Cisco 8000 シリーズ ルータ(**IOS XR** リリー ス 7.0.x)システムセットアップガイド

初版: 2020年3月1日

Cisco 8000 シリーズ ルータ

Cisco 8000シリーズ ルータは、サービス プロバイダー ルーティングと非常にスケーラブルな データセンター (MSDC) スイッチングポートフォリオを統合します。ルータは XR 7 OS で動 作します。XR 7 OS では、次の領域で Cisco IOS XR のアーキテクチャが大幅に強化されていま す。

- •モジュール性:ハードウェアとソフトウェアの分離。要件に基づいてモジュール化され た、ソフトウェアパッケージを最大活用する柔軟性を備えたソフトウェア。
- ・プログラマビリティ: すべてのレイヤでのモデル駆動型 API。
- ・管理性:Linux ツールに基づいたソフトウェア管理とインストールの簡素化。

Cisco 8000 シリーズルータの起動

ルータのルートプロセッサ(RP)のコンソールポートに接続し、ルータの電源を入れます。コ ンソールポートはデフォルトでXRコンソールに接続されます。必要に応じて、設定後、管理 ポートを介して後続の接続を確立します。

次の表に、コンソールの設定項目を示します。

表 1:コンソール設定

ボーレート (bps)	パリティ(Parity)	ストップビット	データ ビット
115200	なし	2	8

ボーレートはデフォルトで設定されており、変更できません。

ルータには SSH、Telnet、SCP、FTP などのリモート管理プロトコルを使用してアクセスでき ます。SSH はデフォルトでソフトウェアイメージに含まれていますが、Telnet はソフトウェア イメージの一部ではありません。telnet オプションパッケージを使用するには、手動でインス トールする必要があります。 図 **1**:ルートプロセッサのポート

1	コンソール RS-232 シリアルポー ト RJ45	5	SyncE BITS/DTI/J.211
2	USB ポートタイプ A (2ポー ト)。ポート A は、ポート B の 前に検出されます。 上位:ポート B 下位:ポート A	6	G.703 Time-of-Day (TOD)
3	コントロールプレーン拡張 SFP/SFP+ ポート	7	10MHzのミニ同軸コネクタ(入力 および出力)
4	上位:管理イーサネット (10/100/1000 Mbps) RJ-45 (銅 線)ポートLAN、x86 (XR) と ARM11 (BMC) で共有 下位:IEEE 1588 Precision Time Protocol (PTP)	8	1PPSのミニ同軸コネクタ(入力お よび出力)

ブートが完了したら、ユーザー名とパスワードを作成する必要があります。このクレデンシャルは、XR コンソールにログオンし、ルータプロンプトを表示するために使用されます。

ルータは、プリインストールされたオペレーティングシステム(OS)イメージを使用してブートプロセスを実行します。ルータ内に使用できるイメージがない場合は、iPXEブートまたは外部のブート可能な USB ドライブを使用してルータを起動できます。

手動 iPXE を使用したCisco 8000シリーズ ルータのブート

電源をオンにしたときにルータがブートしない場合は、iPXE を使用して手動でルータをブートします。別の方法として、USB ドライブを使用した Cisco 8000シリーズルータのブート方法 があります。

iPXE は、管理インターフェイスのネットワークカードのプリブート実行環境です。iPXE は、 ルータのシステムファームウェア(UEFI)レベルで動作します。iPXE ブートはシステムを再 イメージ化し、ブートに失敗した場合や有効なブート可能なパーティションがない場合にルー タをブートします。iPXE は ISO イメージをダウンロードしてインストールし、最後に新しい インストール内でブートストラップを行います。

HTTPS、HTTP、またはTFTPを実行しているサーバが必要です。次の手順を使用して、PXEプロンプトを表示します。

手順

- ステップ1 ルータの電源を投入します。
- **ステップ2** ブートプロセスを一時停止して BIOS メニューに移動するには、Esc キーまたは Del キーを連続して押します(押して放す、をすばやく繰り返す)。
- ステップ3 [Boot Manager] を選択し、[Built-in iPXE] オプションを選択します。
- ステップ4 PXE ブートが PXE サーバの探索を開始したら、Ctrl + B キーを押して PXE プロンプトに進みます。
- ステップ5 ルータに次の設定を追加します。これは、ルータが外部サーバに接続し、イメージのダウン ロードとインストールを行うために必要です。HTTP、HTTPS、または TFTP サーバを使用で きます。

例:

iPXE> ifop	en netO	#Open the interface connecting outside world
iPXE> set :	net0/ip 10.0.0.2	#Configure the ip address of your router
iPXE> set :	net0/gateway 10.0.0.1	#configure the GW
iPXE> set i	net0/netmask 255.0.0.0	#Configure the Netmask
iPXE> ping	10.0.1	#Check you can reach GW
iPXE> ping	192.0.2.0	#check you can reach to your server running tftp
or http or	https	
iPXE> boot	http://192.0.2.0/ <director< td=""><td>ry-path>8000-x64.iso #Copy the image on the</td></director<>	ry-path>8000-x64.iso #Copy the image on the
http/https	/tftp server in any path a	nd then point to download the image from there.

(注) コマンドの入力中にエラーを修正するには、Ctrl + H キーを使用して文字を削除しま す。

PXE サーバが DHCP サーバを実行するように設定されている場合、ルータのイーサネット管理インターフェイスに IP アドレスが割り当てられます。これにより、ブートに失敗した場合にルータを再イメージ化するために必要なイメージをダウンロードできます。

Router#reload bootmedia network location all Proceed with reload? [confirm]

USB ドライブを使用した Cisco 8000シリーズルータのブート

電源をオンにしたときにルータがブートしない場合は、USBドライブを使用してルータをブートします。もう1つの方法は、手動 iPXE を使用したCisco 8000シリーズ ルータのブートことです。

始める前に

ストレージ容量が 8 GB(最小)~32 GB(最大)の USB ドライブにアクセスできるようにします。USB 2.0 および USB 3.0 がサポートされています。

(注) この手順はアクティブ RP でのみ使用してください。スタンバイ RP は電源をオフにするか、 シャーシから取り外す必要があります。アクティブ RP に USB ドライブからイメージをインス トールした後は、必要に応じてスタンバイ RP を取り付けるか、電源をオンにします。

手順

ステップ1 ブート可能ファイルを USB ディスクにコピーします。

圧縮ブートファイルをUSB ドライブにコピーすると、ブート可能なUSB ドライブが作成され ます。圧縮ファイルの内容が展開されると、USB ドライブがブート可能になります。

(注) USB ドライブから起動できない場合は、ドライブを取り外して再度挿入します。ドラ イブが正しく挿入されていても USB ドライブから読み込めない場合は、別のシステ ムで USB の内容を確認してください。

このタスクは、ローカルマシンで利用できるWindows、Linux、またはMACオペレーティング システムを使用して実行できます。

- a) USB ドライブをローカルマシンに接続し、Windows オペレーティングシステムまたはApple MACディスクユーティリティを使用して FAT32 または MS-DOS ファイルシステムでフォー マットします。ディスクが FAT32 としてフォーマットされているかどうかを確認するに は、USB ディスクを右クリックし、プロパティを表示します。
- b) イメージファイルから圧縮ブートファイルを.zip 形式で USB ドライブにコピーします。.
 この zip ファイルは、シスコのソフトウェア ダウンロードセンターからダウンロードできます。
- c) コピー処理が正常に行われたことを確認します。確認するには、コピー元とコピー先で ファイルサイズを比較します。さらに、MD5 チェックサム値を確認します。

- d) 圧縮ブートファイルを USB ドライブ内で解凍して内容を展開します。これにより、USB ドライブがブート可能なドライブに変換されます。
 - (注) 圧縮ファイルの内容(「EFI」および「boot」ディレクトリ)を、USBドライブ のルートフォルダに直接解凍します。解凍アプリケーションによって展開ファイ ルが新しいフォルダに配置された場合は、「EFI」および「boot」ディレクトリを USBドライブのルートフォルダに移動してください。
- e) ローカルマシンから USB ドライブを取り出します。
- **ステップ2** 次のいずれかの方法で、ブート可能なUSBドライブを使用して、ルータのブートまたはイメージのアップグレードを実行します。
 - (注) USB ドライブをアクティブ RP の USB ポートに挿入します。
 - [Boot] メニュー
 - 1. USB ドライブを挿入し、コンソールに接続します。
 - 2. ルータの電源を投入します。
 - 3. Esc または Del を押してブートプロセスを一時停止し、BIOS メニューに RP を表示します。
 - 4. [Boot Manager]を選択し、ブートメニューから [USB] オプションを選択します。

Cisco BIOS Setup Utility - Copyright (C) 2019 Cisco Systems, Inc

Boot Override UEFI: Micron_M600_MTFDDAT064MBF, Partition 4 UEFI: Built-in iPXE URFI: Built-in Shell URFI: Built-in Grub UEFI: USB Flash Memory1.00, Partition 1

システムはUSBドライブからイメージをブートし、そのイメージをハードディスクに インストールします。インストール後、ハードディスクからルータが起動されます。

• XR CLI

XRプロンプトにアクセスできる場合は、この方法を使用します。

- (注) RPには2つのUSBポートがあります。ブート可能なイメージを持つUSBドラ イブが1つしかない場合は、2つのUSBポートのいずれかに挿入します。2つの USBドライブがあり、1つだけにブート可能なイメージがある場合、USBポート の選択は無視されます。ただし、2つのUSBドライブが同時に挿入され、両方の ドライブにブート可能なイメージがある場合は、下位のUSBポートのイメージ が優先されます。
- 1. USB ドライブをアクティブ RP に挿入します。
- 2. XR プロンプトにアクセスし、次のコマンドを実行します。

Router# reload bootmedia usb noprompt

Welcome to GRUB!! Verifying (hd0,msdos1)/EFI/BOOT/grub.cfg... (hd0,msdos1)/EFI/BOOT/grub.cfg verified using Pkcs7 signature. Loading Kernel.. Verifying (loop)/boot/bzImage... (loop)/boot/bzImage verified using attached signature. Loading initrd.. Verifying (loop)/boot/initrd.img

システムは USB からイメージをブートし、そのイメージをハードディスクにインス トールします。インストール後、ハードディスクからルータが起動されます。

Cisco 8000 シリーズ ルータの管理ポートの設定

管理ポートをシステム管理およびリモート通信に使用するには、管理イーサネットインター フェイスの IP アドレスとサブネットマスクを設定する必要があります。

(注)

管理イーサネットインターフェイスでは、バーチャルプライベートネットワーク(VPN)に よるルーティングおよび転送(VRF)の使用を推奨します。

始める前に

- ネットワーク管理者またはシステムの設計担当者に問い合わせて、管理インターフェイスのIPアドレスおよびサブネットマスクを入手します。
- RPの物理ポートイーサネット0は管理ポートです。ポートが管理ネットワークに接続されていることを確認します。

手順

ステップ1 VRFを設定します。

例:

Router#conf t
Router(config)#vrf <vrf-name>
Router(config-vrf)#exit

ステップ2 RPの管理インターフェイスのインターフェイス コンフィギュレーション モードを開始します。

例:

Router(config)#interface mgmtEth 0/RP0/CPU0/0

ステップ3 VRF で管理イーサネットインターフェイスを設定します。

例:

Router(config-if)#vrf <vrf-name>

ステップ4 インターフェイスに IP アドレスとサブネットマスクを割り当てます。

例:

Router(config-if)#ipv4 address 10.10.10.1/8

ステップ5 インターフェイスに仮想 IP アドレスとサブネットマスクを割り当てます。仮想アドレスは、 管理イーサネット インターフェイス上のアウトオブバンド管理に主に使用されます。

例:

Router(config-if)#ipv4 virtual address vrf <vrf-name> 10.10.10.1/8

ステップ6 インターフェイスを「アップ」状態にします。

例:

Router(config-if) #no shutdown

ステップ7 管理インターフェイス コンフィギュレーション モードを終了します。

例:

Router(config-if)#exit

ステップ8 デフォルトゲートウェイの IP アドレスを指定して、スタティックルートを設定します。この ルートは他のネットワーク上のデバイスと通信する際に使用します。

例:

Router(config)#router static vrf <vrf-name> address-family ipv4 unicast 0.0.0.0/0 10.10.10.1

ステップ9 設定をコミットします。

例:

Router(config)#commit

ステップ10 管理ポート経由でイーサネット ネットワークに接続します。端末エミュレーション プログラムで、管理インターフェイス ポートへの SSH または Telnet 接続をその IP アドレスを使って確立します。

BMC でのイーサネットポートの IP アドレスの設定

ベースボード管理コントローラ(BMC)は、ルートプロセッサ(RP)のコンポーネントであ り、センサーを使用してブートアップステータスとハードウェアコンポーネントの状態をモニ タします。独立した接続を介してシステムと通信します。独立した接続は、ホストと BMC 間 の専用イーサネット接続を介して行われます。BMCには、ルータ外部への接続用のイーサネッ トインターフェイスもあります。REST サービスまたは SSH サービスを使用して、このイン ターフェイスとの通信を確立できます。

スタティック IP を設定することも、DHCP サーバによる自動 IP 割り当てに DHCP を使用する こともできます。静的 IP 割り当てを行う場合は、BMC コンソールに接続します。

(注) 管理イーサネットポートは、XR と BMC 間で共有されます。ただし、BMC の IP アドレスは XR インターフェイスとは別で、同じ範囲内にある必要があります。

イーサネット(BMCおよびXRの外部)を介して通信を確立するには、イーサネットポート 0(eth0)に静的IPアドレスを設定します。IPv4およびIPv6の静的IPアドレスを割り当てる ことができます。適切な静的IPアドレスとゲートウェイ情報を使用し て、/etc/systemd/network/00-bmc-eth0.networkのテンプレートを変更します。ファイルを変更す

るには、root ユーザー権限が必要です。変更後、システムは BMC のリロード時に eth0 イーサ ネットデバイスに同じ IP アドレスを割り当てます。

手順

ステップ1 XR コンソールから BMC コンソールに切り替えます。

例:

Router#[ctrl] o Phosphor OpenBMC (Phosphor OpenBMC Project Reference Distro) 0.1.0 ttyS4

ステップ2 BMC の root のユーザー名とパスワードを設定します。

例:

login: root
You are required to change your password immediately (administrator enforced)
New password:
Retype new password:

ステップ3 BMC 設定ファイルが使用可能であることを確認します。ファイルが使用できない場合は、次のテンプレートで作成します。

例:

```
root:~# cat /etc/systemd/network/00-bmc-eth0.network
[Match]
Name=eth0
[Network]
DHCP=ipv4
LinkLocalAddressing=fallback
[DHCP]
ClientIdentifier=mac
```

For static ip addresses replace above two sections with the following section
#[Network]
#Address=a.b.c.d/xy
#Gateway=a.b.p.q

ステップ4 viテキストエディタを使用してファイルを変更します。ネットワークアドレスとゲートウェイ 情報を使用して BMC を設定します。

例:

vi /etc/systemd/network/00-bmc-eth0.network

ステップ5 ファイルを保存します。

ステップ6 変更されたファイルの内容を表示します。

例:

root:~# cat /etc/systemd/network/00-bmc-eth0.network
[Match]
Name=eth0
#[Network]
#DHCP=ipv4
#LinkLocalAddressing=fallback
#[DHCP]
#ClientIdentifier=mac

For static ip addresses replace above two sections with the following section
[Network]
Address=192.168.0.2/24
Gateway=192.168.0.1

- **ステップ7** Linux の reboot コマンドを使用して BMC を再起動し、設定を有効にします。
- **ステップ8** BMC の再起動後、静的 IP が BMC のイーサネット0 デバイスに存在することを確認します。

例:

root:~# ifconfig eth0 Link encap:Ethernet HWaddr 00:59:DC:16:A6:2E inet addr:192.168.0.2 Bcast:192.168.0.1 Mask:255.255.0.0 inet6 addr: 2001:DB8:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1086 errors:0 dropped:0 overruns:0 frame:0 TX packets:205 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:185996 (181.6 KiB) TX bytes:22383 (21.8 KiB) Interrupt:20

ステップ9 外部サーバへの接続を確認します。

例:

root:~# ping -c 5 192.168.2.10
PING 192.168.2.10 (192.168.2.10): 56 data bytes
64 bytes from 192.168.2.10: seq=0 ttl=64 time=1.381 ms
64 bytes from 192.168.2.10: seq=1 ttl=64 time=0.881 ms
64 bytes from 192.168.2.10: seq=2 ttl=64 time=0.855 ms
64 bytes from 192.168.2.10: seq=3 ttl=64 time=0.865 ms
64 bytes from 192.168.2.10: seq=4 ttl=64 time=0.953 ms

--- 192.168.2.10 ping statistics ---5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max = 0.855/0.987/1.381 ms (注) Intelligent Platform Management Interface (IPMI) およびREST インターフェイスを使用 して、アウトオブバンド BMC 情報を管理できます。

RESTインターフェイスの構造と使用例については、OpenBMC REST API および OpenBMC REST チートシートを参照してください。

デフォルトでは、IPMI 機能は無効になっています。IPMI を機能させるには、次のコ マンドを使用して net ipmi を有効にする必要があります。

netipmi_config.sh -s 1

たとえば、次のipmiコマンドはBMCIPアドレスを使用してセンサーを表示します。

root:~# ipmitool -H 192.0.2.0 -I lanplus -P OpenBmc sensor list IBV | 1031.000 | Volts | ok | 8917.000 | 9112.000 | 9307.000 | 1130.000 | 1171.000 | 11972.000 VP1P2_CPU_C | 1230.000 | Volts | ok | 1134.000 | 1158.000 | 1182.000 | 1256.000 | 1280.000 | 1304.000 | 1060.000 | Volts | ok | 976.000 | 996.000 | 1018.000 | VP1P05 CPU 1080.000 | 1102.000 | 1122.000 VP0P6_VTT_MEM_C | 614.000 | Volts | ok | 558.000 | 570.000 | 582.000 | 618.000 | 630.000 | 642.000 VP1P2_MGTAVTT | 1210.000 | Volts | ok | 1092.000 | 1116.000 | 1140.000 | 1260.000 | 1284.000 | 1308.000 VP1P0_MGTAVCC | 1006.000 | Volts | ok | 910.000 | 930.000 | 950.000 | 1050.000 | 1070.000 | 1090.000 | 3339.000 | Volts | ok | 3003.000 | 3069.000 | 3135.000 | VP3P3 OCXO 3465.000 | 3531.000 | 3597.000 | 3342.000 | Volts | ok | 3003.000 | 3069.000 | 3135.000 | P3 3V 3465.000 | 3531.000 | 3597.000 P2 5V | 2528.000 | Volts | ok | 2273.000 | 2324.000 | 2375.000 | 2624.000 | 2675.000 | 2723.000 | 1814.000 | Volts | ok | 1638.000 | 1674.000 | 1710.000 | VP1P8 OCXO 1890.000 | 1926.000 | 1962.000 | 1820.000 | Volts | ok | 1638.000 | 1674.000 | 1710.000 | P1 8V 1890.000 | 1926.000 | 1962.000 snipped ------

netipmi を無効にするには、次のコマンドを使用します。

root:~# netipmi_config.sh -s 0

ルータクロックと NTP サーバの同期

XR クロックを NTP サーバのクロックと同期して、実時刻とのずれを回避します。BMC も、 ローカル NTP 接続を介して XR と同期されます。

NTPでは、各マシンが信頼できる時刻源から何 NTP ホップ隔たっているかを表すために「ストラタム」という概念を使用します。通常、ストラタム1のタイムサーバには、直接接続される、信頼できる時刻源があります(ラジオや原子時計または GPS 時刻源など)。ストラタム2のタイムサーバは、NTP を介してストラタム1のタイムサーバから時刻を受信します。以降も同様です。

authenticate is disabled

Cisco 8000 シリーズ ルータのノードのリロード

指定した場所、またはハードウェアモジュール全体をリロードします。このコマンドを all オ プションとともに使用すると、シャーシがリロードされます。ハードウェアモジュールをリ ロードすると、そのカードのすべての場所がリロードされます。指定した場所、またはハード ウェアモジュールのグレースフルリロードを実行するには、force オプションを使用します。 force オプションを all の場所とともに使用すると、シャーシはアングレースフルリロードを実 行します。操作を確認するプロンプトを回避するには、noprompt オプションを使用します。

手順

ステップ1 特定の場所、またはハードウェアモジュール全体をリロードします。

例:

次の例は、特定の場所のリロードを示しています。

Router#reload location 0/RP1/CPU0 Proceed with reload? [confirm]

例:

次の例は、ハードウェアモジュール全体のリロードを示しています。

Router#reload location 0/RP1 Proceed with reload? [confirm]

例:

次の例は、特定の場所のアングレースフルリロードを示しています。

Router#reload location 0/1/CPU0 force Proceed with reload? [confirm]

ステップ2 ノードがリロードされていることを確認します。

例:

Router#show platform

(注) EXEC モードでは、0 / xxx / CPUO は特定の場所を示し、0 / xx はハードウェアモジュール全体を示します。たとえば、0/1 / CPUO はモジュール1の CPUO の場所を示し、0/1 はハードウェアモジュール全体を示します。

Cisco 8000 シリーズ ルータのノードのシャットダウン

指定した場所について、ハードウェアモジュール全体をシャットダウンします。指定した場所 のハードウェアモジュールの電源をオンにするには、コマンドの no 形式を使用します。

手順

ステップ1 次の2つのオプションのいずれかを使用して、ノードをシャットダウンします。

コンフィギュレーションモードからシャットダウンする:

1. XR コンフィギュレーション モードを開始します。

例:

Router#config

 指定した場所について、ハードウェアモジュール全体をシャットダウンします。この コマンドを使用してルートプロセッサ(RP)をシャットダウンすることはできません。

例:

Router(config) #hw-module shutdown location 0/1/CPU0

3. 設定をコミットします。

例:

```
Router(config)#commit
Router:Sep 16 16:52:02.048 UTC: shelfmgr[270]: %PLATFORM-SHELFMGR-4-CARD_SHUTDOWN
: Shutting down 0/1: User initiated shutdown from config
```

no hw-module shutdown location *< location* > コマンドを使用して、指定した場所のハード ウェアモジュールの電源をオンにします。

Router(config)#no hw-module shutdown location 0/1/CPU0
Router(config)#commit
Router:Sep 16 16:52:43.851 UTC: shelfmgr[270]: %PLATFORM-SHELFMGR-4-CARD_RELOAD :
Reloading 0/1: User initiated no-shutdown from config

- (注) コンフィギュレーションモードでは、場所 CPU0 はハードウェアモジュール全体 を示します。
- EXECモードからシャットダウンする:
 - 指定した場所、またはハードウェアモジュール全体を EXEC モードでシャットダウン します。ハードウェアモジュールをシャットダウンすると、そのカード上のすべての 場所がシャットダウンされます。指定した場所、またはハードウェアモジュールのア ングレースフル シャットダウンを実行するには、force オプションを使用します。 noprompt オプションを使用すると、ユーザーの確認を求めるプロンプトが表示されな くなります。

例:次の例は、特定の場所のシャットダウンを示しています。

Router#shutdown location 0/1/CPU0 Proceed with shutdown? [confirm] **例**:次の例は、ハードウェアモジュール全体のシャットダウンを示しています。

Router#shutdown location 0/1 Proceed with shutdown? [confirm]

例:次の例は、特定の場所のアングレースフル シャットダウンを示しています。

Router#shutdown location 0/1/CPU0 force Mon Sep 28 19:07:25.019 UTC Proceed with shutdown? [confirm]

- (注) EXECモードでは、0 / xxx / CPU0 は特定の場所を示し、0 / xxはハードウェアモジュール全体を示します。たとえば、0/1 / CPU0 はモジュール1のCPU0の場所を示し、0/1 はハードウェアモジュール全体を示します。
- 2. シャットダウン操作の続行を確認します。
- ステップ2 ノードがシャットダウンされていることを確認します。

例:

Router#show platform

(注) 特定のカードのハードウェアモジュールのシャットダウン操作の後に、同じカードの 場所のブート操作やリロード操作は行わないでください。特定のハードウェアモジュー ルのシャットダウン操作の後には、同じハードウェアモジュールのブート操作または リロード操作を実行して、モジュールの電源を投入します。

たとえば、shutdown location 0/RP1 操作の後に boot location 0/RP1/CPU0 コマンドま たは reload location 0/RP1/CPU0 コマンドを実行することはできません。boot location 0/RP1 を使用して電源をオンにするか、reload location 0/RP1 コマンドを実行してハー ドウェアモジュール全体をリセットします。

Cisco 8000 シリーズ ルータのノードのブート

システム内の指定された場所、またはハードウェアモジュール全体をブートします。ハード ウェアモジュールを起動すると、そのカードのすべての場所の電源がオンになります。操作を 確認するプロンプトを回避するには、noprompt オプションを使用します。

手順

ステップ1 特定の場所、またはハードウェアモジュール全体をブートします。

例:

次の例は、特定の場所のブートを示しています。

Router#boot location 0/1/CPU0 Proceed with boot? [confirm]

例:

次の例は、ハードウェアモジュール全体のブートを示しています。

Router#boot location 0/1 Proceed with boot? [confirm]

- ステップ2 ブート操作の続行を確認します。
- ステップ3 ノードが起動していることを確認します。

例:

Router#show platform

(注) EXEC モードでは、0 / xxx / CPUO は特定の場所を示し、0 / xx はハードウェアモジュール全体を示します。たとえば、0/1 / CPUO はモジュール1の CPUO の場所を示し、0/1 はハードウェアモジュール全体を示します。

Cisco 8000 シリーズ ルータでの予備チェックの実行

コンソールに正常にログインしたら、予備チェックを実行してデフォルト設定が正しいことを 確認する必要があります。発生した問題がある場合は修正してから、さらに設定を進めます。

Cisco 8000シリーズルータのソフトウェアバージョンの確認

ルータには、プリインストールされた Cisco IOS XR ソフトウェアが付属しています。ソフト ウェアの最新バージョンがインストールされていることを確認します。新しいバージョンを使 用できる場合は、システムアップグレードを実行してください。新しいバージョンのソフト ウェアをインストールすることで、ルータに最新の機能セットが提供されます。

実行中のソフトウェアの概要を表示できます。これには次の情報が含まれます。

- イメージ名とバージョン
- •イメージをビルドしたユーザー
- •イメージがビルドされた時刻
- •ビルドワークスペース
- ・ビルドホスト
- ・ISO ラベル

(注) ブートされた ISO で実行中のソフトウェアに変更が加えられた場合、IOS XR バージョンのみがラベルフィールドに表示され、ISOに含まれるラベルは表示されません。

• 著作権情報

ハードウェア情報

Cisco IOS XR ソフトウェアと、ルータにインストールされている各種ソフトウェアコンポーネ ントのバージョンを表示します。

Router#show version Cisco IOS XR Software, Version 7.0.11 LNT Copyright (c) 2013-2019 by Cisco Systems, Inc.

Build Information: Built By : xyz Built On : Sat Jun 29 22:45:27 2019 Build Host : iox-lnx-064 Workspace : ../7.0.11/8000/ws/ Version : 7.0.11 Label : 7.0.11 cisco 8000

System uptime is 41 minutes

Cisco 8000 シリーズ ルータのハードウェアモジュールのステータスの確認

ルータには RP、LC、ファントレイ、電源モジュールなどのハードウェアモジュールが取り付けられています。ルータのさまざまなハードウェアコンポーネントのファームウェアは、インストールされている Cisco IOS XR イメージと互換性がある必要があります。互換性がないと、ルータの誤動作を引き起こす可能性があります。すべてのハードウェアモジュールが正しく取り付けられ、ファームウェアモジュールがインストールされて動作していることを確認します。

始める前に

必要なハードウェア モジュールがすべてルータに取り付けられていることを確認します。

手順

ステップ1 システムのステータスを表示します。

例:

Router#show platfo	orm		
Node	Туре	State	Config state
0/RP0/CPU0	8201-SYS(Active)	IOS XR RUN	NSHUT
0/RP0/BMC0	8201-SYS	OPERATIONAL	NSHUT
0/PM0	PSU2KW-ACPE	OPERATIONAL	NSHUT
0/PM1	PSU2KW-ACPE	OPERATIONAL	NSHUT
0/FT0	FAN-1RU-PE	OPERATIONAL	NSHUT
0/FT1	FAN-1RU-PE	OPERATIONAL	NSHUT
0/FT2	FAN-1RU-PE	OPERATIONAL	NSHUT
0/FT3	FAN-1RU-PE	OPERATIONAL	NSHUT
0/FT4	FAN-1RU-PE	OPERATIONAL	NSHUT

ステップ2 ルータで検出されたハードウェアモジュールとファームウェアモジュールのリストを表示します。

例:

Router#show hw-module fpd

						FPD Vei	rsions
Location	Card type	HWver	FPD device	ATR	Status	Running	Programd
0/RP0/CPU0	8800-RP	0.51	Bios	s	CURRENT	1.15	1.15
0/RP0/CPU0	8800-RP	0.51	BiosGolden	BS	CURRENT	1.15	
0/RP0/CPU0	8800-RP	0.51	BmcFitPrimary	S	NEED UPGD	0.240	0.240
0/RP0/CPU0	8800-RP	0.51	BmcFpga	S	NEED UPGD	0.18	0.18
0/RP0/CPU0	8800-RP	0.51	BmcFpgaGolden	BS	CURRENT	0.19	
0/RP0/CPU0	8800-RP	0.51	BmcTamFw	S	CURRENT	5.05	5.05
0/RP0/CPU0	8800-RP	0.51	BmcTamFwGolden	BS	CURRENT	5.05	
0/RP0/CPU0	8800-RP	0.51	BmcUbootPrimary	S	CURRENT	0.15	0.15
0/RP0/CPU0	8800-RP	0.51	EthSwitch		CURRENT	0.07	0.07
0/RP0/CPU0	8800-RP	0.51	EthSwitchGolden	BP	CURRENT	0.07	
0/RP0/CPU0	8800-RP	0.51	TimingFpga		CURRENT	0.11	0.11
0/RP0/CPU0	8800-RP	0.51	TimingFpgaGolden	в	CURRENT	0.11	
0/RP0/CPU0	8800-RP	0.51	x86Fpga	S	NEED UPGD	0.23	0.23
0/RP0/CPU0	8800-RP	0.51	x86FpgaGolden	BS	CURRENT	0.24	
0/RP0/CPU0	8800-RP	0.51	x86TamFw	S	CURRENT	5.05	5.05
0/RP0/CPU0	8800-RP	0.51	x86TamFwGolden	BS	CURRENT	5.05	

この結果で、シャーシに設置されたすべてのハードウェアモジュールが表示されていることを 確認します。表示されないモジュールがある場合、そのモジュールが正常に動作していない か、正しく設置されていないことを意味します。当該のハードウェアモジュールを取り外し て、もう一度取り付けてください。

上記の出力で重要なフィールドは次のとおりです。

• FPD Device: IO FPGA、IM FPGA、BIOS などのハードウェアコンポーネントの名前。

(注) ゴールデン FPD はフィールドアップグレードできません。

• Status:ファームウェアのアップグレードステータス。それぞれの状態については次のとおりです。

ステータス	説明
CURRENT	ファームウェアバージョンは最新バージョ ンです。
READY	FPD のファームウェアはアップグレード可 能な状態です。
NOT READY	FPD のファームウェアはアップグレード可 能な状態ではありません。

ステータス	説明
NEED UPGD	インストール済みのイメージで新しいファー ムウェアバージョンを利用できます。ファー ムウェアバージョンのアップグレードを実 行することを推奨します。
RLOAD REQ	アップグレードが完了しており、ISOイメー ジのリロードが必要です。
UPGD DONE	ファームウェア アップグレードが正常に行 われました。
UPGD FAIL	ファームウェア アップグレードが失敗しま した。
BACK IMG	ファームウェアが破損しています。ファー ムウェアを再インストールしてください。
UPGD SKIP	インストール済みファームウェアのバージョ ンが、イメージで利用可能なバージョンよ りも上位であるため、アップグレードがス キップされました。

• Running: FPD で現在実行中のファームウェアのバージョン。

• Programmd:モジュールにプログラミングされている FPD のバージョン。

ステップ3 必要に応じて、必要なファームウェアをアップグレードします。

例:

Router#upgrade hw-module location all fpd all

アップグレードが必要なすべてのモジュールを示すアラームが作成されます。

Active Alarms

Location	Severity	Group	Set Time	Description
0/6/CPU0	Major	FPD_Infra	09/16/2019 12:34:59 UTC	One Or More FPDs
Need Upgrade	Or Not In	Current State		
0/10/CPU0	Major	FPD_Infra	09/16/2019 12:34:59 UTC	One Or More FPDs
Need Upgrade	Or Not In	Current State		
0/RP0/CPU0	Major	FPD_Infra	09/16/2019 12:34:59 UTC	One Or More FPDs
Need Upgrade	Or Not In	Current State		
0/RP1/CPU0	Major	FPD_Infra	09/16/2019 12:34:59 UTC	One Or More FPDs
Need Upgrade	Or Not In	Current State		
0/FC0	Major	FPD_Infra	09/16/2019 12:34:59 UTC	One Or More FPDs
Need Upgrade	Or Not In	Current State		
0/FC1	Major	FPD_Infra	09/16/2019 12:34:59 UTC	One Or More FPDs
Need Upgrade	Or Not In	Current State		

- (注) BIOS および IOFPGA のアップグレードでは、新しいバージョンを有効にするために ルータの電源を再投入する必要があります。
- **ステップ4** モジュールをアップグレードしたら、モジュールのステータスを確認します。

例:

Router#show hw-module fpd

	-					FPD Vers	sions
Location	Card type	HWver	FPD device	ATR	Status	Running	Programd
0/RP0/CPU0	8800-RP	0.51	Bios	S	CURRENT	1.15	1.15
0/RP0/CPU0	8800-RP	0.51	BiosGolden	BS	CURRENT	1.15	
0/RP0/CPU0	8800-RP	0.51	BmcFitPrimary	S	RLOAD REQ	0.240	0.241
0/RP0/CPU0	8800-RP	0.51	BmcFpga	S	RLOAD REQ	0.18	0.19
0/RP0/CPU0	8800-RP	0.51	BmcFpgaGolden	BS	CURRENT	0.19	
0/RP0/CPU0	8800-RP	0.51	BmcTamFw	S	CURRENT	5.05	5.05
0/RP0/CPU0	8800-RP	0.51	BmcTamFwGolden	BS	CURRENT	5.05	
0/RP0/CPU0	8800-RP	0.51	BmcUbootPrimary	S	CURRENT	0.15	0.15
0/RP0/CPU0	8800-RP	0.51	EthSwitch		CURRENT	0.07	0.07
0/RP0/CPU0	8800-RP	0.51	EthSwitchGolden	BP	CURRENT	0.07	
0/RP0/CPU0	8800-RP	0.51	TimingFpga		CURRENT	0.11	0.11
0/RP0/CPU0	8800-RP	0.51	TimingFpgaGolden	в	CURRENT	0.11	
0/RP0/CPU0	8800-RP	0.51	x86Fpga	S	RLOAD REQ	0.23	<mark>0.24</mark>
0/RP0/CPU0	8800-RP	0.51	x86FpgaGolden	BS	CURRENT	0.24	
0/RP0/CPU0	8800-RP	0.51	x86TamFw	S	CURRENT	5.05	5.05
0/RP0/CPU0	8800-RP	0.51	x86TamFwGolden	BS	CURRENT	5.05	

アップグレードされたノードのステータスは、リロードが必要であることを示しています。

ステップ5 アップグレードを必要としていた個々のノードをリロードします。

例:

Router#reload location <node-location>

ステップ6 アップグレードを必要としていたすべてのノードで、更新されたFPDバージョンでCURRENTの ステータスが表示されることを確認します。

例:

Router#show hw-module fpd

						======	==========
Location	Card type	HWver	FPD device	ATR	Status	Running	Programd
0/RP0/CPU0	8800-RP	0.51	Bios	S	CURRENT	1.15	1.15
0/RP0/CPU0	8800-RP	0.51	BiosGolden	BS	CURRENT	1.15	
0/RP0/CPU0	8800-RP	0.51	BmcFitPrimary	S	CURRENT	<mark>0.241</mark>	<mark>0.241</mark>
0/RP0/CPU0	8800-RP	0.51	BmcFpga	S	CURRENT	0.19	0.19
0/RP0/CPU0	8800-RP	0.51	BmcFpgaGolden	BS	CURRENT	0.19	
0/RP0/CPU0	8800-RP	0.51	BmcTamFw	S	CURRENT	5.05	5.05
0/RP0/CPU0	8800-RP	0.51	BmcTamFwGolden	BS	CURRENT	5.05	
0/RP0/CPU0	8800-RP	0.51	BmcUbootPrimary	S	CURRENT	0.15	0.15
0/RP0/CPU0	8800-RP	0.51	EthSwitch		CURRENT	0.07	0.07
0/RP0/CPU0	8800-RP	0.51	EthSwitchGolden	BP	CURRENT	0.07	
0/RP0/CPU0	8800-RP	0.51	TimingFpga		CURRENT	0.11	0.11
0/RP0/CPU0	8800-RP	0.51	TimingFpgaGolden	в	CURRENT	0.11	
0/RP0/CPU0	8800-RP	0.51	x86Fpga	S	RLOAD REQ	0.24	0.24
0/RP0/CPU0	8800-RP	0.51	x86FpgaGolden	BS	CURRENT	0.24	

FPD Versions

0/RP0/CPU0 0/RP0/CPU0	8800-RP	0.51	x86TamFw x86TamFwGolden	S	CURRENT	5.05	5.05
0/RP0/CPU0	8800-RP	0.51	x86TamFwGolden	BS	CURRENT	5.05	

Cisco 8000 シリーズ ルータのインターフェイスステータスの確認

ルータが起動すると、使用可能なすべてのインターフェイスがシステムによって検出されま す。インターフェイスが検出されない場合、ユニットの異常を示している可能性があります。

手順

システムによって検出されたインターフェイスを表示します。

例:

Router#show ipv4 interfaces brief

Interface		IP-Address Sta		atus	Protoc	ol Vrf-Name
						HundredGigE0/0/0/0
	unassigned	Shutdown	Down	default	2	
HundredGigE0)/0/0/1	unassigned	Shu	ıtdown	Down	default
HundredGigE0)/0/0/2	unassigned	Shu	ıtdown	Down	default
HundredGigE0)/0/0/3	unassigned	Shi	utdown	Down	default
HundredGigE0)/0/0/4	unassigned	Shu	utdown	Down	default
HundredGigE0)/0/0/5	unassigned	Shi	Shutdown		default
HundredGigE0)/0/0/6	unassigned	Shu	utdown	Down	default
HundredGigE0)/0/0/7	unassigned	Shi	Shutdown		default
		<pre><snip></snip></pre>			Ten	GigE0/0/0/18/0
un	nassigned	Up	Up	default		
TenGigE0/0/0)/18/1	unassigned	Up		Up	default
TenGigE0/0/0)/18/2	unassigned	Up		Up	default
TenGigE0/0/0)/18/3	unassigned	Up		Up	default
MgmtEth0/RP0	/CPU0/0	10.10.10.1	Up		Up	default

ルータの初回起動時には、すべてのインターフェイスが unassigned の状態です。結果に表示 されるインターフェイスの総数が、ルータに存在する実際のインターフェイスの数と一致して いること、およびインターフェイスが show platform コマンドで表示されるラインカードのタ イプに従って作成されていることを確認します。

Cisco 8000 シリーズ ルータでのノードステータスの確認

ルータ上の各カードはノードを表します。

手順

ノードの動作ステータスを確認します。

例:

Router#show p	latform		
Node	Туре	State	Config state

0/RP0/CPU0	8800-RP(Active)	IOS XR RUN	NSHUT
0/RP0/BMC0	8800-RP	OPERATIONAL	NSHUT
0/RP1/CPU0	8800-RP(Standby)	IOS XR RUN	NSHUT
0/RP1/BMC0	8800-RP	OPERATIONAL	NSHUT
0/0/CPU0	8800-LC	IOS XR RUN	NSHUT
0/11/CPU0	8800-LC	IOS XR RUN	NSHUT
0/FC0	8812-FC	OPERATIONAL	NSHUT
0/FC3	8812-FC	OPERATIONAL	NSHUT
0/FT0	8812-FAN	OPERATIONAL	NSHUT
0/FT1	8812-FAN	OPERATIONAL	NSHUT
0/FT2	8812-FAN	OPERATIONAL	NSHUT
0/FT3	8812-FAN	OPERATIONAL	NSHUT
0/PT0	FAM7000-ACHV-TRAY	OPERATIONAL	NSHUT

シャーシ内に存在するノードのステータスが表示されます。

(注) RP および LC は CPU ベースのカードです。

すべての RP および LC の状態が IOS XR RUN であることを確認します。これは、XR が動作状態であり、FC、FT、PT、および PM の状態が OPERATIONAL であることを示します。

「人の私に、 ノノノーノオ ちの 仏感とかしよう	次の表に、	プラッ	トフォーム	ムの状態を示し	します。
--------------------------	-------	-----	-------	---------	------

Card Type	プラットフォームの状態の表 示	説明
すべて (All)	UNKNOWN	エラー:内部カードレコード が使用できません
すべて (All)	IDLE	エラー:カードステートマシ ンが初期化されていません
すべて (All)	DISCOVERED	カードが検出されました
すべて (All)	POWERED_ON	カードの電源がオンになって います
RP、LC	BIOS_READY	カードBIOSがブートされました
RP、LC	IMAGE_INSTALLING	イメージをダウンロードまた はインストールしています
RP、LC	BOOTING	イメージがインストールされ ソフトウェアがブート中です
RP、LC	IOS_XR_RUN	ソフトウェアは正常に動作し ており、完全に機能していま す
RP、LC	IOS_XR_INITIALIZING	ソフトウェアが初期化中です

I

Card Type	プラットフォームの状態の表 示	説明
FC, FT, PT, PM	OPERATIONAL	ソフトウェアは正常に動作し ており、完全に機能していま す
RP、LC、FC	[RESET]	カードはリセット中です
RP、LC	REIMAGE	カードの再イメージ化が保留 中です
RP、LC、FC	SHUTTING_DOWN	障害状態、ユーザーアクショ ン、または設定の結果として カードがシャットダウン中で す
RP、LC、FC	SHUT_DOWN	障害状態、ユーザーアクショ ン、または設定の結果として カードがシャットダウンされ ました
FC	ONLINE	RPはこのリモートカードにア クセスできます
LC	DATA_PATH_POWERED_ON	フォワーディング コンプレッ クスの電源がオンになってい ます
LC	DATA_PATH_POWERED_OFF	フォワーディング コンプレッ クスの電源がオフになってい ます
RP、LC、FC	PLATFORM_INITIALIZED	カードの IDPROM 情報を読み 取りました
すべて (All)	CARD_FAILED	カードが障害状態です
RP、LC	KERNEL_DUMP_IN_PROGRESS	カーネルクラッシュが検出さ れ、カーネルコアが収集され ています
RP (アクティブ)	SHUTTING_REMOTE_CARDS	アクティブな RP カードが、 シャーシリセットの一部とし て他のカードをシャットダウ ンしています

Card Type	プラットフォームの状態の表 示	説明
RP(スタンバイ)、LC、FC	WAITING_FOR_CHASSIS_RESET	カードがシャットダウンさ れ、シャーシのリセットを待 機しています
RP、LC	WDOG_STAGE1_TIMEOUT	カード CPU がハードウェア ウォッチドッグをリセットで きませんでした
RP、LC	WDOG_STAGE2_TIMEOUT	カード CPU 自体のリセットを 待機しているハードウェア ウォッチドッグがタイムアウ トしました
FC	CARD_ACCESS_DOWN	RPがこのリモートカードにア クセスできません

Cisco 8000 シリーズ ルータでのユーザーの作成と権限の割り当て

ユーザーの認証にはユーザー名とパスワードが使用されます。認証、許可、およびアカウン ティング(AAA)コマンドが、次のサービスに役立ちます。

- ユーザー、グループ、コマンドルール、データルールの作成
- ディザスタリカバリのパスワードの変更

XR には Linux とは別の AAA があります。XR AAA はプライマリ AAA システムです。XR で 作成されたユーザーは、ルータに接続すると、EXEC プロンプトに直接ログインできます。 Linux で作成されたユーザーはルータに接続できますが、bash プロンプトが表示されます。XR EXEC プロンプトにアクセスするには、XR に明示的にログインする必要があります。

制御されていないアクセスをユーザーが行わないよう制限するために、AAA 認証を設定しま す。AAA 認証が設定されていない場合、ユーザーに割り当てられたグループに関連付けられ たコマンドおよびデータルールはバイパスされます。ユーザーは、ネットワーク設定プロトコ ル(NETCONF)、Google 定義のリモートプロシージャコール(gRPC)または任意の YANG ベースのエージェントを介して、IOS XR 設定への完全な読み取り/書き込みアクセス権を持つ ことができます。制御されていないアクセスを許可しないようにするには、いずれかの設定を 行う前に AAA 認証を有効にします。AAA について理解し、AAA サービスについて調べるに は、『System Security Configuration Guide for Cisco 8000 Series Routers』の「Configuring AAA Services」の章を参照してください。

ユーザープロファイルの作成

新しいユーザーを作成し、特定の権限を持つユーザーグループにそのユーザーを含めます。 ルータでは、最大で1024個のユーザープロファイルがサポートされます。

このタスクでは、ユーザー user1、このユーザーのパスワード pw123 を作成し、そのユーザー をグループ root-lr に割り当てます。

手順

ステップ1 XR コンフィギュレーション モードを開始します。

例:

Router#config

ステップ2 新規ユーザーを作成します。

例:

Router(config)#username user1

ステップ3 その新規ユーザーのパスワードを作成します。

例:

Router(config-un) #password pw123

ステップ4 ユーザーをグループ root-lr に割り当てます。

例:

Router(config-un)#group root-lr

すべてのユーザーに read 権限があります。ただし、ユーザーは root-1r ユーザーグループに 割り当てることができます。これらのユーザーは、ユーザーが設定を作成したり、新しいユー ザーを作成したりできる write 権限を継承します。

ステップ5 設定をコミットします。

例:

Router(config-un)#commit

BMC にログインする場合は、BMC の設定時に作成した root のクレデンシャルを使用します。 「BMC でのイーサネットポートの IP アドレスの設定 (7 ページ)」を参照してください。 ユーザーの作成後、SSH セッションを使用して BMC に接続できます。

次のタスク

ルータのセットアップが完了すると、システムの管理、ソフトウェアパッケージのインストール、およびネットワークの設定を行うことができます。

ユーザーグループの作成

新しいユーザーグループを作成してコマンドルールとデータルールを関連付けます。コマンド ルールおよびデータルールは、ユーザーグループに属するすべてのユーザに適用されます。 ルータでは、最大 32 のユーザーグループがサポートされます。 このタスクでは、グループ名 group1 を作成し、このグループにユーザー user1 を割り当てま す。

始める前に

ユーザープロファイルを作成します。「ユーザープロファイルの作成 (24 ページ)」を参照 してください。

手順

ステップ1 XR コンフィギュレーション モードを開始します。

例:

Router#config

ステップ2 新しいユーザーグループ group1 を作成します。

例:

Router#(config)#group group1

ステップ3 このユーザーグループに割り当てるユーザーの名前 user1 を指定します。

例:

Router#(config-GRP)#username user1

複数のユーザー名を二重引用符で囲んで指定できます。たとえば、ユーザー "userl user2 ... "となります。

ステップ4 設定をコミットします。

例:

Router#commit

次のタスク

ルータのセットアップが完了すると、システムの管理、ソフトウェアパッケージのインストー ル、およびネットワークの設定を行うことができます。 © 2020 Cisco Systems, Inc. All rights reserved.