows auto-discovered controllers and switches to join the fabric without enforcing serial number authorization.

 	

 Requires an administrator to manually authorize controllers and switches to join the fabric.

 Configuring Fabric Secure Mode Using the REST API

 To manage Secure Fabric Mode using the REST API, perform the following steps:

Procedure

 	Step 1

 	To enable strict mode, send a POST request with XML such as the following example:

Example:
 POST https://apic-ip-address/api/node/mo/uni.xml?
 <pkiFabricCommunicationEp mode="strict"/>

 	Step 2

 	To enable permissive mode, send a POST request with XML such as the following example:

Example:
 POST https://apic-ip-address/api/node/mo/uni.xml?
 <pkiFabricCommunicationEp mode="permissive"/>

 	Step 3

 	To authorize a controller, send a POST request with XML such as the following example:

Example:
 POST https://apic-ip-address/api/mo/uni/controller.xml?
 <fabricNodeIdentPol>
 <fabricCtrlrIdentP serial=“TEP-1-1”/>
 </fabricNodeIdentPol>

 	Step 4

 	To reject a controller, send a POST request with XML such as the following example:

Example:
 POST https://apic-ip-address/api/mo/uni/controller.xml?
 <fabricNodeIdentPol>
 <fabricCtrlrIdentP serial="FCH1750V025" reject=“yes"/>
 </fabricNodeIdentPol>

 Access Rights
 	 Workflow Dependencies

 The Cisco Application Centric
 				 Infrastructure (ACI) RBAC rules enable or restrict access to some or all of the fabric. For example, in order to configure a leaf switch for
 bare metal server access, the logged in administrator must have rights to the infra domain. By default, a tenant administrator does not have rights to the infra domain. In this case, a tenant administrator who plans to use a bare metal server connected to a leaf switch could not complete
 all the necessary steps to do so. The tenant administrator would have to coordinate with a fabric administrator who has rights
 to the infra domain. The fabric administrator would set up the switch configuration policies that the tenant administrator would use to
 deploy an application policy that uses the bare metal server attached to an ACI leaf switch.

 	

 AAA RBAC Roles and Privileges

 The Application Policy Infrastructure Controller (APIC) provides the following AAA roles and privileges:

 	
 Role

 	
 Privilege

 	
 Description

 	
 aaa

 	
 aaa

 	
 Used for configuring authentication, authorization, accounting, and import/export policies.

 	
 admin

 	
 admin

 	
 Provides full access to all of the features of the fabric. The admin privilege can be considered to be a union of all other
 privileges.

 	
 Role: access-admin

 	
 Privilege

 	
 Description

 	

 access-connectivity-l1

 	

 Used for Layer 1 configuration under infra. Example: selectors and port Layer 1 policy configurations.

 	

 access-connectivity-l2

 	

 Used for Layer 2 configuration under infra. Example: encap configurations on selectors, and attachable entity.

 	

 access-connectivity-l3

 	

 Used for Layer 3 configuration under infra and static route configurations under a tenant's L3Out.

 	

 access-connectivity-mgmt

 	

 Used for management infra policies.

 	

 access-connectivity-util

 	

 Used for tenant ERSPAN policies.

 	

 access-equipment

 	

 Used for access port configuration.

 	

 access-protocol-l1

 	

 Used for Layer 1 protocol configurations under infra.

 	

 access-protocol-l2

 	

 Used for Layer 2 protocol configurations under infra.

 	

 access-protocol-l3

 	

 Used for Layer 3 protocol configurations under infra.

 	

 access-protocol-mgmt

 	

 Used for fabric-wide policies for NTP, SNMP, DNS, and image management.

 	

 access-protocol-ops

 	

 Used for operations-related access policies such as cluster policy and firmware policies.

 	

 access-qos

 	

 Used for changing CoPP and QoS-related policies.

 	
 Role:fabric-admin

 	
 Privilege

 	
 Description

 	

 fabric-connectivity-l1

 	

 Used for Layer 1 configuration under the fabric. Example: selectors and port Layer 1 policy and vPC protection.

 	

 fabric-connectivity-l2

 	

 Used in firmware and deployment policies for raising warnings for estimating policy deployment impact.

 	

 fabric-connectivity-l3

 	

 Used for Layer 3 configuration under the fabric. Example: Fabric IPv4, IPv6, and MAC protection groups.

 	

 fabric-connectivity-mgmt

 	

 Used for atomic counter and diagnostic policies on leaf switches and spine switches.

 	

 fabric-connectivity-util

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 fabric-equipment

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 fabric-protocol-l1

 	

 Used for Layer 1 protocol configurations under the fabric.

 	

 fabric-protocol-l2

 	

 Used for Layer 2 protocol configurations under the fabric.

 	

 fabric-protocol-l3

 	

 Used for Layer 3 protocol configurations under the fabric.

 	

 fabric-protocol-mgmt

 	

 Used for fabric-wide policies for NTP, SNMP, DNS, and image management.

 	

 fabric-protocol-ops

 	

 Used for ERSPAN and health score policies.

 	

 fabric-protocol-util

 	

 Used for firmware management traceroute and endpoint tracking policies.

 	

 tenant-connectivity-util

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 tenant-connectivity-l2

 	

 Used for Layer 2 connectivity changes, including bridge domains and subnets.

 	

 tenant-connectivity-l3

 	

 Used for Layer 3 connectivity changes, including VRFs.

 	

 tenant-protocol-ops

 	

 Used for tenant traceroute policies.

 	
 Role

 	
 Privilege

 	
 Description

 	
 nw-svc-admin

 	
 nw-svc-device

 	
 Used for managing Layer 4 to Layer 7 service devices.

 	
 nw-svc-devshare

 	
 Used for managing shared Layer 4 to Layer 7 service devices.

 	
 nw-svc-policy

 	
 Used for managing Layer 4 to Layer 7 network service orchestration.

 	
 nw-svc-params

 	
 nw-svc-params

 	
 Used for managing Layer 4 to Layer 7 service policies.

 	
 Role: ops

 	
 Privilege

 	
 Description

 	
 ops

 	
 Used for operational policies including monitoring and troubleshooting policies such as atomic counter, SPAN, TSW, tech support,
 traceroute, analytics, and core policies.

 	
 Role: read-all

 	
 Privilege

 	
 Description

 	

 access-connectivity-l1

 	

 Used for Layer 1 configuration under infra. Example: selectors and port Layer 1 policy configurations.

 	

 access-connectivity-l2

 	

 Used for Layer 2 configuration under infra. Example: Encap configurations on selectors, and attachable entity.

 	

 access-connectivity-l3

 	

 Used for Layer 3 configuration under infra and static route configurations under a tenant's L3Out.

 	

 access-connectivity-mgmt

 	

 Used for management infra policies.

 	

 access-connectivity-util

 	

 Used for tenant ERSPAN policies.

 	

 access-equipment

 	

 Used for access port configuration.

 	

 access-protocol-l1

 	

 Used for Layer 1 protocol configurations under infra.

 	

 access-protocol-l2

 	

 Used for Layer 2 protocol configurations under infra.

 	

 access-protocol-l3

 	

 Used for Layer 3 protocol configurations under infra.

 	

 access-protocol-mgmt

 	

 Used for fabric-wide policies for NTP, SNMP, DNS, and image management.

 	

 access-protocol-ops

 	

 Used for operations-related access policies such as cluster policy and firmware policies.

 	

 access-qos

 	

 Used for changing CoPP and QoS-related policies.

 	

 fabric-connectivity-l1

 	

 Used for Layer 1 configuration under the fabric. Example: selectors and port Layer 1 policy and vPC protection.

 	

 fabric-connectivity-l2

 	

 Used in firmware and deployment policies for raising warnings for estimating policy deployment impact.

 	

 fabric-connectivity-l3

 	

 Used for Layer 3 configuration under the fabric. Example: Fabric IPv4, IPv6, and MAC protection groups.

 	

 fabric-protocol-l1

 	

 Used for Layer 1 protocol configurations under the fabric.

 	

 fabric-protocol-l2

 	

 Used for Layer 2 protocol configurations under the fabric.

 	

 fabric-protocol-l3

 	

 Used for Layer 3 protocol configurations under the fabric.

 	

 nw-svc-device

 	

 Used for managing Layer 4 to Layer 7 service devices.

 	

 nw-svc-devshare

 	

 Used for managing shared Layer 4 to Layer 7 service devices.

 	

 nw-svc-params

 	

 Used for managing Layer 4 to Layer 7 service policies.

 	

 nw-svc-policy

 	

 Used for managing Layer 4 to Layer 7 network service orchestration.

 	

 ops

 	

 Used for operational policies including monitoring and troubleshooting policies such as atomic counter, SPAN, TSW, tech support,
 traceroute, analytics, and core policies.

 	

 tenant-connectivity-util

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 tenant-connectivity-l2

 	

 Used for Layer 2 connectivity changes, including bridge domains and subnets.

 	

 tenant-connectivity-l3

 	

 Used for Layer 3 connectivity changes, including VRFs.

 	

 tenant-connectivity-mgmt

 	

 Used for tenant in-band and out-of-band management connectivity configurations and for debugging/monitoring policies such
 as atomic counters and health score.

 	

 tenant-epg

 	

 Used for managing tenant configurations such as deleting/creating endpoint groups, VRFs, and bridge domains.

 	

 tenant-ext-connectivity-l1

 	

 Used for write access firmware policies.

 	

 tenant-ext-connectivity-l2

 	

 Used for managing tenant L2Out configurations.

 	

 tenant-ext-connectivity-l3

 	

 Used for managing tenant L3Out configurations.

 	

 tenant-ext-connectivity-mgmt

 	

 Used as write access for firmware policies.

 	

 tenant-ext-connectivity-util

 	

 Used for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.

 	

 tenant-ext-protocol-l1

 	

 Used for managing tenant external Layer 1 protocols. Generally only used for write access for firmware policies.

 	

 tenant-ext-protocol-l2

 	

 Used for managing tenant external Layer 2 protocols. Generally only used for write access for firmware policies.

 	

 tenant-ext-protocol-l3

 	

 Used for managing tenant external Layer 3 protocols such as BGP, OSPF, PIM, and IGMP.

 	

 tenant-ext-protocol-mgmt

 	

 Used as write access for firmware policies.

 	

 tenant-ext-protocol-util

 	

 Used for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.

 	

 tenant-network-profile

 	

 Used for managing tenant configurations, such as deleting and creating network profiles, and deleting and creating endpoint
 groups.

 	

 tenant-protocol-l1

 	

 Used for managing configurations for Layer 1 protocols under a tenant.

 	

 tenant-protocol-l2

 	

 Used for managing configurations for Layer 2 protocols under a tenant.

 	

 tenant-protocol-l3

 	

 Used for managing configurations for Layer 3 protocols under a tenant.

 	

 tenant-protocol-mgmt

 	

 Only used as write access for firmware policies.

 	

 tenant-protocol-ops

 	

 Used for tenant traceroute policies.

 	

 tenant-QoS

 	

 Used for QoS-related configurations for a tenant.

 	

 tenant-security

 	

 Used for contract-related configurations for a tenant.

 	

 vmm-connectivity

 	

 Used to read all the objects in APIC's VMM inventory required for virtual machine connectivity.

 	

 vmm-ep

 	

 Used to read virtual machine and hypervisor endpoints in the APIC's VMM inventory.

 	

 vmm-policy

 	

 Used for managing policies for virtual machine networking.

 	

 vmm-protocol-ops

 	

 Not used by VMM policies.

 	

 vmm-security

 	

 Used for managing authentication policies for VMM, such as the username and password for VMware vCenter.

 	
 Role: tenant-admin

 	
 Privilege

 	
 Description

 	

 aaa

 	

 Used for configuring authentication, authorization, accouting and import/export policies.

 	

 access-connectivity-l1

 	

 Used for Layer 1 configuration under infra. Example: selectors and port Layer 1 policy configurations.

 	

 access-connectivity-l2

 	

 Used for Layer 2 configuration under infra. Example: Encap configurations on selectors, and attachable entity.

 	

 access-connectivity-l3

 	

 Used for Layer 3 configuration under infra and static route configurations under a tenant's L3Out.

 	

 access-connectivity-mgmt

 	

 Used for management infra policies.

 	

 access-connectivity-util

 	

 Used for tenant ERSPAN policies.

 	

 access-equipment

 	

 Used for access port configuration.

 	

 access-protocol-l1

 	

 Used for Layer 1 protocol configurations under infra.

 	

 access-protocol-l2

 	

 Used for Layer 2 protocol configurations under infra.

 	

 access-protocol-l3

 	

 Used for Layer 3 protocol configurations under infra.

 	

 access-protocol-mgmt

 	

 Used for fabric-wide policies for NTP, SNMP, DNS, and image management.

 	

 access-protocol-ops

 	

 Used for operations-related access policies such as cluster policy and firmware policies.

 	

 access-qos

 	

 Used for changing CoPP and QoS-related policies.

 	

 fabric-connectivity-l1

 	

 Used for Layer 1 configuration under the fabric. Example: selectors and port Layer 1 policy and vPC protection.

 	

 fabric-connectivity-l2

 	

 Used in firmware and deployment policies for raising warnings for estimating policy deployment impact.

 	

 fabric-connectivity-l3

 	

 Used for Layer 3 configuration under the fabric. Example: Fabric IPv4, IPv6, and MAC protection groups.

 	

 fabric-connectivity-mgmt

 	

 Used for atomic counter and diagnostic policies on leaf switches and spine switches.

 	

 fabric-connectivity-util

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 fabric-equipment

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 fabric-protocol-l1

 	

 Used for Layer 1 protocol configurations under the fabric.

 	

 fabric-protocol-l2

 	

 Used for Layer 2 protocol configurations under the fabric.

 	

 fabric-protocol-l3

 	

 Used for Layer 3 protocol configurations under the fabric.

 	

 fabric-protocol-mgmt

 	

 Used for fabric-wide policies for NTP, SNMP, DNS, and image management.

 	

 fabric-protocol-ops

 	

 Used for ERSPAN and health score policies.

 	

 fabric-protocol-util

 	

 Used for firmware management traceroute and endpoint tracking policies.

 	

 nw-svc-device

 	

 Used for managing Layer 4 to Layer 7 service devices.

 	

 nw-svc-devshare

 	

 Used for managing shared Layer 4 to Layer 7 service devices.

 	

 nw-svc-params

 	

 Used for managing Layer 4 to Layer 7 service policies.

 	

 nw-svc-policy

 	

 Used for managing Layer 4 to Layer 7 network service orchestration.

 	

 ops

 	

 Used for operational policies including monitoring and troubleshooting policies such as atomic counter, SPAN, TSW, tech support,
 traceroute, analytics, and core policies.

 	

 tenant-connectivity-util

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 tenant-connectivity-l2

 	

 Used for Layer 2 connectivity changes, including bridge domains and subnets.

 	

 tenant-connectivity-l3

 	

 Used for Layer 3 connectivity changes, including VRFs.

 	

 tenant-connectivity-mgmt

 	

 Used for tenant in-band and out-of-band management connectivity configurations and for debugging/monitoring policies such
 as atomic counters and health score.

 	

 tenant-epg

 	

 Used for managing tenant configurations such as deleting/creating endpoint groups, VRFs, and bridge domains.

 	

 tenant-ext-connectivity-l1

 	

 Used for write access firmware policies.

 	

 tenant-ext-connectivity-l2

 	

 Used for managing tenant L2Out configurations.

 	

 tenant-ext-connectivity-l3

 	

 Used for managing tenant L3Out configurations.

 	

 tenant-ext-connectivity-mgmt

 	

 Used as write access for firmware policies.

 	

 tenant-ext-connectivity-util

 	

 Used for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.

 	

 tenant-ext-protocol-l1

 	

 Used for managing tenant external Layer 1 protocols. Generally only used for write access for firmware policies.

 	

 tenant-ext-protocol-l2

 	

 Used for managing tenant external Layer 2 protocols. Generally only used for write access for firmware policies.

 	

 tenant-ext-protocol-l3

 	

 Used for managing tenant external Layer 3 protocols such as BGP, OSPF, PIM, and IGMP.

 	

 tenant-ext-protocol-mgmt

 	

 Used as Write access for firmware policies.

 	

 tenant-ext-protocol-util

 	

 Used for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.

 	

 tenant-network-profile

 	

 Used for managing tenant configurations, such as deleting and creating network profiles, and deleting and creating endpoint
 groups.

 	

 tenant-protocol-l1

 	

 Used for managing configurations for Layer 1 protocols under a tenant.

 	

 tenant-protocol-l2

 	

 Used for managing configurations for Layer 2 protocols under a tenant.

 	

 tenant-protocol-l3

 	

 Used for managing configurations for Layer 3 protocols under a tenant.

 	

 tenant-protocol-mgmt

 	

 Only used as write access for firmware policies.

 	

 tenant-protocol-ops

 	

 Used for tenant traceroute policies.

 	

 tenant-QoS

 	

 Used for QoS-related configurations for a tenant.

 	

 tenant-security

 	

 Used for contract-related configurations for a tenant.

 	

 vmm-connectivity

 	

 Used to read all the objects in APIC's VMM inventory required for virtual machine connectivity.

 	

 vmm-ep

 	

 Used to read virtual machine and hypervisor endpoints in the APIC's VMM inventory.

 	

 vmm-policy

 	

 Used for managing policies for virtual machine networking.

 	

 vmm-protocol-ops

 	

 Not used by VMM policies.

 	

 vmm-security

 	

 Used for managing authentication policies for VMM, such as the username and password for VMware vCenter.

 	
 Role: tenant-ext-admin

 	
 Privilege

 	
 Description

 	

 tenant-connectivity-util

 	

 Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.

 	

 tenant-connectivity-l2

 	

 Used for Layer 2 connectivity changes, including bridge domains and subnets.

 	

 tenant-connectivity-l3

 	

 Used for Layer 3 connectivity changes, including VRFs.

 	

 tenant-connectivity-mgmt

 	

 Used for tenant in-band and out-of-band management connectivity configurations and for debugging/monitoring policies such
 as atomic counters and health score.

 	

 tenant-epg

 	

 Used for managing tenant configurations such as deleting/creating endpoint groups, VRFs, and bridge domains.

 	

 tenant-ext-connectivity-l1

 	

 Used for write access firmware policies.

 	

 tenant-ext-connectivity-l2

 	

 Used for managing tenant L2Out configurations.

 	

 tenant-ext-connectivity-l3

 	

 Used for managing tenant L3Out configurations.

 	

 tenant-ext-connectivity-mgmt

 	

 Used as write access for firmware policies.

 	

 tenant-ext-connectivity-util

 	

 Used for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.

 	

 tenant-ext-protocol-l1

 	

 Used for managing tenant external Layer 1 protocols. Generally only used for write access for firmware policies.

 	

 tenant-ext-protocol-l2

 	

 Used for managing tenant external Layer 2 protocols. Generally only used for write access for firmware policies.

 	

 tenant-ext-protocol-l3

 	

 Used for managing tenant external Layer 3 protocols such as BGP, OSPF, PIM, and IGMP.

 	

 tenant-ext-protocol-mgmt

 	

 Used as Write access for firmware policies.

 	

 tenant-ext-protocol-util

 	

 Used for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.

 	

 tenant-network-profile

 	

 Used for managing tenant configurations, such as deleting and creating network profiles, and deleting and creating endpoint
 groups.

 	

 tenant-protocol-l1

 	

 Used for managing configurations for Layer 1 protocols under a tenant.

 	

 tenant-protocol-l2

 	

 Used for managing configurations for Layer 2 protocols under a tenant.

 	

 tenant-protocol-l3

 	

 Used for managing configurations for Layer 3 protocols under a tenant.

 	

 tenant-protocol-mgmt

 	

 Only used as write access for firmware policies.

 	

 tenant-protocol-ops

 	

 Used for tenant traceroute policies.

 	

 tenant-QoS

 	

 Used for QoS-related configurations for a tenant.

 	

 tenant-security

 	

 Used for contract-related configurations for a tenant.

 	

 vmm-connectivity

 	

 Used to read all the objects in APIC's VMM inventory required for virtual machine connectivity.

 	

 vmm-ep

 	

 Used to read virtual machine and hypervisor endpoints in the APIC's VMM inventory.

 	

 vmm-policy

 	

 Used for managing policies for virtual machine networking.

 	

 vmm-protocol-ops

 	

 Not used by VMM policies.

 	

 vmm-security

 	

 Used for managing authentication policies for VMM, such as the username and password for VMware vCenter.

 	
 Role: vmm-admin

 	
 Privilege

 	
 Description

 	

 vmm-connectivity

 	

 Used to read all the objects in APIC's VMM inventory required for virtual machine connectivity.

 	

 vmm-ep

 	

 Used to read virtual machine and hypervisor endpoints in the APIC's VMM inventory.

 	

 vmm-policy

 	

 Used for managing policies for virtual machine networking.

 	

 vmm-protocol-ops

 	

 Not used by VMM policies.

 	

 vmm-security

 	

 Used for managing authentication policies for a VMM, such as the username and password for VMware vCenter.

 Custom Roles

 You can create custom roles and assign privileges to the roles. The interface internally assigns one or more privileges to
 all managed object classes. In an XML model, privileges are assigned in an access attribute. Privilege bits are assigned at
 compile time and apply per class, and not per instance or object of the class.

 In addition to the 45 privilege bits, the "aaa" privilege bit applies to all AAA-subsystem configuration and read operations.
 The following table provides a matrix of the supported privilege combinations. The rows in the table represent Cisco Application Centric
 				 Infrastructure (ACI) modules and the columns represent functionality for a given module. A value of "Yes" in a cell indicates that the functionality
 for the module is accessible and there exists a privilege bit to access that functionality. An empty cell indicates that the
 particular functionality for module is not accessible by any privilege bit. See the privilege bit descriptions to learn what
 each bit does.

 	

 	Connectivity

 	QoS

 	Security

 	Application

 	Fault

 	Stats

 	Provider

 	

 Service Profile

 	

 Service Chain

 	VMM

 	

 Yes

 	

 	

 Yes

 	

 	

 Yes

 	

 Yes

 	

 Yes

 	

 	

 	Fabric

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 	

 	External

 	

 Yes

 	

 Yes

 	

 Yes

 	

 	

 Yes

 	

 Yes

 	

 	

 	

 Yes

 	Tenant

 	

 Yes

 	

 Yes

 	

 Yes

 	EPG, NP

 	

 Yes

 	

 Yes

 	

 	

 	

 Yes

 	Infra

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 	

 	

 Yes

 	Ops

 	

 	

 	

 	

 	

 Yes

 	

 Yes

 	

 	

 	

 	Storage

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 	

 	

 	

 Network Service

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 Yes

 	

 	

 Yes

 	

 Sample RBAC
 	 Rules

 The RBAC rules in the
 		sample JSON file below enable both trans-tenant access and tenant access to a
 		VMM domain resource. The resources needed by the consumer are
 		uni/tn-prov1/brc-webCtrct and
 		vmmp-Vmware/dom-Datacenter.
 	

 The following two RBAC
 		rules enable the consumer tenant to post the consumer postman query in the JSON
 		file below.
 	

 		<aaaRbacEp>
 <aaaRbacRule objectDn="uni/vmmp-VMware/dom-Datacenter" domain="cons1"/>
 <aaaRbacRule objectDn="uni/tn-prov1/brc-webCtrct" domain="cons1"/>
</aaaRbacEp>

 	

 The JSON file below
 		contains these two RBAC rules:
 	

 		{"id":"ac62a200-9210-f53b-7114-a8f4cffb9a36","name":"SharedContracts","timestamp":1398806919868,"requests":
[{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"2dfc75cc-431e-e136-622c-a577ce7622d8",
"name":"login as prov1",
"description":"",
"url":"http://http://solar.local:8000/api/aaaLogin.json",
"method":"POST",
"headers":"",
"data":
"{\"aaaUser\":{\"attributes\":{\"name\": \"prov1\", \"pwd\": \"secret!\"}}}",
"dataMode":"raw","timestamp":0,"version":2,"time":1398807562828},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"56e46db0-77ea-743f-a64e-c5f7b1f59807",
"name":"Root login",
"description":"",
"url":"http://http://solar.local:8000/api/aaaLogin.json",
"method":"POST",
"headers":"",
"data":
"{\"aaaUser\":{\"attributes\":{\"name\": \"admin\", \"pwd\": \"secret!\"}}}",
"dataMode":"raw","timestamp":0,"responses":[],"version":2},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"804893f1-0915-6d35-169d-3af0eb3e64ec",
"name":"consumer tenant only",
"description":"",
"url":"http://http://solar.local:8000/api/policymgr/mo/uni/tn-cons1.xml",
"method":"POST",
"headers":"",
"data":
"<fvTenant name=\"cons1\">
 <aaaDomainRef name=\"cons1\"/>\n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398968007487},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"85802d50-8089-bf8b-4481-f149bec258c8",
"name":"login as cons1",
"description":"",
"url":"http://solar.local:8000/api/aaaLogin.json",
"method":"POST",
"headers":"",
"data":
"{\"aaaUser\":{\"attributes\":{\"name\": \"cons1\", \"pwd\": \"secret!\"}}}",
"dataMode":"raw","timestamp":0,"version":2,"time":1398807575531},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"a2739d92-5f9d-f16c-8894-0f64b6f967a3",
"name":"consumer",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/tn-cons1.xml",
"method":"POST","headers":"","data":
"<fvTenant name=\"cons1\" status=\"modified\">\n
 <fvCtx name=\"cons1\"/>\n
	 <!-- bridge domain -->\n
 <fvBD name=\"cons1\">\n
		<fvRsCtx tnFvCtxName=\"cons1\" />\n
 	 <fvSubnet ip=\"10.0.2.128/24\" scope='shared'/>\n
		 </fvBD>\n
		\n <!-- DNS Shared Service Contract Interface-->\n
		<vzCPIf name=\"consIf\">\n
 	 <vzRsIf tDn=\"uni/tn-prov1/brc-webCtrct\" >\n
			 </vzRsIf>\n
		</vzCPIf>\n \n
	<fvAp name=\"cons1\">\n
	 <fvAEPg name=\"APP\">\n
 	 <fvRsBd tnFvBDName=\"cons1\" />\n
			 <fvRsNodeAtt tDn=\"topology/pod-1/node-101\" encap=\"vlan-4000\" instrImedcy=\"immediate\" mode=\"regular\"/>\n
			 <fvRsDomAtt tDn=\"uni/vmmp-VMware/dom-Datacenter\"/>\n
			 <fvRsConsIf tnVzCPIfName=\"consIf\"/>\n
		</fvAEPg>\n
 </fvAp>\n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398818639692},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"c0bd866d-600a-4f45-46ec-6986398cbf78",
"name":"provider tenant only",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/tn-prov1.xml",
"method":"POST",
"headers":"",
"data":
"<fvTenant name=\"prov1\"><aaaDomainRef name=\"prov1\"/> \n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398818137518},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"d433a213-e95d-646d-895e-3a9e2e2b7ba3",
"name":"create RbacRule",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni.xml",
"method":"POST",
"headers":"",
"data":
"<aaaRbacEp>\n
 <aaaRbacRule objectDn=\"uni/vmmp-VMware/dom-Datacenter\" domain=\"cons1\"/>\n
	 <aaaRbacRule objectDn=\"uni/tn-prov1/brc-webCtrct\" domain=\"cons1\"/>\n
</aaaRbacEp>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1414195420515},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"d5c5d580-a11a-7c61-34ac-cbdac249157f",
"name":"provider",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/tn-prov1.xml",
"method":"POST",
"headers":"",
"data":
"<fvTenant name=\"prov1\" status=\"modified\">\n
 <fvCtx name=\"prov1\"/>\n
	 \n <!-- bridge domain -->\n
	 <fvBD name=\"prov1\">\n
		 <fvRsCtx tnFvCtxName=\"prov1\" />\n
		 </fvBD>\n \n
		 <vzFilter name='t0f0' >\n
		 <vzEntry etherT='ip' dToPort='10' prot='6' name='t0f0e9' dFromPort='10'>
			 </vzEntry>\n
		 </vzFilter>\n \n
		 <vzFilter name='t0f1'>\n
 		 <vzEntry etherT='ip' dToPort='209' prot='6' name='t0f1e8' dFromPort='109'>
			 </vzEntry>\n
		</vzFilter>\n \n
 <vzBrCP name=\"webCtrct\" scope=\"global\">\n
 	<vzSubj name=\"app\">\n
 		<vzRsSubjFiltAtt tnVzFilterName=\"t0f0\"/>\n
			<vzRsSubjFiltAtt tnVzFilterName=\"t0f1\"/>\n
 </vzSubj>\n
 </vzBrCP>\n \n
	<fvAp name=\"prov1AP\">\n
 	<fvAEPg name=\"Web\">\n
 		<fvRsBd tnFvBDName=\"prov1\" />\n
 <fvRsNodeAtt tDn=\"topology/pod-1/node-17\" encap=\"vlan-4000\" instrImedcy=\"immediate\" mode=\"regular\"/>\n
 <fvRsProv tnVzBrCPName=\"webCtrct\"/>\n
			<fvRsDomAtt tDn=\"uni/vmmp-VMware/dom-Datacenter\"/>\n
 <fvSubnet ip=\"10.0.1.128/24\" scope='shared'/>\n
		</fvAEPg>\n
	</fvAp>\n
</fvTenant>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398818660457},

{"collectionId":"ac62a200-9210-f53b-7114-a8f4cffb9a36","id":"e8866493-2188-8893-8e0c-4ca0903b18b8",
"name":"add user prov1",
"description":"",
"url":"http://solar.local:8000/api/policymgr/mo/uni/userext.xml",
"method":"POST",
"headers":"",
"data":
"<aaaUserEp>\n
 <aaaUser name=\"prov1\" pwd=\"secret!\">
	 <aaaUserDomain name=\"prov1\">
	 <aaaUserRole name=\"tenant-admin\" privType=\"writePriv\"/>
	 <aaaUserRole name=\"vmm-admin\" privType=\"writePriv\"/>
	 </aaaUserDomain>
	 </aaaUser>\n
	 <aaaUser name=\"cons1\" pwd=\"secret!\">
		 <aaaUserDomain name=\"cons1\">
		 <aaaUserRole name=\"tenant-admin\" privType=\"writePriv\"/>
		 <aaaUserRole name=\"vmm-admin\" privType=\"writePriv\"/>
		 </aaaUserDomain>
	 </aaaUser>\n
	 <aaaDomain name=\"prov1\"/>\n
		 <aaaDomain name=\"cons1\"/>\n
</aaaUserEp>\n",
"dataMode":"raw","timestamp":0,"version":2,"time":1398820966635}]}

 	

 About Port Security and ACI

 The port security feature protects the ACI fabric from being flooded with unknown MAC addresses by limiting the number of
 MAC addresses learned per port. The port security feature support is available for physical ports, port channels, and virtual
 port channels.

 Port Security
 	 Guidelines and Restrictions

 The guidelines and
 		restrictions are as follows:
 	

 	
 		
 Port security is
 			 available per port.
 		

 		

 	
 		
 Port security is
 			 supported for physical ports, port channels, and virtual port channels (vPCs).
 		

 		

 	
 		
 Static and
 			 dynamic MAC addresses are supported.
 		

 		

 	
 		
 MAC address
 			 moves are supported from secured to unsecured ports and from unsecured ports to
 			 secured ports.
 		

 		

 	
 		
 The MAC address
 			 limit is enforced only on the MAC address and is not enforced on a MAC and IP
 			 address.
 		

 		

 	
 		
 Port security is
 			 not supported with the Fabric Extender (FEX).
 		

 		

 Port Security and
 	 Learning Behavior

 For non-vPC ports or
 		port channels, whenever a learn event comes for a new endpoint, a verification
 		is made to see if a new learn is allowed. If the corresponding interface has a
 		port security policy not configured or disabled, the endpoint learning behavior
 		is unchanged with what is supported. If the policy is enabled and the limit is
 		reached, the current supported action is as follows:
 	

 	
 		
 Learn the
 			 endpoint and install it in the hardware with a drop action.
 		

 		

 	
 		
 Silently discard
 			 the learn.
 		

 		

 If the limit is not
 		reached, the endpoint is learned and a verification is made to see if the limit
 		is reached because of this new endpoint. If the limit is reached, and the learn
 		disable action is configured, learning will be disabled in the hardware on that
 		interface (on the physical interface or on a port channel or vPC). If the limit
 		is reached and the learn disable action is not configured, the endpoint will be
 		installed in hardware with a drop action. Such endpoints are aged normally like
 		any other endpoints.
 	

 When the limit is
 		reached for the first time, the operational state of the port security policy
 		object is updated to reflect it. A static rule is defined to raise a fault so
 		that the user is alerted. A syslog is also raised when the limit is reached.
 	

 In case of vPC,
 		when the MAC limit is reached, the peer leaf switch is also notified so
 		learning can be disabled on the peer. As the vPC peer can be rebooted any time
 		or vPC legs can become unoperational or restart, this state will be reconciled
 		with the peer so vPC peers do not go out of sync with this state. If they get
 		out of sync, there can be a situation where learning is enabled on one leg and
 		disabled on the other leg.
 	

 By default, once the limit is reached and learning is disabled, it will be automatically re-enabled after the default timeout
 value of 60 seconds.

 Port Security at
 	 Port Level

 In the APIC, the user can configure the port security on switch ports. Once the MAC limit has exceeded the maximum configured
 value on a port, all traffic from the exceeded MAC addresses is forwarded. The following attributes are supported:

 	
 				
 Port Security Timeout—The current supported range for the timeout value is from 60 to 3600 seconds.

 			

 	
 		
 Violation Action—The violation action is available in protect mode. In the protect mode, MAC learning is disabled and MAC addresses are not
 added to the CAM table. Mac learning is re-enabled after the configured timeout value.

 		

 	
 		
 Maximum Endpoints—The current supported range for the maximum endpoints configured value is from 0 to 12000. If the maximum endpoints value
 is 0, the port security policy is disabled on that port.

 		

 Protect
 	 Mode

 The protect mode prevents further port security violations from occurring. Once the MAC limit exceeds the maximum configured
 value on a port, all traffic from excess MAC addresses will be dropped and further learning is disabled.

 Configuring Port
 	 Security Using REST API

Procedure

 	
 Configure the
 			 port security.
 		

Example:
 			 <polUni>
 <infraInfra>

 <l2PortSecurityPol name="testL2PortSecurityPol" maximum="10" violation=”protect” timeout=“300"/>

 <infraNodeP name="test">
 <infraLeafS name="test" type="range">
 <infraNodeBlk name="test" from_="101" to_="102"/>
 </infraLeafS>
 <infraRsAccPortP tDn="uni/infra/accportprof-test"/>
 </infraNodeP>

 <infraAccPortP name="test">
 <infraHPortS name="pselc" type="range">
 <infraPortBlk name="blk"
 fromCard="1" toCard="1" fromPort="20" toPort="22">
 </infraPortBlk>
 <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-testPortG" />
 </infraHPortS>
 </infraAccPortP>

 <infraFuncP>
 <infraAccPortGrp name="testPortG">
 <infraRsL2PortSecurityPol tnL2PortSecurityPolName="testL2PortSecurityPol"/>
 <infraRsAttEntP tDn="uni/infra/attentp-test" />
 </infraAccPortGrp>
 </infraFuncP>

 <infraAttEntityP name="test">
 <infraRsDomP tDn="uni/phys-mininet"/>
 </infraAttEntityP>
 </infraInfra>
</polUni>

 		

 Overview

 Council of Oracle Protocol (COOP) is used to communicate the mapping information (location and identity) to the spine proxy.
 A leaf switch forwards endpoint address information to the spine switch 'Oracle' using Zero Message Queue (ZMQ). COOP running
 on the spine nodes will ensure all spine nodes maintain a consistent copy of endpoint address and location information and
 additionally maintain the distributed hash table (DHT) repository of endpoint identity to location mapping database.

 COOP data path
 		communication provides high priority to transport using secured connections.
 		COOP is enhanced to leverage the MD5 option to protect COOP messages from
 		malicious traffic injection. The APIC controller and switches support COOP
 		protocol authentication.
 	

 COOP protocol is
 		enhanced to support two ZMQ authentication modes: strict and compatible.
 	

 	
 		
 Strict mode:
 			 COOP allows MD5 authenticated ZMQ connections only.
 		

 		

 	
 		
 Compatible mode:
 			 COOP accepts both MD5 authenticated and non-authenticated ZMQ connections for
 			 message transportation.
 		

 		

 Using COOP with
 	 Cisco APIC

 To support COOP Zero Message Queue (ZMQ) authentication support across the Cisco Application Centric
 				 Infrastructure (ACI) fabric, the Application Policy Infrastructure Controller (APIC) supports the MD5 password and also supports the COOP secure mode.

 COOP ZMQ Authentication Type Configuration—A new managed object, coop:AuthP, is added to the Data Management Engine (DME)/COOP database (coop/inst/auth). The default value for the attribute type is
 "compatible", and users have the option to configure the type to be "strict".

 COOP ZMQ Authentication MD5 password—The APIC provides a managed object (fabric:SecurityToken), that includes an attribute to be used for the MD5 password. An attribute in this managed object, called "token", is a string
 that changes every hour. COOP obtains the notification from the DME to update the password for ZMQ authentication. The attribute
 token value is not displayed.

 	

 Guidelines and Limitations

 Follow these guidelines and limitations:

 	
 During an ACI fabric upgrade, the COOP strict mode is disallowed until all switches are upgraded to a secure-enabled image.
 This protection prevents the unexpected rejection of a COOP connection that could be triggered by prematurely enabling the
 strict mode.

 	

 During the upgrade or downgrade of APIC controllers, the ACI fabric may be in a state with mixed secure and non-secure APIC
 images. If the authentication mode on the secure image is strict, some switches may remain in an out of service state during
 the upgrade or downgrade process. If the authentication mode type is compatible mode, the upgrade will not cause the switches
 to be out-of-service.

 Configuring COOP Authentication Using the REST API

Procedure

 	
 Configure a COOP authentication policy.

 In the example, the strict mode is chosen.

Example:

 https://172.23.53.xx/api/node/mo/uni/fabric/pol-default.xml

<coopPol type="strict">
</coopPol>

 Information About CoPP

 Control Plane Policing (CoPP) protects the control plane, which ensures network stability, reachability, and packet delivery.

 This feature allows specification of parameters, for each protocol that can reach the control processor to be rate-limited
 using a policer. The policing is applied to all traffic destined to any of the IP addresses of the router or Layer 3 switch.
 A common attack vector for network devices is the denial-of-service (DoS) attack, where excessive traffic is directed at the
 device interfaces.

 The Cisco ACI Leaf/Spine NX-OS provides CoPP to prevent DoS attacks from impacting performance. Such attacks, which can be
 perpetrated either inadvertently or maliciously, typically involve high rates of traffic destined to the supervisor module
 of an ACI Leaf/Spine CPU or CPU itself.

 The supervisor module of ACI Leaf/Spine switches divides the traffic that it manages into two functional components or planes:

 	

 Data plane—Handles all the data traffic. The basic functionality of a Cisco NX-OS device is to forward packets from one interface to
 another. The packets that are not meant for the switch itself are called the transit packets. These packets are handled by
 the data plane.

 	

 Control plane—Handles all routing protocol control traffic. These protocols, such as the Border Gateway Protocol (BGP) and the Open Shortest
 Path First (OSPF) Protocol, send control packets between devices. These packets are destined to router addresses and are called
 control plane packets.

 The ACI Leaf/Spine supervisor module has a control plane and is critical to the operation of the network. Any disruption or
 attacks to the supervisor module will result in serious network outages. For example, excessive traffic to the supervisor
 module could overload and slow down the performance of the entire Cisco ACI fabric. Another example is a DoS attack on the
 ACI Leaf/Spine supervisor module that could generate IP traffic streams to the control plane at a very high rate, forcing
 the control plane to spend a large amount of time in handling these packets and preventing the control plane from processing
 genuine traffic.

 Examples of DoS attacks are as follows:

 	

 Internet Control Message Protocol (ICMP) echo requests

 	

 IP fragments

 	

 TCP SYN flooding

 These attacks can impact the device performance and have the following negative effects:

 	

 Reduced service quality (such as poor voice, video, or critical applications traffic)

 	

 High route processor or switch processor CPU utilization

 	

 Route flaps due to loss of routing protocol updates or keepalives

 	

 Processor resource exhaustion, such as the memory and buffers

 	

 Indiscriminate drops of incoming packets

 	[image: ../images/note.gif]
Note
 	

 ACI Leaf/Spines are by default protected by CoPP with default settings. This feature allows for tuning the parameters on a
 group of nodes based on customer needs.

 Control Plane Protection

 To protect the control plane, the Cisco NX-OS running on ACI Leaf/Spines segregates different packets destined for the control
 plane into different classes. Once these classes are identified, the Cisco NX-OS device polices the packets, which ensures
 that the supervisor module is not overwhelmed.

 Control Plane Packet Types:

 Different types of packets can reach the control plane:

 	

 Receive Packets—Packets that have the destination address of a router. The destination address can be a Layer 2 address (such as a router
 MAC address) or a Layer 3 address (such as the IP address of a router interface). These packets include router updates and
 keepalive messages. Multicast packets can also be in this category where packets are sent to multicast addresses that are
 used by a router.

 	

 Exception Packets—Packets that need special handling by the supervisor module. For example, if a destination address is not present in the
 Forwarding Information Base (FIB) and results in a miss, the supervisor module sends an ICMP unreachable packet back to the
 sender. Another example is a packet with IP options set.

 	

 Redirect Packets—Packets that are redirected to the supervisor module. Features such as Dynamic Host Configuration Protocol (DHCP) snooping
 or dynamic Address Resolution Protocol (ARP) inspection redirect some packets to the supervisor module.

 	

 Glean Packets—If a Layer 2 MAC address for a destination IP address is not present in the FIB, the supervisor module receives the packet
 and sends an ARP request to the host.

 All of these different packets could be maliciously used to attack the control plane and overwhelm the Cisco ACI Fabric. CoPP
 classifies these packets to different classes and provides a mechanism to individually control the rate at which the ACI Leaf/Spine
 supervisor module receives these packets.

 Classification for CoPP:

 For effective protection, the ACI Leaf/Spine NX-OS classifies the packets that reach the supervisor modules to allow you to
 apply different rate controlling policies based on the type of the packet. For example, you might want to be less strict with
 a protocol packet such as Hello messages but more strict with a packet that is sent to the supervisor module because the IP
 option is set.

 Rate Controlling Mechanisms:

 Once the packets are classified, the ACI Leaf/Spine NX-OS has different mechanisms to control the rate at which packets arrive
 at the supervisor module.

 You can configure the following parameters for policing:

 	

 Committed information rate (CIR)—Desired bandwidth, specified as a bit rate or a percentage of the link rate.

 	

 Committed burst (BC)—Size of a traffic burst that can exceed the CIR within a given unit of time and not impact scheduling.

 Default Policing Policies:

 When the Cisco ACI Leaf/Spine is bootup, the platform setup pre-defined CoPP parameters for different protocols are based
 on the tests done by Cisco.

 Guidelines and Limitations for CoPP

 CoPP has the following configuration guidelines and limitations:

 	
 We recommend that you use the strict default CoPP policy initially and then later modify the CoPP policies based on the data
 center and application requirements.

 	

 Customizing CoPP is an ongoing process. CoPP must be configured according to the protocols and features used in your specific
 environment as well as the supervisor features that are required by the server environment. As these protocols and features
 change, CoPP must be modified.

 	

 We recommend that you continuously monitor CoPP. If drops occur, determine if CoPP dropped traffic unintentionally or in response
 to a malfunction or attack. In either event, analyze the situation and evaluate the need to modify the CoPP policies.

 	

 You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive access to the
 device. Filtering this traffic could prevent remote access to the Cisco ACI Leaf/Spine and require a console connection.

 	

 You can use the APIC UI to be able to tune the CoPP parameters.

 Configuring CoPP Using the REST API

Procedure

 	Step 1

 	Configure a CoPP leaf profile:

Example:
 <!-- api/node/mo/uni/.xml -->
<infraInfra>
 <coppLeafProfile type="custom" name="mycustom"> <!-- define copp leaf profile -->
 <coppLeafGen1CustomValues bgpBurst="150" bgpRate="300"/>
 </coppLeafProfile>
 <infraNodeP name="leafCopp">
 <infraLeafS name="leafs" type="range">
 <infraNodeBlk name="leaf1" from_="101" to_="101"/>
 <infraNodeBlk name="leaf3" from_="103" to_="103"/>
 <infraRsAccNodePGrp tDn="uni/infra/funcprof/accnodepgrp-myLeafCopp"/>
 </infraLeafS>
 </infraNodeP>
 <infraFuncP>
 <infraAccNodePGrp name="myLeafCopp">
 <infraRsLeafCoppProfile tnCoppLeafProfileName="mycustom"/> <!-- bind copp leaf policy to leaf </infraAccNodePGrp> profile -->
 </infraFuncP>
</infraInfra>

 	Step 2

 	Configure a CoPP spine profile:

Example:
 <!-- api/node/mo/uni/.xml -->
<infraInfra>
 <coppSpineProfile type="custom" name="mycustomSpine"> <!-- define copp leaf profile -->
 <coppSpineGen1CustomValues bgpBurst="150" bgpRate="300"/>
 </coppSpineProfile>
 <infraSpineP name="spineCopp">
 <infraSpineS name="spines" type="range">
 <infraNodeBlk name="spine1" from_="104" to_="104"/>
 <infraRsSpineAccNodePGrp tDn="uni/infra/funcprof/spaccnodepgrp-mySpineCopp"/>
 </infraSpineS>
 </infraSpineP>
 <infraFuncP>
 <infraSpineAccNodePGrp name="mySpineCopp">
 <infraRsSpineCoppProfile tnCoppSpineProfileName="mycustomSpine"/> <!-- bind copp spine policy to
 </infraSpineAccNodePGrp> spine profile -->
 </infraFuncP>
</infraInfra>

 Chapter 17. Creating Quota Management

 	About APIC Quota Management Configuration

 	Creating a Quota Management Configuration Using the REST API

 About APIC Quota Management Configuration

 Starting in the Cisco Application Policy Infrastructure Controller (APIC) Release 2.3(1), there are limits on number of objects a tenant admin can configure. This enables the admin to limit what
 managed objects that can be added under a given tenant or globally across tenants.

 This feature is useful when you want to limit any tenant or group of tenants from exceeding ACI maximums per leaf or per fabric or unfairly consuming a majority of available resources, potentially affecting other tenants
 on the same fabric.

 Creating a Quota Management Configuration Using the REST API

 This procedure explains how to create a quota management configuration using the REST API.

Procedure

 	
 Create a quota management configuration using the REST API:

Example:

 <?xml version="1.0" encoding="UTF-8"?>
<!-- /api/node/mo/.xml -->
<polUni>
 <quotaCont>
 <quotaConf class="fvBD" containerDn=”uni/tn-green” maxNum=”10” exceedAction=”fault”/>
 <quotaConf class="fvBD" containerDn=”uni/tn-baz” maxNum=”100” exceedAction=”fail”/>
 </quotaCont>
</polUni>

 Preface

 This preface includes the following sections:
 	

 	Audience

 	New and Changed Information

 	Document Conventions

 	Related Documentation

 	Documentation Feedback

 Audience

 This guide is intended
 		primarily for data center administrators with responsibilities and expertise in
 		one or more of the following:
 	

 	
 		
 Virtual machine installation and administration
 		

 		

 	
 		
 Server administration
 		

 		

 	
 		
 Switch and network administration
 		

 		

 New and Changed Information

 The following tables provide an overview of the significant changes to this guide up to this current release. The table does
 not provide an exhaustive list of all changes made to the guide or of the new features up to this release.

 New and Changed Behavior in Cisco ACI, Release 2.3(1e)

 	

 Feature

 	

 Description

 	

 Where Documented

 	

 Cisco APIC Quota Management

 	

 Creates, deletes, and updates a quota management configuration which enables the administrator to limit what managed objects
 can be added under a given tenant or globally across tenants.

 	

 Creating Quota Management in Part 3

 	

 Contract Inheritance

 	

 To streamline associating contracts to new EPGs, you can now enable an EPG to inherit all the (provided/consumed) contracts
 associated directly to another EPG in the same tenant. Contract inheritance can be configured for application, microsegmented,
 L2Out, and L3Out EPGs. Any changes you make to the EPG contract master’s contracts, are received by the inheriting EPG.

 	

 See Contract Inheritance in Configuring Tenant Policies in Part 3

 	

 802.1Q Tunnels Enhancements

 	

 Now you can configure ports on core-switches for use in Dot1q Tunnels for multiple customers. You can also define access VLANs to distinguish between customers consuming the corePorts. You can
 also disable MAC learning on Dot1q Tunnels.

 	

 See 802.1Q Tunnels in Provisioning Layer 2 Networks in Part 3

 	

 Reflective relay (802.1Qbg)

 	

 Reflective relay (802.1Qbg) transfers switching for virtual machines out of the host server to an external network switch.
 It provides connectivity between VMs on the same physical server and the rest of the network. It allows policies that you
 configure on the Cisco APIC to apply to traffic between the VMs on the same server.

 	

 See Reflective relay (802.1Qbg)

 in Part 3.

 	

 Control Plane Policing

 	

 Protects the control plane and separates it from the data plane, which ensures network stability, reachability, and packet
 delivery.

 	

 See Configuring Security in Part 3

 	

 Encapsulation scope for SVI across Layer 3 Outside networks

 	

 With this release you can configure the encapsulation scope for SVI across Layer 3 Outside networks.

 	

 See Provisioning Layer 3 Outside Connections in Part 3.

 	

 Microsegmentation for virtual switches

 	

 Adds content for configuring microsegment EPGs on VMware VDS, Cisco AVS, and Microsoft vSwitch.

 	

 See Configuring Microsegmentation on Virtual Switches in Part 3.

 	

 Symmetric hashing

 	

 Symmetric hashing is now supported

 	

 See Creating a Port Channel Policy Using the REST API

 New Features and Changed Information in this Document for Cisco APIC 2.2(2e) release

 	

 Feature or Change

 	

 Description

 	

 Where Documented

 	

 Per VRF per node BGP timer values

 	

 With this release, you can define and associate BGP timers on a per VRF per node basis.

 	

 Provisioning Layer 3 Outside Connections

 	

 Layer 3 Out to Layer 3 Out Inter-VRF Leaking

 	

 With this release, shared Layer 3 Outs in different VRFs can communicate with each other using a contract.

 	

 Provisioning Layer 3 Outside Connections

 	

 Multiple BGP communities assigned per route prefix

 	

 With this release, multiple BGP communities can now be assigned per route prefix using the BGP protocol.

 	

 Entries for set additional communities are reflected in the code example in Managing Layer 3 Networking

 New Features and Changed Information in this Document

 	

 Feature or Change

 	

 Description

 	

 Where Documented

 	

 Name Change

 	

 Name of "Layer 3 EVPN Services for Fabric WAN" changed to "Cisco ACI GOLF"

 	

 Cisco ACI GOLF and Multipod in Provisioning Layer 3 Outside Connections

 New Features and Changed Information in this Document for Cisco APIC 2.2(1n) Release

 	

 Feature or Change

 	

 Description

 	

 Where Documented

 	

 Part 3: Setting Up APIC and the Fabric with the REST API

 	

 New section added.

 	

 Part 3

 	

 Managing Layer 4 to Layer 7 Services

 	

 Moved from Part 2 to Part 3

 	

 Managing Layer 4 to Layer 7 Services in Setting up APIC and the Fabric with the REST API

 	

 802.1Q Tunnels

 	

 You can now configure 802.1Q tunnels to enable point-to-multi-point tunneling of Ethernet frames in the fabric, with Quality
 of Service (QoS) priority settings.

 	

 802.1Q Tunnels in Provisioning Layer 2 Networks

 	

 APIC Cluster High Availability

 	

 Support is added to operate the APICs in a cluster in an Active/Standby mode. In an APIC cluster, the designated active APICs
 share the load and the designated standby APICs can act as an replacement for any of the APICs in an active cluster.

 	

 Managing Cluster High Availability in Managing APIC Clusters

 	

 Contract Preferred Groups

 	

 Support is added for contract preferred groups that enable greater control of communication between EPGs in a VRF. If most
 of the EPGs in the VRF should have open communication, but a few should only have limited communication with the other EPGs,
 you can configure a combination of a contract preferred group and contracts with filters to control communication precisely.

 	

 Contract Preferred Groups in Configuring Tenants

 	

 Dynamic Breakout Ports

 	

 Support is added for connecting a 40 Gigabit Ethernet (GE) leaf switch port to 4-10GE capable (downlink) devices (with Cisco
 40-Gigabit to 4X10-Gigabit breakout cables).

 	

 Dynamic Breakout Ports in Provisioning Layer 2 Networks

 	

 FCoE over FEX Ports

 	

 You can now configure FCoE over FEX ports.

 	

 Configuring FCoE over FEX Using the REST API in Provisioning Layer 2 Networks

 	

 HSRP

 	

 Support is added for HSRP, a protocol that provides first-hop routing redundancy for IP hosts on Ethernet networks configured
 with a default router IP address.

 	

 HSRP in Provisioning Layer 3 Outside Connections

 	

 NetFlow

 	

 Support is added for NetFlow technology, which provides the metering base for a key set of applications, including network
 traffic accounting, usage-based network billing, network planning, as well as denial of services monitoring, network monitoring,
 outbound marketing, and data mining for both service providers and enterprise customers.

 	

 NetFlow in Provisioning Core Services

 New Features and Changed Information in this Document for Cisco APIC 2.1(1h) release

 	

 Feature or Change

 	

 Description

 	

 Where Documented

 	

 The document was created.

 	

 	

 Document
 	 Conventions

 		
 Command descriptions
 		 use the following conventions:
 		

 		

 	Convention
 				

 	Description
 				

 	
 					 bold
 				

 	
 					
 Bold text
 						indicates the commands and keywords that you enter literally as shown.
 					

 				

 	
 					 Italic
 					
 				

 	
 					
 Italic
 						text indicates arguments for which the user supplies the values.
 					

 				

 	[x]
 				

 	
 					
 Square
 						brackets enclose an optional element (keyword or argument).
 					

 				

 	[x | y]
 				

 	
 					
 Square
 						brackets enclosing keywords or arguments separated by a vertical bar indicate
 						an optional choice.
 					

 				

 	{x | y}
 				

 	
 					
 Braces
 						enclosing keywords or arguments separated by a vertical bar indicate a required
 						choice.
 					

 				

 	[x {y | z}]
 				

 	
 					
 Nested set
 						of square brackets or braces indicate optional or required choices within
 						optional or required elements. Braces and a vertical bar within square brackets
 						indicate a required choice within an optional element.
 					

 				

 	
 					 variable
 				

 	
 					
 Indicates
 						a variable for which you supply values, in context where italics cannot be
 						used.
 					

 				

 	string
 				

 	A nonquoted set of
 					 characters. Do not use quotation marks around the string or the string will
 					 include the quotation marks.
 				

 	

 		
 Examples use the
 		 following conventions:
 		

 		

 	Convention
 				

 	Description
 				

 	
 					 screen font
 				

 	
 					
 Terminal
 						sessions and information the switch displays are in screen font.
 					

 				

 	
 					
 						boldface screen font
 					
 				

 	
 					
 Information you must enter is in boldface screen font.
 					

 				

 	
 					
 						italic screen font
 					
 				

 	
 					
 Arguments
 						for which you supply values are in italic screen font.
 					

 				

 	< >
 				

 	
 					
 Nonprinting characters, such as passwords, are in angle
 						brackets.
 					

 				

 	[]
 				

 	
 					
 Default
 						responses to system prompts are in square brackets.
 					

 				

 	!, #
 				

 	
 					
 An
 						exclamation point (!) or a pound sign (#) at the beginning of a line of code
 						indicates a comment line.
 					

 				

 	

 		
 This document uses
 		 the following conventions:
 		

 		

 	[image: ../images/note.gif]
Note
 	

 		
 Means
 			 reader take
 				note. Notes contain helpful suggestions or references to material not
 			 covered in the manual.
 		

 		

 		

 	[image: ../images/caut.gif]
Caution
 	

 		
 Means
 			 reader be
 				careful. In this situation, you might do something that could result in
 			 equipment damage or loss of data.
 		

 		

 			

 	[image: ../images/warn.gif]
Warning
 	

 				
 IMPORTANT SAFETY INSTRUCTIONS

 				
 This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment,
 be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.
 Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that
 accompanied this device.

 				
 SAVE THESE INSTRUCTIONS

 			

 	

 Related
 	 Documentation

 Cisco Application Centric Infrastructure (ACI) Documentation

 			
 			
 The ACI documentation is available at the following URL: http:/​/​www.cisco.com/​c/​en/​us/​support/​cloud-systems-management/​application-policy-infrastructure-controller-apic/​tsd-products-support-series-home.html.

 		

 Cisco
 		 Application Centric Infrastructure (ACI) Simulator Documentation

 		
 		
 The Cisco ACI Simulator documentation is available at http:/​/​www.cisco.com/​c/​en/​us/​support/​cloud-systems-management/​application-centric-infrastructure-simulator/​tsd-products-support-series-home.html.

 	

 Cisco Nexus
 		 9000 Series Switches Documentation

 		
 		
 The Cisco Nexus
 		 9000 Series Switches documentation is available at
 		 http:/​/​www.cisco.com/​c/​en/​us/​support/​switches/​nexus-9000-series-switches/​tsd-products-support-series-home.html.
 		

 	

 Cisco
 		 Application Virtual Switch Documentation

 		
 		
 The Cisco
 		 Application Virtual Switch (AVS) documentation is available at
 		 http:/​/​www.cisco.com/​c/​en/​us/​support/​switches/​application-virtual-switch/​tsd-products-support-series-home.html.
 		

 	

 Cisco
 		 Application Centric Infrastructure (ACI) Integration with OpenStack
 		 Documentation

 		
 		
 Cisco ACI
 		 integration with OpenStack documentation is available at
 		 http:/​/​www.cisco.com/​c/​en/​us/​support/​cloud-systems-management/​application-policy-infrastructure-controller-apic/​tsd-products-support-series-home.html.
 		

 	

 Documentation
 	 Feedback

 To provide technical feedback on this document, or to report an error or omission, please send your comments to apic-docfeedback@cisco.com. We appreciate your feedback.

 images/348519.jpg
1211100

241901 1244402 12111124

images/348553.jpg
cis¢o Management Information Model Reference

Overview Diagram Inheritance Stats Events Faults FSMs Properties Summary Properties Detail
Class aaa:Ep (ABSTRACT)

Parent.
Manitoring Flags : [1sObservable: fale, Mas Stats: fase, HasFauls: false, HasHeath: false |

The base s for 8 AR endport This 5 an sbsiract class and cannotbe nstarsated.

Naming Rules

 romar:
©) sa/sserens/

o

IEy

images/349946.jpg
(et) (romor) (o) (e) (o) (o) (Gooon)

<fvTenant name="NewTenant”>
<fvAp name="NewApplication”>
<fvAEPg name="WebTier”>
<fvRsPathAtt encap="vlan-1” mode="regular” tDn="topology/pod-1/
paths-17/pathep-[eth1/1]"/>
</fvAEPg>
<[fvAp>
<{fuTenant>

VN

Payload is XML/JSON representation of APl Command Body

349946

images/349945.jpg
[http(s)://] [host:port] [rapi] [Hmolclass}][Hdnlclassname}] [xmlljson}] [?[options]]

Specify Specify filters,
http or Managed Distinguished selectors or
https Ap': h";‘ o Ap."w Object name or Object | [ENcoding for modifiers to
protocol and po perator or Class Class response | | query, joined using
Operator ampersand (&)

Read properties for an EPG by Distinguished Name

[http://apic/apifmofuniftn-Giscofap-Software/epg-Download.xml]

Find all 10G ports on Fabric

349945

[http:/japiciapi/class/11Physifxmi?query-target-fiiter=eq(11Physif.speed”10G”)]

images/349134.jpg
wiProwblargreen”

\iproBred
VaProvSuBLbisecureprov”

Contract: “webCtrct”

Wibrovsubit ‘ConsSubitl
“openprov’| hitp | “opencons”
“securepron”|_https | “secureCons”

“iConsLbl="green”
ViConsSubjLi="cpencons”
ViConsSubible"secureCons”

o= red”
VaConsSubible"secureCons”

images/349932.jpg
Tenant Cisco

[Private Network Cisco-1

[Private Network Cisco-2]

)
)

I I

[Bridge Domain Cisco-1 [Bridge Domain Cisco-2]
I I
I I

[End Point Group EPG-1]

[End Point Group EPG-2]

Application Profile App-1

A

\

349932

images/349933.jpg
Tenant Cisco-1

Tenant Cisco-2

[Private Network Cisco-1]

[Private Network Cisco-2]

[Bridge Domain Cisco-1]

[Bridge Domain Cisco-2]

[End Point Group EPG-1]

[End Point Group EPG-2 }

Application Profile App-1

Application Profile App-2

Py

7

349933

images/349942.jpg
Soaking PR,
Timer Py ondition
Expires Condition Returns

(severity =

Ceases

Condition
detected

Raised
(severity = target)

Soaking-Clearing
(severity = initial)

(new fault is created)

Condition Condition Clearing Timer
Ceases Returns Expires
Raised-Clairing Retaining Fault:
(severity = target) (severity = cleared) MO deleted
J
Clearing Retention
Timer Timer Expires
Expires or Fault is

Acknowledged

349942

images/cover_page.jpg
feen]n
CISCO.

Cisco APIC REST API Configuration
Guide

©2016-2017 Cisco Systems, Inc. Al ights reserved.

WY

images/cover_shelf.jpg
Nnmim
cisco

— -

3
Cisco APIC REST API

Configuration Guide
5

TR

images/501052.jpg
Cisco APIC

Cisco ACI Fabril

images/501053.jpg
Cisco APIC
=]
apic
Yacy

Cisco ACI F:

images/501054.jpg
Cisco APIC

Cisco ACI F:

images/500983.jpg
L30ut WAN

GOLF over OSPF at the Sj v
over at the Spine e

« Single BGP session for all Tenant/VRFS,
» Support for 95xx and 93xx

GOLF OSPF Connectivity to
Nexus 7K, ASR 9K, ASR 1K

Opflex Push to N7K, ASR9K

DB WebIApp

Leaf L30ut BGP session
for each Tenant/VRF

L30ut WAN
Connections

500083

images/500991.jpg
IPN
Not managed by
APIC, Connects pods,

WAN routers

POD1

Inter-POD
Network

ingle
APIC Cluster

Web/App DB/

POD 2

500891

images/500683.jpg
Host Host Host
3 4 5 6

images/349864.jpg
BD MAC 1

vmac = 12:34:56:78:9a:bc

Fabric 1 Fabric 2
a— BD MAC 2
(=T] =1 vmac = 12:34:56:78:9a:bc
APiC APIC
g a &
i -
= R S 3

349864

images/501051.jpg
Cisco APIC

Cisco ACI Fabri

images/501049.jpg
Cisco APIC
=)
apic
fcy,

Cisco ACI F:

images/501050.jpg
Cisco APIC

Cisco ACI Fabri

images/501358.jpg
L3outi L3002
Nodes: 301 Nodes: 303
SV encap: 800 [SVI encap: 800
Scope:local | [Scope: local

ACI Fabric

BD (L2) is not extended
across fabric

3

Podi-Lear-301# how vian id 53 extended
VLAN Name Status
53 Ten4vii-13out L3outi vian 800 actve
VLAN Type Vian-mode Encap

Ports
EtniAf

enet CE

xlan-15073234, vian-800

53

Podi-Leat-303# show vian id 11 extended

Different L3out

VLAN Name s Ports.

EthiAt

Ten-4if1-130ut- 30ut2vian-800 active

1
VLAN Type Vian-mode Encap

1 enet CE Vxlan-15007704, vian-800

‘Same encap
but diferent
NI acioss

nodes

P

images/501359.jpg
L3outi L3002
Nodes: 301 Nodes: 303
SV encap: 800 [SVI encap: 800
Scope: VRF | [Scope: VRF

ACI Fabric

BD (L2) extended
across fabric

Podi-Lear-301# how vian id 54 extended
VLAN Name Status
54 Tenavii-i3out L3outi vian 800 actve
VLAN Type Vian-mode Encap

Ports
EtniAf

54 enet GE

xlan-15007705, vian-800

Pod1-Leat-303# show vian id 12 extended,

Different L3out

VLAN Name s Ports.

EthiAt

12 Tendwif1:13outL3ou2vian-800 active
VLAN Type Vian-mode Encap
12 enet CE an-15007705, van-800

‘Same encap
and same
NI acioss
nodes

P

images/349767.jpg
(OSPF Point-to-point
connection

Sup
1Py

BGP RR

—

MP-BGP
Border Leaf Border Leaf
1001.1.081 10022081 T® "10033081
2001:11:11126 2001:122/126 §: |} 3 2001:13:1/126

VRF1

100.1.1.0/31
2001::11:21126

orts both
and IPv6 | OSPF Area 0

ib-Interface|

8-_[Routed su
g supported
VRF2. 2 VRF1
100.22.0/31 100.3.3.0/31
2001:12:2/126 2001:13:2/126
OSPF Area 0

sag7er

images/349540.jpg
etht22

eth123

dev-eaft

ethires

L3Outinternet
vri=commonctx
import=20.20.20.100/28
exporl=10.10.10.0/24

OSPF area 111

Ping 10.10.10.101

N g 28

L30utExternal LsOutinternal
wri=commonctx vristenantfctxt
import=40.40 40.100/28 | | mport=30.30.30.100/28
import=10.10.10.024 || import=2020.20,0/24.
exporl=2020.20.0/24 || exporl=10.10.10.0/24.

404040102128
303030102728

redistrbution K

External Router VM
(VASA Firewal)
202020.102/28

OSPF area 111 OSPF area 111
Frewall Linux
Web VM

10.10.10.101/24

images/501033.jpg
Not subject to APIC
management

POD 1

Inter-POD

images/501183.jpg
VRF1

VRF2

Layer 3 Out 1

Layer 3 Out 2

(Shared) (Shared)
— Node 101 — Node 102
13extinstP1 13extinstP2

images/501360.jpg
L3outt
Nodes: 801, 303
SVl encap: 800

ACI Fabric
BD (L2) extended

across fabric

Podi-Leat-301# show vian id 53 extended
VLAN Name

53

Status

Ports
EtniAf

Pod1-Leat-303# show vian id 10 extended
VLAN Name

Status

Ten-4if1-130ut- 30ut2vian-800 active

1
VLAN Type Vian-mode Encap

10

enet CE Vian-15073234, vian-800

Ports

EthiAt

‘Same encap
and same
NI acioss
nodes

07%0

images/501090.jpg
rictrlAtirP rictriSubjP I3extOut

rictriMatchRtDest

rictriProfile

images/348514.jpg
EPG:
webi

vzProwbL="green”
vzProvSubjLbi="openPror”
V2ProvSublLbi="secureProv’

EPG:
web2

vzProvbL=ed"
\2ProvSublLbl="secureProv"

Contract: “webCtret”

vZProvsubiLbl vzConsSubjLbll
“openprov [hitp | “openCons”
“secureProv’|_hitps _|“secureCons™

vzConsLbL="green
\zConsSublLbi="openCons”
VzConsSubjLbi="secureCons’”

EPG:
db

vzConsLbl="ed"
vZConsSubjLbi="secureCons’”

images/348515.jpg
‘Appicaton Protie: sap

2906869

v]

v

Bridge Domain: “solrBD1”
subnots: 1122222004, 1222221124

v

Layer VA “solrobat”

images/500656.jpg
Source-EPG

images/500655.jpg
VLAN-Pri VLANrSlec

Isolated EPG, VLAN-sec

500655

<«——— WebEPG———>

images/304258.jpg
interface

inernet
outside

web

ctx1 layer 3 context

images/500013.jpg
CONTRACT FILTER
e — \

L - § http
Vh.‘ 4 https
yGp \

1P’

EIGRP
UG

W —

images/349355.jpg
Policy Universe

Tenant

images/349905.jpg

images/500721.jpg
SAN
Accessing Accessing

Host

Virtual
F Ports

SAN
Host

Leaf
Switch 2/
FCoE NPV

NSK/MDS q FCF Device
FC Traffic
SAN
Network / /

SAN SAN SAN
Storage ~ Storage ~ Storage

721

images/501361.jpg
ACI Fabric

Edge Port

Customer 1

Single-tagged
VLAN 100

Edge Port

both customers

Customer 2
Single-tagged
VLAN 200

Customer 1 | Customer 2
Outer VLAN 10 | Outer VLAN 20

Carries traffic for

Inner VLAN 100 | Inner VLAN 200

WAN

sorast

images/501148.jpg
IGMP
Router
Functionality

1GMP
Snooping

sortae

images/501047.jpg
EPG3
(BD 1)
(no isolation enforced
and no proxy ARP)

Communication
allowed based on
presence of contracts

Assuming VM1 and VM2
are placed in the same Allowsd T Thore

uSeg EPG then VM1 can s 4 contract between
communicate with VM2 geq EPG1 and EPG2
(no contract needed)

No communications

allowed as VM3 and
VM4 attributes are not
part of any uSeg EPG

01047

images/501048.jpg
Cisco APIC

Cisco ACI F

images/348508.jpg

images/501340.jpg
Inherits Provided-Contract 1
Inherits Provided-Contract 2
Inherits Consumed-Contract 3

't Owns Provided-Contract 1
Ovwns Provided-Contract 2
Ovns Consumed-Confract 3

images/501168.jpg
Source |Destination| Fiter | Action Source |Destination| Filter | Action
any any _[implicit|permit GC GA___|mongo|permit
GA any _[implicit| deny GA GC___|mongo|permit
any GA__[implicit| deny. GC GB http_| permit
GB any _[implicit| deny GB GC http_| permit
any GB__[implicit| deny
GC any _[implicit| deny
any GC |implicit| deny

501168

