

Azure トランジット VNET DMVPN ソリュー ションの展開

- •トランジット VNet ソリューションを展開するための前提条件 (1ページ)
- •トランジット VNet ソリューションの展開に関する制約事項 (1ページ)
- Azure トランジット VNET DMVPN を展開する方法 (2ページ)
- •トラブルシューティング (11ページ)

トランジットVNetソリューションを展開するための前提 条件

- Cisco Catalyst 8000V インスタンスの Azure アカウントが必要です。
- ライセンスが登録され、有効であることを確認してください。
- •スポークを設定する前に、ハブが稼働していることを確認してください。

トランジットVNetソリューションの展開に関する制約事 項

- •スポーク VNet を別のクラウド サービス プロバイダーに展開することはできません。
- ・すべての場所にトランジット VNet ソリューションを設定することはできません。サポートされている場所のリストを表示するには、インスタンスを作成した後、[Configure Basic Settings] ページの [Location] フィールドのすべてのオプションを確認します。

Azure トランジット VNET DMVPN を展開する方法

トランジット VNet ハブの作成

この手順は、トランジット VNet ソリューションを設定する最初の手順です。これは、トラン ジット VNetの設定を行う必要がある展開において、非常に重要な部分です。これらの設定は、 アクセスキーを使用してトランジット VNet ストレージのアカウントにメタデータとして保存 される DMVPN IPsec パラメータに対応しています。スポークのテンプレートを設定するとき は、TVNET ストレージのアカウントとアクセスキーのみを設定する必要があります。スポー クに必要な関連する DMVPN IPsec パラメータは、デバイスから自動的に選択されます。

- **ステップ1** Microsoft Azure ポータルにサインインします。
- **ステップ2** [Create a Resource] をクリックし、Cisco Catalyst 8000Vの展開を検索して、[Enter] を押します。システム は、DMVPNのトランジット VNET テンプレートを検索して表示します。
- **ステップ3** [Transit VNET DMVPN] > [Create] を選択します。
- ステップ4 [Basics] 画面で、仮想マシンの名前、トランジット VNet ハブの名前、およびユーザー名を入力します。(注) [Transit VNet Name] には小文字のみを使用してください。
- **ステップ5** [Authentication Type] ドロップダウンリストから、[SSH Public Key] を選択します。
- **ステップ6** パスワードを指定し、確認用にパスワードを再入力します。
- ステップ7 [SKU] ドロップダウンリストから、適切なイメージバージョンを選択します。
- ステップ8 [Location] ドロップダウンリストから、TVNET ハブを展開できるリージョンの1つを選択します。
- **ステップ9** Cisco C8000Vの設定ページで、設定を行います。Cisco Catalyst 8000Vの設定の詳細については、「*Deploying the Cisco Catalyst 8000V on Microsoft Azure*」セクションを参照してください。
- ステップ10 トランジット VNet の設定で、次の設定を行います。
 - a) [TVNET Storage Account] はキーワード「strg」が追加されたトランジット VNet 名に由来するストレー ジアカウント名です。スポークの作成時にこの値が必要です。このフィールドの値は自動入力され ます。ただし、このフィールドの値は編集できます。
 - b) [Private TVNET Storage Account] でキーの保存に必要なストレージアカウントを選択します。この フィールドは、オートスケーラーの展開に必要です。
 - c) [DMVPN Tunnel ID] はすべての Cisco Catalyst 8000V デバイス (ハブとスポークの両方) でトンネル を設定するために使用されるトンネルの ID です。
 - d) [DMVPN Tunnel Key] は 6~8 桁の数値のトンネルキーです。
 - e) [IPSEC Tunnel Authentication]
 - f) [IPSEC Tunnel Cipher]
 - g) [IPSEC Shared Key] はトンネルを認証するためのキーワードです。
 - h) [DMVPN Tunnel Network] は DMVPN のオーバーレイに使用されるトンネルネットワークです。

(注) デフォルトのオプションは、ハブ用に作成された VNet とクラッシュする可能性があります。 この値が既存の仮想ネットワーク(VNet)と重複しないようにしてください。

この時点では、[Configure Subnets] セクションでサブネットを設定する必要はありません。

- ステップ11 [Summary] 画面でパラメータを確認し、[OK] をクリックします。
- **ステップ12** [Buy] セクションで [Create] をクリックして、トランジット VNet ハブソリューションを展開します。この手順により、次のリソースが作成されます。
 - 1つの可用性セットに展開された2つのCisco Catalyst 8000Vインスタンス(C8000V1およびC8000V2) 仮想マシン
 - •2つのストレージディスク(Cisco Catalyst 8000Vごとに1つ)
 - 4 つの NIC (Cisco Catalyst 8000V インスタンスごとに 2 つの NIC)
 - ・トランジット VNET 全体に1つのセキュリティグループ(インバウンド用に SSH のみを開きます)
 - •2 つのパブリック IP (インスタンスごとに1 つの PIP)
 - •2つのルートテーブル (インスタンスのサブネットごとに1つの RT)
 - •2つのストレージアカウント (Cisco Catalyst 8000V 診断用の1つのストレージとトランジット VNET メタデータ用の1つのストレージ)
 - •1 つの VNET /16 CIDR
 - •1つの Resource-Manager グループを使用して展開された上記すべて(この RG を削除すると、上記の すべてのコンポーネントが削除されます)

展開が完了し、リソースが作成されるまでに数分かかります。[All Resources] をクリックし、[Group By Type] オプションを選択することで、展開をモニタリングできます。展開が完了すると、[notification] パ ネルに「Deployment Succeeded」というメッセージが表示されます。

Azure DMVPN スポーク VNET の作成

始める前に

トランジット VNet ソリューションのスポークを作成する前に、ハブが正常に作成されている ことを確認してください。

- ステップ1 Microsoft Azure Marketplace から、[Cisco CSR 1000V DMVPN Transit VNet] テンプレートを検索して選択 します。
- **ステップ2** テンプレートをクリックし、ドロップダウンリストから必要となる適切なスポークオプションを選択します。
- **ステップ3** [Create] をクリックします。

- **ステップ4** [Basics settings] 画面で、次の設定の詳細を指定していることを確認します。
 - a) [Filename] でこのフィールドにトランジット VNet の名前を指定します。
 - b) [Transit VNet Storage Name] は、ハブ構成の TVNET ストレージアカウントの値と同じです。この名前 は、キーワード「strg」が追加されたトランジット VNet 名に由来します。
 - c) [Storage Key] にアクセスするには、[public Hub] を検索してクリックし、[Access Key] オプションをク リックします。
- ステップ5 [Basics Settings] 画面で他の値を設定し、[OK] をクリックします。
- ステップ6 Cisco Catalyst 8000V の設定画面で、フィールドを設定するか、そのままにするか(デフォルト値)を選 択できます。

パラメータの詳細については、「How to Deploy a Cisco Catalyst 8000V on Microsoft Azure」を参照してください。

- (注) 可用性ゾーンは、Microsoft Azure のすべてのリージョンでまだ完全にはサポートされていません。
 したがって、ソリューションテンプレートには可用性ゾーンのオプションはありませんが、
 「Availability-Sets」を使用して復元力が考慮されています。詳細については、Microsoft Azure のドキュメント(https://docs.microsoft.com/en-us/azure/availability-zones/az-overview)を参照してください。
- **ステップ7** [Virtual Network] の横にある矢印をクリックして仮想ネットワークの値を指定し、[OK] をクリックします。
- **ステップ8** [Address Space] フィールドに、Classless Inter-Domain Routing (CIDR) 表記を使用して、仮想ネットワー クのアドレスを入力します。
 - (注) VNET CIDR は、TVNET-HUB の Cisco Catalyst 8000V デバイスに使用される物理 IP アドレスのサ ブネットを示します。CIDR ブロックは通常、2 つの/24 サブネットにさらにサブネット化される /16 サブネットです。各サブネットの最初の3 つの IP アドレスは、Azure ルートテーブルおよびそ の他のサービス用に予約されます。IP 割り当てはサブネットの4番目の IP から始まり、動的に割 り当てられるパブリック IP に自動的にマッピングされます。パブリック IP はインターネットへ のアクセスを可能にするため、DMVPN シナリオの NBMA アドレスになります。
- **ステップ9** [Configure the Subnets] の横にある矢印をクリックし、[OK] をクリックします。
- ステップ10 [Summary] 画面で、設定されたパラメータを確認します。テンプレートを検証したら、[OK] をクリック します。
- ステップ11 [Create] をクリックして、TVNet スポークソリューションを展開します。
 - (注) 作成する追加のスポークごとに、手順1~10に従います。

設定の確認

トランジット VNET ハブでの確認

次のコマンドは、スポークがトランジット VNet Hub1 への DMVPN トンネルを正常に確立し、 EIGRP ルートを Transit VNet Hub1 と交換できることを示しています。このソリューションに より、DMVPN フェーズ 3 の機能である NHRP ショートカットスイッチングが有効になりま す。これらのコマンドを Transit VNet Hub2 で実行すると、コマンド出力は Transit VNet Hub1 と同様になります。これは、スポークが両方のトランジット VNet ハブの Cisco Catalyst 8000V への DMVPN トンネルを正常に確立し、EIGRP ルートを両方のハブと正常に交換したことを示 しています。ハブは、復元力を高めるためにアクティブ-アクティブモードで展開されます。

ステップ1 show ip interface brief コマンドを実行します。

例:

Transit-Hub# show ip	interface brief			
Interface	IP-Address	OK? Method	Status	Protocol
GigabitEthernet1	10.1.0.4	YES DHCP	up	up
GigabitEthernet2	10.1.1.5	YES DHCP	up	up
Tunnel11	172.16.1.1	YES TFTP	up	up
VirtualPortGroup0	192.168.35.1	YES TFTP	up	up
p1-tvnet-csr-1#				

設定出力の強調表示されている部分に注目してください。これは、トンネルが稼働していることを示しています。システムがこの設定出力にトンネルを表示しない場合は、ゲストシェルに移動してTVNetのログを確認する必要があります。show log コマンドを実行して、TVNet のログにアクセスします。

ステップ2 スポークからの2つの DMVPN 接続の IKE セッションを表示するには、show crypto isakmp sa コマンドを 実行します。

例:

Transit-Hub#	show crypto isakmp	sa		
IPv4 Crypto	ISAKMP SA			
dst	src	state	conn-id	status
10.1.0.4	168.62.164.228	QM IDLE	1042	ACTIVE
10.1.0.4	40.114.69.24	QM IDLE	1043	ACTIVE
TPv6 Crvpto	TSAKMP SA	_		

ステップ3 スポークからの2つの DMVPN 接続の IPsec セッションを表示するには、show crypto session コマンドを 実行します。

```
Transit-Hub# show crypto session detail
Crypto session current status
Code: C - IKE Configuration mode, D - Dead Peer Detection
K - Keepalives, N - NAT-traversal, T - cTCP encapsulation
X - IKE Extended Authentication, F - IKE Fragmentation
R - IKE Auto Reconnect, U - IKE Dynamic Route Update
Interface: Tunnell1
Uptime: 1w3d
```

```
Session status: UP-ACTIVE
Peer: 40.114.69.24 port 4500 fvrf: (none) ivrf: tvnet-Tun-11
     Phase1 id: 12.1.0.4
     Desc: (none)
 Session ID: 0
  IKEv1 SA: local 10.1.0.4/4500 remote 40.114.69.24/4500 Active
         Capabilities:DN connid:1043 lifetime:18:32:04
 IPSEC FLOW: permit 47 host 10.1.0.4 host 40.114.69.24
       Active SAs: 2, origin: crypto map
        Inbound: #pkts dec'ed 32 drop 0 life (KB/Sec) 4607996/3474
       Outbound: #pkts enc'ed 32 drop 0 life (KB/Sec) 4607998/3474
Interface: Tunnel11
Uptime: 1w3d
Session status: UP-ACTIVE
Peer: 168.62.164.228 port 4500 fvrf: (none) ivrf: tvnet-Tun-11
     Phase1 id: 11.1.0.4
     Desc: (none)
  Session ID: 0
 IKEv1 SA: local 10.1.0.4/4500 remote 168.62.164.228/4500 Active
         Capabilities:DN connid:1042 lifetime:18:02:01
 IPSEC FLOW: permit 47 host 10.1.0.4 host 168.62.164.228
        Active SAs: 2, origin: crypto map
        Inbound: #pkts dec'ed 32 drop 0 life (KB/Sec) 4607970/2427
       Outbound: #pkts enc'ed 32 drop 0 life (KB/Sec) 4607982/2427
```

ステップ4 show dmvpn コマンドを実行して、デバイスの DMVPN のステータスを表示します。

例:

```
Transit-Hub# show dmvpn
Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
      N - NATed, L - Local, X - No Socket
      T1 - Route Installed, T2 - Nexthop-override
      C - CTS Capable, I2 - Temporary
      # Ent --> Number of NHRP entries with same NBMA peer
      NHS Status: E --> Expecting Replies, R --> Responding, W --> Waiting
      UpDn Time --> Up or Down Time for a Tunnel
_____
Interface: Tunnell1, IPv4 NHRP Details
Type:Hub, NHRP Peers:2,
# Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb
      ----- -----
                                      _____
    1 40.114.69.24
                                 UP
                   172.16.1.137
                                       1w3d
                                             DN
    1 168.62.164.228
                  172.16.1.147
                                 UP
                                        1w3d
                                             DN
```

ステップ5 show vrf コマンドを実行して、トランジット VNet 上の各スポークからの表示ルートを表示します。

例:

Transit-Hub# show vrf			
Name	Default RD	Protocols	Interfaces
tvnet-Tun-11	64512 : 11	ipv4	Tull

ステップ6 show ip eigrp vrf <vrf-name> neighbors コマンドを実行して、EIGRP ネイバーのステータスを表示しま す。

Tra	nsit-Hub	# show ip	eigrp vrf	tvnet-Tun-11 nei	ighbors				
EIG	RP-IPv4 1	Neighbors	for AS(645	512) VRF(tvnet-Tu	ın-11)				
Н	Address		Int	erface	Hold Uptime	SRTT	RTO	Q	Seq

			(sec)	(ms)		Cnt	Num
1	172.16.1.137	Tu11	14 1w3d	13	1398	0	12
0	172.16.1.147	Tull	10 1w3d	12	1398	0	12

ステップ7 show ip route vrf <vrf-name>vRF コマンドを実行して VRF に固有のルートを表示します。

例:

```
Transit-Hub# show ip route vrf tvnet-Tun-11
Routing Table: tvnet-Tun-11
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       \rm N1 - OSPF NSSA external type 1, \rm N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
      11.0.0.0/24 is subnetted, 2 subnets
D EX
        11.1.0.0 [170/26880256] via 172.16.1.147, 1wld, Tunnel11
        11.1.1.0 [170/26880256] via 172.16.1.147, 1w1d, Tunnel11
D EX
      12.0.0.0/24 is subnetted, 2 subnets
D EX
        12.1.0.0 [170/26880256] via 172.16.1.137, 1wld, Tunnel11
         12.1.1.0 [170/26880256] via 172.16.1.137, 1wld, Tunnel11
D EX
      172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
С
        172.16.1.0/24 is directly connected, Tunnell1
L
         172.16.1.1/32 is directly connected, Tunnell1
D EX 192.168.35.0/24 [170/26905600] via 172.16.1.147, 1wld, Tunnel11
                      [170/26905600] via 172.16.1.137, 1w1d, Tunnel11
```

スポークとハブ間の接続の確認

次のコマンドは、スポークが両方の Cisco Catalyst 8000V TVNET ハブに接続されていて、両方 のハブからの EIGRP ルートを交換できることを示しています。DMVPN ソリューションは DMVPN-Phase3 (NHRPショートカットスイッチング)として展開され、ハブはアクティブ-ア クティブモードで展開されるため、スポーク2への EIGRP ルートはスポーク2のトンネルオー バーレイ IP アドレスを指します。

ステップ1 show ip interface brief コマンドを実行して、デバイスのインターフェイスのIPアドレスを表示します。

例:

Spoke# show ip inter	face brief		
Interface	IP-Address	OK? Method Stat	us Protocol
GigabitEthernet1	11.1.0.4	YES DHCP up	up
GigabitEthernet2	11.1.1.4	YES DHCP up	up
Tunnel11	172.16.1.147	YES TFTP up	up
VirtualPortGroup0	192.168.35.1	YES TFTP up	up

ステップ2 show dmvpn コマンドを実行して、デバイスの DMVPN のステータスを確認します。

172.16.1.2 UP

強調表示されている設定出力に注目してください。これは、スポークが作動していて、ハブとの接続が確 立されていることを示しています。

1w3d

S

ステップ3 スポークからの2つの DMVPN 接続の IKE セッションを表示するには、show crypto isakmp sa コマンドを 実行します。

例:

1 40.117.128.85

Spoke**# show crypto isakmp sa** IPv4 Crypto ISAKMP SA dst src state conn-id status 40.117.131.133 11.1.0.4 QM_IDLE 1025 ACTIVE 40.117.128.85 11.1.0.4 QM_IDLE 1026 ACTIVE IPv6 Crypto ISAKMP SA

ステップ4 スポークからの2つの DMVPN 接続の IPsec セッションを表示するには、show crypto session コマンドを 実行します。

```
Spoke# show crypto session detail
Crypto session current status
Code: C - IKE Configuration mode, D - Dead Peer Detection
K - Keepalives, N - NAT-traversal, T - cTCP encapsulation
X - IKE Extended Authentication, F - IKE Fragmentation
R - IKE Auto Reconnect, U - IKE Dynamic Route Update
Interface: Tunnel11
Uptime: 1w3d
Session status: UP-ACTIVE
Peer: 40.117.131.133 port 4500 fvrf: (none) ivrf: (none)
     Phase1 id: 10.1.0.4
     Desc: (none)
  Session ID: 0
  IKEv1 SA: local 11.1.0.4/4500 remote 40.117.131.133/4500 Active
         Capabilities:DN connid:1025 lifetime:17:33:41
  IPSEC FLOW: permit 47 host 11.1.0.4 host 40.117.131.133
        Active SAs: 2, origin: crypto map
        Inbound: #pkts dec'ed 2250 drop 0 life (KB/Sec) 4607927/726
        Outbound: #pkts enc'ed 2251 drop 0 life (KB/Sec) 4607957/726
Interface: Tunnel11
Uptime: 1w3d
Session status: UP-ACTIVE
Peer: 40.117.128.85 port 4500 fvrf: (none) ivrf: (none)
      Phase1 id: 10.1.0.5
```

Desc: (none) Session TD: 0 IKEv1 SA: local 11.1.0.4/4500 remote 40.117.128.85/4500 Active Capabilities:DN connid:1026 lifetime:17:33:44 IPSEC FLOW: permit 47 host 11.1.0.4 host 40.117.128.85 Active SAs: 2, origin: crypto map Inbound: #pkts dec'ed 2252 drop 0 life (KB/Sec) 4607960/2046 Outbound: #pkts enc'ed 2253 drop 0 life (KB/Sec) 4607976/2046

ステップ5 EIGRP ネイバーのステータスを表示するには、show up eigrp neighbor コマンドを実行します。

例:

Spo	oke# show ip eigrp n	eighbor					
EIC	GRP-IPv4 Neighbors f	or AS(64512)					
Н	Address	Interface	Hold Uptime	SRTT	RTO	Q	Seq
			(sec)	(ms)		Cnt	Num
1	172.16.1.2	Tull	13 1w3d	24	1362	0	23
0	172.16.1.1	Tu11	12 1w3d	8	1362	0	23

ステップ6 EIGRP ルート情報を表示するには、show ip route eigrp コマンドを実行します。

例:

```
Spoke# show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      \rm N1 - OSPF NSSA external type 1, \rm N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is 11.1.0.1 to network 0.0.0.0
      12.0.0/24 is subnetted, 2 subnets
D EX
        12.1.0.0 [170/28160256] via 172.16.1.137, 1w3d, Tunnel11
                  [170/28160256] via 172.16.1.137, 1w3d, Tunnel11
         12.1.1.0 [170/28160256] via 172.16.1.137, 1w3d, Tunnell1
DEX
                  [170/28160256] via 172.16.1.137, 1w3d, Tunnel11
```

スポーク間の接続の確認

次のコマンドは、2 つのスポーク間の接続をテストするのに役立ちます。サポートされる機能 は DMVPN フェーズ 3 であるため、traceroute コマンドはスポーク 1 からスポーク 2 に送信さ れたパケットを表示します。ただし、スポーク1がパケットをハブに送信してスポーク2のア ドレスを取得するため、NHRP 解決のために最初のパケットが失われます。スポーク1がアド レスを受信すると、スポーク1とスポーク2の間に動的 IPsec トンネルが確立されます。

```
Spoke1# clear crypto sa counters
Spoke1# ping 12.1.1.4 source gigabitEthernet 2 repeat 100
Type escape sequence to abort.
Sending 100, 100-byte ICMP Echos to 12.1.1.4, timeout is 2 seconds:
Packet sent with a source address of 11.1.1.4
......
Success rate is 99 percent (99/100), round-trip min/avg/max = 1/1/6 ms
Spoke# show dmvpn
Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
```

```
N - NATed, L - Local, X - No Socket
       T1 - Route Installed, T2 - Nexthop-override
       C - CTS Capable, I2 - Temporary
       # Ent --> Number of NHRP entries with same NBMA peer
       NHS Status: E --> Expecting Replies, R --> Responding, W --> Waiting
       UpDn Time --> Up or Down Time for a Tunnel
_____
Interface: Tunnell1, IPv4 NHRP Details
Type:Spoke, NHRP Peers:3,
 # Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb
       ----- -----
    1 40.117.131.133 172.16.1.1 UP 1w3d
1 40.117.128.85 172.16.1.2 UP 1w3d
                                            1w3d
                                                     S
                                                       S
                     172.16.1.137 UP 00:00:07
    1 40.114.69.24
                                                       DN
Spoke# traceroute 12.1.1.4 source gigabitEthernet 2
Type escape sequence to abort.
Tracing the route to 12.1.1.4
VRF info: (vrf in name/id, vrf out name/id)
 1 172.16.1.137 2 msec * 3 msec
plspokel#
p1spoke1#
plspokel#sh crypto sess detail | i pkts
       Inbound: #pkts dec'ed 101 drop 0 life (KB/Sec) 4607985/3581
       Outbound: #pkts enc'ed 100 drop 0 life (KB/Sec) 4607989/3581
       Inbound: #pkts dec'ed 12 drop 0 life (KB/Sec) 4607924/621
       Outbound: #pkts enc'ed 14 drop 0 life (KB/Sec) 4607955/621
       Inbound: #pkts dec'ed 13 drop 0 life (KB/Sec) 4607957/1941
       Outbound: #pkts enc'ed 13 drop 0 life (KB/Sec) 4607975/1941
Spoke# show crypto session detail
Crypto session current status
Code: C - IKE Configuration mode, D - Dead Peer Detection
K - Keepalives, N - NAT-traversal, T - cTCP encapsulation
X - IKE Extended Authentication, F - IKE Fragmentation
R - IKE Auto Reconnect, U - IKE Dynamic Route Update
Interface: Tunnel11
Uptime: 00:00:36
Session status: UP-ACTIVE
Peer: 40.114.69.24 port 4500 fvrf: (none) ivrf: (none)
     Phase1 id: 12.1.0.4
     Desc: (none)
 Session ID: 0
 IKEv1 SA: local 11.1.0.4/4500 remote 40.114.69.24/4500 Active
         Capabilities:DN connid:1027 lifetime:23:59:23
  IPSEC FLOW: permit 47 host 11.1.0.4 host 40.114.69.24
       Active SAs: 4, origin: crypto map
       Inbound: #pkts dec'ed 101 drop 0 life (KB/Sec) 4607985/3563
       Outbound: #pkts enc'ed 100 drop 0 life (KB/Sec) 4607989/3563
Interface: Tunnel11
Uptime: 1w3d
Session status: UP-ACTIVE
Peer: 40.117.131.133 port 4500 fvrf: (none) ivrf: (none)
     Phase1 id: 10.1.0.4
     Desc: (none)
  Session ID: 0
  IKEv1 SA: local 11.1.0.4/4500 remote 40.117.131.133/4500 Active
         Capabilities:DN connid:1025 lifetime:17:31:38
  IPSEC FLOW: permit 47 host 11.1.0.4 host 40.117.131.133
       Active SAs: 2, origin: crypto map
       Inbound: #pkts dec'ed 16 drop 0 life (KB/Sec) 4607923/603
       Outbound: #pkts enc'ed 18 drop 0 life (KB/Sec) 4607955/603
Interface: Tunnel11
Uptime: 1w3d
Session status: UP-ACTIVE
Peer: 40.117.128.85 port 4500 fvrf: (none) ivrf: (none)
```

```
Phasel_id: 10.1.0.5
Desc: (none)
Session ID: 0
IKEv1 SA: local 11.1.0.4/4500 remote 40.117.128.85/4500 Active
Capabilities:DN connid:1026 lifetime:17:31:41
IPSEC FLOW: permit 47 host 11.1.0.4 host 40.117.128.85
Active SAs: 2, origin: crypto map
Inbound: #pkts dec'ed 17 drop 0 life (KB/Sec) 4607957/1923
Outbound: #pkts enc'ed 17 drop 0 life (KB/Sec) 4607975/1923
```

トラブルシューティング

展開のステータスを表示するには、Cisco Catalyst 8000V インスタンスにログインして show log コマンドを実行します。展開が成功すると、「[Azure Transit VNET] Success.Configured all the required IOS configs」というメッセージが表示されます。

トランジット VNet ソリューションの設定中にこのメッセージが表示されず、エラーが発生した場合は、次のことを確認してください。

- DMVPN トンネルがハブとスポークの間に確立されているか確認します。ほとんどの場合、次の値に問題がある可能性があります。TransitVNETname、TransitVNETStoragename、または TransitVNETStoragekey。
- Guestshell が、インストールされる TVNet パッケージ用に立ち上がり、稼働しているか確認します。

トラブルシューティング

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。