

セカンダリリージョン

表1:機能の履歴

機能名	リリース情報	説明
マルチリージョン ファブリック : セカ ンダリリージョン	Cisco IOS XE リリー ス 17.8.1a Cisco SD-WAN リ リース 20.8.1 Cisco vManage リ リース 20.8.1	セカンダリリージョンは、マルチリージョンファ ブリック アーキテクチャに別のファセットを提供 し、異なるプライマリアクセスリージョン内のエッ ジルータ間のダイレクトトンネル接続を可能にしま す。エッジルータをセカンダリリージョンに割り当 てると、ルータは2つのリージョンで同時に効果的 に動作し、プライマリリージョンとセカンダリリー ジョンを介して異なるパスを使用できます。

- ・セカンダリリージョンに関する情報 (1ページ)
- ・パスのタイプ、リージョン、またはロールによるルートの一致(5ページ)
- セカンダリリージョンの制約事項 (6ページ)
- セカンダリリージョンのユースケース(6ページ)
- Cisco vManage を使用したセカンダリリージョンの設定 (8ページ)
- CLI を使用したセカンダリリージョンの設定 (10ページ)
- Cisco vManage を使用したデバイスのセカンダリリージョンの割り当ての確認 (12ページ)
- CLI を使用したデバイスのセカンダリリージョンの割り当ての確認 (12ページ)
- CLI を使用したインターフェイスのセカンダリリージョンモードの確認 (13 ページ)
- •CLIを使用したインターフェイスのセカンダリリージョンの割り当ての確認(14ページ)

セカンダリリージョンに関する情報

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

最も基本的なマルチリージョンファブリックアーキテクチャでは、各デバイスは1つのリージョンに属します。あるリージョンのエッジルータから別のリージョンのエッジルータへの接

続は、境界ルータとリージョン0を介してルーティングされるため、複数のホップが必要です。

セカンダリリージョンは、アーキテクチャに別のファセットを提供し、追加の機能を有効にし ます。セカンダリリージョンは、プライマリリージョンよりも単純に動作します。エッジルー タのみが含まれ、異なるプライマリリージョン内のエッジルータ間のダイレクトトンネル接続 が可能になります。エッジルータをセカンダリリージョンに追加すると、ルータは2つのリー ジョンで同時に効果的に動作し、プライマリリージョンとセカンダリリージョンを介して異な るパスを使用できます。

ネットワーク内に複数のセカンダリリージョンを作成して、さまざまなエッジルータセットの 特定のルーティングニーズに対応できますが、エッジルータは複数のセカンダリリージョンに 属することはできません。

図 1: セカンダリリージョンを含む マルチリージョン ファブリック

セカンダリリージョンの使用

次のいずれかに対してセカンダリリージョンパスを構成できます。

- プライマリリージョンとセカンダリリージョンのパスを使用したロードバランシング
- パフォーマンスの高いプレミアムパスとすることができる、セカンダリリージョンパスを 使用するように特定のアプリケーションに指示

プライマリリージョンパスとセカンダリリージョンパス

ダイレクトパスはより少ないホップを使用するため、ダイレクトパスが宛先に到達可能な場合 は、デフォルトでは、オーバーレイマネジメントプロトコル (OMP) は、ルーティングフォ ワーディングレイヤへのダイレクトパスのみを有効にします。その結果、アプリケーション認 識型ポリシーを含む転送レイヤは、ダイレクトパスのみを使用できます。このホップ数の比較 を無効にして、トラフィックが直接のセカンダリリージョンパス(より少ないホップ)または プライマリリージョンパス(より多くのホップ)のいずれかを使用できるようにすることがで きます。ホップ数の比較を無効にすると、OMPは等コストマルチパスルーティング(ECMP) をすべてのルートに適用し、パケットは使用可能なすべてのパスを使用できます。CiscovManage を使用してプライマリリージョンパスとセカンダリリージョンパスの両方を使用するようにデ バイスを設定(9ページ)を参照してください。

図 2:セカンダリリージョンを使用するダイレクトパスと、プライマリリージョンとコアリージョンを使用するマルチ ホップパス

制御ポリシー

Cisco vSmart コントローラ のセカンダリリージョンの制御ポリシーを作成する場合、プライマ リリージョンパスまたはセカンダリリージョンパスのどちらを使用しているかに応じてトラ フィックを一致させることができます。

ワークフロー

1. デバイスで、デバイスレベルのセカンダリリージョンを構成します。

Cisco vManage を使用したエッジルータのセカンダリリージョン ID の設定 (8 ページ) を参照してください。

2. デバイスで、セカンダリリージョンを使用できる TLOC を指定します。

CLIを使用した TLOC のセカンダリリージョンモードの設定 (10 ページ)を参照してく ださい。

3. セカンダリリージョンのみ、またはプライマリリージョンとセカンダリリージョンの両方 で動作するように TLOC を構成します。 Cisco vManage を使用した TLOC のセカンダリリージョンモードの設定 (8 ページ)を参照してください。

4. デバイスがプライマリリージョンパスとセカンダリリージョンパスの両方を使用できるようにします。

Cisco vManage を使用してプライマリリージョンパスとセカンダリリージョンパスの両方 を使用するようにデバイスを設定 (9ページ)を参照してください。

5. Cisco vSmart コントローラ をセカンダリリージョンに割り当てます。セカンダリリージョンを使用するデバイスのいずれのアクセスリージョンでも動作しない Cisco vSmart コントローラを使用します。これを確実にするために、セカンダリリージョンでのみ動作し、どのアクセスリージョンでも動作しない Cisco vSmart コントローラを割り当てることをお勧めします。たとえば、リージョン0でのみ動作する Cisco vSmart コントローラを、セカンダリリージョンでも動作するように割り当てることができます。

「Cisco vManage を使用した Cisco vSmart コントローラへのリージョンの割り当て」を参照 してください。

用語

マルチリージョンファブリックアーキテクチャへのセカンダリリージョンの導入により、ここで使用される用語を明確にすることが重要です。

用語	説明または同等の用語
コアリージョン	リージョン 0
アクセスリージョン	リージョン0以外のリージョン
プライマリアクセスリージョ ン	プライマリリージョン
セカンダリアクセスリージョ ン	セカンダリリージョン
プライマリリージョンパス	エッジルータから境界ルータへ、コアリージョンを経由、別 の境界ルータへ、別のリージョンのエッジルータへのパス
セカンダリリージョンパス	あるプライマリリージョンのエッジルータ1から別のプライ マリリージョンのエッジルータ2へのダイレクトパス。エッ ジルータ1と2は同じセカンダリリージョンにあります

セカンダリリージョンの利点

・異なるプライマリリージョン間で、あるエッジルータから別のエッジルータにダイレクトトンネルを使用して特定のトラフィックをルーティングする機能。

・異なるプライマリリージョン間のダイレクトトンネルで、データセンターへのトラフィックなど、大量のスループットを提供する機能。大量のスループットを直接ルーティングすると、過剰なトラフィックボリュームによる境界ルータの過負荷を防ぐことができます。

パスのタイプ、リージョン、またはロールによるルート の一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

パスタイプ

マルチリージョンファブリックアーキテクチャの制御ポリシーを設定する場合、ルートが次のいずれかを使用しているかどうかに応じてルートを一致させることができます。

 ・階層パス:アクセスリージョンから境界ルータへ、リージョン0を経由して、別の境界 ルータへ、さらに別のアクセスリージョンのエッジルータへのホップを含むルートに一致 します。

階層パスルートを表示するには、show sdwan omp routes コマンドを使用し、[REGION PATH] 列に 3 つのリージョンをリストするルートを書き留めます。

・ダイレクトパス:あるエッジルータから別のエッジルータへのダイレクトパス(ダイレクトルート)に一致します。セカンダリリージョンを構成し、2つのエッジルータをセカンダリリージョンに追加することにより、異なるアクセスリージョンのエッジルータ間のダイレクトパスを有効にすることができます。セカンダリリージョンに関する情報(1ページ)を参照してください。

ダイレクトパスルートを表示するには、show sdwan omp routes コマンドを使用し、[REGION PATH] 列に1つのリージョンをリストするルートを書き留めます。

トランスポートゲートウェイパス:トランスポートゲートウェイ機能が有効になっているルータによって再発信されたルートに一致します。

トランスポートゲートウェイについては、トランスポートゲートウェイに関する情報を参照してください。

リージョンとロール

パスタイプによる一致と同様に、ルートを発信するデバイスのリージョンまたはロール(エッ ジルータまたは境界ルータ)によってルートを一致させることができます。

セカンダリリージョンの制約事項

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- セカンダリリージョンは、境界ルータではなく、エッジルータにのみ適用されます。
- ルータは、1つのセカンダリリージョンにのみ属することができます。
- ・セカンダリリージョンに割り当てる Cisco vSmart コントローラは、セカンダリリージョン を使用するデバイスのプライマリ(アクセス)リージョンで動作してはなりません。これ を確実にするために、セカンダリリージョンでのみ動作し、どのアクセスリージョンでも 動作しない Cisco vSmart コントローラを割り当てることをお勧めします。
- トランスポートゲートウェイとして構成されているルータでセカンダリリージョンを構成 することはできません。

(注) このようなルータでセカンダリリージョンを構成しようとす ると、エラーが発生します。

セカンダリリージョンのユースケース

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

ユースケース1:特定のアプリケーション トラフィック

マルチリージョンファブリックアーキテクチャを使用している組織は、境界ルータの帯域幅 の需要を削減するためにダイレクトパスルートを使用して、2つの異なるリージョン(リージョ ン1とリージョン2)のサイト間で特定のアプリケーショントラフィックをルーティングする ことを選択します。組織は、この目的のために2つのサイト間にキャリアを配置します。

ネットワーク管理者は、次のように、リージョン1のエッジルータとリージョン2のエッジ ルータのセカンダリリージョンを構成し、2つのルータが両方ともセカンダリリージョン5に あるようにします。

・エッジルータ ER10

プライマリリージョン:1 セカンダリリージョン:5

•エッジルータ ER20

プライマリリージョン:2 セカンダリリージョン:5 ネットワーク管理者は、エッジルータ ER10 とエッジルータ ER20 の間にダイレクトトンネル を設定し、ダイレクトトンネルを介して特定のアプリケーショントラフィックをルーティング するポリシーを設定します。

ユースケース2:大容量データセンター

マルチリージョンファブリックアーキテクチャを使用する組織には、エッジルータ ER10 が サービスを提供するデータセンターがリージョン1にあります。リージョン2、3、および4の サイト(エッジルータER20、ER30、およびER40によってサービスを提供)はデータセンター に接続し、大量のトラフィックを生成します。組織は、コアリージョンにプレミアムサービス プロバイダー リンクを使用します。

コアリージョンで使用されるプレミアムリンクを介して大量のデータセンタートラフィックを ルーティングしないようにするために、ネットワーク管理者は、データセンター(ER10)を 含み、ダイレクトトンネルを使用してデータセンターに接続できるようにするための各リモー トサイト(ER20、ER30、およびER40)を含むセカンダリリージョンを構成します。大量のト ラフィックにダイレクトトンネルを使用すると、コアリージョンの帯域幅の需要が減少しま す。

プライマリリージョンとセカンダリリージョンの構成は次のとおりです。

・データセンター:エッジルータ ER10

プライマリリージョン:1 セカンダリリージョン:5

・リモートサイト:エッジルータ ER20

プライマリリージョン:2 セカンダリリージョン:5

・リモートサイト:エッジルータ ER30

プライマリリージョン:3 セカンダリリージョン:5

リモートサイト:エッジルータ ER40
 プライマリリージョン:4
 セカンダリリージョン:5

Cisco vManage を使用したセカンダリリージョンの設定

Cisco vManage を使用したエッジルータのセカンダリリージョン ID の 設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- **2.** [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - デバイスのシステムテンプレートを作成します。
 - テーブルで、デバイスの既存のシステムテンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。
- **4.** [Basic Configuration] セクションの [Secondary Region ID] フィールドで、グローバルモード を有効にして、1~63の範囲でセカンダリリージョンの番号を入力します。
- 5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device]の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

Cisco vManage を使用した TLOC のセカンダリリージョンモードの設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

はじめる前に

この手順では、Cisco VPN インターフェイス イーサネット テンプレートを使用して TLOC の セカンダリリージョンモードを設定する方法について説明します。テンプレートを適用するイ ンターフェイスの指定方法など、テンプレートの一般的な使用方法については、『Cisco SD-WAN Systems and Interfaces Configuration Guide』の「Configure VPN Ethernet Interface」を参照してく ださい。

TLOC のセカンダリリージョンモードの設定

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - ・デバイスの Cisco VPN インターフェイス イーサネット テンプレートを作成します。

テーブルで、デバイスの既存のCiscoVPNインターフェイスイーサネットテンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。

- **4.** [Tunnel] セクションに移動し、そのセクション内の [Advanced Options] セクションに移動し ます。
- 5. [Enable Secondary Region] フィールドで、グローバルモードを有効にして、次のいずれかの オプションを選択します。

オプション	説明
Only in Secondary Region	セカンダリリージョンのトラフィックのみを処理するよう にインターフェイスを構成します。
Shared Between Primary and Secondary Regions	プライマリリージョンとセカンダリリージョンでトラフィッ クを処理するようにインターフェイスを構成します。

- (注) インターフェイスは、システムレベルでデバイスに構成されたセカンダリリージョンの 割り当てを継承します。
- **6.** 既存のテンプレートを編集している場合は、[Update]、[Configure Device] の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

CiscovManageを使用してプライマリリージョンパスとセカンダリリー ジョンパスの両方を使用するようにデバイスを設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。

- ・デバイスの Cisco OMP テンプレートを作成します。
- テーブルで、デバイスの既存の OMP テンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。
- 4. [Best Path] セクションに移動し、[Ignore Region-Path Length During Best-Path Algorithm] フィー ルドで [On] を選択します。

[On] を選択すると、テンプレートは [Direct-Tunnel Path] と [Hierarchical Path] を自動的に選 択します。

5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device] の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

CLI を使用したセカンダリリージョンの設定

CLI を使用したエッジルータのセカンダリリージョン ID の設定

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. システム コンフィギュレーション モードを開始します。

Device (config) #system

3. リージョンとセカンダリリージョンを割り当てます。

デバイスには、1つのセカンダリリージョンのみを割り当てることができます。以前にデ バイスにセカンダリリージョンを割り当てていた場合は、新しいセカンダリリージョンの 割り当てが以前の割り当てに置き換わります。

1 つ以上の TLOC インターフェイスのセカンダリ リージョン トラフィックを有効にする と、インターフェイスは、システムレベルで割り当てたセカンダリリージョン ID を継承 します。

Device (config-system) #region region-id secondary-region region-id

例

```
Device#config-transaction
Device(config)#system
Device(config-system)#region 1 secondary-region 20
```

CLI を使用した TLOC のセカンダリリージョンモードの設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. VPN 0 コンフィギュレーション モードを開始します。

Device(config) #**sdwan**

3. インターフェイスを指定します。

Device(config-sdwan)#interface interface

4. トンネルインターフェイス コンフィギュレーション モードを開始します。

Device(config-sdwan-interface) #tunnel-interface

 TLOC に対して次のいずれかのモードを選択して、TLOC がプライマリリージョンおよび セカンダリリージョンのトラフィックに使用されるように、またはセカンダリリージョン のトラフィック専用に使用されるように TLOC を設定します。

モード	説明
secondary-only	TLOC は、デバイスのセカンダリリージョンのトラフィッ クのみを処理できます。
secondary-shared	TLOC は、デバイスのプライマリリージョンとセカンダリ リージョンのトラフィックを処理できます。

Device(config-tunnel-interface) **#region** { secondary-only | secondary-shared }

例1

この例では、プライマリリージョンとセカンダリリージョンのトラフィックを処理するように TLOC を設定します。

```
Device#config-transaction
Device(config)#sdwan
Device(config-sdwan)#interface GigabitEthernet0/0/0
Device(config-interface-GigabitEthernet0/0/0)#tunnel-interface
Device(config-tunnel-interface)#region secondary-shared
```

例 2

この例では、TLOCがセカンダリリージョンのトラフィックを処理しない、デフォルトの動作 を復元します。

```
Device#config-transaction
Device(config)#sdwan
Device(config-sdwan)#interface GigabitEthernet0/0/0
Device(config-interface-GigabitEthernet0/0/0)#tunnel-interface
Device(config-tunnel-interface)#no region
```

CLIを使用してプライマリリージョンパスとセカンダリリージョンパスの両方を使用するようにデバイスを設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. OMP コンフィギュレーション モードを開始します。

Device(config) #sdwan omp

3. デバイスがプライマリリージョンパス(複数ホップ)とセカンダリリージョンパス(ダイ レクトパス)の両方を使用できるようにします。

Device (config-omp) #best-path region-path-length ignore

この機能を無効にするには、このコマンドの no 形式を使用します。

CiscovManageを使用したデバイスのセカンダリリージョンの割り当ての確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Monitor] > [Devices] の順に選択します。
- 2. テーブルで、デバイスをクリックします。
- 3. [Real Time] をクリックします。
- 4. [Device Options] フィールドで、[Control Local Properties] を選択します。

[Region ID Set] フィールドには、プライマリリージョンとセカンダリリージョンが表示されます。

CLIを使用したデバイスのセカンダリリージョンの割り当 ての確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

デバイスで show sdwan running-config system コマンドを使用して、セカンダリリージョンが 設定されていることを確認します。[region] フィールドと [secondary-region] フィールドには、 プライマリリージョンとセカンダリリージョンが表示されます。

Device#**show sdwan running-config system** system system-ip 175.2.55.10 domain-id 1 site-id 2200 region 2

```
secondary-region 20
!
デバイスでshowsdwanom
フィールド内)とセカン
```

デバイスで show sdwan omp summary コマンドを使用して、プライマリリージョンID([region-id] フィールド内)とセカンダリリージョン ID([secondary-region-id] フィールド内)を確認する こともできます。

```
Device#show sdwan omp summary ...
region-id 1
secondary-region-id 20
```

CLIを使用したインターフェイスのセカンダリリージョン モードの確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

インターフェイスのセカンダリリージョンモードを表示するには、show sdwan running-config sdwan コマンド (Cisco IOS XE SD-WAN デバイス) または show running-config vpn 0 interface *interface-name* コマンド (Cisco vEdge デバイス) を使用します。[region] フィールドにモードが 表示されます。モードオプションは、[secondary-only] と [secondary-shared] です。

```
次の例は、Cisco IOS XE SD-WAN デバイスの場合です。
```

```
Device#show sdwan running-config sdwan
sdwan
 interface GigabitEthernet1
 ip address 173.3.1.11/24
 tunnel-interface
  encapsulation ipsec
  color 3g
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  no allow-service stun
  allow-service https
  region secondary-only
  1
 no shutdown
 1
!
次の例は、Cisco vEdge デバイスの場合です。
```

```
Device#show running-config vpn 0 interface ge0/1
vpn 0
interface ge0/1
ip address 173.3.1.11/24
tunnel-interface
encapsulation ipsec
color 3g
```

```
no allow-service bgp
allow-service dhcp
allow-service dns
allow-service icmp
no allow-service sshd
no allow-service netconf
no allow-service ntp
no allow-service ospf
no allow-service stun
allow-service https
region secondary-only
!
no shutdown
!
```

CLIを使用したインターフェイスのセカンダリリージョンの割り当ての確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

デバイスで、show sdwan control local-properties コマンド(Cisco IOS XE SD-WAN デバイス) または show control local-properties コマンド(Cisco vEdge デバイス)を使用して、各インター フェイスのリージョン割り当てを表示します。

show sdwan control local-properties コマンドの出力では、インターフェイスごとに、[REG IDs] 列にリージョンの割り当てが表示されます。

Device#show sdwan control local-properties

 TNTEDEACI	MAX	PUBLI RESTRICI	C 2/	PUBLIC LAST	PRIV.	ATE SPI T	P IME T	RIVATE NAT	PI VM	RIVATE	176 / 17M	COLOR
STATE	CNTRL	CONTROL/	' LR/LB	CONNE(CTION	REMAI	NING	TYPE	CON	REG IDs	V5/ VM	COLOR
GigabitEt	thernet up	2	172.2.2.11 no/yes/no	12 No/No	2366 0:0	172.2.2 0:00:16	.11 0:1	:: 1:58:49	 Э N	12 5	2366	4/1
GigabitEt 3g	thernet up	2 2	173.2.2.11 no/yes/no	12 No/No	2366 0:0	173.2.2 0:00:16	.11 0:1	:: 1:58:49	9 N	12 5	2366 2,10	4/0

show control local-properties コマンドの出力では、インターフェイスごとに、[REGION IDs] 列 にリージョンの割り当てが表示されます。

Device	show control local	-properties				
	PUBLIC	PUBLIC PRIVATE	PRIVATE	PRIVATE		
MAX	CONTROL/	LAST SPI TIME	NAT	CON REGION		
INTERFA	ACE IPv4	PORT IPv4	IPv6	PORT	VS/VM COLOR	STATE
CNTRL	STUN LR/LE	CONNECTION REMAINING	TYPE	PRF IDs		
ge0/0	172.3.1.11	12366 172.3.1.11	::	12366	4/1 lte	up
2	no/yes/no No/No	0:00:00:04 0:11:59:3	8 N .	53		
ge0/1	173.3.1.11	12366 173.3.1.11	::	12366	4/0 3g	up
2	no/ves/no No/No	0:00:00:04 0:11:59:5	6 N	5 10		

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。