

L2TP over IPsec

この章では、ASAでのL2TP over IPsec/IKEv1の設定方法について説明します。

- L2TP over IPsec/IKEv1 VPN について (1ページ)
- L2TP over IPsec のライセンス要件 (3 ページ)
- L2TP over IPsec を設定するための前提条件 (3ページ)
- ・注意事項と制約事項 (4ページ)
- CLI での L2TP over Eclipse の設定 (6ページ)
- L2TP over IPsec の機能履歴 (11 ページ)

L2TP over IPsec/IKEv1 VPN について

Layer 2 Tunneling Protocol(L2TP; レイヤ 2 トンネリング プロトコル)は、リモート クライア ントがパブリック IP ネットワークを使用して、企業のプライベート ネットワーク サーバーと 安全に通信できるようにする VPN トンネリング プロトコルです。L2TP は、データのトンネリングに PPP over UDP(ポート 1701)を使用します。

L2TP プロトコルは、クライアント/サーバーモデルを基本にしています。機能は L2TP ネット ワーク サーバー (LNS) と L2TP アクセス コンセントレータ (LAC) に分かれています。LNS は、通常、ルータなどのネットワーク ゲートウェイで実行されます。一方、LAC は、ダイヤルアップの Network Access Server (NAS; ネットワーク アクセス サーバー) や、Microsoft Windows、Apple iPhone、または Android などの L2TP クライアントが搭載されたエンドポイントデバイスで実行されます。

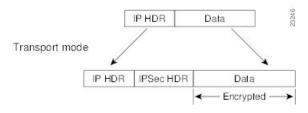
リモートアクセスのシナリオで、IPsec/IKEv1を使用するL2TPを設定する最大の利点は、リモートユーザーがゲートウェイや専用回線を使わずにパブリックIPネットワークを介してVPNにアクセスできることです。これにより、実質的にどの場所からでもPOTSを使用してリモートアクセスが可能になります。この他に、Cisco VPN Client ソフトウェアなどの追加のクライアントソフトウェアが必要ないという利点もあります。

(注) L2TP over IPsec は、IKEv1 だけをサポートしています。IKEv2 はサポートされていません。

IPsec/IKEv1 を使用する L2TP の設定では、事前共有キーまたは RSA シグニチャ方式を使用する証明書、および (スタティックではなく) ダイナミック クリプト マップの使用がサポートされます。ただし、ここで説明する概要手順では、IKEv1、および事前共有キーまたは RSA 署名の設定が完了していることを前提にしています。事前共有キー、RSA、およびダイナミッククリプトマップの設定手順については、一般的操作用コンフィギュレーション ガイドの第 41章「Digital Certificates」を参照してください。

(注)

ASA で IPsec を使用する L2TP を設定すると、Windows、MAC OS X、Android および Cisco IOS などのオペレーティング システムに統合されたネイティブ VPN クライアントと LNS が相互運用できるようになります。IPsec を使用する L2TP だけをサポートしています。ネイティブ L2TP は、ASA では対応していません。Windows クライアントがサポートしている IPsec セキュリティアソシエーションの最短ライフタイムは、300 秒です。ASA でライフタイムを 300 秒未満に設定している場合、Windows クライアントはこの設定を無視して、300 秒のライフタイムに置き換えます。


IPsec の転送モードとトンネル モード

ASA は、デフォルトで IPsec トンネル モードを使用します。このモードでは、元の IP データグラム全体が暗号化され、新しいIPパケットのペイロードになります。このモードでは、ルータなどのネットワーク デバイスが IPsec のプロキシとして動作できます。つまり、ルータがホストに代わって暗号化を行います。送信元ルータがパケットを暗号化し、IPsec トンネルを使用して転送します。宛先ルータは元の IP データグラムを復号化し、宛先システムに転送します。トンネルモードの大きな利点は、エンドシステムを変更しなくても IPsec を利用できるということです。また、トラフィック分析から保護することもできます。トンネルモードを使用すると、攻撃者にはトンネルのエンドポイントしかわからず、トンネリングされたパケットの本来の送信元と宛先はわかりません(これらがトンネルのエンドポイントと同じ場合でも同様)。

ただし、Windows の L2TP/IPsec クライアントは、IPsec 転送モードを使用します。このモードでは IP ペイロードだけが暗号化され、元の IP ヘッダーは暗号化されません。このモードには、各パケットに数バイトしか追加されず、パブリックネットワーク上のデバイスに、パケットの最終的な送信元と宛先を認識できるという利点があります。次の図に、IPsec のトンネルモードと転送モードの違いを示します。

図 1: IPsec のトンネル モードと転送モード

Windows の L2TP および IPsec クライアントから ASA に接続するには、crypto ipsec transform-set trans_name mode transport コマンドを使用してトランスフォーム セット用に IPsec 転送モード を設定する必要があります。このコマンドは、設定手順で使用されます。.

(注)

ASA は、スプリットトンネル アクセスリストで 28 を超える ACE をプッシュすることはできません。

このような転送が可能になると、中間ネットワークでの特別な処理(たとえば QoS)を、IP ヘッダーの情報に基づいて実行できるようになります。ただし、レイヤ4ヘッダーが暗号化されるため、パケットの検査が制限されます。転送モードでは、IP ヘッダーがクリア テキストで送信されると、攻撃者に何らかのトラフィック分析を許すことになります。

L2TP over IPsec のライセンス要件

(注)

この機能は、ペイロード暗号化機能のないモデルでは使用できません。

IKEv2 を使用した IPsec リモートアクセス VPN には、別途購入可能な AnyConnect Plus または Apex ライセンスが必要です。IKEv1 を使用した IPsec リモートアクセス VPN および IKEv1 または IKEv2 を使用した IPsec サイト間 VPN では、Essentials ライセンスに付属の Other VPN ライセンスが使用されます。モデルごとの最大値については、「Cisco ASA Series Feature Licenses」を参照してください。

L2TP over IPsec を設定するための前提条件

L2TP over IPsec の設定については、次の前提条件があります。

- グループ ポリシー: デフォルト グループ ポリシー (DfltGrpPolicy) またはユーザー定義 グループ ポリシーを L2TP/IPsec 接続に対して設定できます。どちらの場合も、L2TP/IPsec トンネリングプロトコルを使用するには、グループ ポリシーを設定する必要があります。 L2TP/IPsec トンネリング プロトコルがユーザー定義グループ ポリシーに対して設定されていない場合は、DfltGrpPolicy を L2TP/IPsec トンネリング プロトコルに対して設定し、ユーザー定義グループ ポリシーにこの属性を継承させます。
- •接続プロファイル:「事前共有キー」認証を実行する場合は、デフォルトの接続プロファイル (トンネル グループ)、DefaultRAGroup を設定する必要があります。証明書ベースの認証を実行する場合は、証明書 ID に基づいて選択できるユーザー定義接続プロファイルを使用できます。
- IP 接続性をピア間で確立する必要があります。接続性をテストするには、エンドポイントから ASA への IP アドレスの ping と、ASA からエンドポイントへの IP アドレスの ping を 実行します。
- •接続パス上のどの場所でも、UDP ポート 1701 がブロックされていないことを確認してく ださい。
- Windows 7 のエンドポイント デバイスが、SHA のシグニチャ タイプを指定する証明書を 使用して認証を実行する場合、シグニチャ タイプは、ASA のシグニチャ タイプと SHA1 または SHA2 のいずれかが一致している必要があります。

注意事項と制約事項

この項では、この機能のガイドラインと制限事項について説明します。

コンテキスト モードのガイドライン

シングルコンテキストモードでサポートされています。

ファイアウォール モードのガイドライン

ルーテッドファイアウォール モードでのみサポートされています。トランスペアレント モードはサポートされていません。

フェールオーバーのガイドライン

L2TP over IPsec セッションはステートフル フェールオーバーではサポートされていません。

IPv6 のガイドライン

L2TP over IPsec に対してネイティブの IPv6 トンネル セットアップのサポートはありません。

すべてのプラットフォームでのソフトウェアの制限

現時点では、IPsec トンネルを介した 4096 L2TP のみをサポートしています。

認証のガイドライン

ローカル データベースの場合、ASA は、PPP 認証方式として PAP および Microsoft CHAP の バージョン 1 と 2 だけをサポートします。 EAP と CHAP は、プロキシ認証サーバーによって 実行されます。 そのため、リモート ユーザーが authentication eap-proxy または authentication chap コマンドで設定したトンネル グループに所属している場合、ASA でローカル データベースを使用するように設定すると、このユーザーは接続できなくなります。

サポートされている PPP 認証タイプ

ASA 上の L2TP over IPsec 接続は、次の図に示す PPP 認証タイプだけをサポートします。

表 1: AAA サーバー サポートと PPP 認証タイプ

AAA サーバータイプ	サポートされている PPP 認証タイプ	
LOCAL	PAP、MSCHAPv1、MSCHAPv2	
RADIUS	PAP、CHAP、MSCHAPv1、MSCHAPv2、EAP-Proxy	
TACACS+	PAP、CHAP、MSCHAPv1	
LDAP	PAP	
NT	PAP	
SDI	SDI	

表 2: PPP 認証タイプの特性

キーワード	認証タイプ	特性	
chap	СНАР	サーバーのチャレンジに対する応答で、クライアントは暗号化された「チャレンジとパスワード」およびクリアテキストのユーザー名を返します。このプロトコルは、PAPより安全ですが、データは暗号化されません。	
еар-ргоху	EAP	EAP をイネーブルにします。これによってセキュリティアプライアンスは、PPP 認証プロセスを外部の RADIUS 認証サーバーにプロキシします。	
ms-chap-v1	ハーンヨン	CHAPと似ていますが、サーバーは、CHAPのようなクリアテキストのパスワードではなく、暗号化されたパスワードだけを保存および比較するのでよりセキュアです。また、このプロトコルはデータ暗号化のためのキーを MPPE によって生成します。	
pap	PAP	認証中にクリアテキストのユーザー名とパスワードを渡すので、セキュアではありません。	

CLI での L2TP over Eclipse の設定

ネイティブ VPN クライアントが L2TP over Eclipse プロトコルを使用して ASA に VPN 接続で きるように IKEv1 (ISAKMP) ポリシーを設定する必要があります。

- IKEv1 フェーズ 1: SHA1 ハッシュ方式を使用する AES 暗号化。
- Eclipse フェーズ 2: SHA ハッシュ方式を使用する AES 暗号化
- PPP 認証: PAP、MS-CHAPv1、または MSCHAPv2 (推奨)
- 事前共有キー (iPhone の場合に限る)

手順

ステップ1 特定の ESP 暗号化タイプおよび認証タイプで、トランスフォーム セットを作成します。

crypto ipsec ike_version transform-set transform_name ESP_Encryption_Type ESP_Authentication_Type 例:

crypto ipsec ikev1 transform-set my-transform-set-ikev1 esp-aes esp-sha-hmac

ステップ2 Eclipse にトンネルモードではなく転送モードを使用するように指示します。

crypto ipsec ike_version transform-set trans_name mode transport

何I·

crypto ipsec ikev1 transform-set my-transform-set-ikev1 mode transport

ステップ3 L2TP/Eclipse を vpn トンネリングプロトコルとして指定します。

 ${\bf vpn\text{-}tunnel\text{-}protocol}\ tunneling_protocol$

例:

hostname(config)# group-policy DfltGrpPolicy attributes
hostname(config-group-policy)# wpn-tunnel-protocol 12tp-ipsec

ステップ4 (任意) 適応型セキュリティアプライアンスに DNS サーバー IP アドレスをグループポリシー のクライアントに送信するように指示します。

dns value [none | *IP_Primary* | *IP_Secondary*]

例

hostname(config) # group-policy DfltGrpPolicy attributes
hostname(config-group-policy) # dns value 209.165.201.1 209.165.201.2

ステップ5 (任意) 適応型セキュリティ アプライアンスに WINS サーバー IP アドレスをグループ ポリシーのクライアントに送信するように指示します。

wins-server value [none | IP_primary [IP_secondary]]

例:

hostname(config) # group-policy DfltGrpPolicy attributes
hostname (config-group-policy) # wins-server value 209.165.201.3 209.165.201.4

ステップ6 (任意) IP アドレス プールを作成します。

ip local pool_name starting_address-ending_address mask subnet_mask

例:

hostname(config) # ip local pool sales addresses 10.4.5.10-10.4.5.20 mask 255.255.255.0

ステップ7 (任意) IP アドレス プールを接続プロファイル (トンネル グループ) と関連付けます。

address-pool pool_name

例:

hostname(config) # tunnel-group DefaultRAGroup general-attributes hostname(config-tunnel-general) # address-pool sales addresses

ステップ8 グループ ポリシーの名前を接続プロファイル (トンネル グループ) にリンクします。

default-group-policy name

例:

hostname(config) # tunnel-group DefaultRAGroup general-attributes hostname(config-tunnel-general) # default-group-policy DfltGrpPolicy

ステップ**9** L2TP over IPSec 接続を試行するユーザーを確認する認証サーバーを指定します。サーバーが使用できない場合に認証をローカル認証にフォールバックする場合は、コマンドの末尾にLOCALを追加します。

authentication-server-group [local]

例:

hostname(config) # tunnel-group DefaultRAGroup general-attributes
hostname(config-tunnel-general) # authentication-server-group sales server LOCAL

ステップ10 L2TP over Eclipse 接続を試行するユーザーの認証方式を、接続プロファイル(トンネルグループ)に対して指定します。ローカル認証の実行に ASA を使用していない場合や、ローカル認証にフォールバックする場合は、コマンドの末尾に LOCAL を追加します。

authentication auth_type

例:

hostname(config)# tunnel-group DefaultRAGroup ppp-attributes hostname(config-ppp)# authentication ms-chap-v1

ステップ11 接続プロファイル (トンネル グループ) の事前共有キーを設定します。

tunnel-group tunnel group name ipsec-attributes

例:

hostname(config) # tunnel-group DefaultRAGroup ipsec-attributes hostname(config-tunnel-ipsec) # ikev1 pre-shared-key cisco123

ステップ12 (任意) 接続プロファイル (トンネル グループ) に対して、L2TP セッション用に AAA アカウンティングの開始レコードと終了レコードを生成します。

accounting-server_group aaa_server_group

例:

hostname(config) # tunnel-group DefaultRAGroup general-attributes hostname(config-tunnel-general) # accounting-server-group sales aaa server

ステップ 13 hello メッセージの間隔を(秒単位で)設定します。範囲は $10 \sim 300$ 秒です。デフォルトインターバルは 60 秒です。

12tp tunnel hello seconds

例:

hostname(config)# 12tp tunnel hello 100

ステップ14 (任意) ESP パケットが 1 つ以上の NAT デバイスを通過できるように、NAT-Traversal をイネーブルにします。

NAT デバイスの背後に適応型セキュリティアプライアンスへの L2TP over Eclipse 接続を試行する L2TP クライアントが複数あると予想される場合、NAT-Traversal をイネーブルにする必要があります。

crypto isakmp nat-traversal seconds

NATトラバーサルをグローバルにイネーブルにするには、ISAKMPがグローバルコンフィギュレーションモードでイネーブルになっていることを確認し(crypto isakmp enable コマンドでイネーブルにできます)、次に crypto isakmp nat-traversal コマンドを使用します。

例:

hostname(config)# crypto ikev1 enable
hostname(config)# crypto isakmp nat-traversal 1500

ステップ15 (任意) トンネル グループのスイッチングを設定します。トンネル グループのスイッチング により、ユーザーがプロキシ認証サーバーを使用して認証する場合に、VPN接続の確立が容易 になります。トンネル グループは、接続プロファイルと同義語です。

strip-group

strip-realm

例:

hostname(config) # tunnel-group DefaultRAGroup general-attributes
hostname(config-tunnel-general) # strip-group
hostname(config-tunnel-general) # strip-realm

ステップ16 (任意) ユーザー名 jdoe、パスワード j!doe1 でユーザーを作成します。mschap オプションは、パスワードを入力した後に、そのパスワードが Unicode に変換され、MD4 を使用してハッシュされることを示します。

この手順が必要になるのは、ローカルユーザーデータベースを使用する場合だけです。

username name password password mschap

例:

asa2(config)# username jdoe password j!doe1 mschap

ステップ17 フェーズ1の IKE ポリシーを作成し、番号を割り当てます。

crypto ikev1 policy priority

group Diffie-Hellman Group

IKE ポリシーの設定可能なパラメータは数種類あります。ポリシーの Diffie-Hellman グループ も指定できます。ASA が IKE ネゴシエーションを完了するために、isakamp ポリシーが使用されます。

例:

hostname(config) # crypto ikev1 policy 14
hostname(config-ikev1-policy) # group14

Windows 7 のプロポーザルに応答するための IKE ポリシーの作成

Windows 7 の L2TP/IPsec クライアントは、ASA との VPN 接続を確立するために、数種類の IKE ポリシーのプロポーザルを送信します。Windows 7 の VPN ネイティブ クライアントから の接続を容易にするために、次の IKE ポリシーのいずれかを定義します。

ASA の L2TP over IPsec を設定する手順に従います。Windows 7 のネイティブ VPN クライアントの IKE ポリシーを設定するには、このタスクに新しいステップを追加します。

手順

ステップ1 既存の IKE ポリシーの属性と番号をすべて表示します。

例:

hostname(config)# show run crypto ikev1

- ステップ2 IKE ポリシーを設定します。number 引数には、設定する IKE ポリシーの番号を指定します。この番号は、show run crypto ikev1 コマンドの出力で表示されたものです。
 crypto ikev1 policy number
- ステップ3 各 IPsec ピアの ID を確立し、事前共有キーを使用するために、ASA が使用する認証方式を設定します。

例:

hostname(config-ikev1-policy)# authentication pre-share

ステップ4 2 つの IPsec ピア間で伝送されるユーザー データを保護する対称暗号化方式を選択します。 Windows 7 の場合は、 **aes aes-256** (128 ビット AES の場合) を選択します。 **encryption**{| **aes|aes-256**}

ステップ5 データの整合性を保証するハッシュアルゴリズムを選択します。Windows 7 の場合は、SHA-1 アルゴリズムに sha を指定します。

例:

hostname(config-ikev1-policy) # hash sha

ステップ 6 Diffie-Hellman グループ識別番号を選択します。aes、aes-256 暗号化タイプには 14 を指定できます。

例:

hostname(config-ikev1-policy)# group 14

ステップ7 SA ライフタイム(秒)を指定します。Windows 7 の場合は、86400 秒 (24 時間)を指定します。

例:

hostname(config-ikev1-policy) # lifetime 86400

L2TP over IPsec の設定例

次に、任意のオペレーティングシステム上のネイティブ VPN クライアントと ASA との互換性を保持するコンフィギュレーション ファイルのコマンドの例を示します。

```
ip local pool sales addresses 209.165.202.129-209.165.202.158
group-policy sales policy internal
group-policy sales policy attributes
wins-server value 209.165.201.3 209.165.201.4
 dns-server value 209.165.201.1 209.165.201.2
vpn-tunnel-protocol 12tp-ipsec
tunnel-group DefaultRAGroup general-attributes
default-group-policy sales_policy
address-pool sales addresses
tunnel-group DefaultRAGroup ipsec-attributes
pre-shared-key *
tunnel-group DefaultRAGroup ppp-attributes
no authentication pap
authentication chap
 authentication ms-chap-v1
 authentication ms-chap-v2
crypto ipsec ikev1 transform-set trans esp-aes esp-sha-hmac
crypto ipsec ikev1 transform-set trans mode transport
crypto dynamic-map dyno 10 set ikev1 transform-set trans
crypto map vpn 20 ipsec-isakmp dynamic dyno
crypto map vpn interface outside
crypto ikev1 enable outside
crypto ikev1 policy 10
authentication pre-share
 encryption aes
hash sha
```

group 14 lifetime 86400

L2TP over IPsec の機能履歴

機能名	リリース	機能情報
L2TP over IPsec	7.2(1)	L2TP over IPsec は、単一のプラットフォームで IPsec VPN イアウォール サービスとともに L2TP VPN ソリューション管理する機能を提供します。
		リモートアクセスのシナリオで、L2TP over IPsec を設定では、リモートユーザーがゲートウェイや専用回線を使わる IP ネットワークを介して VPN にアクセスできることです。 実質的にどの場所からでも POTS を使用してリモートアク なります。この他に、VPN にアクセスするクライアントル Microsoft Dial-Up Networking(DUN; ダイヤルアップ ネッ用するだけでよいという利点もあります。 Cisco VPN Clier など、追加のクライアント ソフトウェアは必要ありません authentication eap-proxy、authentication ms-chap-v1、authent ms-chap-v2、authentication pap、12tp tunnel hello、および vpl 12tp-ipsec コマンドが導入または変更されました。
IKE/IPsec 暗号化および整合 性/PRF 暗号の廃止	9.13(1)	次の暗号化/整合性/PRF 暗号は廃止され、以降のリリース されます。
DH グループ 14 での IKEv1 のサポート		• 3DES 暗号化
		• DES 暗号化
		• MD5 の整合性
		IKEv1 での DH グループ 14(デフォルト)サポートが追加 グループ 2 およびグループ 5 コマンドオプションは廃止さ リース $9.14(1)$ で削除されます。

L2TP over IPsec の機能履歴

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。