cisco.

Cisco SD-WAN マルチリージョン ファブリック (階層型 SD-WAN) コンフィギュレーション ガイド

初版:2022年4月22日 最終更新:2022年9月29日

シスコシステムズ合同会社

〒107-6227 東京都港区赤坂9-7-1 ミッドタウン・タワー http://www.cisco.com/jp お問い合わせ先:シスココンタクトセンター 0120-092-255 (フリーコール、携帯・PHS含む) 電話受付時間:平日10:00~12:00、13:00~17:00 http://www.cisco.com/jp/go/contactcenter/ 【注意】シスコ製品をご使用になる前に、安全上の注意(www.cisco.com/jp/go/safety_warning/)をご確認ください。本書は、米国シスコ発行ド キュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更され ている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照くだ さい。また、契約等の記述については、弊社販売パートナー、または、弊社担当者にご確認ください。

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on standards documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2022 Cisco Systems, Inc. All rights reserved.

最初にお読みください

参考資料

- 『Release Notes』[英語]
- 『Cisco SD-WAN Controller Compatibility Matrix and Server Recommendations』[英語]

ユーザマニュアル

通信、サービス、およびその他の情報

- Cisco Profile Manager で、シスコの E メールニュースレターおよびその他の情報にサイン アップしてください。
- ネットワーク運用の信頼性を高めるための最新のテクニカルサービス、アドバンストサービス、リモートサービスについては、シスコサービスにアクセスしてください。
- 安全かつ検証されたエンタープライズクラスのアプリ、製品、ソリューション、サービス をお求めの場合は、CiscoDevnet にアクセスしてください。
- Cisco Press 出版社による一般的なネットワーク、トレーニング、認定関連の出版物を入手 するには、Cisco Press にアクセスしてください。
- ・特定の製品または製品ファミリの保証情報を探すには、Cisco Warranty Finder にアクセス してください。
- リリースで未解決および解決済みのバグをご覧になる場合は、Cisco Bug Search Toolにア クセスしてください。
- サービス リクエストを送信するには、シスコ サポートにアクセスしてください。

マニュアルに関するフィードバック

シスコのテクニカルドキュメントに関するフィードバックを提供するには、それぞれのオンラ インドキュメントの右側のペインにあるフィードバックフォームを使用してください。

Cisco IOS XE(SD-WAN)および Cisco SD-WAN リリースにおける新機能

(注)

この製品のマニュアルセットは、偏向のない言語を使用するように配慮されています。 このドキュメントセットでの偏向のない言語とは、年齢、障害、性別、人種的アイデン ティティ、民族的アイデンティティ、性的指向、社会経済的地位、およびインターセク ショナリティに基づく差別を意味しない言語として定義されています。製品ソフトウェ アのユーザインターフェイスにハードコードされている言語、基準ドキュメントに基づ いて使用されている言語、または参照されているサードパーティ製品で使用されている 言語によりドキュメントに例外が存在する場合があります。

シスコでは、リリースごとに SD-WAN ソリューションを継続的に強化しています。また、コ ンテンツも最新の強化に合致したものとなるように努めています。次のリンクには、コンフィ ギュレーションガイド、コマンドリファレンスガイド、およびハードウェア設置ガイドに記載 されているリリースごとの新機能と変更された機能が含まれています。Cisco SD-WAN ソリュー ションに関係する追加機能と修正については、リリースノートの「解決されたバグおよび未解 決のバグ」セクションを参照してください。

『What's New in Cisco IOS XE (SD-WAN) Release 17.x』[英語]

『What's New in Cisco IOS XE SD-WAN Release 16.x』[英語]

『What's New in Cisco SD-WAN (vEdge) Release 20.x』[英語]

『What's New in Cisco SD-WAN (vEdge) Release 19.x』[英語]

Cisco SD-WAN マルチリージョン ファブ リック

表1:機能の履歴

機能名	リリース情報	説明
マルチリージョン ファブリック(階層 型 SD-WAN も同 様)	Cisco vManage リ リース 20.7.1	Cisco SD-WAN マルチリージョン ファブリック は Cisco SD-WAN オーバーレイネットワークのアーキ テクチャを、互いに区別して動作する複数のリー ジョンネットワークと、リージョン間のトラフィッ クを管理するための中央のコアリージョンネット ワークに分割する機能を提供します。 階層型アーキテクチャにより、リージョンごと、お よび中央のコアリージョンネットワークに異なるト ラフィック トランスポートサービス プロバイダー を使用して、コストパフォーマンスとトラフィック パフォーマンスを最適化できます。また、一部のシ ナリオのトラフィック構成を簡素化し、特定のネッ トワークシナリオでのルーティング障害を防ぐのに 役立つ堅牢で適応性のあるトポロジを提供します。

機能名	リリース情報	説明
再発信ダンプニング	Cisco IOS XE リリー ス 17.9.1a	ネットワークが不安定になると、TLOC と双方向 フォワーディング検出(BFD)トンネルが使用可能 と使用不可の間で繰り返し切り替わります。これに より、オーバーレイマネジメントプロトコル (OMP)がルートの取り消しと再発信を繰り返し ます。このような動きは、Cisco vSmart コントロー ラのパフォーマンスに悪影響を与える可能性があ ります。
		繰り返しダウンしたルートを再発信する前に遅延を 追加することで、過度の揺れ動きを防ぎ、この種の ネットワークの不安定性による Cisco vSmart コント ローラ のパフォーマンスの低下を防ぎます。

- マルチリージョンファブリックの詳細(6ページ)
- ・マルチリージョンファブリックでサポートされるデバイス(11ページ)
- マルチリージョンファブリックの前提条件(11ページ)
- •マルチリージョンファブリックの制約事項(12ページ)
- •マルチリージョンファブリックの使用例(15ページ)
- Cisco vManage を使用した マルチリージョン ファブリック の設定 (16ページ)
- 一元化されたポリシーでのリージョンの使用 (22 ページ)
- CLI を使用した マルチリージョン ファブリック の設定 (24 ページ)
- マルチリージョンファブリックの確認(26ページ)
- •マルチリージョンファブリックのモニター (27ページ)

マルチリージョン ファブリックの詳細

マルチリージョンファブリック(以前の階層 SD-WAN)は、Cisco SD-WAN オーバーレイネッ トワークのアーキテクチャを次のように分割するオプションを提供します。

- コアオーバーレイネットワーク:リージョン0と呼ばれるこのネットワークは、リージョンオーバーレイに接続して相互に接続する境界ルータ(下の図のBR)で構成されます。
- 1つ以上のリージョンオーバーレイネットワーク:各リージョンネットワークは、同じ リージョン内の他のエッジルータに接続するエッジルータで構成され、そのリージョンに 割り当てられているコアリージョン境界ルータに接続できます。

次の図は、6つの境界ルータ(BR1~BR6)を持つコアオーバーレイネットワークを示していて、3つのリージョンのそれぞれに2つが割り当てられています。3つのリージョンオーバーレイネットワークでは、エッジルータは、同じリージョン内の他のエッジルータ、またはリージョンに割り当てられたコア境界ルータにのみ接続します。

図1:マルチリージョンファブリックのアーキテクチャ

リージョン内およびリージョン間のトラフィック

リージョンに分割することにより、リージョン内トラフィックとリージョン間トラフィックが 区別されます。

リージョン内トラフィック:エッジルータは、リージョン内の他のエッジルータに直接接続します。

トラフィックは、送信元デバイスと宛先デバイス間のダイレクトトンネルを通過します。

 リージョン間トラフィック:あるリージョンのエッジルータは、別のリージョンのエッジ ルータに直接接続しません。リージョン間トラフィックの場合、エッジルータはコア境界 ルータに接続して、ターゲットリージョンに割り当てられたコア境界ルータにトラフィッ クを転送し、これらの境界ルータはトラフィックをターゲットリージョン内のエッジルー タに転送します。

トラフィックは、送信元デバイスと宛先デバイスの間の3つのトンネルを通過します。

細分化された転送

マルチリージョンファブリックの重要な原則は、リージョンとコアリージョンネットワーク を定義した後、各リージョンおよびコアリージョンネットワークが、異なるトラフィックトラ ンスポート サービスを使用するように調整できることです。

一般的なユースケースでは、コアリージョンは、地理的に離れたリージョン間のトラフィック に使用されます。このシナリオでは、コアリージョンはプレミアムトランスポートサービス を使用して、長距離接続に必要なレベルのパフォーマンスと費用対効果を提供します。

ネットワーク トポロジ

マルチリージョンファブリックは、さまざまなリージョンでさまざまなネットワークトポロ ジを使用できる柔軟性を提供します。たとえば、リージョン1はCisco SD-WAN トンネルのフ ルメッシュを使用でき、リージョン2はハブアンドスポークトポロジを使用でき、リージョン 3はダイナミックトンネルでフルメッシュトポロジを使用できます。

コアリージョン(リージョン0)のオーバーレイトポロジには、トンネルのフルメッシュを使用することをお勧めします。これは、コアリージョン内の各境界ルータが、コア内の他の境界 ルータへのトンネルを必要とすることを意味します。これらのダイレクトトンネルは、ある リージョンから別のリージョンにトラフィックを転送するための最適な接続を提供します。

フルメッシュトポロジの実装により、コアオーバーレイネットワーク内のルーティングの複 雑さが最小限に抑えられます。対照的に、部分メッシュトポロジでは、リージョン間パスを計 算するためにトポロジを認識したルーティングが必要になります。スケーリングの制限につい ては、マルチリージョンファブリックの制約事項 (12ページ)を参照してください。

分散型 Cisco vSmart コントローラ

マルチリージョンファブリックは Cisco vSmart コントローラを割り当てて、特定のリージョンにサービスを提供できます。組織のネットワークに含まれるデバイスの数が少ない場合は、1台の Cisco vSmart コントローラ、または通常は2台の Cisco vSmart コントローラでネットワーク内のすべてのリージョンにサービスを提供できます。デバイスの数が多い場合は、特定のリージョンにサービスを提供するために Cisco vSmart コントローラを割り当てることをお勧めします。

以下の例については、次の点に注意してください。

- ・Cisco vSmart コントローラの1と2はリージョン1と2にサービスを提供します。
- Cisco vSmart コントローラの3と4はリージョン3にサービスを提供します。
- Cisco vSmart コントローラ の 5 と 6 はコアリージョン (リージョン 0) にサービスを提供 します。

図 2: Cisco vSmart コントローラ がさまざまなリージョンにサービスを提供

(注) Cisco vSmart コントローラの制約事項については、マルチリージョンファブリックの制約事項(12ページ)を参照してください。

再発信ダンプニング

最小リリース: Cisco IOS XE リリース 17.9.1a

ネットワークが不安定になると、TLOCと双方向フォワーディング検出(BFD)トンネルが使用可能と使用不可の間で繰り返し切り替わります。このタイプのネットワークの安定性には、次のようなさまざまな原因が考えられます。

- 物理接続の機能不全
- 接続を妨げるネットワークの問題
- 携帯電話ネットワークの弱い信号

使用可能と使用不可が切り替わると、境界ルータとトランスポートゲートウェイで動作する オーバーレイマネジメントプロトコル (OMP)が、使用不可になったルートを繰り返し取り 消し、再び使用可能になったときにルートを再発信する可能性があります。この繰り返し切り 替わる動きは、ネットワークを管理している Cisco vSmart コントローラに伝播し、Cisco vSmart コントローラリソースに対する不必要な要求を作成し、パフォーマンスを低下させます。 ネットワークの不安定性による Cisco vSmart コントローラのパフォーマンスの低下を防ぐため に、Cisco IOS XE リリース 17.9.1a から、境界ルータとトランスポートゲートウェイがネット ワークの安定性に関する繰り返しの問題を検出すると、ルートが利用可能になってからルート を再発信するまでに、遅延が導入されています。これにより、Cisco vSmart コントローラの不 要な負荷が軽減され、コントロールプレーンが安定します。

再発信ダンプニングはデフォルトで有効になっていて、設定は必要ありません。

マルチリージョン ファブリックの利点

- 簡素化されたポリシー設計
- ・ポリシーによって引き起こされる特定のトラフィックルーティング障害、具体的には、トラフィックフローの送信元と宛先の間のホップの1つを担当するデバイスが使用できない場合に発生する可能性のあるルーティング障害の防止
- リージョン間トラフィックのエンドツーエンドの暗号化
- リージョンごとに最適なトランスポートを選択できる柔軟性

この柔軟性により、地理的リージョン全体のトラフィックのパフォーマンスが向上しま す。一般的なユースケースでは、組織はコアリージョンにプレミアムトラフィックトラ ンスポートを使用するように調整し、地理的に離れたリージョン全体でより優れたトラ フィックパフォーマンスを提供します。

・ドメイン間のトラフィックパスのより適切な制御

一部のシナリオでは、地理的リージョン間など、ドメイン間でトラフィックをルーティン グする方法を制御することが有利です。マルチリージョンファブリックアーキテクチャ はこれを簡素化します。

これがどのように役立つかの例については、マルチリージョンファブリックの使用例 (15ページ)の「ドメイン間のトラフィックパスの制御」を参照してください。

ばらばらなプロバイダー間のサイト間トラフィックパスの有効化

マルチリージョンファブリックアーキテクチャはエッジルータと境界ルータ間を分離します。これにより、ばらばらなプロバイダー(プロバイダー間でダイレクト IP ルーティングの到達可能性を提供できない2つのプロバイダー)間でサイト間トラフィックパスを確立できます。各サイトがコアリージョン境界ルータに接続している場合、コアリージョンネットワークは2つのサイト間の接続を提供できます。

コアリージョンネットワークは、各境界ルータに次の機能があるため、この接続を提供できます。

- リージョンのエッジルータに接続するための(1つ以上の)WAN インターフェイスのセット
- ・コアリージョン内の接続用の個別の WAN インターフェイスセット

境界ルータは、VPN 転送テーブルを使用して、2 組の WAN インターフェイス間でトラ フィックフローをルーティングします。

図 3: ばらばらなプロバイダー

・最適化されたトンネルのカプセル化

コアリージョンとリージョンネットワークには、さまざまなタイプのトンネルのカプセル 化を使用できます。

たとえば、リージョンエッジルータとコア境界ルータの間で、暗号化された IPsec トンネ ルのカプセル化を使用できます。コアリージョンインフラストラクチャで暗号化が必要な い場合は、コアリージョン内のトンネルに Generic Routing Encapsulation (GRE)を使用し て、スループットを向上させることができます。リージョンごとに最適なトンネルのカプ セル化方式を選択する利点は、リージョン間トラフィックのパフォーマンスが向上するこ とです。

マルチリージョンファブリックでサポートされるデバイ ス

- •エッジルータのロール: すべての Cisco IOS XE SD-WAN デバイス、すべての Cisco vEdge デバイス
- ・境界ルータのロール: すべての Cisco IOS XE SD-WAN デバイス

マルチリージョン ファブリック の前提条件

- Cisco IOS XE SD-WAN デバイス の最小ソフトウェアバージョン: Cisco IOS XE リリース 17.7.1a
- Cisco vEdge デバイス の最小ソフトウェアバージョン: Cisco SD-WAN リリース 20.7.1

マルチリージョン ファブリック の制約事項

一般的な制約事項

 マルチリージョンファブリックを使用するようにネットワーク内のデバイスを構成する (各デバイスにリージョンを割り当てる)場合、マルチリージョンファブリックを使用 するようにネットワーク内のすべてのデバイスを構成する必要があります。マルチリー ジョンファブリック用に構成されていないデバイスは、マルチリージョンファブリック 用に構成されているデバイスに接続できません。

- (注) この制限により、既存のネットワークに対してマルチリージョンファブリックを有効にするプロセスは、ネットワーク内のデバイス間の接続を一時的に中断する可能性があります。
 - マルチリージョンファブリックコアリージョンネットワークにはフルメッシュトポロジ を使用し、コアリージョンの各境界ルータからコアの他の境界ルータへのトンネルを使用 することをお勧めします。これには、構成が単純になるという利点がありますが、コア リージョン内の境界ルータの数をスケーリングする機能が制限されます。
 - Cisco IOS XE SD-WAN デバイス のみが境界ルータロールを持つことができます。

- (注) エッジルータと境界ルータの用語の説明については、マルチ リージョンファブリックの詳細(6ページ)を参照してく ださい。
 - ・境界ルータは、1つのアクセスリージョンにだけサービスを提供できます(コアリージョン以外のリージョンをアクセスリージョンと呼びます)。

ルーティングの制約事項

マルチリージョン ファブリック は、次のルーティング機能をサポートしていません。

- •エンドツーエンドの SLA 対応ルーティング
- エッジルータと境界ルータのマルチテナントサポート
- ・境界ルータでのオーバーレイマネジメントプロトコル(OMP)ルート集約
- •オーバーレイでの IP マルチキャストのサポート

- リージョンごとの SLA ポリシー。境界ルータは、他のリージョンの SLA 構成に関係なく、常にそのリージョンの SLA ポリシーを他のリージョンとの間のトラフィックに適用します。
- ・境界ルータのバックアップパス選択による高速コンバージェンス

Cisco vSmart コントローラ の制約事項

- リージョン0の制限: Cisco vSmart コントローラをコアリージョン(リージョン0)ネットワークに割り当てると、他のリージョンに割り当てることはできません。
- リージョンパリティ: Cisco vSmart コントローラ は複数のリージョンにサービスを提供できます。2つの Cisco vSmart コントローラ を構成していずれか1つのリージョンに共通にサービスを提供する場合、それらのコントローラはすべての同じリージョンにサービスを提供する必要があります。それらは、リージョンのカバレッジにおいて部分的にのみ重複することはできません。

次の例は、Cisco vSmart コントローラ の有効なシナリオと無効なシナリオを示しています。

•有効(重複しない):

コントローラAはリージョン1にサービスを提供します。 コントローラBはリージョン2にサービスを提供します。

•有効(1つのリージョンに重複):

コントローラAはリージョン1にサービスを提供します。 コントローラBはリージョン1にサービスを提供します。

•有効(複数のリージョンに重複):

コントローラAは、リージョン1、2、および3にサービスを提供します。 コントローラBは、リージョン1、2、および3にサービスを提供します。

・無効(部分的にリージョンに重複):

コントローラAは、リージョン1、2、および3にサービスを提供します。 コントローラBは、リージョン1と2のみにサービスを提供します。

スケール制限

(注) ここで説明するスケール制限は、マルチリージョンファブリックの機能に関するもので す。ネットワーク構成には、他の制限が適用される場合があります。

マルチリージョンファブリックには、次のスケール制限があります。

アイテム	サポートされるスケール
リージョンとルータ	
リージョンの最大数	8 Cisco IOS XE リリース 17.8.1a および Cisco SD-WAN リリース 20.8.1 から:12
リージョンあたりのエッジルータの最大数	1,000
オーバーレイ内のすべてのリージョンにわた るエッジルータの最大数	5,500 Cisco IOS XE リリース 17.8.1a および Cisco SD-WAN リリース 20.8.1 から:6,800
リージョンあたりの境界ルータの最大数	4
オーバーレイ内の一意のユニキャストプレ フィックス	50,000 Cisco IOS XE リリース 17.8.1a および Cisco SD-WAN リリース 20.8.1 から:100,000
インターフェイスの制限	
境界ルータの場合、コアリージョン内のTLOC の最大数	2
境界ルータの場合、アクセストラフィック(境 界ルータとエッジルータ間のトラフィック) の TLOC の数	2 つ以上
コントローラの制限	<u>.</u>
リージョンに割り当てることができる Cisco vSmart コントローラ の最大数	2
Cisco vManage インスタンスの最大数	3 Cisco IOS XE リリース 17.8.1a および Cisco SD-WAN リリース 20.8.1 から:6
Cisco vBond オーケストレーションインスタン スの最大数	2 Cisco IOS XE リリース 17.8.1a および Cisco SD-WAN リリース 20.8.1 から:4
コアリージョン(リージョン0)に割り当てら れる Cisco vSmart コントローラ の最大数	2
Cisco vSmart コントローラ がサービスを提供 できるリージョンの最大数	7

アイテム	サポートされるスケール
リージョンに割り当てることができる Cisco vSmart コントローラ の最大数	2

マルチリージョン ファブリック の使用例

ドメイン間のトラフィックパスの制御

マルチリージョン ファブリック の利点の1つは、個々のリージョンネットワークとコアリー ジョンが分離されていることです。これらのコンポーネントネットワークはそれぞれ、異なる タイプのルーティングインフラストラクチャ、異なるサービスプロバイダー、および異なるト ラフィックポリシーセットを採用できます。

一部のシナリオでは、リージョン内トラフィックとリージョン間トラフィックに異なるタイプのトラフィックトランスポートを使用することが有利です。たとえば、適切なコストで必要なパフォーマンスを提供するために、リージョン間トラフィックにのみ特定のトランスポートサービスを使用する場合があります。マルチリージョンファブリックアーキテクチャ内のコンポーネントネットワークの分離により、これを達成するために必要な構成が簡素化されます。

たとえば、北米で事業を行っている組織が西海岸にも東海岸にもオフィスとネットワークイン フラストラクチャを持っている場合、これら2つのリージョンで異なるサービスプロバイダー を使用して、リージョン内のトラフィックをサポートする場合があります。これらのサービス プロバイダーは、西海岸と東海岸の間のリージョン間トラフィックに最適なコストやパフォー マンスを提供しない場合があります。

マルチリージョン ファブリック を利用しない場合の1つのアプローチは次のとおりです。

- •西海岸リージョンにクラウドサービスゲートウェイを作成します。
- ・東海岸リージョンに別のクラウドサービスゲートウェイを作成します。
- ・2つのリージョン間のトラフィックについては、西海岸ゲートウェイまたは東海岸ゲート ウェイのいずれか最も近い方にトラフィックをルーティングするようにエッジデバイスを 構成します。
- 2つのゲートウェイ間の転送については、クラウドサービスプロバイダーに依存します。

マルチリージョンファブリックを使用すると、コアリージョンを使用して西海岸と東海岸の 間のすべてのトラフィックを管理でき、特にコアリージョンに最適なタイプのバックボーンイ ンフラストラクチャを選択して、コストとパフォーマンスの要件を満たすことができます。た とえば、組織は次のものを使用する場合があります。

- •西海岸リージョン内トラフィックのための西海岸リージョン サービス プロバイダー
- 東海岸リージョン内トラフィックのための東海岸リージョン サービス プロバイダー

• バックボーン インフラストラクチャ用のクラウド サービス プロバイダーまたは Cisco SD-WAN Cloud Interconnect

このシナリオで マルチリージョン ファブリック を使用すると、次の利点があります。

- •ルーティング構成がはるかに単純です。
- マルチリージョンファブリック方法により、特定のルーティング障害が防止されます。
 特に、トラフィックフローの送信元と宛先の間のホップの1つを担当するデバイスが使用できない場合に発生する可能性のあるルーティング障害です。これらの障害は、より複雑な構成方法のいずれかを使用して、同様の結果を得ようとした場合に発生する可能性があります。これらの中間ホップを管理するマルチリージョンファブリックコアリージョンは、デバイス障害に対して他の方法(前述のようにリージョンゲートウェイを使用するようにトラフィックを構成するなど)よりも応答性が高く、そのようなトラフィックを再ルーティングしてルーティング障害を回避します。

一般に、このトランスポートプロバイダーの細分化により、組織のネットワークの各リージョ ンセグメントを運用するためのコストとパフォーマンスを最適化できます。

Cisco vManage を使用した マルチリージョン ファブリックの設定

はじめる前に

リージョンとロールの割り当てを開始して マルチリージョン ファブリック を構成する前に、 以下を確認してください。

- (注) 既存のネットワークに対してマルチリージョンファブリックを有効にするプロセスは、 ネットワーク内のデバイス間の接続を一時的に中断する可能性があります。『マルチリー ジョンファブリックの制約事項(12ページ)』を参照してください。
 - ネットワークに階層型アーキテクチャが必要かどうかを判断する:エンタープライズネットワークが1つの地理的リージョンに限定されていて、ネットワーク内のすべてのポイント間のトラフィックに対して1つのタイプのトラフィックトランスポートで十分な場合は、マルチリージョンファブリックを採用する必要はありません。フラットネットワークは、このようなネットワーク要件に対応できます。
 - リージョンを計画する:階層型アーキテクチャを計画するときは、各リージョンにどのデバイスを含めるかを決定します。さらに、境界ルータとして使用するデバイスを含め、コアリージョンを計画します。どの Cisco vSmart コントローラが各リージョンにサービスを提供するかを計画します。マルチリージョンファブリック アーキテクチャの例については、マルチリージョンファブリックの詳細(6ページ)を参照してください。

- 3. 粒度:リージョンを計画するときは、組織のネットワーク要件に対応する粒度のレベルを 適用します。たとえば、北米のリージョンを計画している場合で、組織のオフィスが西海 岸と東海岸のリージョンにのみ配置されている場合は、西海岸と東海岸のみを使用すれば 十分かもしれません。ただし、組織がカナダにオフィスを持ち、その地域のサービスプロ バイダーを使用している場合は、カナダ用の別のリージョンを含める必要があるかもしれ ません。
- 4. コアリージョンネットワーク要件:通常、コアリージョンは、離れたリージョン間のプレ ミアムレベルのトランスポートを提供します。このことを考慮して、トラフィックがコア リージョンに入るのに最も効果的な場所を決定します。これは、多くの場合、組織のネッ トワークに含まれる地理的リージョンと、離れたリージョン間で使用する予定のトランス ポートのタイプに依存します。

次の例でさまざまなコアリージョン要件を検討してください。

•例1:北米

北米にまたがるエンタープライズネットワークの場合、プレミアムトランスポート サービスを使用して、東海岸と西海岸のリージョン間のトラフィックトランスポート を管理するのに、コアリージョンを使用する場合があります。この場合、西海岸で発 信されたトラフィックは、コアリージョンの外で東海岸を通過するのではなく、西海 岸のコアリージョン境界ルータにルーティングされる必要があります。同様に、東海 岸で発信されたトラフィックは、東海岸のコアリージョン境界ルータにルーティング される必要があります。

・ 例 2: 北米およびヨーロッパ

北米とヨーロッパにまたがるエンタープライズネットワークの場合、大陸間のトラ フィックに最適なトランスポートサービスを使用して、北米とヨーロッパ間のトラ フィックトランスポートのみを管理するのに、コアリージョンを使用する場合があり ます。この場合、西海岸で発信されたトラフィックは、北米の任意の境界ルータを介 してコアリージョンに入ることが許容される場合があります。同様に、ヨーロッパの どこからでも発信されたトラフィックは、ヨーロッパのコアリージョン境界ルータに ルーティングされます。

マルチリージョン ファブリック を有効にする

- 1. Cisco vManage メニューから、[Administration] > [Settings] を選択します。
- 2. [Multi-Region Fabric] 領域で、マルチリージョンファブリックを有効にします。

(注) Cisco vManage リリース 20.7.x および 20.8.x では、この領域は [Hierarchical SDWAN] とラ ベル付けされていました。

Cisco vManage を使用したデバイスへのロールとリージョンの割り当て

はじめる前に

- マルチリージョンファブリックアーキテクチャを計画し、ネットワーク内の各デバイスのロール(エッジルータまたは境界ルータ)とリージョンを決定します。
- この手順では、機能テンプレートを使用してロールを割り当てます。テンプレートを使用したデバイスの構成の詳細については、「Configure Devices」を参照してください。
- 各デバイスでサポートされるインターフェイスの数については、マルチリージョンファブリックの制約事項(12ページ)の「スケール制限」を参照してください。
- Cisco vManage リリース 20.9.1 から、ネットワーク階層およびリソース管理を使用して、 次の手順で使用するリージョンを作成します。リージョンの作成には、リージョン ID の リージョンへの割り当てが含まれます。リージョンの作成については、『Cisco SD-WAN Systems and Interfaces Configuration Guide, Cisco IOS XE Release 17.x』の「Network Hierarchy and Resource Management」の章を参照してください。

デバイスへのロールとリージョンの割り当て

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。

- (注) Cisco vManage リリース 20.7.x 以前のリリースでは、[Feature Templates] は [Feature] と呼ば れます。
- **3.** [Add template] をクリックします。
- 4. デバイスタイプを選択して、デバイスで使用可能なテンプレートを表示します。
- 5. [System] テンプレートをクリックします。
- 6. [Template Name] フィールドに、テンプレートの名前を入力します。
- 7. [Basic Configuration] セクションで、次のフィールドを設定します。

フィールド	説明
Region ID	リージョンに1から63までの値を選択します。
	 (注) Cisco vManage リリース 20.9.1 から、「はじめる 前に」で説明されているように、ネットワーク階 層とリソース管理を使用してデバイス用に作成し たリージョンの番号を入力します。
	(注) デフォルトでは、デバイス上のすべてのインター フェイスは、ここで構成されたリージョンを使用 します。
	境界ルータの場合、コアリージョンに接続する1 つ以上のTLOCインターフェイスを設定します。 境界ルータのその他のTLOCインターフェイス は、ここで設定されたリージョンを使用します。 「Cisco vManage を使用したコアリージョンへの 境界ルータTLOCの割り当て」を参照してくださ い。
Role	[Edge Router] または [Border Router] を選択します。
	(注) Cisco IOS XE SD-WAN デバイス のみが [Border Router] ロールを持つことができます。

- 8. 境界ルータの場合、デバイスがコアリージョンで機能できるようにします。
 - 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
 - 2. [Feature Templates] をクリックします。

- (注) Cisco vManage リリース 20.7.x 以前のリリースでは、[Feature Templates] は [Feature] と呼ば れます。
 - **3.** [Add template] をクリックします。
 - 4. デバイスタイプを選択して、デバイスで使用可能なテンプレートを表示します。
 - 5. [Cisco VPN Interface Ethernet] テンプレートをクリックします。
 - **6.** [Tunnel] セクションの [Tunnel Interface] フィールドで、[On] をクリックしてトンネル を有効にします。
 - 7. [Enable Core Region] フィールドで [On] をクリックして、コアリージョンへの接続を有効にします。

Cisco vManage を使用したコアリージョンへの境界ルータ **TLOC** の割り 当て

はじめる前に

・デバイスに境界ルータのロールを割り当て、デバイスをリージョンに割り当てます。デフォルトでは、デバイス上のすべてのインターフェイスは、デバイス用に構成されたリージョンを使用します。「Cisco vManage を使用したデバイスへのロールとリージョンの割り当て」を参照してください。

境界ルータの場合、コアリージョンに接続する1つ以上のTLOCインターフェイスを設定 します。境界ルータの他のTLOCインターフェイスは、デバイス用に構成されたリージョ ンを使用します。

この手順では、指定されたカラーのインターフェイスをコアリージョンに割り当てるテンプレートを作成します。テンプレートを作成する前に、コアリージョンに割り当てるインターフェイスのカラーを設定するか、カラーがすでに設定されていることを確認します。

図 4: TLOC インターフェイスリージョンの割り当て

コアリージョンへの境界ルータ TLOC の割り当て

- コアリージョンに接続するTLOCインターフェイスのCisco VPNインターフェイスイーサ ネットテンプレートを作成します。
 - 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
 - **2.** [Feature Templates] をクリックします。

- **3.** [Add template] をクリックします。
- 4. [Template Name] フィールドに、テンプレートの名前を入力します。
- 5. [Tunnel] セクションの [Tunnel Interface] フィールドで、[On] をクリックします。
- 6. [Color] フィールドで、コアリージョンに割り当てるインターフェイスを識別するカ ラーを指定します。
- **7.** [詳細オプション (Advanced Options)] をクリックします。
- **8.** [Settings] セクションの [Enable Core Region] フィールドで、[On] をクリックします。
- **9.** [Basic Configuration] セクションの [Interface Name] フィールドに、インターフェイス 名を入力します。
- **10.** [保存 (Save)] をクリックします。
- 2. 前の手順で作成した Cisco VPN インターフェイス イーサネット テンプレートをデバイス テンプレートに追加します。
 - 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
 - 2. [Device Templates] をクリックします。

- (注) Cisco vManage リリース 20.7.x 以前のリリースでは、[Device Templates] は [Device] と呼ば れます。
 - 3. [Create Template] をクリックし、[From Feature Template] を選択します。
 - **4.** [Transport & Management VPN] セクションで、[Additional Cisco VPN 0 Templates] リストを見つけて、[Cisco VPN Interface Ethernet] をクリックします。

これにより、[Transport & Management VPN] セクションに、[Cisco VPN Interface Ethernet] というラベルの付いた新しい行が追加され、インターフェイスを選択するためのメ ニューが表示されます。

- 5. 新しい [Cisco VPN Interface Ethernet] 行で、メニューをクリックし、前の手順で作成した Cisco VPN インターフェイス イーサネット テンプレートを選択します。
- **6.** [更新 (Update)] をクリックします。
- 3. デバイステンプレートを境界ルータデバイスに適用します。

Cisco vManage を使用したリージョンの Cisco vSmart コントローラ への割り当て

はじめる前に

- マルチリージョンファブリックアーキテクチャを計画し、ネットワーク内の各デバイスのロール(エッジルータまたは境界ルータ)とリージョンを決定します。どのCiscovSmartコントローラが各リージョンにサービスを提供するかを計画します。
- •この手順では、機能テンプレートを使用してロールを割り当てます。テンプレートを使用 したデバイスの構成の詳細については、「Configure Devices」を参照してください。
- Cisco vSmart コントローラに適用される制限については、「マルチリージョンファブリックの制約事項(12ページ)」を参照してください。
- リージョンの Cisco vSmart コントローラ への割り当て
- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。

- (注) Cisco vManage リリース 20.7.x 以前のリリースでは、[Feature Templates] は [Feature] と呼ば れます。
- **3.** [Add template] をクリックします。
- 4. デバイスタイプに [vSmart] を選択します。
- 5. [System] テンプレートをクリックします。
- 6. [テンプレート名 (Template Name)]フィールドに、テンプレートの名前を入力します。
- [Basic Configuration] セクションの [Region ID List] フィールドに、リージョンまたはリージョンリストを入力します。
- 8. テンプレートを Cisco vSmart コントローラ に適用します。

一元化されたポリシーでのリージョンの使用

Cisco vManage を使用したリージョンリストの作成

リージョンリストは、一元化されたポリシーのリージョン一致条件を作成するときに役立ちま す。 リージョンリストの作成

- 1. Cisco vManage メニューで、[Configuration] > [Policies] を選択します。
- 2. [Centralized Policy] をクリックします。
- **3.** [Add Policy] をクリックします。
- 4. リスト領域で、[Region] をクリックします。
- 5. [New Region List] をクリックします。
- 6. 次を入力します。
 - [Region List Name]:新しいリストの名前。
 - [Add Region]: 1から 63 の範囲の1つ以上のリージョン番号、フィールドの指示を使用します。
- 7. [Add] をクリックします。

一元化されたポリシーへのリージョンー致条件の追加

マルチリージョンファブリックのリージョンを構成した後、一元化されたルートポリシーを 構成するときに、リージョンまたはリージョンリストを一致条件として指定できます。 一元化されたポリシーの操作の詳細については、を参照してください。

一元化されたポリシーへのリージョン一致条件の追加

- 1. Cisco vManage メニューから、[Configuration] > [Policies] を選択します。
- 2. [Custom Options] をクリックし、[Centralized Policy] セクションで[Topology] を選択します。
- 3. [Add Topology] をクリックし、[Custom Control] を選択します。
- **4.** [Sequence Type] をクリックし、[Route] を選択します。
- 5. [Sequence Rule] をクリックします。
- 6. [Match] をクリックします。
- 7. [Region] をクリックします。
- [Match Conditions] 領域で、リージョンまたはリージョンリストを入力します。
 「Cisco vManage を使用したリージョンリストの作成」を参照してください。

ー元化されたポリシーのリージョンへの添付

マルチリージョンファブリックのリージョンを構成した後、一元化されたポリシーを添付す るときにリージョンまたはリージョンリストを指定します。 一元化されたポリシーの操作の詳細については、を参照してください。

- 一元化されたポリシーのリージョンへの添付
- 1. Cisco vManage メニューから、[Configuration] > [Policies] を選択します。
- **2.** [Centralized Policy] をクリックします。
- 3. 表で、添付するポリシーを見つけます。ポリシーの行で[...]をクリックし、[Edit]を選択 します。

[Topology]、[Application-Aware Routing]、および [Traffic Data] オプションについては、新 しいサイトまたは新しいリージョンを追加することを選択できます。

- 4. [New Site/Region List] をクリックします。
- 5. [Region] をクリックします。
- 6. リージョン ID またはリージョンリストを入力します。
- 7. ポリシーの添付に進みます。

CLI を使用した マルチリージョン ファブリック の設定

CLI を使用したデバイスへのロールの割り当て

デバイスで role コマンドを使用して、マルチリージョン ファブリック 機能用に、境界ルータ のロールを割り当てます。デフォルトのロールはエッジルータです。ロールを境界ルータから エッジルータに変更するには、コマンドの no 形式を使用します。

例(境界ルータ)

Device#config-transaction Device(config)#system Device(config-system)#role border-router

例(エッジルータ)

Device#config-transaction Device(config)#system Device(config-system)#no role border-router

CLI を使用したエッジルータ TLOC へのリージョン ID の割り当て

デバイス上のすべての TLOC インターフェイスは、デバイスに割り当てたリージョン ID を継承します。

デバイスで、システム コンフィギュレーション モードを開始し、region コマンドを使用して リージョンを割り当てます。 Device#config-transaction Device(config)#system Device(config-system)#region region

例

Device#config-transaction Device(config)#system Device(config-system)#region 1

CLI を使用した境界ルータ TLOC へのリージョン ID の割り当て

デフォルトでは、デバイス上のすべての TLOC は、デバイスに割り当てたリージョン ID を継承します。境界ルータの場合、1 つ以上の TLOC インターフェイスをコアリージョンに明示的に割り当てる必要があります。コア領域に割り当てることができる TLOC の数については、マルチリージョン ファブリックの制約事項(12ページ)を参照してください。

1. デバイスで、システム コンフィギュレーション モードを開始し、region コマンドを使用 してリージョンを割り当てます。

Device#config-transaction Device(config)#system Device(config-system)#region region

デフォルトでは、デバイス上のすべてのインターフェイスは、割り当てられたリージョン で動作します。

2. TLOCインターフェイスをコアリージョンに割り当てるには、インターフェイスのインター フェイス コンフィギュレーション モードを開始し、region core コマンドを使用します。

```
Device#config-transaction
Device(config)#sdwan
Device(config-sdwan)#interface interface
Device(config-interface-GigabitEthernet1)#tunnel-interface
Device(config-tunnel-interface)#region core
```

例

```
Device#config-transaction

Device(config)#system

Device(config-system)#region 1

Device(config-system)#exit

Device(config)#sdwan

Device(config-sdwan)#interface GigabitEthernet1

Device(config-interface-GigabitEthernet1)#tunnel-interface

Device(config-tunnel-interface)#region core
```

CLI を使用したリージョンの Cisco vSmart コントローラ への割り当て

マルチリージョンファブリックのセットアップ時に、既存のCiscovSmartコントローラをリー ジョンに割り当てたり、マルチリージョンファブリックに使用する新しいCiscovSmartコン トローラを作成したりできます。 コアリージョンのみにサービスを提供するようにプロビジョニングする必要があるコアリー ジョンCiscovSmartコントローラを除いて、組織のネットワークのすべてのリージョンで同じ CiscovSmartコントローラのセットを使用してデバイスにサービスを提供できます。デバイス の数が少ないネットワークでは、これが実現可能な場合があります。ただし、多数のデバイス があるネットワークの場合は、コントローラを特定のリージョンに割り当てることをお勧めし ます。

リージョンの Cisco vSmart コントローラ への割り当て

Cisco vSmart コントローラ で、 region コマンドを使用して Cisco vSmart コントローラ を1つ または複数のリージョンに割り当てます。

```
region {region} [region ...]
```

例:

この例では、Cisco vSmart コントローラ をリージョン 1 と 2 に割り当てています。

```
vSmart(config-system) #region 1 2
```

マルチリージョン ファブリック の確認

デバイスのロールとリージョン、またはCisco vSmart コントローラの割り当てられたリージョ ンを確認するには、show omp summary および show control local-properties コマンドを使用し ます。

show omp summary

デバイスでこのコマンドを使用して、デバイスロールを表示します。[device-role] フィールドは、[Edge-Router] または [Border-Router] のいずれかを示します。

```
vEdge# show omp summary
oper-state UP
admin-state UP
personality vedge
device-role Edge-Router
...
```

Cisco vSmart コントローラ でこのコマンドを使用して、コントローラが管理するように設定さ れているリージョンを表示します。[region-id]フィールドは、リージョンのリストを示します。

vSmart1# show omp summary

oper-state	UE						
admin-state	UP						
personality	vsmart						
• • •							
vsmart-peers	1						
vedge-peers	0						
region-id	0	1	2	3	4	5	

show control local-properties

デバイスでこのコマンドを使用して、各TLOCインターフェイスに設定されているリージョン を表示します。 Device# show sdwan control local-properties

	PUBLIC	PUBLIC PE	RTVATE	PRTV	ATE	PRIVATE			
MAX RESTRICT/ INTERFACE STATE CNTRL CONTROL/	LAST IPv4 LR/LB CONNI	SPI PORT IF ECTION F	I TIME 1 Pv4 REMAINING	NAT V IPv6 TYPE	M CON	PORT REG	VS/VM	COLOR	
STUN				P	RF II)			
GigabitEthernet0/0/0	10.0.0.1	12366 10	0.0.0.1	::		12366	1/1	public-internet	up
2 yes/yes/no	No/No 0:00:0	00:04 0:	:11:59:27	N	8 0				
GigabitEthernet0/0/1	10.0.0.2	12366 10	0.0.2	::		12366	1/0	green	up
2 no/yes/no	No/No 0:00:0	0:07 0:	:11:57:39	Ν	52				
GigabitEthernet0/1/1.10	10.0.0.3	5062 10	0.0.0.5	::		12346	1/0	gold	up
2 no/yes/no	Yes/No 0:00:0	0:07 0:	:11:57:41	N	52				
Loopback300	10.10.0.10	12366 10	0.10.0.10	::		12366	0/0	blue	up
0 no/ no/no	No/No 0:00:2	L0:37 0:	:11:54:42	N	52				

マルチリージョン ファブリック のモニター

マルチリージョンファブリック構成のステータスを監視するには、次のコマンドを使用して、 デバイスリージョン、デバイスロールなどに関する情報を表示します。

コマンド	説明
show control local-properties	デバイスでこのコマンドを使用して、各 TLOC インターフェ イスに設定されているリージョンを表示します。
show omp summary	デバイスまたは Cisco vSmart コントローラ でこのコマンドを 使用して、リージョン設定、デバイスロールなどを表示しま す。
show omp routes	デバイスまたは Cisco vSmart コントローラ でこのコマンドを 使用して、デバイスまたは Cisco vSmart コントローラ によっ て管理される各ルートのリージョン情報を表示します。
show bfd sessions	デバイスでこのコマンドを使用して、デバイスの各BFDセッ ションのリージョン情報を表示します。

マルチリージョン ファブリックへの移行

表2:機能の履歴

機能名	リリース情報	説明
マルチリージョン ファブリックへの移 行	Cisco IOS XE リリー ス 17.9.1a Cisco SD-WAN リ リース 20.9.1 Cisco vManage リ リース 20.9.1	Cisco SD-WAN マルチリージョンファブリックは、 エンタープライズネットワークの Cisco SD-WAN への移行を容易にする移行モードを提供します。移 行モードにより、マルチリージョンファブリック ネットワークの一部ではない Cisco vSmart コント ローラからマルチリージョンファブリックアーキ テクチャで動作する Cisco vSmart コントローラへ のデバイスの段階的な移行が可能になります。 移行モードは、マルチリージョンファブリックアー キテクチャと同様に機能する複雑なネットワークを 移行する場合に特に役立ちます。つまり、複数の ネットワークセグメントがあり、ネットワークハブ を介してセグメント間のトラフィックを誘導する制 御ポリシーがあります。

- マルチリージョンファブリックへの移行に関する情報 (29ページ)
- ・マルチリージョンファブリックへの移行でサポートされるデバイス (30ページ)
- マルチリージョンファブリックへの移行の前提条件 (31ページ)
- マルチリージョンファブリックへの移行のユースケース (31ページ)
- Cisco vManage を使用したマルチリージョンファブリックへの移行 (42ページ)
- CLIを使用した移行モードの有効化または無効化 (44 ページ)
- •マルチリージョンファブリックへの移行の検証手順(45ページ)

マルチリージョン ファブリックへの移行に関する情報

一部のエンタープライズネットワークは論理セグメントに分割され、ハブデバイスを介してセ グメント間のトラフィックをルーティングするように構成されています。これらのネットワー クアーキテクチャは、マルチリージョンファブリックアーキテクチャに似ていて、マルチリー ジョンファブリックへの移行にとても適しています。Cisco SD-WAN は、このタイプのネット ワークをマルチリージョンファブリックアーキテクチャに変換するのに役立つ移行モードを 提供します。

1 つのユースケースは、複数の地理的リージョンにまたがり、各地理的リージョンを組織の全体的なネットワークアーキテクチャ内のセグメントとして扱う組織です。組織は、CiscovSmartコントローラで一元化された制御ポリシーを使用して、セグメント間のハブごとのルーティングを構成します。デバイスで移行モードを構成し、ここで説明する手順を使用して、次のことを行います。

- •各セグメントをマルチリージョンファブリックリージョンに変換する
- ・境界ルータをセットアップする
- マルチリージョンファブリックアーキテクチャで動作するようにCiscovSmartコントロー ラを割り当てる

マルチリージョン ファブリックに移行するメリット

複数の地理的リージョンにまたがり、各地理的リージョンをネットワークセグメントとして扱う組織の場合、セグメントポリシーの構成は複雑であり、ネットワークが拡大するにつれて複雑さは急速に増します。マルチリージョンファブリックに移行すると、一元化された制御ポリシーのオーバーヘッドが大幅に簡素化されます。マルチリージョンファブリックを使用して簡素化できる複雑な一元化された制御ポリシーの例については、マルチリージョンファブリックへの移行のユースケース (31 ページ)を参照してください。

このセクションで説明する移行手順を使用すると、ネットワーク内の各ルータの機能、および ネットワークトポロジにおける各ルータのロールを維持しながら、ネットワークをマルチリー ジョンファブリックに移行できます。

たとえば、非マルチリージョンファブリックネットワークの1つのセグメントにサービスを 提供することに特化したデバイスは、エッジルータのロールを備えたマルチリージョンファブ リックアーキテクチャで引き続きサービスを提供します。非マルチリージョンファブリック ネットワークでハブとして機能するデバイスは、境界ルータのロールで、マルチリージョン ファブリックアーキテクチャでも引き続き機能します。

マルチリージョンファブリックへの移行でサポートされ るデバイス

- •エッジルータのロール: すべての Cisco IOS XE SD-WAN デバイス、すべての Cisco vEdge デバイス
- ・境界ルータのロール: すべての Cisco IOS XE SD-WAN デバイス

マルチリージョン ファブリックへの移行の前提条件

- アーキテクチャ内の各デバイスのロールを計画します。
- ・元のネットワークアーキテクチャのセグメント内で動作する各エッジルータには、マルチ リージョンファブリックアーキテクチャの単一リージョン内でエッジルータとして動作 するためのシステム要件があります。
- ハブとして機能する各ルータには、マルチリージョンファブリック境界ルータとして動作 するためのシステム要件があります。
- コアリージョンを含む、マルチリージョンファブリックアーキテクチャの各リージョン にサービスを提供できる Cisco vSmart コントローラを決定します。

マルチリージョンファブリックへの移行のユースケース

次の例は、マルチリージョンファブリックアーキテクチャへの移行を計画および実行するための手順についての洞察を提供します。単純化するために、この例には、組織のネットワーク内に少数のルータのみが含まれていて、移行前には単一のCiscovSmartコントローラが使用されています。

ユースケースは、複数の地理的リージョンにまたがり、各地理的リージョンをネットワークセ グメントとして扱う組織です。セグメント1は西海岸にサービスを提供し、セグメント2は東 海岸にサービスを提供します。2つのセグメント間のすべてのトラフィックは、各セグメント のハブデバイスを経由します。

移行前と移行後

次の図はネットワークのアーキテクチャを示しています。この例では、1 つの Cisco vSmart コ ントローラ がネットワーク全体にサービスを提供します。 図5:移行前のネットワークアーキテクチャ

このネットワークでは、マルチリージョンファブリックへの移行前に、このセクションで後ほ ど詳しく説明する一元化された制御ポリシーにより、ルータがネットワークセグメント1と2 にクラスタ化され、セグメント1のハブルータとセグメント2のハブルータが提供されます。 ポリシーは次のことを行います。

・西海岸の地理的リージョンにサービスを提供する、セグメント1内のデバイス間のダイレクトルートを有効にします。

これらには、Edge11、Edge12、Edge13、および Hub11 が含まれます。

東海岸の地理的リージョンにサービスを提供する、セグメント2内のデバイス間のダイレクトルートを有効にします。

これらには、Edge21、Edge22、および Hub21 が含まれます。

 ・論理コアリージョン内のデバイス間のダイレクトルートを有効にします。

これらには、Hub11と Hub21 が含まれます。

•ハブ、およびHub11とHub21を介してリージョン間トラフィックをルーティングします。

マルチリージョンファブリックに移行するために、ネットワーク管理者は、ネットワークアー キテクチャ内の各ルータに期待されるロールとリージョンを計画し、4 つの Cisco vSmart コン トローラの使用を計画し、Cisco vManageの手順(Cisco vManageを使用したマルチリージョン ファブリックへの移行(42ページ))を使用して各ルータを移行します。

次の図は、移行後のネットワークを示しています。

図 6: マルチリージョン ファブリックへの移行後のネットワークアーキテクチャ

前の図に示した移行では、各ルータは引き続きネットワーク内で同様の機能を実行しますが、 ルータとセグメントを説明する用語が変更されています。次の表は、移行前と移行後の各ルー タに適用される用語を比較したものです。ハブ機能を持つルータは境界ルータになり、ネット ワークセグメントはマルチリージョンファブリックアーキテクチャ内のリージョンとして形 式化されます。

地理的リージョン	サイト	移行前のデバイス名と説明	マルチリージョン ファブ リックへの移行後のデバイ ス名と説明
西海岸	1100	Edge11 :	ER11 :
		エッジルータ	エッジルータ、リージョン 1
西海岸	1100	Edge12 :	ER12 :
		エッジルータ	エッジルータ、リージョン 1
西海岸	1300	Edge13 :	ER13 :
		エッジルータ	エッジルータ、リージョン 1

地理的リージョン	サイト	移行前のデバイス名と説明	マルチリージョン ファブ リックへの移行後のデバイ ス名と説明
西海岸	11100	Hub11 :	BR11 :
		ハブルータ	境界ルータ、リージョン1
東海岸	22100	Hub21 :	BR21 :
		ハブ	境界ルータ、リージョン2
東海岸	2100	Edge21 :	ER21 :
		エッジルータ	エッジルータ、リージョン 2
東海岸	2100	Edge22 :	ER22 :
		エッジルータ	エッジルータ、リージョン 2

移行前の制御ポリシー要件

次の表は、(a) ネットワーク セグメンテーション、および(b) ハブを介したセグメント間 ルーティングを、マルチリージョンファブリックなしで実現するために必要な複雑な制御ポリ シーの例を示しています。このポリシーの例は、同様に構成されたエンタープライズ ネット ワークのマルチリージョンファブリックへの移行を計画するときに役立つ可能性があり、マル チリージョンファブリックを使用してこのタイプのネットワーク機能を実現し、ポリシーを大 幅に簡素化する利点を示しています。

表で、次の手順について説明します。

- ・パートA。制御ポリシーで使用するサイト ID のポリシーリストを定義する
- •パートB。制御ポリシーで使用する TLOC のポリシーリストを定義する
- ・パートC。前の表で定義したリストを使用した制御ポリシーを作成して適用する
I

ポリシー構成の目的の簡単な 説明	詳細な説明	例
1. セグメント1のエッジルー タを含むリストを定義しま す。	セグメント1のすべてのサイ トのサイトリストを定義しま す。これらのサイトには、セ グメント1のすべてのエッジ ルータが含まれます。	policy lists site-list SEGMENT1 site-id 1100 site-id 1300 !
	セグメント1のすべてのエッ ジルータのサイトリストと、 セグメント1のハブサイトを 定義します。これらのサイト には、セグメント1のすべて のエッジルータとハブルータ が含まれます。	<pre>policy lists site-list SEGMENT1_HUB1 site-id 1100 site-id 1300 site-id 11100 !</pre>
2. セグメント2のエッジルー タを含むリストを定義しま す。	セグメント2のすべてのサイ トのサイトリストを定義しま す。これらのサイトには、セ グメント2のすべてのエッジ ルータが含まれます。	policy lists site-list SEGMENT2 site-id 2100 !
	セグメント2のすべてのエッ ジルータのサイトリストと、 セグメント2のハブサイトを 定義します。これらのサイト には、セグメント2のすべて のエッジルータとハブルータ が含まれます。	policy lists site-list SEGMENT2_HUB2 site-id 2100 site-id 22100 !
3. セグメント1の発信トラ フィックの制御ポリシーを作 成するときに役立つセグメン ト2の宛先のリストを定義し ます。	次のリストを定義します。 ・セグメント2のすべての エッジルータ ・セグメント2のハブサイ ト ・セグメント1のハブサイ ト	policy lists site-list HUB1_HUB2_SEGMENT2 site-id 11100 site-id 2100 site-id 22100 !

表 3:パート A。制御ポリシーで使用するサイト ID のポリシーリストを定義する

ポリシー構成の目的の簡単な 説明	詳細な説明	例
4. セグメント2の発信トラ フィックの制御ポリシーを作 成するときに役立つセグメン ト1の宛先のリストを定義し ます。	 次のリストを定義します。 ・セグメント1のすべての エッジルータ ・セグメント1のハブサイト ・セグメント2のハブサイト 	<pre>policy lists site-list HUB1_HUB2_SEGMENT1 site-id 1100 site-id 11100 site-id 1300 site-id 22100 !</pre>
5. セグメント1のルータのリ ストと、セグメント2のハブ ルータを定義します。これ は、セグメント1のハブルー タの制御ポリシーを作成する ときに役立ちます。	次のリストを定義します。 ・セグメント1のすべての エッジルータ ・セグメント2のハブサイ ト	<pre>policy lists site-list SEGMENT1_HUB2 site-id 1100 site-id 1300 site-id 22100 !</pre>
 セグメント2のルータのリ ストと、セグメント1のハブ ルータを定義します。これ は、セグメント2のハブルー タの制御ポリシーを作成する ときに役立ちます。 	次のリストを定義します。 ・セグメント2のすべての エッジルータ ・セグメント1のハブサイ ト	policy lists site-list HUB1_SEGMENT2 site-id 11100 site-id 2100 !

表 4: パート B。制御ポリシーで使用する TLOC のポリシーリストを定義する

ポリシー構成の目的の簡単な 説明	詳細な説明	例
 ハブ間のトラフィックの TLOCのリストを定義します。 (ネットワークがマルチリー ジョンファブリックに移行されると、このハブ間トラ フィックがコアリージョント ラフィックを構成します。) 	 Hub21 から Hub11 へのト ラフィックの TLOC のリ スト (HUB1_CORE_TLOC) を定義します。 Hub11 から Hub21 へのト ラフィックの TLOC のリ スト (HUB2_CORE_TLOC) を定義します。 	<pre>policy lists tloc-list HUB1_CORE_TLOC tloc 172.16.11.10 color green encap ipsec ! tloc-list HUB2_CORE_TLOC tloc 172.17.13.10 color green encap ipsec !</pre>

I

ポリシー構成の目的の簡単な 説明	詳細な説明	例
 ハブと、それらがサービス を提供しているセグメント内 のルータとの間のトラフィッ クの TLOC のリストを定義し ます。 (ネットワークがマルチリー ジョンファブリックに移行さ れると、これがアクセス リー ジョントラフィックを構成し ます。) 	 Hub11と、ハブとして機能するセグメント1のルータとの間のトラフィックのTLOCのリスト(HUB1_TLOCS)を定義します。 Hub21と、ハブとして機能するセグメント2のルータとの間のトラフィックのTLOCのリスト(HUB2_TLOCS)を定義します。 	<pre>policy lists tloc-list HUB1_TLOCS tloc 172.16.11.10 color lte encap ipsec tloc 172.16.11.10 color 3g encap ipsec tloc 172.16.11.10 color red encap ipsec tloc 172.16.11.10 color green encap ipsec ! tloc-list HUB2_TLOCS tloc 172.17.13.10 color lte encap ipsec tloc 172.17.13.10 color 3g encap ipsec tloc 172.17.13.10 color green encap ipsec !</pre>

I

T

ポリシー構成の目的の簡単な 説明	詳細な説明	例
 (a) セグメント1内のルー タが互いにトラフィックを直 接送信できるようにする、お よび(b) セグメント2宛ての すべてのトラフィックが最初 のホップとして Hub11 を使用 するように指示する、セグメ ント1の制御ポリシーを作成 します。このようにして、 Hub11 はセグメント2へのト ラフィックのハブとして機能 します。 	 CP1という制御ポリシーを作成して、次のことを行います。 シーケンス1:セグメント1のすべてのデバイスに、セグメント1のすべてのデバイスに、セグメント1の他のデバイスのTLOCへのアクセスを提供します。これには、エッジルータが含まれます。これにより、セグメント1にフルメッシュ接続が作成されます。 シーケンス2:宛先がHub11またはセグメント2のデバイスのいずれかであるセグメント1のすべてのトラフィックについて、最初のホップがHub11である必要があることを確認します。 シーケンス3:セグメント1内のすべてのトラフィックについて、デバイスがトラフィックをリージョン内の宛先デバイスに直接転送するようにします。 	<pre>control-policy CP1 sequence 1 match tloc site-list SEGMENT1_HUB1 ! action accept ! sequence 2 match route site-list HUB1_HUB2_SEGMENT2 ! action accept set tloc-list HUB1_TLOCS ! ! sequence 3 match route site-list SEGMENT1 ! default-action reject ! </pre>
 前の行で説明した制御ポリ シー CP1 を、発信トラフィッ クのセグメント1に適用しま す。 		apply-policy site-list SEGMENT1 control-policy CP1 out
L	1	

表 5: パート C。前の表で定義したリストを使用した制御ポリシーを作成して適用する

ポリシー構成の目的の簡単な 説明	詳細な説明	例
3. (a) セグメント2内のルー タが互いにトラフィックを直 接送信できるようにする、お よび (b) セグメント1宛ての すべてのトラフィックが最初 のホップとして Hub21 を使用 するように指示する、セグメ ント2の制御ポリシーを作成 します。このようにして、 Hub21 はセグメント1へのト ラフィックのハブとして機能 します。	 CP4 という制御ポリシーを作成して、次のことを行います。 シーケンス1:セグメント2のすべてのデバイスに、セグメント2の他のデバイスののTLOCへのアクセスを提供します。これには、エッジルータとハブルータが含まれます。これにより、セグメント2にフルメッシュ接続が作成されます。 シーケンス2:宛先がHub21またはセグメント1のデバイスのいずれかであるセグメント2のすべてのトラフィックについて、最初のホップがHub21である必要があることを確認します。 シーケンス3:セグメント2内のすべてのトラフィックについて、デバイスがトラフィックをリージョン内の宛先デバイスに直接転送するようにします。 	<pre>control-policy CP4 sequence 1 match tloc site-list HUB2_SEGMENT2 ! action accept ! sequence 2 match route site-list HUB1_HUB2_SEGMENT1 ! action accept set tloc-list HUB2_TLOCS ! ! sequence 3 match route site-list SEGMENT2 ! action accept ! ! default-action reject ! !</pre>
 4. 前の行で説明した制御ポリシー CP4 を、発信トラフィックのセグメント2に適用します。 		apply-policy site-list SEGMENT2 control-policy CP4 out
L		

I

ポリシー構成の目的の簡単な 説明	詳細な説明	例
5. (a) セグメント1のデバイ スとのフルメッシュ接続を提 供する、および (b) 他のハブ ルータ (Hub21) とのフルメッ シュ接続を提供する、セグメ ント1のハブルータ Hub11の 制御ポリシーを作成します。	 CP2 という制御ポリシーを作成して、次のことを行います。 シーケンス1:セグメント1のデバイスのTLOCおよびセグメント2のハブルータのTLOCへのアクセスを提供します。これにより、(a)セグメント1のハブルータとセグメント1ののルータとセグメント1ののルータとセグメント1ののルータとおよび(b)セグメント1と2のハブルータ間のフルメッシュ接続が作成されます。 シーケンス2:宛先がセグメント1のデバイスであるすべてのトラフィックをデバイスに直接転送するようにします。 シーケンス3:宛先がセグメント2のデバイスであるすべてのトラフィックを含む)について、トラフィック(ハブおよびて、トラフィック(ハブおよびて、トラフィックを合む)について、トラフィックを引いて、トラフィックをHub21に転送するようにします。 	<pre>control-policy CP2 sequence 1 match tloc site-list SEGMENT1_HUB2 ! action accept ! sequence 2 match route site-list SEGMENT1 ! sequence 3 match route site-list HUB2_SEGMENT2 ! action accept set tloc-list HUB2_CORE_TLOC ! ! default-action reject !</pre>
 6. 前の行で説明した制御ポリシー CP2 を、セグメント1のハブルータに適用します。 		apply-policy site-list HUB1 control-policy CP2 out !

ポリシー構成の目的の簡単な 説明	詳細な説明	例
 7. (a) セグメント2のデバイ スとのフルメッシュ接続を提 供する、および (b) 他のハブ ルータ (Hub11) とのフルメッ シュ接続を提供する、セグメ ント2のハブルータ Hub21の 制御ポリシーを作成します。 	 CP3 という制御ポリシーを作成して、次のことを行います。 シーケンス1:セグメント2のデバイスのTLOCおよびセグメント1のハブルータのTLOCへのアクセスを提供します。これにより、(a)セグメント2のハブルータとセグメント2のハブルータとセグメント2ののルータとセグメント2の他のルータとのフルメッシュ接続が作成されます。 シーケンス2:宛先がセグメント1と2のアバイスであるすべてのトラフィックをデバイスに直接転送するようにします。 シーケンス3:宛先がセグメント1のデバイスであるすべてのトラフィックをデバイスに直接転送するようにします。 シーケンス3:宛先がセグメント1のデバイスであるすべてのトラフィックを含む)について、トラフィック(ハブおよびエッジルータを含む)について、トラフィックをHub11に転送するようにします。 	<pre>control-policy CP3 sequence 1 match tloc site-list HUB1_SEGMENT2 ! action accept ! sequence 2 match route site-list SEGMENT2 ! sequence 3 match route site-list SEGMENT1_HUB1 ! action accept set tloc-list HUB1_CORE_TLOC ! ! default-action reject ! </pre>
 8. 前の行で説明した制御ポリ シー CP3 を、セグメント2の ハブルータに適用します。 		apply-policy site-list HUB2 control-policy CP3 out !

Cisco vManage を使用したマルチリージョン ファブリッ クへの移行

はじめる前に

- 既存のネットワークアーキテクチャから始めて、ネットワーク内のどのデバイスをマルチ リージョンファブリックに移行するかを計画します。これらのデバイスはマルチリージョ ンファブリックアーキテクチャ内で機能するため、これらの各デバイスのロールとリー ジョンを計画します。
- 移行後にネットワークで必要になる Cisco vSmart コントローラを計画します。移行前に使用されていたデフォルトの Cisco vSmart コントローラは、移行後に使用できなくなります。この Cisco vSmart コントローラをコアリージョンで使用するために転用することをお勧めします。

マルチリージョン ファブリックへの移行

- 1. ネットワーク内のデバイスごとに、デバイスの Cisco System テンプレート (Cisco IOS XE SD-WAN デバイス) または Cisco vEdge System テンプレート (Cisco vEdge デバイス) を 作成するか、デバイスにすでに割り当てられている既存のテンプレートを開きます。
- **2.** [Basic Configuration] セクションで、[Enable Migration Mode to Multi-Region Fabric] フィー ルドを [Enable] に設定します。
- **3.** テンプレートをデバイスに適用します。これにより、デバイスが移行モードになります。
- 4. Cisco vSmart コントローラ を展開して、マルチリージョン ファブリック コア リージョンにサービスを提供します。

Cisco vSmart コントローラの展開については、『Cisco SD-WAN Getting Started Guide』の 「Cisco SD-WAN Overlay Network Bring-Up Process」の章を参照してください。

- デフォルトリージョンの Cisco vSmart コントローラ で現在アクティブになっている ものと同じ機能テンプレート、デバイステンプレート、およびポリシーテンプレー トを適用します。
- Cisco vSmart コントローラ のマルチリージョン ファブリック リージョンを0 に設定 します。

Cisco vSmart コントローラ へのリージョンの割り当てについては、Cisco vManage を 使用したリージョンの Cisco vSmart コントローラ への割り当て (22 ページ)を参 照してください。

5. Cisco vSmart コントローラ を展開して、マルチリージョン ファブリック アクセス リー ジョンにサービスを提供します。

- デフォルトリージョンの Cisco vSmart コントローラ で現在アクティブになっている ものと同じ機能テンプレート、デバイステンプレート、およびポリシーテンプレー トを適用します。
- 各 Cisco vSmart コントローラのマルチリージョンファブリックリージョンを、サービスを提供する予定のリージョン番号に設定します。
- 境界ルータとして機能するデバイスごとに、構成を適用して、デバイスがコアリージョン、関連するアクセスリージョン、およびデフォルトリージョンの Cisco vSmart コントローラ に接続できるようにします。

詳細については、Cisco vManage を使用したデバイスへのロールとリージョンの割り当て (18 ページ)およびCisco vManage を使用したコアリージョンへの境界ルータ TLOC の 割り当て (20 ページ)を参照してください。

- 境界ルータとして機能する各デバイスについて、OMPピアを表示して、デフォルトリージョン Cisco vSmart コントローラ、コアリージョン Cisco vSmart コントローラ、および アクセスリージョン Cisco vSmart コントローラ への接続を確認します。OMP ピアの表示については、Cisco vManage を使用した OMP ピアの表示 (45 ページ)を参照してく ださい。
- 8. エッジルータとして機能するデバイスごとに、次の手順を実行します。
 - 構成を適用して、デバイスがデフォルトリージョンの Cisco vSmart コントローラ、 およびエッジルータが属するアクセスリージョンの Cisco vSmart コントローラ に接 続できるようにします。
 - 2. リージョンを構成します。

リージョンの構成の詳細については、Cisco vManageを使用したデバイスへのロール とリージョンの割り当て (18ページ)を参照してください。

- 9. 境界ルータごとに、次の手順を実行して移行モードを無効にします。
 - デバイスの Cisco System テンプレート (Cisco IOS XE SD-WAN デバイス) または Cisco vEdge System テンプレート (Cisco vEdge デバイス) を開きます。
 - [Basic Configuration] セクションで、[Enable Migration Mode to Multi-Region Fabric] フィールドを [Default] に設定します([Default] を選択すると、フィールドは空白に なります)。
 - 3. テンプレートをデバイスに適用します。

デバイスでこの手順を完了すると、境界ルータはデフォルトリージョンの Cisco vSmart コントローラ に接続しなくなります。

- **10.** OMP ピアを表示して、デバイスに次のピアがあることを確認します。
 - このデバイスが境界ルータとして機能するアクセスリージョンにサービスを提供する Cisco vSmart コントローラ
 - ・コアリージョンにサービスを提供する Cisco vSmart コントローラ

OMP ピアの表示については、Cisco vManage を使用した OMP ピアの表示 (45 ページ) を参照してください。

- 11. エッジルータごとに、次の手順を実行して移行モードを無効にします。
 - デバイスの Cisco System テンプレート (Cisco IOS XE SD-WAN デバイス) または Cisco vEdge System テンプレート (Cisco vEdge デバイス) を開きます。
 - [Basic Configuration] セクションで、[Enable Migration Mode to Multi-Region Fabric] フィールドを [Default] に設定します([Default] を選択すると、フィールドは空白に なります)。
 - 3. テンプレートをデバイスに適用します。
- 各デバイスの移行モードを無効にすると、ネットワーク内のデバイスはデフォルトリージョンの Cisco vSmart コントローラ を使用しなくなります。必要に応じて、ネットワークプランニングでコアリージョンにこのコントローラを使用する必要がある場合は、 [Before You Begin] セクションで推奨されているように、この Cisco vSmart コントローラを再割り当てしてコアリージョンにサービスを提供できます。
- 移行が完了すると、ネットワークをセグメントに分割し、ハブを介してトラフィックを ルーティングするために以前使用されていた制御ポリシーは必要なくなります。デフォ ルトリージョンの Cisco vSmart コントローラ として機能する Cisco vSmart コントローラ で、これらのポリシーのポリシーテンプレートを各 Cisco vSmart コントローラ から切り 離して、制御ポリシーを削除します。

ポリシーテンプレートをCisco vSmart コントローラから削除する方法については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』の「Centralized Policy」の章を参照してください。

CLI を使用した移行モードの有効化または無効化

移行モードの有効化

1. システムモードを開始します。

system

2. 移行モードを有効にします。

multi-region-fabric migration-mode enabled

移行モードの無効化

1. システムモードを開始します。

system

2. 移行モードを無効にします。

no multi-region-fabric migration-mode

マルチリージョン ファブリックへの移行の検証手順

次の手順は、ネットワークをマルチリージョンファブリックに移行した後に、接続とその他の 情報を確認するのに役立ちます。

Cisco vManage を使用した **OMP** ピアの表示

- 1. Cisco vManage メニューから、[Monitor] > [Devices] の順に選択します。
- 2. デバイスのテーブルで、目的の境界ルータの右側にある[...]をクリックし、[Real Time]を 選択します。
- 3. 左側のペインで、[Real Time] をクリックします。
- 4. [Device Options] フィールドに、[OMP Peers] と入力します。

show sdwan omp peers CLI コマンドと同様に、テーブルにピア情報が表示されます。出力 で、各ピアについて次のいずれかを示す [REGION ID] 列を確認します。

- [None]:マルチリージョンファブリックで動作するように構成されていない Cisco vSmart コントローラ。これには、マルチリージョンファブリックへの移行前に構成さ れたデフォルトリージョンの Cisco vSmart コントローラ が含まれます。
- •[0]: コアリージョンの Cisco vSmart コントローラ。
- access-region-id:アクセスリージョンの Cisco vSmart コントローラ。

Cisco vManage を使用したデバイス間の接続の確認

この手順を使用して、デバイス間の接続を確認するために、異なるリージョンにある2つの エッジデバイスなど、2つのデバイス間のルートをトレースします。

- 1. Cisco vManage メニューから、[Monitor] > [Devices] の順に選択します。
- 2. デバイスのテーブルで、目的の境界ルータの隣にある[...]をクリックし、[Real Time]を選択します。
- 3. 左側のペインで、[Troubleshooting] をクリックします。
- **4.** [Trace Route] をクリックします。
- 5. [Destination IP] フィールドで、ルートトレースのエンドポイントの IP アドレスを入力します。
- 6. [VPN] ドロップダウンリストをクリックし、ルートトレースの VPN を選択します。

境界ルータが Cisco vManage を使用してルートを再発信していることの確認

- 1. Cisco vManage メニューから、[Monitor] > [Devices] の順に選択します。
- 2. デバイスのテーブルで、目的の境界ルータの隣にある[...]をクリックし、[Real Time]を選択します。
- 3. 左側のペインで、[Real Time] をクリックします。
- 4. [Device Options] フィールドに、[OMP Received Routes] と入力します。

[Peer] 列で 0.0.0 を示すテーブルの行を見つけます。これらの行は、境界ルータ自体からの ルートに対応します。境界ルータがルートを再発信している場合、これらの行では、[Region Path] 列にコアリージョンの 0 を含むルートの 2 つの番号が表示され、[Status] 列に [BR-R] (境 界ルータ再発信)が表示されます。

境界ルータが CLI を使用してルートを再発信していることの確認

境界ルータで、次のコマンドを使用します。

show sdwan omp routes *ip-number/subnet-mask*

[Peer] 列で 0.0.0 を示すテーブルの行を見つけます。これらの行は、境界ルータ自体からの ルートに対応します。境界ルータがルートを再発信している場合、これらの行では、[Region Path] 列にコアリージョンの 0 を含むルートの 2 つの番号が表示され、[Status] 列に [BR-R] (境 界ルータ再発信)が表示されます。

例:

show	I SC	dwan omp routes 10.1.1.0/24
Code	:	
С	->	chosen
I	->	installed
Red	->	redistributed
Rej	->	rejected
L	->	looped
R	->	resolved
S	->	stale
Ext	->	extranet
Inv	->	invalid
Stg	->	staged
IA	->	On-demand inactive
U	->	TLOC unresolved
BR-F	۲ – ۲	> Border-Router reoriginated
TGW-	R -	-> Transport-Gateway reoriginated

		AFFINITY									
		CROUP			PATH			ATTRIBUTE			
TENANT PREFER	VPN ENCE	PREFIX NUMBER	FROM PEER REGION ID	REGIO	ID DN PATH	LABEL	STATUS	TYPE	TLOC IP	COLOR	ENCAP
0	1	10.1.1.0/24 None	0.0.0.0	0 1	21474	1003	C,Red,R,	installed	172.18.11.10	green	ipsec
					83721		BR-R				
			172.16.122	2.10	104	1003	C,I,R	installed	172.18.51.10	lte	ipsec
-		None	1	1							

境界ルータが CLI を使用してルートを再発信していることの確認

		172.16.122.10	105	1003	C,I,R	installed	172.18.51.10	red	ipsec
-	None	1 1							
		172.16.123.10	118	1003	C,R	installed	172.18.51.10	lte	ipsec
-	None	1 1							
		172.16.123.10	119	1003	C,R	installed	172.18.51.10	red	ipsec
-	None	1 1							

I

セカンダリリージョン

表6:機能の履歴

	機能名	リリース情報	説明
マルチリージョン ファブリック:セカ ンダリリージョン Cisco SD-WAN リ リース 20.8.1 Cisco vManage リ レース 20.8.1 Cisco vManage リ レース 20.8.1 Cisco vManage リ レース 20.8.1 Cisco vManage リ レース 20.8.1 Cisco vManage J レース 20.8.1 Cisco vManage J Cisco vManage J	マルチリージョン ファブリック : セカ ンダリリージョン	Cisco IOS XE リリー ス 17.8.1a Cisco SD-WAN リ リース 20.8.1 Cisco vManage リ リース 20.8.1	セカンダリリージョンは、マルチリージョンファ ブリックアーキテクチャに別のファセットを提供 し、異なるプライマリアクセスリージョン内のエッ ジルータ間のダイレクトトンネル接続を可能にしま す。エッジルータをセカンダリリージョンに割り当 てると、ルータは2つのリージョンで同時に効果的 に動作し、プライマリリージョンとセカンダリリー ジョンを介して異なるパスを使用できます。

- セカンダリリージョンに関する情報 (49ページ)
- •パスのタイプ、リージョン、またはロールによるルートの一致(53ページ)
- セカンダリリージョンの制約事項 (54 ページ)
- セカンダリリージョンのユースケース (54ページ)
- Cisco vManage を使用したセカンダリリージョンの設定 (56ページ)
- CLI を使用したセカンダリリージョンの設定 (58 ページ)
- Cisco vManage を使用したデバイスのセカンダリリージョンの割り当ての確認 (60 ページ)
- CLI を使用したデバイスのセカンダリリージョンの割り当ての確認 (60ページ)
- CLI を使用したインターフェイスのセカンダリリージョンモードの確認 (61 ページ)
- •CLIを使用したインターフェイスのセカンダリリージョンの割り当ての確認(62ページ)

セカンダリリージョンに関する情報

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

最も基本的なマルチリージョンファブリックアーキテクチャでは、各デバイスは1つのリージョンに属します。あるリージョンのエッジルータから別のリージョンのエッジルータへの接

続は、境界ルータとリージョン0を介してルーティングされるため、複数のホップが必要です。

セカンダリリージョンは、アーキテクチャに別のファセットを提供し、追加の機能を有効にし ます。セカンダリリージョンは、プライマリリージョンよりも単純に動作します。エッジルー タのみが含まれ、異なるプライマリリージョン内のエッジルータ間のダイレクトトンネル接続 が可能になります。エッジルータをセカンダリリージョンに追加すると、ルータは2つのリー ジョンで同時に効果的に動作し、プライマリリージョンとセカンダリリージョンを介して異な るパスを使用できます。

ネットワーク内に複数のセカンダリリージョンを作成して、さまざまなエッジルータセットの 特定のルーティングニーズに対応できますが、エッジルータは複数のセカンダリリージョンに 属することはできません。

図 7: セカンダリリージョンを含む マルチリージョン ファブリック

セカンダリリージョンの使用

次のいずれかに対してセカンダリリージョンパスを構成できます。

- プライマリリージョンとセカンダリリージョンのパスを使用したロードバランシング
- パフォーマンスの高いプレミアムパスとすることができる、セカンダリリージョンパスを 使用するように特定のアプリケーションに指示

プライマリリージョンパスとセカンダリリージョンパス

ダイレクトパスはより少ないホップを使用するため、ダイレクトパスが宛先に到達可能な場合 は、デフォルトでは、オーバーレイマネジメントプロトコル (OMP) は、ルーティングフォ ワーディングレイヤへのダイレクトパスのみを有効にします。その結果、アプリケーション認 識型ポリシーを含む転送レイヤは、ダイレクトパスのみを使用できます。このホップ数の比較 を無効にして、トラフィックが直接のセカンダリリージョンパス(より少ないホップ)または プライマリリージョンパス(より多くのホップ)のいずれかを使用できるようにすることがで きます。ホップ数の比較を無効にすると、OMPは等コストマルチパスルーティング(ECMP) をすべてのルートに適用し、パケットは使用可能なすべてのパスを使用できます。CiscovManage を使用してプライマリリージョンパスとセカンダリリージョンパスの両方を使用するようにデ バイスを設定(57 ページ)を参照してください。

図 8:セカンダリリージョンを使用するダイレクトパスと、プライマリリージョンとコアリージョンを使用するマルチ ホップパス

制御ポリシー

Cisco vSmart コントローラ のセカンダリリージョンの制御ポリシーを作成する場合、プライマ リリージョンパスまたはセカンダリリージョンパスのどちらを使用しているかに応じてトラ フィックを一致させることができます。

ワークフロー

1. デバイスで、デバイスレベルのセカンダリリージョンを構成します。

Cisco vManage を使用したエッジルータのセカンダリリージョン ID の設定 (56 ページ) を参照してください。

2. デバイスで、セカンダリリージョンを使用できる TLOC を指定します。

CLIを使用した TLOC のセカンダリリージョンモードの設定 (58 ページ)を参照してく ださい。

3. セカンダリリージョンのみ、またはプライマリリージョンとセカンダリリージョンの両方 で動作するように TLOC を構成します。 Cisco vManage を使用した TLOC のセカンダリリージョンモードの設定 (56 ページ)を参照してください。

デバイスがプライマリリージョンパスとセカンダリリージョンパスの両方を使用できるようにします。

Cisco vManage を使用してプライマリリージョンパスとセカンダリリージョンパスの両方 を使用するようにデバイスを設定 (57 ページ)を参照してください。

5. Cisco vSmart コントローラ をセカンダリリージョンに割り当てます。セカンダリリージョンを使用するデバイスのいずれのアクセスリージョンでも動作しない Cisco vSmart コントローラを使用します。これを確実にするために、セカンダリリージョンでのみ動作し、どのアクセスリージョンでも動作しない Cisco vSmart コントローラを割り当てることをお勧めします。たとえば、リージョン0でのみ動作する Cisco vSmart コントローラを、セカンダリリージョンでも動作するように割り当てることができます。

「Cisco vManage を使用した Cisco vSmart コントローラへのリージョンの割り当て」を参照 してください。

用語

マルチリージョンファブリックアーキテクチャへのセカンダリリージョンの導入により、ここで使用される用語を明確にすることが重要です。

用語	説明または同等の用語
コアリージョン	リージョン 0
アクセスリージョン	リージョン0以外のリージョン
プライマリアクセスリージョ ン	プライマリリージョン
セカンダリアクセスリージョ ン	セカンダリリージョン
プライマリリージョンパス	エッジルータから境界ルータへ、コアリージョンを経由、別 の境界ルータへ、別のリージョンのエッジルータへのパス
セカンダリリージョンパス	あるプライマリリージョンのエッジルータ1から別のプライ マリリージョンのエッジルータ2へのダイレクトパス。エッ ジルータ1と2は同じセカンダリリージョンにあります

セカンダリリージョンの利点

・異なるプライマリリージョン間で、あるエッジルータから別のエッジルータにダイレクトトンネルを使用して特定のトラフィックをルーティングする機能。

・異なるプライマリリージョン間のダイレクトトンネルで、データセンターへのトラフィックなど、大量のスループットを提供する機能。大量のスループットを直接ルーティングすると、過剰なトラフィックボリュームによる境界ルータの過負荷を防ぐことができます。

パスのタイプ、リージョン、またはロールによるルート の一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

パスタイプ

マルチリージョンファブリックアーキテクチャの制御ポリシーを設定する場合、ルートが次のいずれかを使用しているかどうかに応じてルートを一致させることができます。

 ・階層パス:アクセスリージョンから境界ルータへ、リージョン0を経由して、別の境界 ルータへ、さらに別のアクセスリージョンのエッジルータへのホップを含むルートに一致 します。

階層パスルートを表示するには、show sdwan omp routes コマンドを使用し、[REGION PATH] 列に 3 つのリージョンをリストするルートを書き留めます。

・ダイレクトパス:あるエッジルータから別のエッジルータへのダイレクトパス(ダイレクトルート)に一致します。セカンダリリージョンを構成し、2つのエッジルータをセカンダリリージョンに追加することにより、異なるアクセスリージョンのエッジルータ間のダイレクトパスを有効にすることができます。セカンダリリージョンに関する情報(49ページ)を参照してください。

ダイレクトパスルートを表示するには、show sdwan omp routes コマンドを使用し、[REGION PATH] 列に1つのリージョンをリストするルートを書き留めます。

トランスポートゲートウェイパス:トランスポートゲートウェイ機能が有効になっているルータによって再発信されたルートに一致します。

トランスポートゲートウェイについては、トランスポートゲートウェイに関する情報(63 ページ)を参照してください。

リージョンとロール

パスタイプによる一致と同様に、ルートを発信するデバイスのリージョンまたはロール(エッ ジルータまたは境界ルータ)によってルートを一致させることができます。

セカンダリリージョンの制約事項

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- セカンダリリージョンは、境界ルータではなく、エッジルータにのみ適用されます。
- ルータは、1つのセカンダリリージョンにのみ属することができます。
- ・セカンダリリージョンに割り当てる Cisco vSmart コントローラは、セカンダリリージョン を使用するデバイスのプライマリ(アクセス)リージョンで動作してはなりません。これ を確実にするために、セカンダリリージョンでのみ動作し、どのアクセスリージョンでも 動作しない Cisco vSmart コントローラを割り当てることをお勧めします。
- トランスポートゲートウェイとして構成されているルータでセカンダリリージョンを構成 することはできません。

(注) このようなルータでセカンダリリージョンを構成しようとす ると、エラーが発生します。

セカンダリリージョンのユースケース

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

ユースケース1:特定のアプリケーション トラフィック

マルチリージョンファブリックアーキテクチャを使用している組織は、境界ルータの帯域幅 の需要を削減するためにダイレクトパスルートを使用して、2つの異なるリージョン(リージョ ン1とリージョン2)のサイト間で特定のアプリケーショントラフィックをルーティングする ことを選択します。組織は、この目的のために2つのサイト間にキャリアを配置します。

ネットワーク管理者は、次のように、リージョン1のエッジルータとリージョン2のエッジ ルータのセカンダリリージョンを構成し、2つのルータが両方ともセカンダリリージョン5に あるようにします。

・エッジルータ ER10

プライマリリージョン:1 セカンダリリージョン:5

- •エッジルータ ER20
 - プライマリリージョン:2 セカンダリリージョン:5

ネットワーク管理者は、エッジルータ ER10 とエッジルータ ER20 の間にダイレクトトンネル を設定し、ダイレクトトンネルを介して特定のアプリケーショントラフィックをルーティング するポリシーを設定します。

ユースケース2:大容量データセンター

マルチリージョンファブリックアーキテクチャを使用する組織には、エッジルータ ER10 が サービスを提供するデータセンターがリージョン1にあります。リージョン2、3、および4の サイト(エッジルータER20、ER30、およびER40によってサービスを提供)はデータセンター に接続し、大量のトラフィックを生成します。組織は、コアリージョンにプレミアムサービス プロバイダー リンクを使用します。

コアリージョンで使用されるプレミアムリンクを介して大量のデータセンタートラフィックを ルーティングしないようにするために、ネットワーク管理者は、データセンター(ER10)を 含み、ダイレクトトンネルを使用してデータセンターに接続できるようにするための各リモー トサイト(ER20、ER30、およびER40)を含むセカンダリリージョンを構成します。大量のト ラフィックにダイレクトトンネルを使用すると、コアリージョンの帯域幅の需要が減少しま す。

プライマリリージョンとセカンダリリージョンの構成は次のとおりです。

・データセンター:エッジルータ ER10

プライマリリージョン:1 セカンダリリージョン:5

・リモートサイト:エッジルータ ER20

プライマリリージョン:2 セカンダリリージョン:5

・リモートサイト:エッジルータ ER30

プライマリリージョン:3 セカンダリリージョン:5

リモートサイト:エッジルータ ER40
 プライマリリージョン:4
 セカンダリリージョン:5

Cisco vManage を使用したセカンダリリージョンの設定

Cisco vManage を使用したエッジルータのセカンダリリージョン ID の 設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - デバイスのシステムテンプレートを作成します。
 - テーブルで、デバイスの既存のシステムテンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。
- **4.** [Basic Configuration] セクションの [Secondary Region ID] フィールドで、グローバルモード を有効にして、1~63の範囲でセカンダリリージョンの番号を入力します。
- 5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device]の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

Cisco vManage を使用した TLOC のセカンダリリージョンモードの設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

はじめる前に

この手順では、Cisco VPN インターフェイス イーサネット テンプレートを使用して TLOC の セカンダリリージョンモードを設定する方法について説明します。テンプレートを適用するイ ンターフェイスの指定方法など、テンプレートの一般的な使用方法については、『Cisco SD-WAN Systems and Interfaces Configuration Guide』の「Configure VPN Ethernet Interface」を参照してく ださい。

TLOC のセカンダリリージョンモードの設定

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - ・デバイスの Cisco VPN インターフェイス イーサネット テンプレートを作成します。

テーブルで、デバイスの既存のCiscoVPNインターフェイスイーサネットテンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。

- **4.** [Tunnel] セクションに移動し、そのセクション内の [Advanced Options] セクションに移動し ます。
- 5. [Enable Secondary Region] フィールドで、グローバルモードを有効にして、次のいずれかの オプションを選択します。

オプション	説明
Only in Secondary Region	セカンダリリージョンのトラフィックのみを処理するよう にインターフェイスを構成します。
Shared Between Primary and Secondary Regions	プライマリリージョンとセカンダリリージョンでトラフィッ クを処理するようにインターフェイスを構成します。

- (注) インターフェイスは、システムレベルでデバイスに構成されたセカンダリリージョンの 割り当てを継承します。
- **6.** 既存のテンプレートを編集している場合は、[Update]、[Configure Device] の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

CiscovManageを使用してプライマリリージョンパスとセカンダリリー ジョンパスの両方を使用するようにデバイスを設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。

- ・デバイスの Cisco OMP テンプレートを作成します。
- テーブルで、デバイスの既存の OMP テンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。
- 4. [Best Path] セクションに移動し、[Ignore Region-Path Length During Best-Path Algorithm] フィー ルドで [On] を選択します。

[On] を選択すると、テンプレートは [Direct-Tunnel Path] と [Hierarchical Path] を自動的に選 択します。

5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device] の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

CLI を使用したセカンダリリージョンの設定

CLI を使用したエッジルータのセカンダリリージョン ID の設定

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. システム コンフィギュレーション モードを開始します。

Device (config) #system

3. リージョンとセカンダリリージョンを割り当てます。

デバイスには、1つのセカンダリリージョンのみを割り当てることができます。以前にデ バイスにセカンダリリージョンを割り当てていた場合は、新しいセカンダリリージョンの 割り当てが以前の割り当てに置き換わります。

1 つ以上の TLOC インターフェイスのセカンダリ リージョン トラフィックを有効にする と、インターフェイスは、システムレベルで割り当てたセカンダリリージョン ID を継承 します。

Device (config-system) #region region-id secondary-region region-id

例

```
Device#config-transaction
Device(config)#system
Device(config-system)#region 1 secondary-region 20
```

CLI を使用した TLOC のセカンダリリージョンモードの設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

1. コンフィギュレーション モードを入力します。

Device # config-transaction

2. VPN 0 コンフィギュレーション モードを開始します。

Device (config) #sdwan

3. インターフェイスを指定します。

Device(config-sdwan)#interface interface

4. トンネルインターフェイス コンフィギュレーション モードを開始します。

Device(config-sdwan-interface) #tunnel-interface

 TLOC に対して次のいずれかのモードを選択して、TLOC がプライマリリージョンおよび セカンダリリージョンのトラフィックに使用されるように、またはセカンダリリージョン のトラフィック専用に使用されるように TLOC を設定します。

モード	説明
secondary-only	TLOC は、デバイスのセカンダリリージョンのトラフィッ クのみを処理できます。
secondary-shared	TLOC は、デバイスのプライマリリージョンとセカンダリ リージョンのトラフィックを処理できます。

Device (config-tunnel-interface) **#region** { secondary-only | secondary-shared }

例1

この例では、プライマリリージョンとセカンダリリージョンのトラフィックを処理するように TLOC を設定します。

```
Device#config-transaction
Device(config)#sdwan
Device(config-sdwan)#interface GigabitEthernet0/0/0
Device(config-interface-GigabitEthernet0/0/0)#tunnel-interface
Device(config-tunnel-interface)#region secondary-shared
```

例 2

この例では、TLOCがセカンダリリージョンのトラフィックを処理しない、デフォルトの動作 を復元します。

```
Device#config-transaction
Device(config)#sdwan
Device(config-sdwan)#interface GigabitEthernet0/0/0
Device(config-interface-GigabitEthernet0/0/0)#tunnel-interface
Device(config-tunnel-interface)#no region
```

CLIを使用してプライマリリージョンパスとセカンダリリージョンパスの両方を使用するようにデバイスを設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. OMP コンフィギュレーション モードを開始します。

Device(config) #sdwan omp

3. デバイスがプライマリリージョンパス(複数ホップ)とセカンダリリージョンパス(ダイ レクトパス)の両方を使用できるようにします。

Device (config-omp) #best-path region-path-length ignore

この機能を無効にするには、このコマンドの no 形式を使用します。

CiscovManageを使用したデバイスのセカンダリリージョンの割り当ての確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Monitor] > [Devices] の順に選択します。
- 2. テーブルで、デバイスをクリックします。
- 3. [Real Time] をクリックします。
- 4. [Device Options] フィールドで、[Control Local Properties] を選択します。

[Region ID Set] フィールドには、プライマリリージョンとセカンダリリージョンが表示されます。

CLIを使用したデバイスのセカンダリリージョンの割り当 ての確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

デバイスで show sdwan running-config system コマンドを使用して、セカンダリリージョンが 設定されていることを確認します。[region] フィールドと [secondary-region] フィールドには、 プライマリリージョンとセカンダリリージョンが表示されます。

Device#**show sdwan running-config system** system system-ip 175.2.55.10 domain-id 1 site-id 2200 region 2

```
secondary-region 20
!
デバイスでshowsdwanom
フィールド内)とセカン
```

デバイスで show sdwan omp summary コマンドを使用して、プライマリリージョンID([region-id] フィールド内)とセカンダリリージョン ID([secondary-region-id] フィールド内)を確認する こともできます。

```
Device#show sdwan omp summary ...
region-id 1
secondary-region-id 20
```

CLIを使用したインターフェイスのセカンダリリージョン モードの確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

インターフェイスのセカンダリリージョンモードを表示するには、show sdwan running-config sdwan コマンド (Cisco IOS XE SD-WAN デバイス) または show running-config vpn 0 interface *interface-name* コマンド (Cisco vEdge デバイス) を使用します。[region] フィールドにモードが 表示されます。モードオプションは、[secondary-only] と [secondary-shared] です。

```
次の例は、Cisco IOS XE SD-WAN デバイスの場合です。
```

```
Device#show sdwan running-config sdwan
sdwan
 interface GigabitEthernet1
 ip address 173.3.1.11/24
 tunnel-interface
  encapsulation ipsec
  color 3g
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  no allow-service stun
  allow-service https
  region secondary-only
  1
 no shutdown
 1
!
次の例は、Cisco vEdge デバイスの場合です。
```

```
Device#show running-config vpn 0 interface ge0/1
vpn 0
interface ge0/1
ip address 173.3.1.11/24
tunnel-interface
encapsulation ipsec
color 3g
```

```
no allow-service bgp
allow-service dhcp
allow-service dns
allow-service icmp
no allow-service sshd
no allow-service netconf
no allow-service ntp
no allow-service ospf
no allow-service stun
allow-service https
region secondary-only
!
no shutdown
!
```

CLIを使用したインターフェイスのセカンダリリージョンの割り当ての確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

デバイスで、show sdwan control local-properties コマンド(Cisco IOS XE SD-WAN デバイス) または show control local-properties コマンド(Cisco vEdge デバイス)を使用して、各インター フェイスのリージョン割り当てを表示します。

show sdwan control local-properties コマンドの出力では、インターフェイスごとに、[REG IDs] 列にリージョンの割り当てが表示されます。

Device#show sdwan control local-properties

 TNTEDEACI	MAX	PUBLI RESTRICI	C 2/	PUBLIC LAST	PRIV.	ATE SPI T	P IME T	RIVATE NAT	PI VM	RIVATE	179 / 17M	COLOR
STATE	CNTRL	CONTROL/	' LR/LB	CONNE(CTION	REMAI	NING	TYPE	CON	REG IDs	V5/ VM	COLOR
GigabitEt	thernet up	2	172.2.2.11 no/yes/no	12 No/No	2366 0:0	172.2.2 0:00:16	.11 0:1	:: 1:58:49	 Э N	12 5	2366	4/1
GigabitEt 3g	thernet up	2 2	173.2.2.11 no/yes/no	12 No/No	2366 0:0	173.2.2 0:00:16	.11 0:1	:: 1:58:49	9 N	12 5	2,10	4/0

show control local-properties コマンドの出力では、インターフェイスごとに、[REGION IDs] 列 にリージョンの割り当てが表示されます。

Device#show	control	local-pro	perties

MAX INTERFA CNTRL	PUBLIC CONTROL/ CE IPv4 STUN	LR/LB	PUBLIC PRIV LAST PORT IPV CONNECTION	VATE SPI TIME 4 REMAINING	PRIVAT NAT IPv6 G TYPE	E PRIVATE CON REGION PORT PRF IDs	VS/V	M COLOR	STATE
ge0/0	172.3.1.	.11	12366 172	.3.1.11	::	12366	4/1	lte	up
2	no/yes/no	No/No	0:00:00:04	0:11:59:3	88 N	5 3			
ge0/1	173.3.1.	.11	12366 173	.3.1.11	::	12366	4/0	Зg	up
2	/ /	AT - /AT -	0.00.00.01	0 11 50 5	C 37	F 10			

トランスポートゲートウェイ

表 7:機能の履歴

機能名	リリース情報	説明
マルチリージョン ファブリック:トラ ンスポートゲート ウェイ	Cisco IOS XE リリー ス 17.8.1a Cisco vManage リ リース 20.8.1	直接接続されていない2つのネットワークに接続し ているエッジルータまたは境界ルータは、トランス ポートゲートウェイとして機能できます。これは、 同じアクセスリージョン内にあるように構成されて いるが、直接接続されていないルータ間の接続を有 効にする場合に役立ちます。

- ・トランスポートゲートウェイに関する情報 (63ページ)
- トランスポートゲートウェイでサポートされるデバイス(66ページ)
- •トランスポートゲートウェイの制約事項(66ページ)
- Cisco vManage を使用したトランスポートゲートウェイの設定 (67 ページ)
- •CLIを使用したトランスポートゲートウェイの設定(68ページ)
- CLI を使用したトランスポートゲートウェイ設定の確認 (69ページ)

トランスポートゲートウェイに関する情報

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

同じアクセスリージョンに割り当てられたさまざまなデバイスは、直接接続がないネットワーク、いわゆるディスジョイントネットワークで動作する場合があります。同じアクセスリージョンで動作するエッジルータまたは境界ルータがあり、2つのディスジョイントネットワークに接続している場合、そのルータをトランスポートゲートウェイとして機能するように構成できます。ルータは、トランスポートゲートウェイとして、ディスジョイントネットワーク内のエッジルータへの接続を提供します。

図 9: 直接接続のないエッジルータのトランスポートゲートウェイとして機能する境界ルータ

トランスポートゲートウェイが対処する問題

トランスポートゲートウェイ機能がない場合、直接接続のないデバイス間のトラフィックを有効にする1つの方法は、両方のネットワークへの接続を持つ中間デバイスを使用し、特定の ルートを構成して、ディスジョイントネットワーク内のデバイス間のトラフィックをルーティ ングする制御ポリシーを作成することです。

このアプローチには次のような問題があります。

- 複雑さ:プレフィックスをアドバタイズするための制御ポリシーの構成は複雑です。
- 潜在的なトラフィックブラックホール:制御ポリシーは、デバイスまたは構成されたルートが使用できないかどうかを検出できません。これにより、ルートが使用できなくなった場合にパケット損失が発生する可能性があります。

ルーティングメカニズム

ルータがトランスポートゲートウェイとして機能するように構成されている場合、ルータは、 プライマリリージョン内のデバイス間の各ルートに対して次のことを行います。

- 1. アクセスリージョンの Cisco vSmart コントローラ から学習した各ルートをインストールします。
- Cisco vSmart コントローラ から学習した各ルートを再発信し、ルートのネクストホップとして独自の TLOC を置き換えます。これは、TLOC を各ルートのネクストホップとして置き換え、そのリージョンの Cisco vSmart コントローラ にルートをアドバタイズすることを意味します。

このプロセスでは、プライマリリージョンルートをコアリージョンに再発信したり、コアリージョンルートをアクセスリージョンに再発信したりしないことに注意してください。

ルータをトランスポートゲートウェイとして構成する効果は、すべてのリージョン内トラフィックにルートを提供できることです。ネットワーク内のデバイスは、宛先へのダイレクトルートがない場合にのみ、トランスポートゲートウェイルートを使用します。

プライマリリージョンのみ

エッジルータがトランスポートゲートウェイとして機能するように構成した場合、エッジルー タはプライマリアクセスリージョン内のルートのみを再発信します。プライマリリージョン とセカンダリリージョンについては、セカンダリリージョンに関する情報 (49ページ)を参 照してください。

トランスポートゲートウェイとして機能するように境界ルータを構成すると、コアリージョン ではなく、アクセスリージョン内のルートのみが再発信されます。

トランスポート ゲートウェイ ルートの優先度

トランスポートゲートウェイを構成した後、アクセスリージョン内の2つのルータ間で複数の パスが使用可能になる場合があります。2つのルータ間で複数のパスを使用できる場合、オー バーレイマネジメントプロトコル (OMP) は、最適パス選択ロジックを適用して最適パスを 選択します。最適パス選択ロジックは、ホップ数が最も少ないパスに偏っていて、トランス ポートゲートウェイパスが除外される可能性があります。OMP 最適パス選択ロジックには、 次のものが含まれます。

- ・デフォルトでは、OMP はダイレクトパスを選択します(使用可能な場合)。
- ・ダイレクトパスが利用できない場合、OMPは、トランスポートゲートウェイを経由する など、より多くのホップを持つパスを選択します。

次のように OMP ロジックを構成できます。

- ダイレクトパスよりもトランスポートゲートウェイパスを優先します。
- ダイレクトパスとトランスポートゲートウェイパスは同等であるとみなします。

Cisco vManage を使用したトランスポート ゲートウェイ パスの設定の構成 (67 ページ)を参照してください。

複数のトランスポートゲートウェイ

リージョンにアクティブなトランスポートゲートウェイが複数ある場合、デバイスは、使用可能なすべてのトランスポートゲートウェイに等コストマルチパスルーティング(ECMP)を適用します。

トランスポートゲートウェイの利点

トランスポートゲートウェイを使用する利点

- 制御ポリシー方式よりも簡単に設定できます。
- ルートが利用できなくなった場合、トランスポートゲートウェイはエッジルータへのルートを取り消し、そのルートへのパスの再生成を停止して、ネットワークのブラックホールを防ぎます。

トラフィックプロトコル

トランスポート ゲートウェイ ルータは、IPv4 および IPv6 トラフィックを処理できます。

トランスポートゲートウェイでサポートされるデバイス

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- ・トランスポートゲートウェイ機能: Cisco IOS XE SD-WAN デバイス のみ
- トランスポートゲートウェイパスを使用する機能: Cisco IOS XE SD-WAN デバイスおよび Cisco vEdge デバイス

トランスポートゲートウェイの制約事項

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- SaaS ルートの Cloud on Ramp には影響しません。
- トランスポートゲートウェイ機能は、セカンダリリージョンが構成されているルータでは サポートされていません。

- (注) このようなルータでトランスポートゲートウェイ機能を構成 しようとすると、エラーが発生します。
 - ・同じリージョン内の複数のデバイスでトランスポートゲートウェイ機能を有効にして、 ディスジョイントネットワーク内のエッジルータ間に複数のトランスポートゲートウェ イパスを提供する場合、エッジルータは最適パス選択ロジックを適用して最適パスを決定 します。

複数のトランスポートゲートウェイがあり、OMP が選択したトランスポート ゲートウェ イ パスがある場合は、使用可能なすべてのトランスポート ゲートウェイ パスに ECMP が 適用されます。

デフォルトでは、OMP はダイレクトパスが利用可能な場合はそれを選択し、利用できない場合は、トランスポートゲートウェイを経由する(利用可能な場合)など、より多くのホップを持つパスを選択します。ただし、OMP ロジックを別の方法で構成することもできます。トランスポートゲートウェイに関する情報(63ページ)を参照してください。

 ・同じリージョン内の複数のデバイスでトランスポートゲートウェイ機能を有効にすると、 リージョンの Cisco vSmart コントローラにより、あるトランスポートゲートウェイによっ て再発信されたルートが別のトランスポートゲートウェイにアドバタイズされなくなりま す。別のトランスポートゲートウェイへのトランスポート ゲートウェイ ルートのアドバ タイズを防止することにより、Cisco vSmart コントローラ で潜在的なルーティングループ を防止できます。

- トランスポートゲートウェイ機能のリソース要求のため、追加の負荷を処理する CPU と メモリリソースを備えた高性能デバイスでのみこれを有効にすることをお勧めします。特 定のリソース要件は、ネットワーク環境によって異なります。
- トランスポートゲートウェイとして構成されたデバイスに動的オンデマンドトンネルを構成することはできません。この制限は、MRFおよび非MRFアーキテクチャに適用されます。動的オンデマンドトンネルの詳細については、『Cisco SD-WAN Systems and Interfaces Configuration Guide, Cisco IOS XE Release 17.x』の「Dynamic On-Demand Tunnels」を参照してください。

Cisco vManageを使用したトランスポートゲートウェイの 設定

Cisco vManage を使用したルータでのトランスポートゲートウェイ機能の有効化

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - デバイスのシステムテンプレートを作成します。
 - テーブルで、デバイスの既存のシステムテンプレートを見つけます。テンプレートの 行で[...]をクリックし、[Edit]を選択します。
- 4. [Basic Configuration] セクションの [Transport Gateway] フィールドで、[On] を選択します。
- 5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device]の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

Cisco vManage を使用したトランスポート ゲートウェイ パスの設定の 構成

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - ・デバイスの OMP テンプレートを作成します。
 - ・テーブルで、デバイスの既存の OMP テンプレートを見つけます。テンプレートの行で[...]をクリックし、[Edit]を選択します。
- **4.** [Best Path] セクションの [Transport Gateway Path Behavior] フィールドで、[Global] モードを 選択し、次のオプションのいずれかを選択します。

オプション	説明
Do ECMP Between Direct and Transport Gateway Paths	トランスポートゲートウェイとダイレクトパスを介して接 続できるデバイスの場合、使用可能なすべてのパスに等コ ストマルチパス(ECMP)を適用します。
Prefer Transport Gateway Path	トランスポートゲートウェイを介して接続できるデバイス の場合、他のパスが使用可能な場合でも、トランスポート ゲートウェイ パスのみを使用します。

5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device]の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

CLI を使用したトランスポートゲートウェイの設定

CLI を使用したルータでのトランスポートゲートウェイ機能の有効化

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

- システム コンフィギュレーション モードを開始します。
 Device (config) #system
- 3. トランスポートゲートウェイ機能を有効にします。 Device (config-system) #transport-gateway enable

(注) トランスポートゲートウェイ機能を無効にするには、このコマンドの no 形式を使用しま す。

CLI を使用したトランスポート ゲートウェイ パスの設定の構成

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. システム コンフィギュレーション モードを開始します。

Device(config)#**sdwan**

3. システム OMP コンフィギュレーション モードを開始します。

Device(config)#**omp**

4. 次のいずれかのオプションを使用して、トランスポート ゲートウェイ パスの設定を構成 します。

Device(config-omp)#best-path transport-gateway {prefer | ecmp-with-direct-path}

オプション	説明
ecmp-with-direct path	トランスポートゲートウェイとダイレクトパスを介して接続 できるデバイスの場合、使用可能なすべてのパスに等コスト マルチパス(ECMP)を適用します。
prefer	トランスポートゲートウェイを介して接続できるデバイスの 場合、他のパスが使用可能な場合でも、トランスポート ゲー トウェイ パスのみを使用します。

例

Device#omp best-path transport-gateway prefer

CLI を使用したトランスポートゲートウェイ設定の確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

デバイスで show sdwan running-config system コマンドを使用して、デバイスがトランスポートゲートウェイとして設定されているかどうかを確認します。出力では、[transport-gateway enable] は、設定されていることを示しています。

Device#show sdwan running-config system

system	
system-ip	192.168.1.1
domain-id	1
site-id	11100
region 1	
!	
role	border-router

transport-gateway enable
...

デバイスで show sdwan omp summary コマンドを使用して、デバイスがトランスポートゲート ウェイとして設定されているかどうかを確認することもできます。出力では、[transport-gateway enabled] は、トランスポートゲートウェイ機能が有効になっていることを示しています。

ルータアフィニティ

表 8:機能の履歴

機能名	リリース情報	説明
マルチリージョン ファブリック : ルー タアフィニティ	Cisco IOS XE リリー ス 17.8.1a Cisco SD-WAN リ リース 20.8.1 Cisco vManage リ リース 20.8.1	多くの場合、ルータには、フローを宛先にルーティ ングするときにネクストホップとして選択するため の複数のオプションがあります。複数のデバイスが フローのネクストホップとして機能できる場合、 ルータアフィニティグループを構成することで、デ バイス間の優先順位を指定できます。その結果、 ルータは最初に優先度が最も高いネクストホップデ バイスへのルートを使用しようとし、そのデバイス が使用できない場合は、次の優先度のネクストホッ プデバイスへのルートを使用しようとします。ア フィニティグループは、複雑な制御ポリシーを必要 とせずにこの機能を有効にします。
アフィニティグルー プの優先リストでの ピアデバイスへの ルートの優先順位付 けの改善	Cisco SD-WAN コン トローラリリース 20.9.x	この機能により、CiscovSmartコントローラがデバ イスにルートをアドバタイズする順序が変更されま す。このリリースから、CiscovSmartコントローラ がデバイスにルートをアドバタイズする場合、(a) アフィニティグループの優先リスト内のピアデバイ スへのルートに高い優先順位を与え、(b)より高 い最適パススコアを持つ可能性があるが優先アフィ ニティグループに関連付けられたデバイスへのルー トではないルートに低い優先順位を与えます。その 効果は、優先アフィニティグループ内のピアデバイ スへのルートに優先順位を付けることです。

- •ルータアフィニティグループに関する情報 (72ページ)
- •ルータアフィニティグループでサポートされるデバイス (77ページ)
- •ルータアフィニティグループの制約事項(78ページ)
- ・ルータアフィニティグループのユースケース (78ページ)

- Cisco vManage を使用したルータアフィニティグループの設定 (81ページ)
- CLI を使用したルータアフィニティグループの設定 (82 ページ)
- Cisco vManage を使用したアフィニティグループとアフィニティグループ設定の確認 (84 ページ)
- CLI を使用したアフィニティグループとアフィニティグループ設定の確認 (84 ページ)

ルータアフィニティグループに関する情報

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

ルータアフィニティグループを使用すると、ネットワークフローの次の中継ホップとして機能 できる複数のルータの中から選択する優先順位を指定できます。これは、(a) ルータがフロー のネクストホップを決定している場合、および(b) マルチリージョンファブリックアーキテ クチャ内の複数のルータがネクストホップとして機能できる場合に適用されます。機能の構成 には2つの部分があります。

- ルータ上で、ルータアフィニティグループID(1~63の数字)を割り当てます。
- ルータ上で、ネクストホップのルータを選択するための優先順位を割り当てます。これは アフィニティグループ ID の一覧です。

ルータ上で動作するオーバーレイマネジメントプロトコル(OMP)がフローに最適なパスを 選択すると、次のことが行われます。

- フローの宛先のプレフィックスをアドバタイズしているルータに基づいて、考えられるネ クストホップルータを決定します(これは標準の OMP 機能です)。
- OMPは、最適なパスを選択するときに、考えられるネクストホップルータからアフィニ ティグループの設定を考慮し、それに応じて考えられるネクストホップルータに優先順位 を付けます(これは、アフィニティグループ機能に固有です)。

その結果、ルータは最初に優先度が最も高いネクストホップデバイスへのルートを使用しよう とし、そのデバイスが使用できない場合は、次の優先度のネクストホップデバイスへのルート を使用しようとします。アフィニティ優先リストに使用可能なデバイスがない場合、ルータは ネクストホップとして機能できる他のデバイスへのルートを使用しようとします。これによる 影響の1つとして、最初のネクストホップルータが使用できない場合に、1つの考えられるネ クストホップルータから別のネクストホップルータへの自動フェールオーバーがあります。ア フィニティグループは、複雑な制御ポリシーを必要とせずにこの機能を有効にします。

ルーティングメカニズム

ルータアフィニティは、次のようにルート選択に影響します。

特定のネットワーク内、またはマルチリージョンファブリックの場合にはリージョン内では、オーバーレイマネジメントプロトコル(OMP)がネットワーク内のデバイスによるプレフィックスのアドバタイズを管理します。

- デバイスがネットワークフローを宛先にルーティングする場合、OMPにより、デバイス は宛先のプレフィックスをアドバタイズしているネクストホップデバイスを選択できま す。
- プレフィックスへのネクストホップとして機能できるデバイスのみがプレフィックスをアドバタイズします。
- 考えられるネクストホップデバイスの中で、構成されたアフィニティグループの設定に よって、ネクストホップの優先順位が決まります。

次の例では、エッジルータ ER1 および ER2 が、データセンターで使用されるサブネットをア ドバタイズします。境界ルータ BR1 がデータセンターサブネットの1つにあるプレフィック スにフローをルーティングしている場合、ネクストホップとして ER1 または ER2 を使用でき ます。図に示すように、ER1 と ER2 で構成されたアフィニティグループ、および BR1 で構成 されたアフィニティグループの優先順位に基づいて、BR1 は ER1 をネクストホップとして選 択します。ER1 が使用できない場合、BR1 はフローをネクストホップとして ER2 にルーティ ングします。

図10:ルータアフィニティの例

アフィニティ値で構成されたパスのみの使用

必要に応じて、ルータがアフィニティリストにあるルータにのみ接続できるように Cisco SD-WAN を構成できます。これを行うには、リージョンを管理する Cisco vSmart コントローラ で [filter route outbound affinity-group preference] オプションを使用します。Cisco vSmart コント ローラは、リージョン内の各デバイスに、アフィニティリストにあるルータへのルートのみを 提供します。Cisco vManage を使用してアフィニティ優先リストのパスのみを提供するように Cisco vSmart コントローラを設定 (82ページ)を参照してください。

このオプションは、アフィニティリストにないデバイスにルータを接続させたくない場合にの み使用してください。利点は、管理するルートを少なくすることで、Cisco vSmart コントロー ラ およびエッジルータのメモリリソースを節約できることです。

アフィニティグループの優先リストでのピアデバイスへのルートの優先順位付け

Cisco SD-WAN コントローラリリース 20.9.x から、Cisco vSmart コントローラがデバイスにルートをアドバタイズする場合、アフィニティグループの優先リスト内のピアデバイスへのルートのアドバタイズに高い優先順位を与え、より高い最適パススコアを持つ可能性があるが優先アフィニティグループに関連付けられたデバイスへのルートではないルートに低い優先順位を与えます。これは、送信パス制限がCisco vSmart コントローラに設定されていて、特定のデバイスにアドバタイズされるルートの数を制限している場合に特に重要です。これにより、ルータが限られた数のルートを管理している場合、ルートにアフィニティグループの優先リストにあるピアデバイスが含まれるようにします。

以下で、これがどのように機能するかをより詳細に説明します。

アフィニティグループごとに、Cisco vSmart コントローラ ではネットワーク内のデバイスに よってアドバタイズされた各ルートのリンクリストが維持されます。Cisco vSmart コントロー ラ は、定義されたアフィニティグループごとに、2 つのリンクリストを作成します。

- (a) アフィニティグループ内のデバイス用で、(b) 最適パス選択アルゴリズムによって 選択されたルートのリスト(これらのルートは、最適パススコアが高く、アルゴリズムによって優先されることを意味します)
- (a) アフィニティグループ内のデバイス用であるが、(b) 最適パス選択アルゴリズムに よって選択されていないルートのリスト

最適パス選択アルゴリズムは、ルートの特性、ポリシー、およびその他の要因に基づいて選択 されたルートを指定することに注意してください。

Cisco vSmart コントローラ が特定のデバイスへのルートをアドバタイズする場合、リンクリストを使用して、デバイスのアフィニティグループの優先リストにあるピアデバイスへのルートを優先します。

たとえば、前の図とほぼ一致しても、より多くの利用可能なルートがあるネットワークの場合は、次のシナリオを検討してください。

I

デバイス	デバイスによる Cisco vSmart コントローラへ のルートのアドバタイ ズ	最適パス選択アルゴリ ズムの結果	結果のリンクリスト
アフィニティグループ 1 に割り当てられる ER1	ER1には4つのルート があり、それらをア フィニティグループ1 に関連付けられたルー トとして Cisco vSmart コントローラにアドバ タイズします。	この例では、最適パス 選択アルゴリズムによ り、2つのルートが選 択済みとして指定され れ、2つのルートが未 選択として指定されま す。	Cisco vSmart コント ローラは、トレートを リンクリストに追加し ます。 ・アイプ1の道子 リンクリストに追加し ます。 ・アイプ1の選びの レート・コンク リストート・コンク リストート・コンク リストート・コンク リストート・コンク リストート・フィーンク リストート・フィーンク リストート・フィープ1の選び リンクリンされ マンク リストート・フィーク リンクリンされ ていして、 選びの見いした。 この説いる最沢ズム選びの たい、 選びの に、 選びの に、 この記の に、 選びの に、 に に に に に に に に に に に に に に に に に に

デバイス	デバイスによる Cisco vSmartコントローラへ のルートのアドバタイ ズ	最適パス選択アルゴリ ズムの結果	結果のリンクリスト
アフィニティグループ 2 に割り当てられる ER2	ER2には3つのルート があり、それらをア フィニティグループ2 に関連付けられたルー トとして Cisco vSmart コントローラにアドバ タイズします。	この例では、最適パス 選択アルゴリズムによ り、2つのルートが選 択済みとして指定さ れ、1つのルートが未 選択として指定されま す。	 Cisco vSmart コント ローラは、各ルートを リンクリストに追加し ます。 ・アフィニティグ ループ2のリンク リスト、選択され たルート:2ルート ・アフィニティグ ループ2のリンク リスト、選択され ていないルート: 1ルート
アフィニティグループ に割り当てられていな い ER3	ER3には3つのルート があり、それらをア フィニティグループ0 に関連付けられたルー トとして Cisco vSmart コントローラにアドバ タイズします。 (アフィニティグルー プ0は、アフィニティ グループに割り当てら れていないデバイスに 対応します。)	この例では、最適パス 選択アルゴリズムによ り、2 つのルートが選 択済みとして指定さ れ、1 つのルートが未 選択として指定されま す。	 Cisco vSmart コント ローラは、各ルートを リンクリストに追加し ます。 ・アフィニティグ ループ0のリンク リスト、選択され たルート:2ルー ト ・アフィニティグ ループ0のリンク リスト、選択され ていないルート: 1ルート

図に示すように、デバイス BR1 には 1、2 のアフィニティグループの優先リストがあります。 このため、BR1 へのルートのアドバタイズには次の可能性があります。

・送信パスの制限が定義されていない:

Cisco vSmart コントローラに送信パス制限が定義されていない場合、表に示すように、選択されたルートのリンクリストにある6つのルートすべてをBR1にアドバタイズできます。ER1に2つ、ER2に2つ、ER3に2つです。

・送信パス制限が定義されている:

Cisco vSmart コントローラ の送信パス制限が4の場合、ER1のアフィニティグループ1で 選択されたルートのリンクリストにある2つのルートを最初にBR1にアドバタイズしま す。さらに、ER2のアフィニティグループ2で選択されたルートのリンクリストにある2 つのルートをアドバタイズします。この時点で、制限である4つのルートがアドバタイズ されていて、アフィニティグループ0(どのアフィニティグループにも割り当てられてい ないデバイス)で選択されたルートのリンクリスト内のルートはアドバタイズされませ ん。したがって、ER3のルートは含まれていません。その結果、BR1のアフィニティグ ループの優先リストが1、2の場合、Cisco vSmart コントローラではER3 ルートの最適パ ススコアの方が高くても、ピアデバイス ER1 および ER2(アフィニティグループ1 およ び2のデバイス)へのルートを優先します。

ワークフロー

・ルータ上で、アフィニティグループ ID 番号を設定します。

『Cisco vManage を使用してデバイスでアフィニティグループまたはアフィニティグルー プ設定を構成(81ページ)』を参照してください。

ルータ上で、アフィニティグループ ID 番号のリストを、優先順位の高いものから低いものの順に構成して、ルータに接続するための優先順位を指定します。

Cisco vManage を使用してデバイスでアフィニティグループまたはアフィニティグループ 設定を構成 (81 ページ)。

必要に応じて、アクセスリージョンを提供する Cisco vSmart コントローラで、ルータがアフィニティグループの優先リストにあるデバイスのみに接続するように制限します。

Cisco vManage を使用してアフィニティ優先リストのパスのみを提供するように Cisco vSmart コントローラを設定 (82 ページ)を参照してください。

ルータアフィニティグループの利点

ルータアフィニティグループは、ネクストホップに複数のルータを使用できる場合に、デバイ スから特定のルータに優先的にトラフィックを転送できるようにすることで、キャパシティプ ランとロードバランシングに役立ちます。

ルータアフィニティグループでサポートされるデバイス

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

- Cisco IOS XE SD-WAN デバイスについて
- Cisco vEdge デバイスについて

ルータアフィニティグループの制約事項

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

アフィニティグループの範囲は1~63に制限されています。

ルータアフィニティグループのユースケース

ユースケース1:境界ルータへのアクセス リージョン トラフィックのロードバランシング

アクセスリージョンに6つのエッジルータ(ER1~ER6)と3つの境界ルータ(BR1、BR2、 およびBR3)があるシナリオでは、次のようにアフィニティグループを使用して負荷を分散で きます。

デバイス	設定	結果
BR1	アフィニティグループ1を割り当て ます。	
BR2	アフィニティグループ2を割り当て ます。	
BR3	アフィニティグループ3を割り当て ます。	
ER1 と ER2	アフィニティグループの優先順位1、 2、3を割り当てます。	これら2つのエッジルータは、ネク ストホップのためにトラフィックを 優先的にBR1に転送しますが、BR1 が使用できない場合、BR2の使用を 試みます。BR2が使用できない場合 は、BR3の使用を試みます。
ER3 と ER4	アフィニティグループの優先順位2、 3、1を割り当てます。	これら2つのエッジルータは、ネク ストホップのためにトラフィックを 優先的にBR2に転送しますが、BR2 が使用できない場合、BR3の使用を 試みます。BR3が使用できない場合 は、BR1の使用を試みます。

デバイス	設定	結果
ER5 と ER6	アフィニティグループの優先順位3、 1、2 を割り当てます。	これら2つのエッジルータは、ネク ストホップのためにトラフィックを 優先的にBR3に転送しますが、BR3 が使用できない場合、BR1の使用を 試みます。BR1が使用できない場合 は、BR2の使用を試みます。

図 11: ユースケース 1: 境界ルータへのアクセス リージョン トラフィックのロードバランシング

ユースケース2:エッジルータへのアクセス リージョン トラフィックのロードバランシング

アクセスリージョンに大容量データセンターにサービスを提供する2つのエッジルータ(ER1 と ER2)と2つの境界ルータ(BR1 と BR2)があるシナリオでは、次のようにアフィニティグループを使用して負荷を分散できます。

デバイス	設定	結果
ER1	アフィニティグループ1を割り当て ます。	
ER2	アフィニティグループ2を割り当て ます。	
BR1	アフィニティグループの優先順位1、 2 を割り当てます。	この境界ルータは、データセンター のトラフィックを優先的に ER1 に転 送しますが、ER1 が使用できない場 合は ER2 を使用できます。
BR2	アフィニティグループの優先順位2、 1を割り当てます。	この境界ルータは、データセンター のトラフィックを優先的に ER2 に転 送しますが、ER2 が使用できない場 合は ER1 を使用できます。

図 12: ユースケース 2: エッジルータへのアクセス リージョン トラフィックのロードバランシング

ユースケース3:コアリージョントラフィックのロードバランシング

大容量アクセスリージョン (リージョン1) に2つの境界ルータ (BR1とBR2) があり、2つ の境界ルータ (BR3とBR4) を持つ別のアクセスリージョン (リージョン2) から大量のトラ フィックを受信するシナリオでは、次のようにアフィニティグループを使用して負荷を分散で きます。

デバイス	設定	結果
BR1 (リージョン1)	アフィニティグループ1を割り当て ます。	
BR2 (リージョン1)	アフィニティグループ2を割り当て ます。	
BR3 (リージョン2)	アフィニティグループの優先順位1、 2 を割り当てます。	トラフィックをリージョン1に転送 する場合、この境界ルータはトラ フィックを優先的にBR1に転送しま すが、BR1が使用できない場合は BR2を使用できます。
BR4 (リージョン2)	アフィニティグループの優先順位2、 1を割り当てます。	トラフィックをリージョン1に転送 する場合、この境界ルータはトラ フィックを優先的にBR2に転送しま すが、BR2が使用できない場合は BR1を使用できます。

図 13:ユースケース 3: コアリージョントラフィックのロードバランシング

Cisco vManageを使用したルータアフィニティグループの 設定

Cisco vManage を使用してデバイスでアフィニティグループまたはアフィニティグループ設定を構成

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - デバイスのシステムテンプレートを作成します。
 - テーブルで、デバイスの既存のシステムテンプレートを見つけます。テンプレートの 行で[...]をクリックし、[Edit]を選択します。
- 4. アフィニティグループを境界ルータに割り当てるには、[Advanced] セクションの [Affinity Group] フィールドで、モードを [Global] に変更し、アフィニティグループ番号を1~63 の範囲で入力します。

アフィニティグループがデバイスで以前に構成されている場合、新しい値が以前の値に置 き換わります。

 境界ルータまたはエッジルータのアフィニティグループの優先順位を構成するには、 [Advanced] セクションの [Affinity Group Preference] フィールドで、モードを [Global] に変 更し、アフィニティグループ番号のコンマ区切りリストを入力します。これにより、境界 ルータへの接続の優先順位が決まります。アフィニティグループの範囲は1~63です。 例:10、11、1、5

- (注) アフィニティグループの優先リストにないルートを除外するように Cisco vSmart コント ローラを設定すると、デバイスはアフィニティグループ内のルータにのみ接続できます。 Cisco vManage を使用してアフィニティ優先リストのパスのみを提供するように Cisco vSmart コントローラを設定(82ページ)を参照してください。
- **6.** 既存のテンプレートを編集している場合は、[Update]、[Configure Device] の順にクリック して、テンプレートを使用して更新をデバイスにプッシュします。

Cisco vManage を使用してアフィニティ優先リストのパスのみを提供 するように Cisco vSmart コントローラを設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Configuration] > [Templates] を選択します。
- 2. [Feature Templates] をクリックします。
- 3. 次のいずれかを実行します。
 - Cisco vSmart コントローラの OMP テンプレートを作成します。
 - ・テーブルで、Cisco vSmart コントローラの既存の OMP テンプレートを見つけます。 テンプレートの行で [...] をクリックし、[Edit] を選択します。
- [Best Path] セクションの [Enable Filtering Route Updates Based on Affinity] フィールドで、 [Global] モードを選択し、[On] を選択します。
- 5. 既存のテンプレートを編集している場合は、[Update]、[Configure Device] の順にクリック して、テンプレートを使用して更新を Cisco vSmart コントローラ にプッシュします。

CLI を使用したルータアフィニティグループの設定

CLI を使用したルータでのアフィニティグループの設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. システム コンフィギュレーション モードを開始します。

Device (config) #system

3. アフィニティグループ ID を1~63 の範囲で設定します。

アフィニティグループがデバイスで以前に構成されている場合、新しい値が以前の値に置 き換わります。

Device (config-system) #affinity-group group-id

例

```
Device#config-transaction
Device(config)#system
Device(config-system)#affinity-group 10
```

CLI を使用したルータでのアフィニティグループ設定の構成

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

Device#config-transaction

2. システム コンフィギュレーション モードを開始します。

Device(config)#**system**

3. 1~63の範囲のグループ ID のリストを入力して、アフィニティグループの優先順位を最高の優先順位から最低の優先順位まで示します。グループ ID はスペースで区切ります。

Device(config-system)#affinity-group preference group-id [group-id ...]

例

Device(config-system)#affinity-group preference 10 11 1 5

CLI を使用してアフィニティグループ優先リストのパスのみを提供するように Cisco vSmart コントローラを設定

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

1. コンフィギュレーションモードを入力します。

vSmart#config terminal

- システム OMP コンフィギュレーション モードを開始します。 vSmart(config)#omp
- 3. アフィニティグループの優先リスト内のルータへのパスのみを各ルータに提供するように Cisco vSmart コントローラ を設定します。

これにより、ルータは、アフィニティグループの優先リストにあるルータのみに接続する ように制限されます。

vSmart(config-omp)#filter-route outbound affinity-group-preference

(注) この設定を無効にするには、このコマンドの no 形式を使用します。デフォルトでは、無効になっています。

例

```
vSmart#config terminal
vSmart(config)#omp
vSmart(config-omp)#filter-route outbound affinity-group-preference
```

CiscovManageを使用したアフィニティグループとアフィ ニティグループ設定の確認

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

- 1. Cisco vManage メニューから、[Monitor] > [Devices] の順に選択します。
- 2. テーブルで、デバイスをクリックします。
- 3. [Real Time] をクリックします。
- 4. [Device Options] フィールドで、[OMP Summary] を選択します。

[Affinity Group Number] および [Affinity Group Preference] フィールドを参照してください。

CLI を使用したアフィニティグループとアフィニティグ ループ設定の確認

デバイスのアフィニティグループとアフィニティグループ設定を表示するには、**show sdwan running-config system** コマンドを使用します。[affinity-group preference] フィールドには、優先 リストが表示されます。

例

```
Device#show sdwan running-config system
system
system-ip 192.168.0.1
domain-id 1
site-id 1100
affinity-group 10
```

affinity-group preference 15 16 ...

I

マルチリージョン ファブリック ポリシー

表 **9**:機能の履歴

機能名	リリース情報	説明
宛先によるトラ フィックの一致:ア クセスリージョン、 コアリージョン、ま たはサービス VPN	Cisco IOS XE リリー ス 17.8.1a Cisco vManage リ リース 20.8.1	宛先がアクセスリージョン、コアリージョン、サー ビス VPN のいずれかであるトラフィックにポリシー を適用できます。この一致条件は、境界ルータの データポリシーまたはアプリケーション ルート ポ リシーに使用します。
パスタイプに応じた ルートの一致	Cisco IOS XE リリー ス 17.8.1a Cisco vManage リ リース 20.8.1	マルチリージョンファブリックアーキテクチャの 制御ポリシーを構成する場合、ルートが階層パス、 ダイレクトパス、またはトランスポートゲートウェ イパスのいずれを使用しているかに応じてルート を一致させることができます。
制御ポリシーのリー ジョンおよびロール によるルートの一致	Cisco IOS XE リリー ス 17.8.1a Cisco vManage リ リース 20.8.1	制御ポリシーでは、ルートを発信するデバイスの リージョン、またはルートを発信するデバイスの ロール(エッジルータまたは境界ルータ)に従っ て、ルートを一致させることができます。
宛先リージョンによ るトラフィックの一 致	Cisco IOS XE リリー ス 17.9.1a Cisco vManage リ リース 20.9.1	アプリケーション ルート ポリシーまたはデータポ リシーを作成するときに、宛先リージョンに応じて トラフィックを一致させることができます。宛先 は、同じプライマリリージョン、同じセカンダリ リージョン、またはこれらのいずれでもないデバイ スである場合があります。

機能名	リリース情報	説明
パスタイプの設定を 指定	Cisco IOS XE リリー ス 17.9.1a Cisco vManage リ リース 20.9.1	 一元化されたポリシーを構成する場合、プライマリ、セカンダリ、およびターシャリと呼ばれる3つのレベルのルート設定を指定する優先カラーグループリストを作成できます。ルート設定は、TLOCカラーと、オプションでパスタイプ(ダイレクトトンネル、マルチホップパス、またはすべてのパス)に基づいています。パスタイプは、マルチリージョンファブリックを使用しているネットワークに関連しています。

- マルチリージョン ファブリック のポリシーの設定に関する情報 (88 ページ)
- マルチリージョンファブリックポリシーオプションでサポートされるデバイス(96ページ)
- マルチリージョン ファブリック ポリシーオプションの制約事項 (96 ページ)
- マルチリージョンファブリックのユースケース(97ページ)
- Cisco vManage を使用した マルチリージョン ファブリック ポリシーの設定 (98 ページ)
- CLI を使用した マルチリージョン ファブリック ポリシーの設定 (106 ページ)

マルチリージョンファブリックのポリシーの設定に関す る情報

パスのタイプ、リージョン、またはロールによるルートの一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

パスタイプ

マルチリージョンファブリックアーキテクチャの制御ポリシーを設定する場合、ルートが次のいずれかを使用しているかどうかに応じてルートを一致させることができます。

 ・階層パス:アクセスリージョンから境界ルータへ、リージョン0を経由して、別の境界 ルータへ、さらに別のアクセスリージョンのエッジルータへのホップを含むルートに一致 します。

階層パスルートを表示するには、show sdwan omp routes コマンドを使用し、[REGION PATH] 列に3つのリージョンをリストするルートを書き留めます。

 ・ダイレクトパス:あるエッジルータから別のエッジルータへのダイレクトパス(ダイレクトルート)に一致します。セカンダリリージョンを構成し、2つのエッジルータをセカン ダリリージョンに追加することにより、異なるアクセスリージョンのエッジルータ間のダ イレクトパスを有効にすることができます。セカンダリリージョンに関する情報(49ページ)を参照してください。

ダイレクトパスルートを表示するには、show sdwan omp routes コマンドを使用し、[REGION PATH] 列に1つのリージョンをリストするルートを書き留めます。

トランスポートゲートウェイパス:トランスポートゲートウェイ機能が有効になっているルータによって再発信されたルートに一致します。

トランスポートゲートウェイについては、トランスポートゲートウェイに関する情報(63 ページ)を参照してください。

リージョンとロール

パスタイプによる一致と同様に、ルートを発信するデバイスのリージョンまたはロール(エッ ジルータまたは境界ルータ)によってルートを一致させることができます。

Traffic-To に一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

バックグラウンド

フラットな非マルチリージョンファブリックアーキテクチャでは、各エッジルータは次のい ずれかの方法でトラフィックフローを処理します。

- ・サービス VPN からオーバーレイネットワークへ
- ・サービス VPN からサービス VPN へ
- ・オーバーレイネットワークからサービス VPN へ
- オーバーレイネットワークから同じオーバーレイネットワークへ

これらのタイプのトラフィックのいずれかをトラフィックポリシーの対象にするには、次のように、トラフィックポリシーを適用するときに apply-policy キーワードを使用できます。

表 10: apply-policy の使用

トラフィックタイプ	使用するコマンド
サービス VPN からオーバーレイネットワーク	apply-policy from-service
~	
および	
サービス VPN からサービス VPN へ	

トラフィックタイプ	使用するコマンド
オーバーレイネットワークからサービス VPN	apply-policy from-tunnel
および	
オーバーレイネットワークから同じオーバー レイネットワークへ	

マルチリージョンファブリック:複数のオーバーレイネットワーク

マルチリージョンファブリックアーキテクチャと境界ルータのロールの導入により、境界ルー タは、あるオーバーレイネットワークから別のオーバーレイネットワークへ(アクセスリー ジョンからコアリージョンへ、またはコアリージョンからアクセスリージョンへ)のトラフィッ クフローを処理できます。境界ルータは、次のいずれかの方法でトラフィックフローを処理で きます。

- アクセスリージョンから次のいずれかへ:
 - •アクセスリージョン
 - •コアリージョン
 - ・サービス VPN
- コアリージョンから次のいずれかへ:
 - •アクセスリージョン
 - •コアリージョン
 - ・サービス VPN
- ・サービス VPN から次のいずれかへ:
 - •アクセスリージョン
 - •コアリージョン
 - ・サービス VPN

境界ルータでのトラフィックフローの方向が多い場合、apply-policy オプションは十分な粒度 を提供しません。traffic-to 一致基準はこれに対処し、これらのタイプのトラフィックフローを それぞれ指定できるようにします。

一致基準:Traffic-To

境界ルータのデータポリシーまたは app-route ポリシーを作成する場合、次の一致基準を使用 して、アクセスリージョン、コアリージョン、またはサービス VPN へのトラフィックフロー を一致させることができます。

- traffic-to access:次のいずれかの方法のすべてのトラフィックフローに一致します。
 サービス VPN からアクセスリージョンへ
 - コアリージョンからアクセスリージョンへ
 - •アクセスリージョンからアクセスリージョンへ
- traffic-to core: 次のいずれかの方法のすべてのトラフィックフローに一致します。
 - ・サービス VPN からコアリージョンへ
 - •アクセスリージョンからコアリージョンへ
 - •コアリージョンからコアリージョンへ
- traffic-to service: 次のいずれかの方法のすべてのトラフィックフローに一致します。
 - •アクセスリージョンからサービス VPN へ
 - ・コアリージョンからサービス VPN へ
 - •あるサービス VPN から別のサービス VPN へ

これらの一致条件は、**prefix-list**、**site-list**などのマルチリージョンファブリックに固有ではない他の一致条件と一緒に使用できます。

一致条件と Apply-Policy キーワードの組み合わせ

ポリシーを適用するときに、これらの一致条件を使用でき、次の表で説明するように、ポリシーをトラフィックに適用するときに apply-policy キーワードを使用できます。

I

一致条件	apply-policy キーワード	効果:ポリシーは次のトラ フィックに作用します
match traffic-to access	from-tunnel (アクセスおよびコアリー ジョンからのトラフィックを 含む)	アクセスリージョンからアク セスリージョンへ および コアリージョンからアクセス リージョンへ
	from-service (サービス VPN トンネルから のトラフィックを含む)	サービス VPN からアクセス リージョンへ
	all (アクセスリージョンとコア リージョン、およびサービス VPN トンネルからのトラ フィックを含む)	アクセスリージョンからアク セスリージョンへ および コアリージョンからアクセス リージョンへ および サービス VPN からアクセス リージョンへ

表 11 : Traffic-Toと Apply-Policy

一致条件	apply-policy キーワード	効果 : ポリシーは次のトラ フィックに作用します
match traffic-to core	from-tunnel (アクセスおよびコアリー ジョンからのトラフィックを 含む)	コアリージョンからコアリー ジョンへ および アクセスリージョンからコア リージョンへ
	from-service (サービス VPN トンネルから のトラフィックを含む)	サービス VPN からコアリー ジョンへ
	all (アクセスリージョンとコア リージョン、およびサービス VPN トンネルからのトラ フィックを含む)	コアリージョンからコアリー ジョンへ および アクセスリージョンからコア リージョンへ および サービス VPN からコアリー ジョンへ
match traffic-to service	from-tunnel (アクセスおよびコアリー ジョンからのトラフィックを 含む)	コアリージョンからサービス VPN へ および アクセスリージョンからサー ビス VPN へ
	from-service (サービス VPN トンネルから のトラフィックを含む)	サービス VPN からサービス VPN へ
	all (アクセスリージョンとコア リージョン、およびサービス VPN トンネルからのトラ フィックを含む)	コアリージョンからサービス VPN へ および アクセスリージョンからサー ビス VPN へ および あるサービス VPN から別の サービス VPN へ

リージョンとロールによる一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco SD-WAN リリース 20.8.1、Cisco vManage リリース 20.8.1

制御ポリシーを設定するときは、ルートを発信するデバイスのリージョン、またはルートを発信するデバイスのロール(エッジルータまたは境界ルータ)に従って、ルートとTLOCを一致 させることができます。発信元デバイスは、エッジルータまたは境界ルータのいずれかです。

(注)

Cisco IOS XE SD-WAN デバイス のみが境界ルータのロールをサポートします。

宛先リージョンに応じたトラフィックの一致に関する情報

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

アプリケーション ルート ポリシーまたはデータポリシーを作成する場合、次のオプションを 使用して、トラフィックの宛先のリージョンに応じてトラフィックを一致させることができま す。

- [Primary]: 宛先デバイスが送信元と同じプライマリリージョン(アクセスリージョンとも 呼ばれる)にある場合、トラフィックに一致します。このトラフィックは、アクセスリー ジョンの双方向フォワーディング検出(BFD)を使用して宛先に到達します。
- [Secondary]: 宛先デバイスが送信元と同じプライマリリージョンにないが、送信元と同じ セカンダリリージョンにある場合、トラフィックに一致します。このトラフィックは、セ カンダリリージョンで説明されているように、ダイレクトトンネルを使用して宛先に到達 できます。
- •[Other]: 宛先デバイスが送信元と同じプライマリリージョンまたはセカンダリリージョン にない場合、トラフィックに一致します。このトラフィックには、送信元から宛先へのマ ルチホップパスが必要です。

図 14: 宛先によるトラフィックの一致

パスの設定の構成に関する情報

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

一元化されたポリシーを設定する場合、プライマリ、セカンダリ、およびターシャリと呼ばれる3つのレベルのルート設定を指定する優先カラーグループリストを作成できます。ルート設定は、次のいずれかまたは両方に基づいています。

- TLOC カラー
- マルチリージョンファブリックを使用するネットワークに関連するパスタイプ(ダイレクトトンネル、マルチホップパス、またはすべてのパス)

アプリケーション認識型ルーティング(AAR)ポリシーまたはトラフィックデータポリシーを 設定する場合、シーケンスのアクション部分で優先カラーグループリストを使用して、一致し たトラフィックのルーティング方法を指定できます。

ポリシーリスト設定の構成の詳細については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』の「Configure Centralized Policies Using Cisco vManage」を参照して ください。

95

手順の順序

- 1. 優先カラーグループリストを作成します。
- 2. 優先カラーグループリストで、パス設定(ダイレクトトンネルまたはマルチホップパス) を指定します。
- 3. AARポリシーまたはトラフィックデータポリシーで優先カラーグループリストを使用しま す。

その結果、ポリシーは、優先カラーグループリストで設定したパス設定を適用します。

マルチリージョンファブリックポリシーオプションでサ ポートされるデバイス

•ポリシーの一致条件

- traffic-to に一致: Cisco IOS XE SD-WAN デバイスのみ
- ・リージョンに一致: Cisco IOS XE SD-WAN デバイス および Cisco vEdge デバイス
- ロールに一致: Cisco IOS XE SD-WAN デバイス および Cisco vEdge デバイス
- 宛先リージョンによる一致: Cisco IOS XE SD-WAN デバイス および Cisco vEdge デバ イス

(最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco SD-WAN リリース 20.9.1)

- •ポリシーアクション:
 - パスの設定: Cisco IOS XE SD-WAN デバイス および Cisco vEdge デバイス (最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco SD-WAN リリース 20.9.1)

マルチリージョンファブリックポリシーオプションの制 約事項

- traffic-to に一致:この一致条件は、境界ルータに適用されるポリシーでのみ使用します。 このようなポリシーをエッジルータに適用しても効果はありません。
- パス設定:マルチリージョンファブリックを使用しないネットワークのポリシーを作成 する場合は、パス設定を定義しないか、すべてのパスを使用するオプションを選択します (パス設定を定義しないことと同じになります)。

マルチリージョン ファブリックのユースケース

以下は、マルチリージョンファブリックポリシー機能のユースケースです。

パス設定の構成のユースケース

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

マルチリージョンファブリックネットワークを使用している組織は、セカンダリリージョン を構成して、異なるプライマリリージョンにある2つのエッジルータ間のダイレクトトンネル パスを有効にします。

2つのエッジルータ間のトラフィックは、コアリージョンを介したマルチホップパスを使用で きるか、セカンダリリージョンによって可能になるダイレクトトンネルパスを使用できます。 ダイレクトパスは、重要なトラフィックを対象としています。プレミアムキャリアを使用し、 このパスのトラフィック量に基づいて課金されます。

図 15:マルチホップパスとダイレクトトンネルパス

重要なトラフィックのみをダイレクトパス経由で優先的にルーティングするポリシーを作成す るために、ネットワーク管理者は2つの優先カラーグループリストAとBを作成します。

 優先カラーグループリストAは、重要でないトラフィックを対象としています。マルチ ホップパスのプライマリ設定を指定します。セカンダリ設定は、ダイレクトトンネルパス を指定します。セカンダリ設定を含めることで、マルチホップパスが使用できない場合の バックアップパスが提供されます。

・優先カラーグループリストBは、重要なトラフィックを対象としています。これは、料金が発生するプレミアムリンクであるダイレクトトンネルパスのプライマリ設定を指定します。そのセカンダリ設定は、マルチホップパスを指定します。これにより、ダイレクトトンネルパスが使用できない場合のバックアップパスが提供されます。

ネットワーク管理者は、次の2つのシーケンスでアプリケーション ルーティング ポリシーを 作成します。

- ・シーケンス1は重要でないトラフィックに一致し、そのアクションのために、優先カラー グループリストAが適用されます。
- ・シーケンス2は重要なトラフィックに一致し、そのアクションのために、優先カラーグ ループリストBが適用されます。

Cisco vManage を使用した マルチリージョン ファブリック ポリシーの設定

Cisco vManage を使用して Traffic-To に一致するデータポリシーまたは アプリケーション ルート ポリシーを設定

はじめる前に

ポリシーを適用するときに使用する VPN リストを構成します。

Traffic-To に一致するデータポリシーまたはアプリケーション ルート ポリシーを設定

- 1. Cisco vManage メニューから、[Configuration] > [Policies] を選択します。
- 2. [Centralized Policies] をクリックします。
- 3. 次のいずれかを実行します。
 - ・新しいポリシーを作成するには、[Add Policy] をクリックします。
 - ・既存のポリシーを編集するには、ポリシーの行で[...]をクリックし、[Edit Policy]を クリックします。
- 4. [Next] をクリックします。
- **5.** [Next] をクリックします。
- 6. 次のいずれかをクリックして、トラフィックポリシーを作成します。

• Application Aware Routing

Traffic Data

- 7. [Add Policy] をクリックし、[Create New] を選択します。
- (注) 既存のポリシーを再利用するには、[Import Existing]を選択できます。
- 8. 新しいポリシーの名前と説明を入力します。
- 9. [Sequence Type] をクリックし、[Custom] を選択します。
- 10. [Sequence Rule] をクリックします。
- 11. [Match] (デフォルトで選択) をクリックし、[Traffic To] をクリックします。
- 12. [Match Conditions] 領域の [Traffic To] フィールドで、次のいずれかを選択します。
 - Access
 - Core
 - Service
- 13. シーケンスのアクションを選択し、ポリシーの構成を完了します。

ー般的なトラフィックポリシーの作成については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』の「Centralized Policy」を参照してください。

- **14.** ポリシーを保存するには、作成するポリシーのタイプに応じて、[Save Application Aware Routing Policy] または [Save Data Policy] をクリックします。新しいポリシーを表に示します。
- 15. [Next] をクリックします。
- **16.** [Apply Policies to Sites and VPNs] ステップで、適用するポリシーの名前を入力します。
- 17. 作成および適用するポリシーのタイプに応じて、次のいずれかをクリックします。
 - Application-Aware Routing
 - Traffic Data
- **18.** [New Site/Region List and VPN List] をクリックします。
- **19.** トラフィックデータポリシーを設定している場合は、次のいずれかのオプションを選択します。
 - From Service
 - From Tunnel
 - All

- **20.** 次のいずれかのオプションを選択して、ポリシーを適用するサイトまたはマルチリージョンファブリックリージョンを構成します。
 - [Site List]: サイトリストを選択します。
 - [Region]:マルチリージョンファブリックリージョン ID を入力するか、リージョ ンリストを選択します。
- 21. データポリシーを設定している場合は、次の手順を実行します。
 - 1. [Select VPN List] フィールドで、VPN リストを選択します。
 - **2.** [Add] をクリックします。
- **22.** [Role Mapping for Regions] をクリックします。
- 23. リージョン ID またはリージョンリストごとに、[Role] 列で、[Edge] または [Border] の ロールを選択します。ロールを選択しない場合は、Cisco vManage はリージョン内のすべ てのルータにポリシーを適用します。

- (注) Traffic-Toで一致するポリシーについては、[Border]を選択します。この一致条件は、エッジルータには影響しません。
- 24. [Save Policy] をクリックします。新しいポリシーを表に示します。必要に応じて、ポリ シーの詳細を表示するには、ポリシーの行で [...] をクリックし、[Preview] を選択しま す。

CiscovManageを使用してリージョンとロールに一致する制御ポリシーを設定

- 1. Cisco vManage メニューから、[Configuration] > [Policies] を選択します。
- 2. [Centralized Policies] をクリックします。
- 3. 次のいずれかを実行します。
 - •新しいポリシーを作成するには、[Add Policy] をクリックします。
 - ・既存のポリシーを編集するには、ポリシーの行で[...]をクリックし、[Edit Policy]を クリックします。
- **4.** [Next] をクリックします。
- 5. [Configure Topology and VPN Membership] ステップで、[Add Topology] をクリックし、 [Custom Control (Route & TLOC)] を選択します。
- 6. 新しいポリシーの名前と説明を入力します。

- 7. [Sequence Rule] をクリックします。
- 8. [Match] (デフォルトで選択) をクリックし、[Region] をクリックします。
- 9. [Match Conditions] 領域で、次のいずれかを実行します。
 - [Region List] フィールドに、事前設定済みのリージョンリスト名を入力します。
- (注) フィールドをクリックし、[New Region List] を選択してリストを定義できます。

• [Region ID] フィールドに、単一のリージョン ID を入力します。

- **10.** (オプション)構成されたリージョン内のルータタイプを指定するには、[Role]をクリックし、[Border] または [Edge] を選択します。
- 11. シーケンスのアクションを選択し、ポリシーの構成を完了します。

一般的なトラフィックポリシーの作成については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』の「Centralized Policy」を参照してください。

- 12. ポリシーを保存するには、[Save Control Policy] をクリックします。新しいポリシーを表 に示します。
- 13. [Next] をクリックします。
- **14.** [Apply Policies to Sites and VPNs] ステップで、適用するポリシーの名前を入力します。
- 15. [トポロジ (Topology)]をクリックします。
- 16. [New Site/Region List] をクリックします。
- 次のいずれかのオプションを選択して、ポリシーを適用するサイトまたはマルチリージョンファブリックリージョンを構成します。
 - [Site List]: サイトリストを選択します。
 - [Region]:マルチリージョンファブリックリージョン ID を入力するか、リージョ ンリストを選択します。
- **18.** [Role Mapping for Regions] をクリックします。
- **19.** リージョン ID またはリージョンリストごとに、[Role] 列で、[Edge] または [Border] の ロールを選択します。ロールを選択しない場合は、Cisco vManage はリージョン内のすべ てのルータにポリシーを適用します。

(注) Traffic-Toで一致するポリシーについては、[Border]を選択します。この一致条件は、エッジルータには影響しません。

20. [Save Policy] をクリックします。新しいポリシーを表に示します。必要に応じて、ポリシーの詳細を表示するには、ポリシーの行で [...] をクリックし、[Preview] を選択します。

Cisco vManage を使用した宛先リージョンに応じたトラフィックの一 致

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

アプリケーション認識型ルーティング(AAR)ポリシーまたはトラフィックデータポリシーの 設定の詳細については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』 の「Configure Centralized Policies Using Cisco vManage」を参照してください。ここでの情報は、 [Destination Region] 一致条件の使用方法のみを扱っています。

アプリケーション認識型ポリシーまたはトラフィックデータポリシーには、次の手順を使用します。

- 1. Cisco vManage メニューから、[Configuration] > [Policies] を選択します。
- 2. デフォルトで選択されている [Centralized Policy] を選択します。
- **3.** [Add Policy] をクリックします。
- 4. 必要に応じて、リストタイプをクリックしてリストを定義できます。
- **5.** [Next] をクリックします。
- 6. 必要に応じて、トポロジを追加します。
- 7. [Next] をクリックします。
- 8. 次のいずれかを実行します:
 - AAR ポリシーの場合、デフォルトで選択されている [Application Aware Routing] を クリックします。
 - ・トラフィックデータポリシーの場合、[Traffic Data] をクリックします。
- 9. [Add Policy] をクリックし、[Create New] を選択します。
- 10. 次のいずれかを実行します。
 - AAR ポリシーの場合、[Sequence Type]をクリックして、宛先ごとにトラフィックを 一致させるシーケンスを作成します。
 - トラフィックデータポリシーの場合、[Sequence Type] をクリックし、[Custom] を選 択して、宛先ごとにトラフィックを一致させるシーケンスを作成します。
- 11. [Sequence Rule] をクリックして、シーケンスの新しいルールを作成します。

- **12.** [Match] オプションを選択した状態で、[Destination Region] をクリックして、このオプションをシーケンスルールの一致条件領域に追加します。
- **13.** [Match Conditions] 領域で、[Destination Region] フィールドをクリックし、次のいずれか を選択します。
 - [Primary]:宛先デバイスが送信元と同じプライマリリージョン(アクセスリージョ ンとも呼ばれる)にある場合、トラフィックに一致します。このトラフィックは、 アクセスリージョンの双方向フォワーディング検出(BFD)を使用して宛先に到達 します。
 - •[Secondary]: 宛先デバイスが送信元と同じプライマリリージョンにないが、送信元 と同じセカンダリリージョンにある場合、トラフィックに一致します。このトラ フィックは、セカンダリリージョンで説明されているように、ダイレクトトンネル を使用して宛先に到達できます。
 - •[Other]: 宛先デバイスが送信元と同じプライマリリージョンまたはセカンダリリー ジョンにない場合、トラフィックに一致します。このトラフィックには、送信元か ら宛先へのマルチホップパスが必要です。
- **14.** このセクションで前述した「Configure Centralized Policies Using Cisco vManage」の説明に 従って、ポリシーの設定を続行します。

Cisco vManage を使用した優先カラーグループリストのパス設定の構成

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

アプリケーション認識型ルーティング(AAR)ポリシーの設定の詳細については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』の「Configure Centralized Policies Using Cisco vManage」を参照してください。ここでの情報は、優先カラーグループの一部としてパス設定を構成する方法のみを扱っています。

- Cisco vManage メニューから、[Configuration] > [Policies] を選択し、[Centralized Policy] を 選択します。
- 2. [Add Policy] をクリックします。
- 3. デフォルトで選択されている [Application List] をクリックします。
- 4. [Preferred Color Group] をクリックします。
- 5. [New Preferred Color Group] をクリックします。
- 6. 次のフィールドを設定します。

フィールド	説明
Preferred Color Group Name	カラーグループの名前を入力します。

I

フィールド	説明
Primary Colors : Color Preference	フィールドをクリックして、プライマリ設 定として1つ以上のカラーを選択します。
Primary Colors : Path Preference	ドロップダウンリストをクリックし、プラ イマリ設定として次のいずれかを選択しま す。
	• [Direct Path]:送信先デバイスと宛先デ バイス間のダイレクトパスのみを使用 します。
	 (注) 非マルチリージョンファブ リックネットワークでは、こ のオプションを使用しないで ください。
	 [Multi Hop Path]:マルチリージョンファ ブリックネットワークでは、ダイレク トパスが使用可能な場合でも、コアリー ジョンを含むマルチホップパスを送信 先デバイスと宛先デバイス間で使用し ます。
	• [All Paths]:送信先デバイスと宛先デバ イス間の任意のパスを使用します。
	(注) このオプションは、パス設定 をまったく構成しないことと 同じです。ポリシーをマルチ リージョンファブリックネッ トワーク以外に適用する場合 は、このオプションを使用し ます。
Secondary Colors : Color Preference Path Preference	[Primary Colors] オプションと同じ方法を使 用して、セカンダリ設定を構成します。
Tertiary Colors : Color Preference Path Preference	[Primary Colors] オプションと同じ方法を使 用して、ターシャリ設定を構成します。

ポリシーの優先カラーグループの使用

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

ポリシーの設定の詳細については、『Cisco SD-WAN Policies Configuration Guide, Cisco IOS XE Release 17.x』の「Configure Centralized Policies Using Cisco vManage」を参照してください。ここでの情報は、パス設定を組み込んだ[Preferred Color Group]アクションの使用方法のみを扱っています。

アプリケーション認識型ポリシーまたはトラフィックデータポリシーには、次の手順を使用します。

- 1. Cisco vManage メニューから、[Configuration] > [Policies] を選択します。
- **2.** [Add Policy] をクリックします。
- 3. デフォルトで選択されている [Centralized Policy] を選択します。
- **4.** [Add Policy] をクリックします。
- 5. 必要に応じて、リストタイプをクリックしてリストを定義できます。
- **6.** [Next] をクリックします。
- 7. 必要に応じて、トポロジを追加します。
- 8. [Next] をクリックします。
- 9. 次のいずれかを実行します:
 - AAR ポリシーの場合、デフォルトで選択されている [Application Aware Routing] を クリックします。
 - ・トラフィックデータポリシーの場合、[Traffic Data] をクリックします。
- **10.** [Add Policy] をクリックし、[Create New] を選択します。
- 11. 次のいずれかを実行します。
 - AAR ポリシーの場合、[Sequence Type]をクリックして、宛先ごとにトラフィックを 一致させるシーケンスを作成します。
 - トラフィックデータポリシーの場合、[Sequence Type] をクリックし、[Custom] を選 択して、宛先ごとにトラフィックを一致させるシーケンスを作成します。
- 12. [Sequence Rule] をクリックして、シーケンスの新しいルールを作成します。
- **13.** [Actions] をクリックします。
- 14. AAR ポリシーの場合は、次の手順を実行します。
 - 1. [SLA Class List] をクリックします。
 - **2.** [Preferred Color Group] フィールドをクリックして、優先カラーグループを選択します。

15. トラフィック制御ポリシーの場合は、次の手順を実行します。

- 1. [承認 (Accept)] をクリックします。
- 2. [Preferred Color Group] をクリックします。
- **3.** [Preferred Color Group] フィールドをクリックして、優先カラーグループを選択します。

CLI を使用した マルチリージョン ファブリック ポリシー の設定

CLI を使用したパスタイプに応じたルートの一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

はじめる前に

この手順は、マルチリージョンファブリックアーキテクチャに適用されます。

パスタイプによる一致の背景情報については、パスのタイプ、リージョン、またはロールによるルートの一致 (53 ページ)を参照してください。

制御ポリシーでの一致パラメータの使用に関する一般的な情報については、「Match Parameters - Control Policy」を参照してください。

パスタイプに応じたルートの一致

制御ポリシーで、path-type を使用してパスタイプに応じてルートに一致します。

match route path-type {hierarchical-path | direct-path | transport-gateway-path}

例

この例には、次のことを行う2つの制御ポリシーシーケンスが含まれています。

- シーケンス1は、あるエッジルータから別のエッジルータへの階層パスを使用するルート に一致します。これは、acceptのポリシーアクション、ルートの優先値、および100の omp タグを構成します。
- ・シーケンス2は、あるエッジルータから別のエッジルータへのダイレクトパスを使用する ルートに一致します。これは、acceptのポリシーアクションと200のompタグを構成しま す。

```
policy
control-policy control_policy_A
sequence 1
```
```
match route
    path-type hierarchical-path
    action accept
    set
     preference 200
      omp-tag 100
     1
    !
   Т
sequence 2
   match route
    path-type direct-path
    1
    action accept
    set
     omp-tag 200
    1
  !
  1
 default-action reject
 !
1
```

CLIを使用したリージョンとロールに応じたルートの一致

サポートされている最小リリース: Cisco IOS XE リリース 17.8.1a、Cisco vManage リリース 20.8.1

はじめる前に

この手順は、マルチリージョンファブリックアーキテクチャに適用されます。

パスタイプによる一致の背景情報については、パスのタイプ、リージョン、またはロールによるルートの一致(53ページ)を参照してください。

制御ポリシーでの一致パラメータの使用に関する一般的な情報については、「Match Parameters - Control Policy」を参照してください。

リージョンとロールに応じたルートの一致

制御ポリシーで、regionを使用して特定のリージョンにあるデバイスによって発信されたルートを一致させます。必要に応じて、発信元デバイスのロールに応じて一致するroleキーワードを含めることができます。

match route region {region-id | region-list} [role {border-router | edge-router}]

例

次のmatch ステートメントは、リージョン1のエッジルータから発信されるルートに一致しま す。

match route region 1 role edge-router

CLI を使用して Traffic-To に一致するデータポリシーまたはアプリケー ション ルート ポリシーを設定

はじめる前に

この構成には、特定のマルチリージョンファブリック機能である match traffic-to 条件と、マ ルチリージョンファブリックに特定ではないがマルチリージョンファブリックのリージョン オプションがある apply-to ステップが含まれます。

Traffic-To に一致するデータポリシーまたはアプリケーション ルート ポリシーを設定

1. Cisco vSmart コントローラ で、コンフィギュレーション モードを開始します。

vSmart# config terminal

 データポリシーまたはアプリケーション ルート ポリシーを設定するときに、一致条件を 設定します。

vSmart(config) # vSmart(config) #policy {app-route-policy | data-policy } policy-name
vpn-list vpn-list-name sequence sequence-number match traffic-to {access | core |
service}

3. 一致モードを終了します。

vSmart(config-match) # top

ポリシーを適用し、オプションでマルチリージョンファブリックリージョンまたはリージョンリストを指定し、border-routerのロールを指定します。

- (注)
- role キーワードはエッジルータを指定することもできますが、match traffic-to は境界ルータに適用されるポリシーにのみ使用します。

vSmart(config)# apply-policy {region region-id | region-list | site-list} role border-router data-policy policy-name [from-tunnel | from-service | all]

例

この例では、アクセスリージョンへのトラフィックフローに一致するデータポリシーを作成 し、そのポリシーをリージョン1の境界ルータに適用します。apply-policy コマンドの from-tunnel キーワードは、ポリシーのターゲットを絞り込み、次のいずれかの方法でトラ フィックフローに対処します。

- •アクセスリージョンからアクセスリージョンへ
- コアリージョンからアクセスリージョンへ

```
vSmart# config terminal
vSmart(config)# policy data_policy_a vpn-list vpn1 sequence 1 match traffic-to
access
vSmart(config-match)# top
```

vSmart(config)# apply-policy region 1 role border-router data-policy data_policy_a from-tunnel

CLI を使用してリージョンとロールに一致する制御ポリシーを設定

はじめる前に

この手順では、リージョンに応じて、およびオプションでロール(境界ルータまたはエッジ ルータ)に応じて、ルートまたはTLOCを一致させる制御ポリシーを構成します。ロールを指 定しない場合、ポリシーは両方のロールのルータに適用されます。

たとえば、リージョン1のエッジルータのすべての TLOC に一致するポリシーを作成できま す。

region および role 一致条件は マルチリージョン ファブリック アーキテクチャに固有ですが、 ポリシーにはマルチリージョンファブリック に関係のない一致条件を含めることができます。

リージョンとロールに一致する制御ポリシーを設定

- Cisco vSmart コントローラ で、コンフィギュレーション モードを開始します。 vSmart# config terminal
- 2. 制御ポリシーで使用するリージョンリストを定義します。
 - 1. vSmart(config) # policy lists region-list region-list-name
 - リージョンリストに追加するリージョンごとに、次のコマンドを繰り返します。 vSmart(config-region-list-region-list-name)# region-id region-id
 - リージョン リスト コンフィギュレーション モードを終了します。

vSmart(config-region-list-region-list-name) # top

- **4.** リージョンリストが正しく構成されていることを確認するには、構成を表示します。 vSmart(config)# **show configuration**
- 3. 制御ポリシーを設定するときは、特定のリージョン、およびオプションでデバイスロール に一致させます。

例

この例では、リージョン1、2、および3を含む region_a というリージョンリストを作成します。

```
vSmart# config terminal
vSmart(config)# policy lists region-list region_list_a
vSmart(config-region-list-region_list_a)# region-id 1
vSmart(config-region-list-region_list_a)# region-id 2
vSmart(config-region-list-region list a)# region-id 3
```

```
vSmart(config-region-list-region_list_a)# top
vSmart(config)# show configuration
policy
lists
  region-list region_list_a
  region-id 1
  region-id 2
  region-id 3
 !
!
vSmart(config)# policy control-policy policy_a sequence 1 match route region-list
region list a role border-router
```

CLI を使用した宛先リージョンに応じたトラフィックの一致

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

アプリケーション ルート ポリシーまたはデータポリシー内で、**destination-region** キーワード を使用して、宛先リージョンに応じてトラフィックを一致させます。

1. アプリケーション ルート ポリシーまたはデータポリシーを作成します。

```
app-route-policy policy-name
```

または

data-policy policy-name

2. VPN または VPN リストを指定します。

vpn vpn-id

または

```
vpn-list vpn-list-name
```

3. シーケンスを作成します。

sequence sequence-number

4. シーケンス内で一致条件を作成します。

match

5. 一致条件の詳細を入力します。

```
dscp dscp-id
destination-region {primary | secondary | other}
```

次に、3 つの異なる destination-region タイプのそれぞれのシーケンスを含むサンプル アプリ ケーション ルート ポリシーを示します: primary、secondary、other。

```
app-route-policy SAMPLE_HSDWAN_AAR
vpn-list ONE
sequence 10
match
dscp 46
destination-region primary
```

```
action
   sla VOICE_SLA strict preferred-color-group GROUP2_COLORS
  !
  !
 sequence 20
  match
   dscp 46
   destination-region secondary
  !
  action
   sla VOICE SLA preferred-color-group GROUP1 COLORS
  !
 1
 sequence 30
  match
   dscp 46
   destination-region other
  1
  action
   sla VOICE SLA preferred-color-group GROUP1 COLORS
  1
 !
1
1
```

次に、3つの異なる destination-region タイプのそれぞれのシーケンスを含むサンプルデータポ リシーを示します: primary、secondary、other。

```
data-policy SAMPLE HSDWAN DATA
vpn-list ONE
  sequence 10
  match
   dscp 46
   destination-region primary
   !
   action
   set
    preferred-color-group GROUP2_COLORS
   1
  !
  sequence 20
  match
   dscp 46
   destination-region secondary
   !
   action
   set
    preferred-color-group GROUP1 COLORS
   1
  !
  sequence 30
  match
   dscp 46
   destination-region other
  !
   action
   set
    preferred-color-group GROUP1_COLORS
   !
  !
 1
!
```

CLI を使用した優先カラーグループリストのパス設定の構成

最小リリース: Cisco IOS XE リリース 17.9.1a、Cisco vManage リリース 20.9.1

1. 新しいポリシーリストを設定します。

policy lists

2. 優先カラーグループリストを作成します。

preferred-color-group group-name

3. プライマリ設定を構成します。

(注) プライマリ、セカンダリ、ターシャリの設定があります。

primary-preference

4. プライマリ設定のカラー設定を構成します。

 (注) カラーオプションの完全なリストについては、Cisco SD-WANのドキュメントを参照して ください。オプションは、デフォルト、3g、biz-internet、blue、bronze、custom1、custom2、 custom3、gold、green、lte、metro-ethernet、mpls、private1、private2、private3、private4、 private5、private6、public-internet、red、および silver を含みます。

color-preference color-option

5. プライマリ設定のパス設定を構成します。

path-preference {direct-path + multi-hop-path + all-paths}

6. プライマリ設定の構成を終了します。

exit

7. セカンダリ設定とターシャリ設定について、手順3から6を繰り返します。

例:優先カラーグループのパス設定を構成

次の優先カラーグループ構成では、GROUP1_COLORS カラーグループに [direct-tunnel] を指定 するプライマリ設定があります。セカンダリ設定は、[multi-hop-path] を指定します。ポリシー でGROUP1_COLORS を使用すると、ポリシーはマルチホップパスよりもダイレクトトンネル パスを優先します。

```
policy
lists
preferred-color-group GROUP1_COLORS
primary-preference
color-preference internet
path-preference direct-tunnel
```

```
Т
secondary-preference
 color-preference mpls
 path-preference multi-hop-path
 1
tertiary-preference
 color-preference lte
!
!
preferred-color-group GROUP2 COLORS
priority-one
 color-preference mpls
1
priority-two
 color-preference internet
!
!
preferred-color-group GROUP3 COLORS
priority-one
 color-preference mpls internet lte
 1
  1
```

例:AAR ポリシーでのパス設定の使用

次の AAR ポリシーは、前述の優先カラーグループ構成を使用します。3 つのシーケンスのそ れぞれについて、アクションは GROUP1_COLORS、GROUP2_COLORS、または GROUP3_COLORS などの優先カラーグループを指定します。たとえば、シーケンス 20 は GROUP1_COLORS カラーグループを適用します。これには、ダイレクトトンネルのプライマ リ設定とマルチホップパスのセカンダリ設定が含まれます。

```
app-route-policy SAMPLE HSDWAN AAR
vpn-list ONE
  sequence 10
  match
   dscp 46
   !
   action
   sla VOICE SLA strict preferred-color-group GROUP2 COLORS
   !
  1
  sequence 20
  match
   dscp 34
   !
   action
   sla VOICE SLA preferred-color-group GROUP1 COLORS
  !
  1
  sequence 30
  match
   dscp 28
  !
  action
   sla VOICE SLA preferred-color-group GROUP3 COLORS
   !
  !
 1
!
```

例:トラフィックデータポリシーでのパス設定の使用

次のデータポリシーは、このセクションで前述したのと同じ優先カラーグループ構成を使用します。上記のアプリケーション ルート ポリシーと同様に、このデータポリシーのシーケンス20は、ダイレクトトンネルのプライマリ設定とマルチホップパスのセカンダリ設定が含まれるGROUP1_COLORS カラーグループを適用します。

```
data-policy SAMPLE HSDWAN DATA
vpn-list ONE
 sequence 10
  match
   dscp 46
  !
  action
   set
    preferred-color-group GROUP2 COLORS
  1
  1
  sequence 20
  match
   dscp 34
  !
  action
   set
    preferred-color-group GROUP1 COLORS
   Т
  !
  sequence 30
  match
   dscp 28
  1
  action
   set
    preferred-color-group GROUP3_COLORS
  1
  !
 Т
!
```

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。