

VXLAN の実装

このモジュールでは、一般的な VXLAN の概念情報と、Cisco ASR 9000 シリーズルータでのレ イヤ 2 VXLAN の設定情報を示します。レイヤ 3 VXLAN の設定情報については、『Cisco ASR 9000 Series Aggregation Services Router MPLS Layer 3 VPN Configuration Guide』の「Implementing L3 VXLAN」の章を参照してください。VXLAN は、VLAN の場合と同じイーサネットレイヤ 2 ネットワークサービスを提供しますが、より優れた拡張性と柔軟性を備えています。

表 1: VXLAN の機能の履歴

リリース	変更内容
リリース 5.2.0	この機能は、Cisco ASR 9000 シリーズ ルータ で導入されました。
リリース 5.3.1	VXLANエニーキャストゲートウェイ機能が導 入されました。
リリース 6.1.2	次の機能が追加されました。 • EVPN VXLAN レイヤ 2 Data Center Interconnect ゲートウェイ • EVPN ESI マルチパス

- VXLAN の実装の前提条件 (2ページ)
- VXLAN の実装に関する情報 (2ページ)
- •レイヤ2VXLANゲートウェイの設定 (5ページ)
- ・レイヤ 2 VXLAN ゲートウェイの実装の設定例 (11ページ)
- ・ EVPN VXLAN レイヤ 2 Data Center Interconnect ゲートウェイ (13 ページ)
- EVPN VXLAN レイヤ 2 Data Center Interconnect ゲートウェイの設定 (15ページ)
- •例:エニーキャスト VTEP IP アドレス設定を使用したオールアクティブ マルチホーミン グの設定 (30ページ)
- •例:一意の VTEP IP アドレス設定を使用したオールアクティブ マルチホーミングの設定 (31ページ)

VXLANの実装の前提条件

この前提条件は、VXLAN の実装に適用されます。

適切なタスク ID を含むタスク グループに関連付けられているユーザ グループに属している必要があります。このコマンド リファレンスには、各コマンドに必要なタスク ID が含まれます。

ユーザグループの割り当てが原因でコマンドを使用できないと考えられる場合、AAA 管理者 に連絡してください。

VXLANの実装に関する情報

VXLAN を実装するには、次の概念を理解している必要があります。

VXLAN

VXLANは、VLANの場合と同じイーサネットレイヤ2ネットワークサービスを提供します が、より優れた拡張性と柔軟性を備えています。VXLANは、レイヤ3ネットワーク上のレイ ヤ2オーバーレイ方式です。VXLANはMAC Address-in-User Datagram Protocol (MAC-in-UDP) のカプセル化を使用して、コアネットワークでレイヤ2セグメントを拡張する方法を提供しま す。VXLANは、共有される共通の物理インフラストラクチャにおいて、柔軟で大規模なマル チテナント環境をサポートするためのソリューションです。コアネットワークでの転送プロト コルは IP と UDP です。VLAN と比較して、VXLAN には次の利点があります。

- ・データセンター全体にマルチテナントセグメントを柔軟に配置します。テナントのワーク ロードがデータセンター内の物理ポッド全域に配置されるように、基盤となる共有ネット ワークインフラストラクチャでレイヤ2セグメントを拡張するソリューションを提供しま す。
- より多くのレイヤ2セグメントをアドレス指定するための拡張性が高くなります。VLAN は12ビットのVLAN IDを使用してレイヤ2セグメントをアドレス指定します。このた め、拡張性は制限されVLANの数は最大4094個になります。VXLANは、VXLANネット ワーク識別子(VNID)と呼ばれる24ビットのセグメントIDを使用します。これにより、 最大1600万のVXLANセグメントを同じ管理ドメインに共存させることができます。
- 基盤となるインフラストラクチャで使用可能なネットワークパスの使用率が向上します。
 VLANはループ防止のためにスパニングツリープロトコルを使用します。このため、冗長パスをブロックすることによってネットワーク内の半数のネットワークリンクを使用しません。一方、VXLANパケットはレイヤ3ヘッダーに基づいて基盤となるネットワーク経 由で転送されます。VXLANでは、レイヤ3ハーティング、Equal Cost Multipath (ECMP; 等コストマルチパス)ルーティング、およびリンクアグリゲーションプロトコルを活用して、すべての利用可能なパスを使用できます。

VXLAN エニーキャストゲートウェイ

VXLAN エニーキャストゲートウェイ機能は、エニーキャスト機能を VXLAN に拡張します。 これにより、アンダーレイ マルチキャスト ロードバランシングおよび冗長性のためにネット ワーク上でエニーキャストルーティングを使用できるようになります。

VXLAN エニーキャスト ソリューションは次のとおりです。

- ・完全なアクティブ-アクティブファーストホップゲートウェイを許可します(フロー単位 でアクティブ-アクティブ)。
- 新しいコントロール プレーン プロトコルや管理プレーンプロトコル、またはどのような 形式の外部 SDN コントローラや NMS もゲートウェイの調整や同期を行いません。

エニーキャストゲートウェイ機能は、次の基本的な概念に従います。

- 複数のVXLANゲートウェイ間で仮想レイヤ3ゲートウェイと仮想VTEPを作成する。これらのゲートウェイは、オーバーレイIPアドレス、オーバーレイMACアドレス、およびアンダーレイVTEPIPアドレスと同じ設定を使用します。
- 特定のタイプのオーバーレイ制御パケットのデータプレーンミラーとして使用する、ゲートウェイ間のプライベートマルチキャストグループを作成する。

(注) VXLAN エニーキャストゲートウェイ機能は、Cisco ASR 9000 高密度 100GE イーサネットライ ンカードのみでサポートされます。

推奨事項

VXLAN エニーキャストゲートウェイ機能を設定する前に、次の推奨事項を考慮する必要があります。

- •BGPは、データセンター内のVXLANエニーキャスト機能とは連動しません。
- IGP は、データセンター内のアンダーレイネットワークで動作します。
- •BGP および IGP は、WAN 側で使用する必要があります。
- データセンターのトップオブラック(TOR)スイッチは、ルータのカスタマーIPとエニー キャストゲートウェイ間のスタティックルートを使用します。

VxLAN エニーキャストゲートウェイを展開するための要件

マルチキャストグループは制御フレームのミラーリングに使用されるため、IPv6ネイバーアド バタイズメントの場合は、2つのルータ(またはインターフェイス)間で同じアドレスが検出 されることにより、重複アドレス検出(DAD)プロトコルがサービスをダウンさせます。した がって、BVIインターフェイスでIPv6DADを無効にし、不要ノード検出(ND)応答を有効に する必要があります。

VXLAN のパケット形式

VXLAN は MAC-in-UDP のカプセル化方式を定義します。この方式において、元のレイヤ2フレームに VXLAN ヘッダーが追加され、UDP-IP パケットに置かれます。この MAC-in-UDP のカプセル化によって、VXLAN はレイヤ3ネットワーク上でレイヤ2ネットワークをトンネルします。VXLAN のパケット形式を次の図に示します。

図 1: VXLAN のパケット形式

上図に示すように、VXLANは24ビットVNIDといくつかの予約ビットで構成される8バイト VXLAN ヘッダーを導入します。VXLAN ヘッダーおよび元のイーサネット フレームは、UDP ペイロードに入ります。24ビットVNIDは、レイヤ2セグメントを識別し、セグメント間でレ イヤ2の分離を維持するために使用されます。VNIDのすべての24ビットを使用して、VXLAN は約1600万個のLAN セグメントをサポートできます。

VXLAN トンネル エンドポイント

VXLANはVXLANトンネルエンドポイント(VTEP)デバイスを使用してテナントのエンドデ バイスを VXLAN セグメントへマッピングし、VXLAN のカプセル化およびカプセル化解除を 実行します。各 VTEP 機能には2つのインターフェイスがあります。1つはブリッジングを介 してローカル エンドポイントの通信をサポートするためのローカル LAN セグメント上のス イッチインターフェイスで、もう1つは、転送 IP ネットワークのための IP インターフェイス です。

IPインターフェイスには一意のIPアドレスがあります。これは、インフラストラクチャVLAN として知られる、転送 IP ネットワーク上の VTEP を識別します。VTEP デバイスはこの IP ア ドレスを使用してイーサネット フレームをカプセル化し、カプセル化されたパケットを、IP インターフェイスを介して転送ネットワークへ送信します。また、VTEP デバイスはリモート VTEP で VXLAN セグメントを検出し、IP インターフェイスを介してリモートの MAC Address-to-VTEP マッピングについて学習します。次の図に、VTEPの機能コンポーネントとト ランスポートIP ネットワークを介したレイヤ2接続用に作成された論理トポロジを示します。 🗵 2 : VTEP

VXLAN セグメントは基盤となるネットワークトポロジに依存しません。逆に、VTEP 間の基盤となる IP ネットワークは、VXLAN オーバーレイに依存しません。これは送信元 IP アドレスとして開始 VTEP を持ち、宛先 IP アドレスとして終端 VTEP を持っており、外部 IP アドレス ヘッダーに基づいてパケットをカプセル化します。

レイヤ2VXLAN ゲートウェイの設定

レイヤ 2 VXLAN ゲートウェイは、同じレイヤ 2 ネットワーク内の VXLAN セグメントと非 VXLAN セグメント (VLAN や VPLS など)の間のトラフィックをブリッジします。VXLAN レイヤ 2 ゲートウェイの動作は、データプレーン MAC アドレスラーニングと、IP マルチキャ ストによるマルチデスティネーショントラフィックのフラッディング (未知のユニキャスト、 マルチキャスト、ブロードキャストフレームなど)に基づいています。次のセクションでは、 ASR 9000 シリーズ ルータを、同じ L2 ドメイン内の VLAN および VXLAN セグメント間のレ イヤ 2 VXLAN ゲートウェイとして設定する方法を示します。

前提条件

VXLAN レイヤ2ゲートウェイとして Cisco ASR 9000 シリーズルータを設定するための前提条 件を、次に示します。

- ループバックインターフェイスを設定します。これは、ローカルVTEPの送信元インター フェイスとして機能します。
- ・リモート VTEP へのユニキャストの到達可能性を設定します。
- Bidirectional Protocol Independent Multicast (Bidir PIM) または PIM スパースモードを設定 します。詳細については、 *Multicast Configuration Guide for Cisco ASR 9000 Series Routersを* 参照してください。

機能制限

VXLAN の設定時には、次の制限事項を考慮してください。

- VXLAN は、オーバーレイトランスポート仮想化(OTV)および VXLAN UDP ポートでの み設定します。
- ループバックインターフェイスのみを送信元インターフェイスにできます。
- 複数のNVEインターフェイス間でVNI、マルチキャストグループ、またはソースインター フェイスを共有することはできません。
- VNI範囲とマルチキャスト範囲は、どちらも連続した範囲のみを指定できます。カンマ区 切り値を使用した連続していない範囲はサポートされていません。
- マルチキャストグループへの VNI のマッピングには、1:1 または N:1 のいずれかを使用できます。次に例を示します。
 - 「member vni 5000 mcast-group 239.1.1.1」コマンドは、有効な 1:1 のマッピングを設定 します。
 - 「member vni 5000-5005 mcast-group 239.1.1.1」コマンドは、有効な N:1 のマッピング を設定します。
- VNI が VNI 範囲の一部として設定されている場合は、同じ範囲の一部としてのみ変更または削除できます。たとえば、「member vni 5000-5002 mcast-group 239.1.1.1」コマンドが設定されている場合は、「no member vni 5001」コマンドを使用して NVE インターフェイスから VNI 5001 の関連付けのみを解除することはできません。
- •スタティック MAC 設定はサポートされていません。
- システムごとに最大128kのレイヤ2およびレイヤ3サブインターフェイスを設定できます。この設定には、レイヤ2サブインターフェイスとレイヤ3サブインターフェイス両方の組み合わせを使用できます。または、すべてレイヤ2サブインターフェイスにすることや、すべてレイヤ3サブインターフェイスにすることもできます。

システムでは、システムごとに 128k を超えるサブインターフェイスを設定できますが、 サービスにこの設定を使用することはできません。128kのサブインターフェイスのしきい 値に達すると、システムにより警告メッセージが表示されますが、設定は引き続き適用さ れます。ただし、サービスにこの設定を使用することはできません。

ネットワーク仮想化エンドポイント(NVE)インターフェイスの作成 と設定

NVE インターフェイスを作成し、VXLAN の VXLAN トンネルエンドポイント (VTEP) とし て設定するには、次の作業を実行します。

手順の概要

- 1. interface nve nve-identifier
- **2.** (オプション) overlay-encapsulation vxlan
- 3. source-interface loopback loopback-interface-identifier
- **4**. **member vni** *vni*_*number* [-*end*_*vni*_*range*] **mcast-group** *ip*_*address* [*end*_*ip*_*address*_*range*]
- **5.** $(\forall \forall \forall \exists \vee)$ any cast source-interface loopback *loopback-interface-identifier* sync-group *ip_address*
- 6. commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 interface nve nve-identifier

例:

RP/0/RSP0/cpu 0: router(config) # interface nve 1

NVE インターフェイスを作成し、NVE インターフェイス設定サブモードを開始します。

ステップ2 (オプション) overlay-encapsulation vxlan

例:

RP/0/RSP0/cpu 0: router(config-if)# overlay-encapsulation vxlan

NVE インターフェイスの VXLAN カプセル化を設定します。VXLAN は、NVE インターフェイスのデフォルトのカプセル化です。この手順は、カプセル化を変更していない場合はオプションです。

ステップ3 source-interface loopback loopback-interface-identifier

例:

RP/0/RSP0/cpu 0: router(config-if)# source-interface loopback 1

ループバックインターフェイスを VTEP の送信元インターフェイスとして設定します。

ステップ4 member vni vni number [-end_vni range] mcast-group ip_address [end_ip_address_range]

例:

RP/0/RSP0/cpu 0: router(config-if)# member vni 1-10 mcast-group 224.2.2.2 224.2.2.10

VXLAN ネットワーク識別子(VNI)を使用して単一の VXLAN または連続する範囲の VXLAN を NVE イ ンターフェイスに関連付け、この VNI に関連付けられるマルチキャストアドレスまたは連続するマルチ キャストアドレス範囲を指定します。

- (注) VNI とマルチキャストグループとのマッピングは、1対1または多対1です。
 - ・不連続な VXLAN または VXLAN 範囲を NVE インターフェイスに関連付けるには、VXLAN または VXLAN 範囲ごとに次の手順を実行します。たとえば、

RP/0/RSP0/cpu 0: router(config-if)# member vni 10 mcast-group 224.2.2.10
RP/0/RSP0/cpu 0: router(config-if)# member vni 23 mcast-group 224.2.2.23
RP/0/RSP0/cpu 0: router(config-if)# member vni 50-59 mcast-group 224.2.2.50 224.2.2.59
RP/0/RSP0/cpu 0: router(config-if)# member vni 100-120 mcast-group 224.2.2.100 224.2.2.120

ステップ5 (オプション) anycast source-interface loopback *loopback-interface-identifier* sync-group *ip_address*

例:

RP/0/RSP0/cpu 0: router(config-if)# anycast source-interface loopback 1 sync-group 192.23.2.20

この VTEP のエニーキャスト モード パラメータを設定します。

ステップ6 commit コマンドまたは end コマンドを使用します。

commit:設定の変更を保存し、コンフィギュレーションセッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

- [Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。
- [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

次のタスク

設定された NVE インターフェイス情報を表示するには、show nve interface コマンドを使用し ます。

レイヤ2サブインターフェイスの作成と設定

VLANセグメントに関連付けられたレイヤ2サブインターフェイスを作成するには、次の作業 を実行します。

手順の概要

- 1. interface gigabitEthernet interface-identifier l2transport
- 2. dot1q vlan vlan-identifier
- 3. commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 interface gigabitEthernet interface-identifier l2transport

例:

RP/0/RSP0/cpu 0: router(config)# interface gigabitEthernet 0/0/0/0.100 l2transport

レイヤ2サブインターフェイスを作成し、サブインターフェイス設定モードを開始します。

ステップ2 dot1q vlan vlan-identifier

例:

RP/0/RSP0/cpu 0: router(config-if)# dot1q vlan 100

インターフェイスの VLAN を設定します。

ステップ3 commit コマンドまたは end コマンドを使用します。

commit : 設定の変更を保存し、コンフィギュレーション セッションに留まります。 end : 次のいずれかのアクションを実行することをユーザに要求します。

- [Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。
- [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

VLAN および VXLAN のブリッジドメインへの関連付け

VLAN および VXLAN をブリッジドメインに関連付けるには、次の作業を実行します。

手順の概要

- 1. l2vpn
- 2. bridge group bridge-group-name
- 3. bridge-domain bridge-domain-name
- 4. member vni vxlan-identifier
- 5. interface gigabitEthernet sub-interface-identifier
- 6. commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 l2vpn

例:

RP/0/RSP0/cpu 0: router(config)# l2vpn

l2vpn コンフィギュレーション モードを開始します。

ステップ2 bridge group bridge-group-name

例:

RP/0/RSP0/cpu 0: router(config=l2vpn)# bridge group bridgegroup1

ブリッジグループ設定モードを開始します。

ステップ3 bridge-domain bridge-domain-name

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg) # bridge-domain bdomain1

ブリッジドメイン設定モードを開始します。

ステップ4 member vni vxlan-identifier

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg-bd)# member vni 100

VXLAN をブリッジドメインに関連付けます。

ステップ5 interface gigabitEthernet sub-interface-identifier

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg-bd)# interface gigabitEthernet 0/0/0/0.200

VLAN サブインターフェイスを使用して、VLAN をブリッジドメインに関連付けます。

ステップ6 commit コマンドまたは end コマンドを使用します。

commit:設定の変更を保存し、コンフィギュレーションセッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

- [Yes]:設定変更を保存し、コンフィギュレーション セッションを終了します。
- •[No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

VXLAN 送信元 UDP ポートの設定

これはオプションのタスクです。デフォルトでは、カプセル化 VXLAN セグメントの送信元 UDPポートは、内部ペイロードのレイヤ2アドレスフィールドのハッシュ関数によって計算さ れます。内部ペイロードのレイヤ2またはレイヤ3アドレスフィールドのいずれかで実行され るハッシュ関数を設定するには、次の作業を実行します。

手順の概要

- 1. l2vpn
- **2.** load-balancing flow [src-dst-mac | src-dst-ip]

手順の詳細

ステップ1 l2vpn

例:

RP/0/RSP0/cpu 0: router(config) # 12vpn

l2vpn コンフィギュレーション モードを開始します。

ステップ2 load-balancing flow [src-dst-mac | src-dst-ip]

例:

RP/0/RSP0/cpu 0: router(config-12vpn)# load-balancing flow src-dst-mac

ハッシュ関数用に内部ペイロードのレイヤ2またはレイヤ3アドレスフィールドのいずれかを選択します。

VXLAN 宛先 UDP ポートの設定

UDP ポート番号 4789 と 8472 はそれぞれ VXLAN と OTV に割り当てられます。カプセル化 VXLAN セグメントの宛先 UDP ポート番号を設定するには、次の作業を実行します。デフォル トでは、カプセル化 VXLAN データグラムの宛先 UDP ポート番号が 4789 に設定されているた め、これはオプションのタスクです。宛先 VTEP が OTV ポートを使用して VXLAN をサポー トしている場合は、宛先 UDP ポート番号を 8472 に設定する必要があります。

手順の概要

1. vxlan udp port port-number

手順の詳細

vxlan udp port port-number

例:

RP/0/RSP0/cpu 0: router(config)# vxlan udp port 4789

カプセル化 VXLAN セグメントの宛先 UDP ポート番号を設定します。

レイヤ2VXLAN ゲートウェイの実装の設定例

次の例は、PE ルータ間のバンドルリンク接続としてコアネットワークが簡素化されたサンプ ルネットワークトポロジの、2台のプロバイダーエッジ (PE) ルータ (R1 および R2) でのレ イヤ 2 VXLAN ゲートウェイ設定を示しています。

図 3: レイヤ 2 VXLAN ゲートウェイを使用するネットワーク

R1 での設定:

```
interface Bundle-Ether10
  ipv4 address 192.168.1.1/24
!
interface Loopback0
  ipv4 address 1.1.1.1/32
!
interface T0/2/0/1
  no shut
!
interface T0/2/0/1.200 l2transport
encapsulation dot1q 200
```

```
1
router ospf underlay
router-id 1.1.1.1
 area O
 interface Bundle-Ether10
  interface Loopback0
I.
interface nve 1
  member vni 1 mcast-group 224.2.2.2 0.0.0.0
  overlay-encapsulation vxlan
 source-interface Loopback0
1
12vpn
bridge group vxlan
 bridge-domain vxlan
   interface T0/2/0/1.200
    member vni 1
  1
multicast-routing
 address-family ipv4
 interface Loopback0
    enable
  interface Bundle-Ether10
     enable
!
router pim
address-family ipv4
  rp-address 1.1.1.1 bidir
```

R2 での設定:

```
interface Bundle-Ether10
 ipv4 address 192.168.1.2/24
1
interface Loopback0
 ipv4 address 2.2.2/32
1
interface T0/3/0/23
no shut
1
interface T0/3/0/23.200 l2transport
encapsulation dot1q 200
!
router ospf underlay
router-id 2.2.2.2
area O
 interface Bundle-Ether10
 interface Loopback0
!
Interface nve 1
 member vni 1 mcast-group 224.2.2.2 0.0.0.0
 overlay-encapsulation vxlan
 source-interface Loopback0
1
12vpn
bridge group vxlan
 bridge-domain vxlan
   interface T0/3/0/23.200
   member vni 1
 1
multicast-routing
address-family ipv4
 interface Loopback0
    enable
  interface Bundle-Ether10
```

enable

1

router pim
address-family ipv4
rp-address 1.1.1.1 bidir

EVPN VXLAN レイヤ 2 Data Center Interconnect ゲートウェ イ

Cisco ASR 9000 シリーズルータはデータセンター相互接続(DCI) レイヤ2ゲートウェイとし て機能し、MPLS ベースの L2VPN ネットワークを介して EVPN VXLAN ベースのデータセン ター間にレイヤ2接続を提供します。データセンターは、中間サービス プロバイダー ネット ワークを通じて接続されます。EVPN VXLAN 対応データセンターは、EVPN コントロール プ レーンを使用して、1 つのデータセンターから別のデータセンターへのレイヤ2転送情報を配 信します。この機能によって冗長性、復元力、プロビジョニング簡便性が得られます。

EVPN VXLAN レイヤ 2 DCI ゲートウェイ機能は次の機能をサポートしています。

- ・シングル ホーミングでの VXLAN アクセス
- エニーキャスト VXLAN 端末エンドポイント (VTEP) IP アドレスを使用したオールアク ティブ マルチホーミングでの VXLAN アクセス
- 一意の VTEP IP アドレスを使用したオールアクティブ マルチホーミングでの VXLAN ア クセス
- VXLAN カプセル化を使用した EVPN ESI マルチパス

エニーキャスト VTEP IP アドレスを使用したオールアクティブ マルチ ホーミング

DCI は エニーキャスト VTEP IP アドレスを使用したオールアクティブ マルチホーミングに同 じエニーキャスト VTE IP アドレスを使用します。Top of Rack (ToR) が複数のパスを使用し て DCI に接続されており、トラフィックは ToR から DCI に複数の物理パスを通じて渡され、 ロードバランシングにエニーキャスト IP アドレスが使用されているトポロジを考えてみます。 DCI1 と DCI2 は、ネクストホップと同じエニーキャスト IP アドレスを使用して MAC ルート を ToR にアドバタイズします。つまり、ToR は DCI の同じエニーキャスト IP アドレスにトラ フィックを送信し、ロードバランシングに IGP ECMP を使用します。仮想 PortChannel (vPC) では、ToR1 と ToR2 で同じ IP 設定を使用できます。ToR1 と ToR2 は、ネクストホップと同じ IP アドレスを使用して MAC ルートを DCI にアドバタイズします。そのため、DCI は ToR の 同じ IP アドレスにトラフィックを送信し、ロード バランシングに IGP ECMP を使用します。 DCI は、MPLS 転送を通じてリモート データセンターにトラフィックを送信します。

図 4: エニーキャスト VTEP IP アドレスを使用したオールアクティブマルチホーミング

ー意の VTEP IP アドレスを使用したオールアクティブ マルチホーミン グ

DCI ではオールアクティブ マルチホーミングのエニーキャスト VTEP IP アドレスを一意の VTEP IP アドレスと共有しません。各 DCI は一意の VTEP IP アドレスを使用します。ToR が DCI から MAC ルートを受け取る次のトポロジを考えてみます。各 MAC ルートには一意のネ クストホップがあります。DCI1 と DCI2 は両方とも異なるネクストホップを持つ同じ MAC の ルートをアドバタイズするため、ToR には同じ MAC に 2 つの等コスト ネクストホップがあり ます。ToR は MAC にトラフィックを送信すると、ToR は両方のネクストホップ上でトラフィッ クのロード バランシングを実行します。

VXLAN の EVPN ESI マルチパス: EVI ベースのロード バランシング

EVPN イーサネット セグメント識別子(ESI) マルチパス機能は、アクティブ-アクティブの デュアルホーム接続 ToR と DCI へのマルチパス トラフィックをサポートし、データセンター 内に冗長接続を実現します。ESI マルチパスは、EVPN シグナリングを通じて ASR9k DCI ルー タによって検出されます。パスは、イーサネット セグメント識別子(ESI) と EVPN インスタ ンス(EVI)に基づいて選択されます。受信した MAC ルートのパスを解決するには、RFC 7432 に指定されているとおり、ES ごとにイーサネット A-D ルート(ES-EAD)を、EVI ごとにイー サネット A-D(EVI-EAD)を使用します。 DCI が ToR から MAC ルートを受信し、各 MAC ルートに各 ToR のネクストホップがある次の トポロジを考えてみます。同様に、DCI は ToR へのさまざまなネクストホップを使用して MAC ルートをアドバタイズします。ToR のペアの背後にある VM へ DCI がトラフィックを送信す る場合は、すべての MAC に 2 つのパスが存在します。DCI は、2 つのパス上でトラフィック をロード バランスします。パスの選択は、EVI に基づいています。たとえば、DCI1 と DCI2 は EVI1 で学習した MAC アドレス宛のすべてのトラフィックに ToR1 を選択します。また、 DCI1 と DCI2 は EVI2 で学習した MAC アドレス宛のすべてのトラフィックに ToR2 を選択し ます。

図 6: EVPN ESI マルチパス

EVPN VXLAN レイヤ 2 Data Center Interconnect ゲートウェ イの設定

EVPN VXLAN レイヤ 2 Data Center Interconnect ゲートウェイを設定するには、次のタスクを実行します。

EVPN ESI マルチパス機能を設定する場合は、エニーキャスト IP アドレスは設定しないでくだ さい。残りの設定タスクは同じです。

BGP ルーティング プロセスでの L2 EVPN アドレス ファミリの設定

BGP ルーティング プロセスで EVPN アドレス ファミリを有効にするには、次のタスクを実行 します。

手順の概要

- 1. configure
- **2.** router bgp *asn_id*
- 3. nsr
- 4. bgp graceful-restart
- 5. bgp router-idip-address
- 6. address-family l2vpn evpn
- 7. commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 router bgp asn id

例:

RP/0/RSP0/cpu 0: router(config) # router bgp 100

BGP AS 番号を指定し、BGP コンフィギュレーション モードを開始します。このモードでは、BGP ルー ティング プロセスを設定できます。

ステップ3 nsr

例:

RP/0/RSP0/cpu 0: router(config-bgp) # nsr

ノンストップルーティングを有効にします。

ステップ4 bgp graceful-restart

例:

RP/0/RSP0/cpu 0: router(config-bgp)# bgp graceful-restart

ルータのグレースフル リスタートをイネーブルにします。

ステップ5 bgp router-idip-address

例:

RP/0/RSP0/cpu 0: router(config-bgp)# bgp router-id 209.165.200.227

指定したルータ ID で、ルータを設定します。

ステップ6 address-family l2vpn evpn

例:

RP/0/RSP0/cpu 0: router(config-bgp)# address-fmaily 12vpn evpn

BGP ルーティングプロセスでグローバルに EVPN アドレスファミリを有効にし、EVPN アドレスファミリ 設定サブモードを開始します。

ステップ7 commit コマンドまたは end コマンドを使用します。

commit:設定の変更を保存し、コンフィギュレーションセッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

• [Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。

• [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。

•[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

DCIと ToR 間のルーティング セッションの設定

DCIと ToR 間のルーティングセッションを設定するには、次の作業を実行します。

手順の概要

1. configure

- **2**. **router bgp** *asn_id*
- **3.** neighborip-address
- 4. remote-as autonomous-system-number
- 5. ebgp-multihop maximum hop count
- 6. update-source *loopback*
- 7. address-family l2vpn evpn
- 8. import stitching-rt reoriginate
- **9. route-policy** *route-policy-name* **in**
- **10.** encapsulation-type type
- **11. route-policy** *route-policy-name* **out**
- 12. advertise l2vpn evpn re-originated stitching-rt
- **13.** commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 router bgp asn_id

例:

RP/0/RSP0/cpu 0: router(config) # router bgp 100

BGP AS 番号を指定し、BGP コンフィギュレーション モードを開始します。このモードでは、BGP ルー ティング プロセスを設定できます。

ステップ3 neighborip-address

例:

RP/0/RSP0/cpu 0: router(config-bgp)# neighbor 209.165.200.225

ルータを BGP ルーティングのネイバー設定モードにして、ネイバーの IP アドレス 209.165.200.225 を BGP ピアとして設定します。

ステップ4 remote-as autonomous-system-number 例: RP/0/RSP0/cpu 0: router(config-bgp-nbr)# remote-as 2000 ネイバーを作成し、そのネイバーをリモート自律システム番号に割り当てます。 ステップ5 ebgp-multihop maximum hop count 例: RP/0/RSP0/cpu 0: router(config-bgp-nbr)# ebgp-multihop 255 外部 BGP ネイバーとのマルチホップ ピアリングをイネーブルにします。 ステップ6 update-source *loopback* 例: RP/0/RSP0/cpu 0: router(config-bgp-nbr)# update-source loopback1 BGP セッションが、特定のインターフェイスのプライマリ IP アドレスをローカル アドレスとして使用 できるようにします。 ステップ7 address-family l2vpn evpn 例: RP/0/RSP0/cpu 0: router(config-bgp-nbr)# address-fmaily l2vpn evpn EVPN アドレスファミリを設定します。 ステップ8 import stitching-rt reoriginate 例: RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# import stitching-rt reoriginate スティッチング ルート ターゲット識別子と一致するルートターゲット識別子を持つ BGP EVPN NLRI か らのルーティング情報のインポートを有効にし、この再発信後のルーティング情報を L2VPN BGP ネイ バーにエクスポートします。 ステップ9 route-policy route-policy-name in 例: RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# route-policy pass-all in

着信ユニキャストルートにルートポリシーを適用します。

ステップ10 encapsulation-type type

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# encapsulation-type vxlan

カプセル化タイプとして VXLAN を設定します。

ステップ11 route-policy route-policy-name out

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# route-policy pass-all out

発信ユニキャストルートにルートポリシーを適用します。

ステップ 12 advertise l2vpn evpn re-originated stitching-rt

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# advertise l2vpn evpn re-originated stitching-rt L2VPN BGP ネイバーから受信する L2VPN EVPN ルートのアドバタイズメントを設定します。

ステップ13 commit コマンドまたは end コマンドを使用します。

commit:設定の変更を保存し、コンフィギュレーションセッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

- •[Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。
- •[No]:設定変更をコミットせずに設定セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

リモート DCI 接続の BGP セッションの設定

リモート DCI 接続に BGP セッションを設定するには、次のタスクを実行します。

手順の概要

- 1. configure
- **2.** router bgp *asn_id*
- **3.** neighborip-address
- 4. remote-as autonomous-system-number
- **5.** update-source *loopback*
- 6. address-family l2vpn evpn
- 7. import re-originate stitching-rt
- 8. advertise l2vpn evpn re-originated
- 9. commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 router bgp asn id

```
例:
```

VXLAN の実装

RP/0/RSP0/cpu 0: router(config) # router bgp 200

BGP AS 番号を指定し、BGP コンフィギュレーション モードを開始します。このモードでは、BGP ルー ティング プロセスを設定できます。

ステップ3 neighborip-address

例:

RP/0/RSP0/cpu 0: router(config-bgp)# neighbor 209.165.201.1

ルータをBGP ルーティングのネイバー設定モードにして、ネイバーのIP アドレス 209.165.201.1 をBGP ピアとして設定します。

ステップ4 remote-as autonomous-system-number

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr)# remote-as 100

ネイバーを作成し、そのネイバーをリモート自律システム番号に割り当てます。

ステップ5 update-source loopback

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr)# update-source loopback2

BGP セッションが、特定のインターフェイスのプライマリ IP アドレスをローカル アドレスとして使用で きるようにします。

ステップ6 address-family l2vpn evpn

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr)# address-fmaily 12vpn evpn

EVPN アドレスファミリを設定します。

ステップ7 import re-originate stitching-rt

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# import re-originate stitching-rt

スティッチングルートターゲット識別子と一致するルートターゲット識別子を持つ BGP EVPN NLRI からのルーティング情報のインポートを有効にし、この再発信後のルーティング情報を L2VPN BGP ネイバーにエクスポートします。

ステップ8 advertise l2vpn evpn re-originated

例:

RP/0/RSP0/cpu 0: router(config-bgp-nbr-af)# advertise l2vpn evpn re-originated

L2VPN BGP ネイバーから受信する L2VPN EVPN ルートのアドバタイズメントを設定します。

ステップ9 commit コマンドまたは end コマンドを使用します。

commit:設定の変更を保存し、コンフィギュレーション セッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

- [Yes]: 設定変更を保存し、コンフィギュレーション セッションを終了します。
- •[No]:設定変更をコミットせずに設定セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

ネットワーク仮想化エンドポイント(NVE)インターフェイスの設定

VNE インターフェイスを作成し、VxLAN の VXLAN トンネル エンドポイント (VTEP) として設定します。

手順の概要

- 1. configure
- 2. interface nve *nve-identifier*
- 3. source-interface loopback loopback-interface-identifier
- 4. anycast source-interface loopback loopback-interface-identifier
- 5. redundancy
- 6. backbone vxlan
- 7. iccp group group number
- 8. exit
- 9. backbone mpls
- **10.** iccp group group number
- 11. exit
- **12**. exit
- 13. member vni vni number
- 14. load-balance per-evi
- 15. suppress-unknown-unicast-flooding
- **16.** mcast-group *ip_address*
- **17.** host-reachability protocol protocol
- **18.** commit または end コマンドを使用します

手順の詳細

ステップ1	configure
	例:
	RP/0/RSP0/cpu 0: router# configure
	グローバル コンフィギュレーション モードを開始します。
ステップ 2	interface nve nve-identifier
	例:

RP/0/RSP0/cpu 0: router(config) # interface nve 1

NVE インターフェイスを作成し、NVE インターフェイス設定サブモードを開始します。

ステップ3 source-interface loopback loopback-interface-identifier

例:

RP/0/RSP0/cpu 0: router(config-if)# source-interface loopback 1

ループバックインターフェイスを VTEPの送信元インターフェイスとして設定します。

ステップ4 anycast source-interface loopback loopback-interface-identifier

例:

RP/0/RSP0/cpu 0: router(config-if)# anycast source-interface loopback 1

エニーキャストモードのパラメータと、エニーキャストモードの送信元インターフェイスを設定します。

エニーキャストIPアドレスは、ファブリック側のBGPネクストホップに使用されます。ESIマルチパス 機能を設定する場合は、エニーキャストIPアドレスは設定しないでください。

ステップ5 redundancy

例:

RP/0/RSP0/cpu 0: router(config-if)# redundancy 冗長パスを設定します。

ステップ6 backbone vxlan

例:

RP/0/RSP0/cpu 0: router(config-nve-red)# backbone vxlan

シャーシ間通信プロトコル (ICCP) VXLAN バックボーンの設定

ステップ7 iccp group group number

例:

RP/0/RSP0/cpu 0: router(config-nve-red-backbone-vxlan)# iccp group 11 ICCP グループ番号を設定します。

ステップ8 exit

例:

RP/0/RSP0/cpu 0: router(config=nve=red=backbone=vxlan)# exit

バックボーン vxlan サブモードを終了し、冗長サブモードに戻ります。

ステップ9 backbone mpls

例:

RP/0/RSP0/cpu 0: router(config-nve-red) # backbone mpls

ICCP MPLS バックボーンを設定します。

ステップ10 iccp group group number

例:

RP/0/RSP0/cpu 0: router(config-nve-red-backbone-mpls)# iccp group 12

MPLS バックボーンの ICCP グループ番号を設定します。

ステップ11 exit

例:

RP/0/RSP0/cpu 0: router(config-nve-red-backbone-mpls)# exit

バックボーン mpls サブモードを終了し、冗長サブモードに戻ります。

ステップ **12** exit

例:

RP/0/RSP0/cpu 0: router(config-nve-red)# exit

冗長サブモードを終了し、インターフェイスサブモードに戻ります。

ステップ13 member vni vni_number

例:

RP/0/RSP0/cpu 0: router(config-nve)# member vni 1

VxLAN ネットワーク識別子(VNI)を使用して単一のVxLANをNVEインターフェイスに関連付け、このVNI に関連付けられるマルチキャストアドレスを指定します。

ステップ14 load-balance per-evi

例:

RP/0/RSP0/cpu 0: router(config-nve-vni)# load-balance per-evi

EVI単位のロードバランスモードを設定します(デフォルトはフロー単位)。

ステップ15 suppress-unknown-unicast-flooding

例:

RP/0/RSP0/cpu 0: router(config-nve-vni)# suppress-unknown-unicast-flooding 不明なユニキャストフラッディングの抑制を設定します。

ステップ16 mcast-group ip address

例:

RP/0/RSP0/cpu 0: router(config-nve-vni)# mcast-group 209.165.202.129

VNIに関連付けられるマルチキャストアドレスを指定します。

ステップ17 host-reachability protocol protocol

例:

RP/0/RSP0/cpu 0: router(config-nve-vni)# host-reachability protocol bgp VxLAN トンネルエンドポイント到達可能性の BGP 制御プロトコルを設定します。

ステップ18 commit または end コマンドを使用します

commit:設定の変更を保存し、コンフィギュレーションセッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

• [Yes]: 設定変更を保存し、コンフィギュレーション セッションを終了します。

• [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。

•[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

ブリッジ ドメインの設定

次のステップを実行して DCI ゲートウェイ上にブリッジ ドメインを設定します。

手順の概要

- 1. configure
- 2. l2vpn
- **3. bridge group***bridge-group-name*
- 4. bridge-domain bridge-domain-name
- **5.** evi ethernet vpn id
- 6. exit
- 7. member vni vxlan-id
- 8. commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 l2vpn

例:

RP/0/RSP0/cpu 0: router(config)# l2vpn

l2vpn コンフィギュレーション モードを開始します。

ステップ3 bridge groupbridge-group-name

例:

RP/0/RSP0/cpu 0: router(config-l2vpn)# bridge group bg1

ブリッジグループ設定モードを開始します。

ステップ4 bridge-domain bridge-domain-name

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg)# bridge-domain bd1

ブリッジドメイン設定モードを開始します。

ステップ5 evi ethernet vpn id

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg-bd) # evi 1

イーサネット VPN ID を作成します。

ステップ6 exit

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg-bd-evi)# exit

EVI 設定モードを終了して、ブリッジドメイン設定モードに戻ります。

ステップ7 member vni vxlan-id

例:

RP/0/RSP0/cpu 0: router(config-l2vpn-bg-bd)# member vni 1

ブリッジドメインにメンバー VNI を関連付けます。

ステップ8 commit コマンドまたは end コマンドを使用します。

commit:設定の変更を保存し、コンフィギュレーション セッションに留まります。

end : 次のいずれかのアクションを実行することをユーザに要求します。

• [Yes]:設定変更を保存し、コンフィギュレーション セッションを終了します。

• [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。

•[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

BGP ルート ターゲットのインポート/エクスポート ルールの設定

デフォルトでは、次のパラメータが DCI の設定から自動生成されます。

・グローバル イーサネット セグメント テーブルのルート識別 (RD)

デフォルト:ループバック IP アドレスに基づく自動生成 RD

• EVI の BGP ルート識別子 (RD)

デフォルト:ループバック IP アドレスに基づく自動生成 RD

・EVIのBGPルートターゲット。デフォルト: EVI ID に基づく自動生成 RT

次のタスクを実行して自動生成BGPRD/RT値を上書きし、転送情報のインポートとエクスポートに使用するルートターゲットを定義します。

手順の概要

- 1. configure
- 2. evpn
- 3. bgp
- **4**. **rd** { 2-byte as_number | 4-byte as_number | IP_address | **none** } : { nn }
- 5. exit
- **6. evi** *evi_id*
- 7. bgp
- 8. route-target import { 2-byte as_number | 4-byte as_number | IP_address | none } : { nn } [stitching]
- **9.** route-target export { 2-byte as_number | 4-byte as_number | IP_address | none } : { nn } [stitching]
- **10.** commit コマンドまたは end コマンドを使用します。

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 evpn

例:

RP/0/RSP0/cpu 0: router(config)# evpn

EVPN 設定モードを開始します。

ステップ3 bgp

例:

RP/0/RSP0/cpu 0: router(config-evpn)# bgp

EVPN BGP 設定モードを開始し、イーサネットセグメント ES:GLOBAL EVI (ES ルートの処理に使用) のスタティック BGP 設定を行います。

ステップ4 rd { 2-byte as_number | 4-byte as_number | $IP_address$ | none } : { nn }

例:

RP/0/RSP0/cpu 0: router(config-evpn-bgp)# rd 200:50 ルート識別子を設定します。

ステップ5 exit

例:

RP/0/RSP0/cpu 0: router(config-evpn-bgp)# exit 現在の設定モードを終了し、EVPN サブモードに戻ります ステップ6 evi evi id 例: RP/0/RSP0/cpu 0: router(config-evpn)# evi 1 イーサネット VPN ID を設定します。 EVIID の範囲は1~65534です。 ステップ1 bgp 例: RP/0/RSP0/cpu 0: router(config-evpn-evi)# bgp 特定の EVI の BGP 設定モードを開始します。 ステップ8 route-target import { 2-byte as number | 4-byte as number | IP address | none } : { nn } [stitching] 例: RP/0/RSP0/cpu 0: router(config-evpn-evi-bgp)# route-target import 101:1 stitching 一致するルートターゲット値を持つ L2 EVPN BGP NLRI からのルートのインポートを設定します。 ステップ9 route-target export { 2-byte as number | 4-byte as number | IP address | none } : { nn } [stitching] 例: RP/0/RSP0/cpu 0: router(config-evpn-evi-bgp) # route-target export 101:1 stitching L2 EVPN BGP NLRI へのルートのエクスポートを設定し、指定されたルートターゲット識別子を BGP EVPN NLRI に割り当てます。 ステップ10 commit コマンドまたは end コマンドを使用します。 commit:設定の変更を保存し、コンフィギュレーションセッションに留まります。 end :次のいずれかのアクションを実行することをユーザに要求します。 • [Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。

- [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

イーサネット セグメント識別子の設定

イーサネット セグメント識別子(ESI)を設定するには、次のタスクを実行します。

手順の概要

- 1. configure
- 2. evpn
- 3. interface nve nve-identifier

- 4. ethernet-segment
- 5. identifier type esi-type esi-identifier
- 6. bgp route-target route target value
- 7. commit または end コマンドを使用します

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 evpn

例:

RP/0/RSP0/cpu 0: router# evpn

EVPN 設定モードを開始します。

ステップ3 interface nve nve-identifier

例:

RP/0/RSP0/cpu 0: router(config-evpn)# interface nve 1

NVE インターフェイスを作成し、NVE インターフェイス設定サブモードを開始します。

ステップ4 ethernet-segment

例:

RP/0/RSP0/cpu 0: router(config-evpn-ac)# ethernet-segment

EVPN イーサネットセグメント設定モードを開始します。

ステップ5 identifier type esi-type esi-identifier

例:

ステップ6 bgp route-target route target value

例:

RP/0/RSP0/cpu 0: router(config-evpn-ac-es)# bgp route-target 8888.0000.0001 イーサネットセグメントの BGP インポートルートターゲットを設定します。

ステップ7 commit または end コマンドを使用します

commit : 設定の変更を保存し、コンフィギュレーション セッションに留まります。 end : 次のいずれかのアクションを実行することをユーザに要求します。

- [Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。
- [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

ICCP グループの設定

シャーシ間通信プロトコル(ICCP)パラメータを設定するには、次のタスクを実行します。

コアインターフェイストラッキングにICCP グループを設定します。すべてのインターフェイ スがダウンしている場合、DCI はコア/ファブリック ネットワークから分離されます。関連付 けられている NVE インターフェイスがダウンし、BGP NLRI が撤回されます。

手順の概要

- 1. configure
- 2. redundancy
- **3.** iccp group group number
- 4. mode singleton
- 5. backbone
- 6. interface GigabitEthernet GigabitEthernet Interface Instance
- 7. commit または end コマンドを使用します

手順の詳細

ステップ1 configure

例:

RP/0/RSP0/cpu 0: router# configure

グローバル コンフィギュレーション モードを開始します。

ステップ2 redundancy

例:

RP/0/RSP0/cpu 0: router(config)# redundancy

冗長コンフィギュレーション モードを開始します。

ステップ3 iccp group group number

例:

RP/0/RSP0/cpu 0: router(config-redundancy)# iccp group 11

ICCP グループ番号を設定します。

ステップ4 mode singleton

例:

RP/0/RSP0/cpu 0: router(config-redundancy-iccp-group)# mode singleton グループをシングルトンモードで実行できるようにします。

ステップ5 backbone

例:

RP/0/RSP0/cpu 0: router(config-redundancy-iccp-group) # backbone

ICCP バックボーン インターフェイスを設定します。

ステップ6 interface GigabitEthernet GigabitEthernet Interface Instance

例:

RP/0/RSP0/cpu 0: router(config-redundancy-group-iccp-backbone)# interface GigabitEthernet 0/2/0/12 GigabitEthernet インターフェイスを設定します。

ステップ7 commit または end コマンドを使用します

commit : 設定の変更を保存し、コンフィギュレーション セッションに留まります。

end:次のいずれかのアクションを実行することをユーザに要求します。

- [Yes]:設定変更を保存し、コンフィギュレーションセッションを終了します。
- [No]:設定変更をコミットせずにコンフィギュレーション セッションを終了します。
- •[Cancel]:設定変更をコミットせずに、コンフィギュレーションモードに留まります。

例:エニーキャストVTEPIPアドレス設定を使用したオー ルアクティブマルチホーミングの設定

次に、エニーキャスト VTEP IP アドレス設定を使用したオールアクティブ マルチホーミング の例を示します。

```
interface nve1
source-interface loopback1
anycast source-interface loopback2
member vni 5100
mcast-address 239.1.1.1
host-reachabilty protocol bgp
!
evpn
evi 10
bgp
route-target import 100:10
route-target import 200:5100 stitching
route-target export 200:5100 stitching
```

```
1
1
12vpn
bridge group DCI
 bridge-domain V1
   evi 10
   member vni 5100
1
router bgp 100
bgp router-id 209.165.200.226
 address-family 12vpn evpn
1
neighbor 209.165.201.2
  remote-as 100
  description core-facing
  update-source Loopback1
  address-family 12vpn evpn
   import re-originate stitching-rt
   advertise 12vpn evpn re-originated
1
neighbor 209.165.202.130
  remote-as 200
  ebgp-multihop 255
  update-source Loopback1
  address-family 12vpn evpn
  import stitching-rt re-originate
   route-policy passall in
   encapsulation-type vxlan
   route-policy passall out
   advertise 12vpn evpn re-originated stitching-rt
1
```

例:一意の VTEP IP アドレス設定を使用したオールアク ティブ マルチホーミングの設定

次に、一意の VTEP IP アドレス設定を使用したオールアクティブ マルチホーミングの例を示 します。

```
interface nvel
source-interface loopback1
member vni 5100
 mcast-address 239.1.1.1
 host-reachabilty protocol bgp
Т
evpn
 evi 10
 bqp
  route-target import 100:10
   route-target import 200:5100 stitching
   route-target export 200:5100 stitching
!
1
12vpn
bridge group DCI
 bridge-domain V1
  evi 10
   member vni 5100
```

```
!
router bgp 100
bgp router-id 209.165.200.226
address-family 12vpn evpn
!
neighbor 209.165.201.2
remote-as 100
description core-facing
update-source Loopback1
address-family 12vpn evpn
  import re-originate stitching-rt
  multipath
  advertise 12vpn evpn re-originated
1
neighbor 209.165.202.130
 remote-as 200
  ebgp-multihop 255
 update-source Loopback1
 address-family 12vpn evpn
  import stitching-rt re-originate
   multipath
    route-policy passall in
    encapsulation-type vxlan
    route-policy passall out
    advertise 12vpn evpn re-originated stitching-rt
!
```