
NX-API CLI

• NX-API CLIについて（1ページ）
• NX-API CLIの使用（4ページ）
•カーネルスタック ACL（35ページ）
• NX-API応答コードの表（37ページ）
• JSONおよび XML構造化出力（40ページ）
•サンプル NX-APIスクリプト（49ページ）

NX-API CLIについて
NX-API CLIは、XML出力をサポートするCiscoNX-OSCLIシステムの拡張機能です。NX-API
CLIは、特定のコマンドの JSON出力フォーマットもサポートしています。

CiscoNexusスイッチでは、コマンドラインインターフェイス（CLI）はスイッチ上でのみ実行
されます。NX-API CLIは HTTP / HTTPSを使ってスイッチの外部で CLIを使用できるように
することで、これらの CLIのユーザー補助を改善します。この拡張機能をスイッチの既存の
Cisco NX-OS CLIシステムに使用できます。NX-API CLIは showコマンド、構成と Linux Bash
をサポートします。

NX-API CLIは JSON-RPCをサポートしています。

注意事項と制約事項

• NX-API CLIは、スイッチで Cisco NX-OS CLIを実行するために VSHを生成します。VSH
のタイムアウトは 5分です。Cisco NX-OS CLIの実行に 5分以上かかると、コマンドは失
敗し、「Back-end processing error.」というメッセージが表示されます。これは、NX-API
コマンドのタイムアウトによって制御されます。これは、NX-APIを介して要求されたコ
マンドを実行できる時間を制御します。この値は300秒に固定されており、変更できませ
ん。

• Cisco NX-OSリリース 10.2(1)F以降では、 system server session cmd-timeoutを使用してタ
イムアウトを増やすことができます。

NX-API CLI
1

• NX- APIはワーカープロセスを生成し、複数のワーカープロセスがリクエストを均等に負
担するようにします。

• nginxのバックエンドワーカープロセスの数は 4です。

• N3kおよび低メモリベースプラットフォームの nginxバックエンドワーカープロセス
の数は 2です。

•各ワーカープロセスは、5つの永続的な VSHセッションのプールを維持します。各 VSH
セッションは、着信リクエストからのユーザー名とリモート IPの組み合わせで一意に識
別されます。新しいリクエストが来るたびに、ワーカープロセスは一致するユーザー名と

リモート IPエントリがすでに存在するかどうかを確認します。存在する場合は、対応す
る VSHセッションを使用します。存在しない場合は、プール内の可用性に基づいて新し
い VSHセッションが作成され、新しいエントリがプールに追加されます。ワーカープロ
セスがすでに最大許容 VSHセッションを実行している場合、新しいリクエストは拒否さ
れ、適切なエラーメッセージが応答で返されます。

•ワーカープロセスごとの VSHセッション数はハードコードされた値であり、構成するこ
とはできません。任意の時点で存在できるセッションの合計数は 20です。

• NX-APIに関連付けられているトラストポイント、証明書、またはキーが削除されても、
NX-APIは NX-API証明書、トラストポイント、または NX-APIクライアント証明書の認
証設定を保持します。そのため、NX-API機能には影響が及びます。NX-APIの現在のイ
ンスタンスは正常に動作しますが、NX-APIコマンドの再構成によってインスタンスが破
損する可能性があります。これを防ぐには、no crypto ca trustpointコマンドを使用してト
ラストポイントまたは証明書を削除するときに、NX-API設定も削除または更新すること
が重要です。

チャンクモード

•チャンクモードは、2つの同時セッションのみをサポートします。チャンクオプションが
選択されている場合、一度に 2つの並列セッションでのみ指定できます。

•リリース 10.3(1)Fリリースまで、チャンクモードでサポートされる応答の最大サイズは
200 MBです。

• 10.3(1)Fリリース以降、チャンクモードは、スペースが揮発性領域（約 2.0GB）で使用可
能である限り、応答サイズをサポートします。チャンクモード応答がサポートするサイズ

は、揮発性領域のスペースによって異なります。揮発性領域の90%がいっぱいになると、
その後最初にshow出力がファイルに収集されたとき、チャンクモードは失敗を返します。
各応答でサポートされるチャンクサイズは 10 MBです。

転送

NX-APIは、転送のようにHTTPまたはHTTPSを使用します。CLIは、HTTP / HTTPS POST本
文にエンコードされます。

NX-API CLI
2

NX-API CLI

転送

Cisco NX-OSリリース 9.2(1)以降、NX-API機能は HTTPSポート 443でデフォルトで有効に
なっています。HTTPポート 80は無効化されています。

NX-APIは、ホスト上でネイティブに、またはゲストシェル内で実行されるアプリケーション
の UNIXドメインソケットを介してサポートされます。

NX-APIバックエンドはNginxHTTPサーバを使用します。Nginxプロセスとそのすべての子プ
ロセスは、CPUとメモリの使用量が制限されている Linux cgroup保護下にあります。NX-API
プロセスは、cgroup ext_ser_nginxの一部であり、2,147,483,648バイトのメモリに制限されてい
ます。Nginxのメモリ使用量が cgroupの制限を超えると、Nginxプロセスは再起動されて、
NX-API構成（VRF、ポート、証明書構成）が復元されます。

メッセージ形式

NX-APIは、XML出力をサポートする Cisco Nexus 7000シリーズ CLIシステムの拡張機能で
す。NX-APIは、特定のコマンドの JSON出力フォーマットもサポートしています。

NX-APIは、XML出力をサポートするCiscoNX-OSCLIシステムの拡張機能です。NX-APIは、
特定のコマンドの JSON出力フォーマットもサポートしています。

• NX-API XML出力は、情報を使いやすいフォーマットで表示します。

• NX-API XMLは、Cisco NX-OS NETCONF導入に直接マッピングされません。

• NX-API XML出力は、JSONに変換できます。

（注）

セキュリティ

• NX-APIは HTTPSをサポートします。HTTPSを使用すると、デバイスへのすべての通信
が暗号化されます。

• NX-APIは、デフォルトでは非セキュア HTTPをサポートしていません。

• NX-APIは、デフォルトでは弱い TLSv1プロトコルをサポートしていません。

NX-APIは、デバイスの認証システムに統合されています。ユーザーは、NX-APIを介してデ
バイスにアクセスするための適切なアカウントを持っている必要があります。NX-APIでは
HTTP basic認証が使用されます。すべてのリクエストには、HTTPヘッダーにユーザー名とパ
スワードが含まれている必要があります。

ユーザーのログイン資格情報を保護するには、HTTPSの使用を検討する必要があります。（注）

[機能（feature）]マネージャCLIコマンドを使用して、NX-APIを有効にすることができます。
NX-APIはデフォルトで無効になっています。

NX-API CLI
3

NX-API CLI

メッセージ形式

NX-APIは、ユーザーが最初に認証に成功したときに、セッションベースのCookie、nxapi_auth
を提供します。セッションCookieを使用すると、デバイスに送信される後続のすべてのNX-API
要求にユーザー名とパスワードが含まれます。ユーザー名とパスワードは、完全な認証プロセ

スの再実行をバイパスするために、セッション Cookieで使用されます。セッション Cookieが
後続の要求に含まれていない場合は、別のセッション Cookieが必要であり、認証プロセスに
よって提供されます。認証プロセスの不必要な使用を避けることで、デバイスのワークロード

を軽減できます。

nxapi_auth cookieは 600秒（10分）で期限切れになります。この値は固定されており、調整で
きません。

（注）

NX-APIは、スイッチ上の Programmable Authentication Module（PAM）を使用して認証を行い
ます。cookieを使用して PAMの認証数を減らし、PAMの負荷を減らします。

（注）

NX-API CLIの使用
Cisco Nexus 9000シリーズスイッチのコマンド、コマンドタイプ、および出力タイプは、CLI
をHTTP/HTTPSPOSTの本文にエンコードすることにより、NX-APIを使用して入力されます。
要求に対する応答は、XMLまたは JSON出力形式で返されます。

NX-API応答コードの詳細については、NX-API応答コードの表（37ページ）を参照してくだ
さい。

（注）

NX-API CLIは、ローカルアクセスに対してはデフォルトで有効になっています。リモート
HTTPアクセスに対してはデフォルトで無効になっています。

次の例は、NX-API CLIを構成して起動する方法を示しています。

•管理インターフェイスを有効にします。
switch# conf t
Enter configuration commands, one per line.
End with CNTL/Z.
switch(config)# interface mgmt 0
switch(config-if)# ip address 10.126.67.53/25
switch(config-if)# vrf context managment
switch(config-vrf)# ip route 0.0.0.0/0 10.126.67.1
switch(config-vrf)# end
switch#

• NX-API nxapi機能を有効にします。

switch# conf t
switch(config)# feature nxapi

NX-API CLI
4

NX-API CLI

NX-API CLIの使用

次の例は、リクエストとそのレスポンスを XML形式で示しています。

要求:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

応答：

<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

次の例は、JSON形式の要求とその応答を示しています。

要求:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

応答：

{
"ins_api": {

"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",

NX-API CLI
5

NX-API CLI

NX-API CLIの使用

"code": "200"
}

}
}

}

ユーザーを削除しようとすると失敗し、次のようなエラーメッセージが約 12時間ごとに表示
されるという既知の問題があります。

user delete failed for username:userdel: user username is currently logged in - securityd

この問題は、NX-APIを介してスイッチにログインしているユーザーを削除しようとした場合
に発生する可能性があります。この場合、次のコマンドを入力して、最初にユーザーのログア

ウトを試行します。

switch(config)# clear user username

その後、ユーザーの削除を再試行します。回避策を試みても問題が解決しない場合は、Cisco
TACへお問い合わせください。

（注）

NX-APIで権限を rootにエスカレーションする
NX-APIでは、管理者ユーザーの権限を rootアクセスの権限にエスカレーションできます。

以下は、権限をエスカレーションするためのガイドラインです：

•特権を rootにエスカレーションできるのは管理者ユーザーのみです。

• rootへのエスカレーションはパスワードで保護されています。

次の例は、管理者の権限を rootにエスカレーションする方法と、エスカレーションを確認する
方法を示しています。rootになっても、whoamiコマンドを実行すると adminとして表示され
ることに注意してください。ただし、adminアカウントにはすべての root権限があります。

最初の例：

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>

NX-API CLI
6

NX-API CLI

NX-APIで権限を rootにエスカレーションする

<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

2番目の例：

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

NX-API管理コマンド
次の表にリストされている CLIコマンドを使用して、NX-APIを有効にして管理できます。

表 1 : NX-API管理コマンド

説明NX-API管理コマンド

NX-APIを有効化します。feature nxapi

NX-APIを無効化します。no feature nxapi

ポートを指定します。nxapi {http | https} port port

HTTP / HTTPSを無効化します。no nxapi {http | https}

ポートと証明書情報を表示します。

（注）

「 show nxapi」コマンドは、network-operatorロールの
証明書/設定情報を表示しません。

show nxapi

NX-API CLI
7

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

次のアップロードを指定します：

• httpscrtが指定されている場合の HTTPS証明書。

• httpskeyが指定されている場合の HTTPSキー。

HTTPS証明書の例：
nxapi certificate httpscrt certfile bootflash:cert.crt

HTTPSキーの例：
nxapi certificate httpskey keyfile
bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

暗号化された秘密キーを使用してNX-API証明書をイン
ストールします。

（注）

暗号化された秘密キーを復号するためのパスフレーズ

は pass123!です。

例:
nxapi certificate httpskey keyfile
bootflash:encr-cc.pem password pass123!

ファイル名パスフレーズ nxapi
certificatehttpskey keyfile password

証明書を有効化します。nxapi certificate enable

NX-API CLI
8

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

nxapi certificate trustpoint <trustpoint
label>

NX-API CLI
9

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

Cisco NX-OSリリース 10.2(3)F以降では、トラストポイ
ントインフラを使用して NX-APIの証明書をインポー
トするか、CA証明書を使用できるようになりました。

（注）

•最初に証明書をインポートするように crypto ca
importトラストポイントを設定するには、『Cisco
Nexus 9000 Security Configuration Guide』を参照し
てください。

•現在、この形式では pkcs12証明書のインポートの
みがサポートされています。NX-API証明書の有効
化/NX-API証明書のトラストポイントとNX-API証
明書のSUDIは相互に排他的であり、各設定によっ
て証明書/キーが上書きされます。

• NX-API証明書の有効化でサポートされる証明書/
キーの最大サイズは 8kです。サイズが 8kを超え
る場合は、NX-API証明書トラストポイントを使用
して証明書をインポートします。

•トラストポイントインフラを使用して NX-APIで
カスタム証明書を設定した場合、reload asciiコマ
ンドを入力すると、設定が失われます。デフォル

トの day-1 NX-API証明書に戻ります。reload ascii
コマンドを入力すると、スイッチがリロードされ

ます。スイッチが再び起動したら、NX-API証明書
トラストポイントの設定を再設定する必要があり

ます。

• Cisco NX-OSリリース 10.3(1)F以降では、ASCIIト
ラストポイントリロードのサポートが追加されて

います。

•現在の実行コンフィギュレーションにトラストポ
イントとインポートされた証明書が含まれていな

いが、ターゲットコンフィギュレーションにトラ

ストポイント「crypto ca trustpoint」の作成が含まれ
ている場合、コンフィギュレーション置換は失敗

します。<trustpoint name> "および "nxapi certificate
trustpoint<trustpoint-name> "CLIを選択します。トラ
ストポイントが存在しない場合は、最初にトラス

トポイントを作成し、証明書をインポートする必

要があります。<trustpoint-label> "。

• NX-APIに関連付けられている証明書またはトラス
トポイントが削除されると、NX-APIの現在のイン

NX-API CLI
10

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

スタンスは引き続き機能しますが、リンクは切断

されます。NX-API構成の変更または再起動によ
り、NX-APIはデフォルトの証明書で実行され、
show nxapiはこれらの詳細を表示します。

NX-APIに関連付けられている証明書とトラストポ
イントが再度追加されると、NX-APIは自動的に再
起動され、引き続き機能します。

暗号化証明書を使用した ASCIIリロードまたは
ISSUの場合、システムの準備後にすべての証明書
が復元されるまで、NGINXの再起動が複数回発生
する可能性があります。

NX-APIを使用するために証明書が復元されるのを
待ちます

NX-API CLI
11

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

この CLIは、Secure Unique Device Identifier（SUDI）を
使用してデバイスを安全に認証する方法を提供します。

nginxの SUDIベースの認証は、CISCO SUDI準拠のコ
ントローラによって使用されます。

SUDIは、X.509v3証明書に含まれる IEEE 802.1AR準拠
のセキュアデバイス識別子で、Ciscoデバイスの製品識
別子とシリアル番号を維持します。IDは製造時に実装
され、公的に識別可能なルート認証局につながれます。

（注）

• NX-APIが SUDI証明書を使用する場合、ブラウ
ザ、curlなどのサードパーティアプリケーション
からはアクセスできません。

•「nxapi certificate sudi」は、設定されている場合に
カスタム証明書/キーを上書きし、カスタム証明書/
キーを元に戻す方法はありません。

•「nxapi certificate sudi」と「nxapi certificate
trustpoint」と「nxapi certificate enable」は相互に排
他的であり、一方を設定するともう一方の設定が

削除されます。

• NX-APIは、SUDI証明書ベースのクライアント証
明書認証をサポートしていません。クライアント

証明書認証が必要な場合は、アイデンティティ証

明書を使用する必要があります。

• NX-API証明書 CLIは show runの出力に存在しな
いため、現在、CR/ロールバックの場合は、「nxapi
certificate sudi」オプションで上書きされるとカス
タム証明書に戻りません。

• Cisco NX-OSリリース 10.5(2)F以降、「nxapi
certificate sudi」は Cisco NX-OSスイッチの FIPS
モードでブロックされます。

nxapi certificate sudi

これにより、SUDIが無効になり、NX-APIにはデフォ
ルトの自己署名証明書が付属します。

no nxapi certificate sudi

NX-API CLI
12

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

Cisco NX-OSリリース 9.2(1)以降、弱い暗号はデフォル
トで無効になっています。このコマンドを実行すると、

デフォルトの動作が変更され、NGINXの弱い暗号が有
効になります。このコマンドの no形式を使用すると、
デフォルトに変更されます（デフォルトでは、弱い暗号

は無効になります）。

nxapi ssl-ciphers weak

NX-API CLI
13

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

Cisco NX-OSリリース 10.2(4)M以降、TLSv1.3が Cisco
Nexus9000シリーズプラットフォームスイッチでサポー
トされています。このコマンドを実行すると、文字列で

指定された TLSバージョンが有効になります。Cisco
NX-OSリリース9.3(2)以降では、TLSv1.2のみがデフォ
ルトで有効になっています。

このコマンドの no形式を使用すると、TLSバージョン
がデフォルトバージョンに変更されます。

•特定の TLSバージョンを有効にする場合は、それ
ぞれの TLSバージョンのみを指定します。

たとえば、TLSv1.3が必要な場合は、次のコマンド
を使用します。

switch(config)# nxapi ssl protocols TLSv1.3

•後の段階で後方互換性のために複数のTLSバージョ
ンを有効にする場合は、サポートされていて必要な

すべての TLSバージョンを指定します。

次に例を示します。

• TLSv1.1～ TLSv1.3が必要な場合は、次のコマ
ンドを使用して、必要なすべてのTLSバージョ
ンを有効にします。

switch(config)# nxapi ssl protocols TLSv1.2
TLSv1.3

•後方互換性が必要な場合は、次のコマンドを使
用してそのバージョンを有効にします。

switch(config)# nxapi ssl protocols TLSv1.2

（注）

•下位互換性のために、TLSv1.2およびTLSv1.3を使
用することをお勧めします。

switch(config)# nxapi ssl protocols TLSv1.2
TLSv1.3

次の場合を例にします：

• TLSv1.3を設定する前に、TLSv1.3をサポートする
ためにサーバーとクライアントの証明書を検証し

ます。

• NX-APIサーバ側の SUDI証明書は、TLSv1.3では
サポートされていません。

nxapi ssl-protocols {TLSv1.0 TLSv1.1
TLSv1.2 TLSv1.3}

NX-API CLI
14

NX-API CLI

NX-API管理コマンド

説明NX-API管理コマンド

デフォルトVRF、管理VRF、または名前付きVRFを指
定します。

（注）

Cisco NX-OSリリース 7.0(3)I2(1)では、NGINXは 1つ
の VRFでのみリッスンします。

nxapi use-vrf vrf

Cisco NX-OSリリース 10.2(3)F以降、NGINXサーバー
では、コマンドを実行するためのデフォルトのタイムア

ウトは5分です。ユーザは、必要に応じて、およびコマ
ンドの実行にかかる時間に応じて、タイムアウトを 60
秒（1分）から3600秒（1時間）の任意の値に増やすこ
とができます。

system server session cmd-timeout
<timeout>

アクセス制限を実装し、管理 VRFで実行できます。

（注）

機能 bash-shellを有効にしてから、Bashシェルからコ
マンドを実行する必要があります。Bashシェルの詳細
については、Bashの章を参照してください。

Iptablesは、ポリシーチェーンを使用してトラフィック

を許可またはブロックするコマンドラインファイア

ウォールユーティリティであり、ほとんどの場合、Linux

ディストリビューションにプリインストールされていま

す。

（注）

iptablesが bashシェルで変更されたときに、リロード後
も iptablesを永続化する方法の詳細については、「」を
参照してください。リロード間で Iptableを永続化する
（34ページ）

ip netns exec management iptables

リリース 9.3(5)以降では、アイドル状態のNX-APIセッ
ションが無効になるまでの時間を設定できます。指定で

きる時間は 1～ 1440分です。デフォルトの時間は 10分
です。デフォルト値に戻すには、このコマンドの no形
式を使用します。 no nxapi idle-timeout <timeout>

nxapi idle-timeout <timeout>

次に、SUDIの NX-API出力の例を示します。
switch(config)# nxapi certificate sudi
switch# show nxapi
nxapi enabled
NXAPI timeout 10
NXAPI cmd timeout 300
HTTP Listen on port 80
HTTPS Listen on port 443
Certificate Information:

Issuer: issuer=CN = High Assurance SUDI CA, O = Cisco

NX-API CLI
15

NX-API CLI

NX-API管理コマンド

Expires: Aug 9 20:58:26 2099 GMT
switch#
switch#
switch# show run | sec nxapi
feature nxapi
nxapi http port 80
nxapi certificate sudi
switch#

次に、トラストポイントの設定例を示します。

switch(config)# crypto ca trustpoint ngx
switch(config-trustpoint)# crypto ca import ngx pkcs12 bootflash:server.pfx cisco123
witch(config)# nxapi certificate trustpoint ngx
switch(config)# show nxapi
nxapi enabled
NXAPI timeout 10
NXAPI cmd timeout 300
HTTP Listen on port 80
Trustpoint label ngx
HTTPS Listen on port 443
Certificate Information:
Issuer: issuer=C = IN, ST = KA, L = bang, O = cisco, OU = nxpi, CN = %username%@cisco.com,
emailAddress = %username%@cisco.com
Expires: Jan 13 06:13:50 2023 GMT
switch(config)#
switch(config)# show run | sec nxapi
feature nxapi
nxapi http port 80
nxapi certificate trustpoint ngx

以下は、HTTPS証明書の正常なアップロードの例です：
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

証明書を有効にする前に、証明書とキーを設定する必要があります。（注）

以下は、HTTPSキーの正常なアップロードの例です：
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

次に、暗号化された NXAPIサーバー証明書をインストールする方法の例を示します。
switch(config)# nxapi certificate httpscrt certfile bootflash:certificate.crt
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key password pass123!

switch(config)#nxapi certificate enable
switch(config)#

状況によっては、証明書が無効であることを示すエラーメッセージが表示されることがありま

す。

switch(config)# nxapi certificate httpscrt certfile bootflash:certificate.crt

NX-API CLI
16

NX-API CLI

NX-API管理コマンド

switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
ERROR: Unable to load private key!
Check keyfile or provide pwd if key is encrypted, using 'nxapi certificate httpskey
keyfile <keyfile> password <passphrase>'.

この場合、filename passphraseを使用して暗号化キーファイルのパスフレーズを指定する必要
があります。nxapi certificatehttpskey keyfile password

これが問題の原因である場合、証明書を正常にインストールできるはずです。

switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key password pass123!
switch(config)# nxapi certificate enable
switch(config)#

NX-APIを使用したインタラクティブコマンドの操作
対話型コマンドの確認プロンプトを無効にし、エラーコード500によるタイムアウトを回避す
るには、対話型コマンドの前に[端末の dont-ask（terminal dont-ask）]を追加します。を使
用。複数の対話型コマンドを区切るには、それぞれが。は単一のブランク文字で囲まれていま

す。

エラーコード 500でのタイムアウトを回避するために端末の dont-askを使用する対話型コマ
ンドの例をいくつか次に示します：

terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-APIクライアント認証

NX-APIクライアント基本認証

NX-APIクライアントは、SSL/TLSを介した基本認証を介してスイッチ上の NGINXサーバで
認証できます。この認証方式は、スイッチのデータベースに保存されるユーザー名とパスワー

ドを構成することでサポートされます。NX-APIクライアントは、接続要求を開始するときに、
ユーザー名とパスワードを含むHelloメッセージを送信します。ユーザー名とパスワードがデー
タベースに存在する場合、スイッチはクッキーを含むHello応答を送信することで応答します。
この最初のハンドシェイクが完了すると、通信セッションが開き、クライアントはスイッチへ

の APIコールの送信を開始できます。詳細については、セキュリティ（3ページ）を参照し
てください。

スイッチでのユーザー名とパスワードの設定方法など、基本認証の詳細については、Cisco
Nexus 9000シリーズ NX-OSセキュリティ構成ガイドを参照してください。

NX-APIのクライアント証明書認証

NX-OS 9.3(3)以降、NX-APIはクライアントが開始する証明書ベースの認証をサポートしてい
ます。証明書ベースの認証では、TLSハンドシェイク時に信頼できる関係者、つまり認証局
（CA）を使用してクライアントとサーバーの両方を相互に認証することで、セキュリティを
強化します。証明書ベースの認証では、NX-OSスイッチにアクセスするためのマシン認証だ
けでなく、人間による認証も可能です。

NX-API CLI
17

NX-API CLI

NX-APIを使用したインタラクティブコマンドの操作

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

クライアント証明書認証は、有効な CA（認証局）を介して割り当てられ、NX-APIクライア
ントに保存されている X509 SSL証明書を使用してサポートされます。証明書は、各 NX-API
ユーザー名に割り当てられます。

NX-APIクライアントが Helloメッセージを使用して接続要求を開始すると、サーバーの Hello
応答に有効な CAのリストが含められます。クライアントの応答には、NX-APIクライアント
が使用している特定のユーザー名の証明書など、追加の情報要素が含まれます。

NX-APIクライアントは基本認証、証明書認証のいずれかを使用するように構成することがで
きます。または証明書を優先するものの、証明書認証方式が使用できない場合は基本認証に

フォールバックするように設定することもできます。

注意事項と制約事項

証明書認証には次の注意事項と制約事項があります。

• NX-APIクライアントには、ユーザ名とパスワードを設定する必要があります。

• NX-APIクライアントとスイッチは、デフォルトでウェルノウンポートで HTTPを介して
通信します。柔軟性を高めるために、HTTPは既知のポートでもサポートされます。ただ
し、追加のポートを設定できます。

•クライアント証明書認証の Pythonスクリプティングがサポートされています。クライア
ント証明書がパスフレーズで暗号化されている場合、pythonはパスフレーズの入力を正常
に要求します。ただし、Python要求ライブラリの現在の制限により、パスフレーズをスク
リプトに渡すことはできません。

• NX-APIクライアントとスイッチは、同じトラストポイントを使用する必要があります。

•証明書またはトラストポイントが削除されても、NX-APIクライアント証明書認証の構成
を明示的に変更するか、no feature nxapiコマンドを使用しない限り、その証明書のNX-API
は引き続き機能します。証明書がNX-APIに関連付けられたトラストポイントに存在する
ことを確認してください。そうでない場合、reload ascii Nnxapiは開始に失敗します。これ
は、次のshow nxapiコマンドを使用して確認できます。

NX-APIに関連付けられた証明書とトラストポイントが再度追加されると、NX-APIは自
動的に再起動し、動作を継続します。

暗号化証明書を使用して asciiまたは ISSUをリロードしているときに、システムの準備後
にすべての証明書が復元されるまで、NGINXが複数回再起動する場合があります。NX-API
を使用するために証明書が復元されるのを待ちます。

•サポートされるトラストポイントの最大数は、スイッチごとに 16です。

•信頼できる CAのリストは、すべての NX-APIクライアントとスイッチで同じである必要
があります。信頼できる CAの個別のリストはサポートされていません。

•証明書認証は、NX-APIサンドボックスではサポートされていません。

•次の条件によって、NX-APIサンドボックスがスイッチにロードされるかどうかが決まり
ます。

NX-API CLI
18

NX-API CLI

注意事項と制約事項

• NX-APIサンドボックスは、またはが設定されている場合にのみロードされます。
nxapi client certificate authentication optionalno nxapi client certificate authentication

• NX-APIサンドボックスは、接続の確立時に有効なクライアント証明書がブラウザに
提示されない限り、および認証モードをロードしません。stricttwo-step

•スイッチには NGINXサーバーが組み込まれています。複数のトラストポイントが設定さ
れているが、証明書失効リスト（CRL）が 1つのトラストポイントのみにインストールさ
れている場合、NGINXの制限により NX-APIクライアント証明書認証は失敗します。こ
の制限を回避するには、すべてのトラストポイントに CRLを設定します。

•証明書は期限切れになったり、期限切れになったりする可能性があり、CA（トラストポ
イント）によって設定された CRLの有効性に影響を与える可能性があります。スイッチ
が有効な CRLを使用するようにするには、設定されているすべてのトラストポイントに
必ずCRLをインストールしてください。トラストポイントによって証明書が失効しなかっ
た場合は、空のCRLを生成、インストール、および更新する必要があります。たとえば、
週に 1回などです。

暗号化CLIを使用してCRLを更新した後、を発行して、新しく更新されたCRLを再適用
します。nxapi client cert authentication

• NX-APIクライアント証明書認証が有効になっているときに ASCIIリロードを使用する場
合は、リロードの完了後にを発行する必要があります。nxapi client certificate authentication

•証明書パスは信頼済み CA証明書で終了している必要があります。

• TLS用に提示されるサーバー証明書には、extendedKeyUsageフィールドにサーバー認証目
的（OID 1.3.6.1.5.5.7.3.1の id-kp 1）が必要です。

• TLS用に提示されるクライアント証明書には、extendedKeyUsageフィールドにサーバー認
証目的（OID 1.3.6.1.5.5.7.3.2の id-kp 1）が必要です。

•この機能は、CRL（証明書失効リスト）をサポートします。オンライン証明書ステータス
プロトコル（OCSP）はサポートされていません。

•『NX-OS Security Guide』の追加のガイドラインと制限事項に従ってください。

•証明書と基本認証の両方を使用します。そうすることで、証明書が何らかの理由で侵
害された場合でも、正しいユーザーとパスワードが必要になります。

•サーバーの公開キーには接続を試みるすべてのユーザーがアクセスできるため、秘密
キーは秘密にしておきます。

• CRLは中央 CAからダウンロードし、最新の状態に保つ必要があります。古い CRL
はセキュリティリスクにつながる可能性があります。

•トラストポイントを最新の状態に保つ。トラストポイントまたは設定変更が証明書認
証機能に加えられた場合は、更新された情報をリロードするために、この機能を明示

的にディセーブルにしてから再度イネーブルにします。

• nxapi certificate httpscert certfile bootflash:これは Day-1の制限です。

NX-API CLI
19

NX-API CLI

注意事項と制約事項

• [NX-API Management Commands]表 1で、コマンド nxapi certificate {httpscrt certfile | httpskey
keyfile}ファイル名の場合、サポートされる certfileの最大サイズは 8K未満です。

NX-APIのクライアント証明書認証の前提条件

証明書認証を設定する前に、スイッチで次の操作を実行済みであることを確認してください。

1. クライアントでユーザー名とパスワードを構成します。詳細については、「ユーザーアカ
ウントおよび RBACの構成」を参照してください。

2. CA（トラストポイント）と CRL（存在する場合）を構成します。

トラストポイントによって失効した証明書がない場合は、トラストポイントごとに空白のCRL
を作成します。

詳細については、『CiscoNexus 9000シリーズNX-OSセキュリティ設定ガイド』を参照してく
ださい。

NX-APIクライアント証明書認証の構成

コマンドを使用して、NX-API証明書認証を設定できます。nxapi client certificate authentication
コマンドは、認証方法を制御する制限オプションをサポートします。

この機能は、no nxapi client certificate authenticationを使用して無効にすることができます。

NX-APIクライアントの証明書認証を設定するには、次の手順を実行します。

手順の概要

1. この機能の前提条件が満たされていることを確認します。

2. config terminal
3. nxapi client certificate authentication [{optional | strict | two-step}]

手順の詳細

手順

目的コマンドまたはアクション

「NX-APIのクライアント証明書認証の前提条件
（20ページ）」を参照してください。

この機能の前提条件が満たされていることを確認し

ます。

ステップ 1

コンフィギュレーションモードに入ります。config terminal

例：

ステップ 2

switch-1# config terminal
Enter configuration commands, one per line. End
with CNTL/Z.
switch-1(config)#

NX-API CLI
20

NX-API CLI

NX-APIのクライアント証明書認証の前提条件

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

目的コマンドまたはアクション

次のいずれかのモードで証明書認証をイネーブルに

します。

nxapi client certificate authentication [{optional | strict
| two-step}]

例：

ステップ 3

• optionalはクライアント証明書を要求します。
switch-1# nxapi client certificate authentication
strict
switch-1(config)#

•クライアントが証明書を提供すると、クラ
イアントとサーバーの間で相互検証が行わ

れます。

•クライアントが無効な証明書を提供した場
合、認証は失敗し、基本認証へのフォール

バックは行われません。

•クライアントが証明書を提供しない場合、
認証は基本認証（ユーザー名とパスワー

ド）にフォールバックします。

• strict クライアント証明書の検証を有効にし、
認証のために有効なクライアント証明書を提示

する必要があります。

• two-step は、基本認証方式と証明書認証方式の
両方が必要な 2段階検証を有効にします。

（注）

スイッチにトラストポイントが設定されていない場

合は、この機能をイネーブルにできず、スイッチの

画面にエラーメッセージが表示されます。

No trustpoints configured! Please configure
trustpoint using 'crypto ca trustpoint
<trustpoint-label>' and associated commands, and
then enable this feature.

証明書認証用の Pythonスクリプトの例

次の例は、認証用のクライアント証明書を使用した Pythonスクリプトを示しています。
import requests
import json

"""
Modify these please
"""
switchuser='USERID'
switchpassword='PASSWORD'
mgmtip='NXOS MANAGEMENT IP/DOMAIN NAME'

client_cert_file='PATH_TO_CLIENT_CERTIFICATE'
client_key_file='PATH_TO_CLIENT_KEY_FILE'
ca_cert='PATH_TO_CA_CERT_THAT_SIGNED_NXAPI_SERVER_CERT'

NX-API CLI
21

NX-API CLI

証明書認証用の Pythonスクリプトの例

url='https://' + mgmtip + '/ins'
myheaders={'content-type':'application/json-rpc'}
payload=[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 1

}
]
response = requests.post(url,data=json.dumps(payload),
headers=myheaders,auth=(switchuser,switchpassword),cert=(client_cert_file_path,client_key_file),verify=ca_cert).json()

必要に応じて、スクリプトを変更できます。

•クライアント証明書認証モードによっては、スイッチパスワードをヌル値に設定すること
で（switchpassword=）、スイッチパスワードを省略できます。

• optionalおよび strictモードの場合、switchpassword=は空白のままにできます。この

場合、NX-APIはユーザー名とクライアント証明書のみに基づいてクライアントを認
証します。

• two-stepモードの場合、パスワードが必要なため、switchpassword=の値を指定する

必要があります。

• POSTコマンドで verify=Falseを設定することで、NX-APIサーバの証明書が有効である
ことの確認をバイパスできます。

cURL証明書要求の例

次に、NX-APIクライアント認証用の正しく構造化された cURL証明書要求の例を示します。
/usr/bin/curl --user admin: --tlsv1.2 --cacert ./ca.pem --cert ./user.crt:pass123! --key
./user.key -v -X POST -H "Accept: application/json" -H "Content-type: application/json"
--data '{"ins_api":{"version": "1.0", "type": "cli_show", "chunk": "0", "sid": "1",
"input": "show clock","output_format": "json"}}' https://<device-management-ip>:443/ins

構文要素

次の表は、この要求で使用されるパラメータを示しています。

説明パラメータ

ユーザがログインするユーザ名を取得します。

これは、user.crtの共通名と同じである必要が
あります。

ユーザーのパスワードを指定するには、コロ

ンの後にパスワードを指定します。例：--user
username:password

--user

NX-API CLI
22

NX-API CLI

cURL証明書要求の例

説明パラメータ

NX-APIサーバー証明書に署名したCAへのパ
スを使用します。

サーバー証明書を検証する必要がない場合は、

（insecure）オプションを使用して cURLを指
定します。例：/usr/bin/curl -k -k

--cacert

クライアント証明書へのパスを使用します。

クライアント証明書が暗号化されている場合

は、コロンの後にパスワードを指定します。

例：--cert user.crt:pass123!

--cert

クライアント証明書の秘密キーへのパスを使

用します。

--key

証明書認証の検証

正しく構成されている場合、証明書認証が行われ、NX-APIクライアントはスイッチにアクセ
スできます。

NX-APIクライアントがスイッチにアクセスできない場合は、次のガイドラインに従ってトラ
ブルシューティングを行うことができます。

手順の概要

1. ユーザーまたはクッキーのエラーを確認します。

2. 証明書に誤りがないか確認してください。

3. エラーが発生した場合は、 no nxapi client certificate authentication、それから nxapi client
certificate authentication を発行して、トラストポイント、CA、CRL、または NX-OS証明
書機能に対する変更をリロードするように機能をフラップします。

手順の詳細

手順

目的コマンドまたはアクション

次のいずれかのエラーが発生していた場合：ユーザーまたはクッキーのエラーを確認します。ステップ 1

•認証ヘッダーにユーザー名が指定されておら
ず、有効なクッキーが指定されていない

•認証ヘッダーで指定されたユーザーが正しくな
い

•無効なクッキーが提供された

NX-API CLI
23

NX-API CLI

証明書認証の検証

目的コマンドまたはアクション

•認証ヘッダーのユーザー名とクライアント証明
書の CNフィールドのユーザー名が一致しない

使用されているNX-API方式に応じて、特定のエラー
が表示されます：

• JSON/XMLの場合、401 認証エラー：ユーザーが見

つからないエラーが発生します。次に例を示しま

す。

{{{
"code": "400",
"msg": "Authentication failure - user not
found."
}}}

• JSON RPC 2.0の場合、-32004 無効なユーザー名ま

たはパスワードエラーが発生します。次に例を示

します。

{{
"code": -32004,
"message": "Invalid username or password"
}}

次の内容を示す HTTPs 400エラーを探します。証明書に誤りがないか確認してください。ステップ 2

•無効または失効したクライアント証明書が提供
されていないか確認します。

•スイッチに設定されているCRLの有効期限が切
れていないか確認します。

次に例を示します。

<html>
<head><title>400 The SSL certificate
error</title></head>
<body bgcolor="white">
<center><h1>400 Bad Request</h1></center>
<center>The SSL certificate error</center>
<hr><center>nginx/1.7.10</center>
</body>
</html>

証明書認証を無効にしてから、再度有効にします。エラーが発生した場合は、 no nxapi client certificate
authentication、それから nxapi client certificate

ステップ 3

authenticationを発行して、トラストポイント、CA、
CRL、または NX-OS証明書機能に対する変更をリ
ロードするように機能をフラップします。

NX-API CLI
24

NX-API CLI

証明書認証の検証

NX-APIリクエスト要素
NX-APIリクエスト要素は、XMLフォーマットまたは JSONフォーマットでデバイスに送信さ
れます。リクエストのHTTPヘッダーは、リクエストのコンテンツタイプを識別する必要があ
ります。

次の表にリストされている NX-API要素を使用して、CLIコマンドを指定します。

ユーザには、「configure terminal」コマンドを実行する権限が必要です。JSON-RPCが入力要
求形式の場合、「configure terminal」コマンドは、ペイロード内のコマンドが実行される前に
常に実行されます。

（注）

表 2 : XMLまたは JSON形式の NX-API要求要素

説明NX-APIリクエスト要素

NX-APIバージョンを指定します。version

NX-API CLI
25

NX-API CLI

NX-APIリクエスト要素

説明NX-APIリクエスト要素

実行するコマンドのタイプを指定します。

次のタイプのコマンドがサポートされています。

• cli_show

構造化された出力が必要なCLI showコマンド。コマ
ンドが XML出力をサポートしていない場合は、エ
ラーメッセージが返されます。

• cli_show_array

構造化された出力が必要なCLI showコマンド。show
コマンド専用。cli_showに似ていますが、
cli_show_arrayを使用すると、データは角括弧 []で
囲まれた 1つの要素のリストまたは配列として返さ
れます。

• cli_show_ascii

ASCII出力が必要な CLI showコマンド。これは、
ASCII出力を解析する既存のスクリプトと一致しま
す。ユーザーは、最小限の変更で既存のスクリプト

を使用できます。

• cli_conf

CLI構成コマンド

• bash

Bashコマンド。ほとんどの非対話型 Bashコマンド
は、NX-APIでサポートされています。

（注）

•各コマンドは、現在のユーザーの権限でのみ実行可
能です。

•メッセージタイプがASCIIの場合、出力でパイプ操
作がサポートされます。出力が XML形式の場合、
パイプ操作はサポートされていません。

•最大 10の連続する showコマンドがサポートされて
います。showコマンドの数が 10を超える場合、11
番目以降のコマンドは無視されます。

•対話型コマンドはサポートされていません。

type

NX-API CLI
26

NX-API CLI

NX-APIリクエスト要素

説明NX-APIリクエスト要素

一部の showコマンドは、大量の出力を返す場合がありま
す。コマンド全体が完了する前に NX-APIクライアント
が出力の処理を開始するために、NX-APIは showコマン
ドの出力チャンクをサポートしています。

次の設定を有効または無効にできます。

（注）

チャンク出力しません。0

チャンク出力。1

（注）

•チャンクをサポートするのは showコマンドだけで
す。一連の showコマンドが入力されると、最初の
コマンドだけがチャンクされて返されます。

•出力メッセージ形式のオプションは、XMLまたは
JSONです。

• XML出力メッセージ形式の場合<または>などの特
殊文字は、有効な XMLメッセージを形成するため
に変換されます（<は <に変換されます >は >に変
換されます）。

XML SAXを使用して、チャンクされた出力を解析
できます。

•出力メッセージ形式が JSONの場合、チャンクが連
結されて有効なJSONオブジェクトが作成されます。

（注）

チャンクが有効になっている場合、現在サポートされて

いる最大メッセージサイズは、チャンク出力の 200MB
です。

チャンク

NX-API CLI
27

NX-API CLI

NX-APIリクエスト要素

説明NX-APIリクエスト要素

コンフィギュレーション CLIに対してのみ有効であり、
showコマンドに対しては有効ではありません。コンフィ
ギュレーションロールバックオプションを指定します。

次のいずれかのオプションを指定します。

• Stop-on-error：最初に失敗した CLIで停止します。

• Continue-on-error：他の CLIを無視して続行します。

• Rollback-on-error：システム設定を以前の状態にロー
ルバックします。

（注）

入力要求形式が XMLまたは JSONの場合、ロールバッ
ク要素は cli_confモードで使用できます。

ロールバック

セッション ID要素は、応答メッセージがチャンクされて
いる場合にのみ有効です。メッセージの次のチャンクを

取得するには、前の応答メッセージの sidと一致する sid
を指定する必要があります。

NX-OSリリース 9.3(1)では、sidオプション clearが導入

されています。sidを clearに設定して新しいチャンクリ

クエストが開始されると、現在のチャンクリクエストは

すべて破棄または破棄されます。

応答コード 429 を受け取った場合：同時チャンク リクエストの最

大数は 2 です。sid clearを使用して、現在のチャンクリ

クエストを破棄します。sid clearを使用した後、後続の

応答コードは、残りのリクエストに対して通常どおり動

作します。

sid

NX-API CLI
28

NX-API CLI

NX-APIリクエスト要素

説明NX-APIリクエスト要素

入力は 1つのコマンドまたは複数のコマンドです。ただ
し、異なるメッセージタイプに属するコマンドを混在さ

せてはなりません。たとえば、showコマンドは cli_show
メッセージタイプであり、cli_confモードではサポートさ
れません。

（注）

bashを除き、複数のコマンドは「;」で区切ります。（;
は、単一のブランク文字で囲む必要があります。）

エラーコード 500でタイムアウトしないように、コマン
ドの前に端末の dont-askを付加します。次に例を示しま
す。

terminal dont-ask ; cli_conf ; interface Eth4/1 ; no
shut ; switchport

bashの場合、複数のコマンドは「;」で区切ります。（;
は単一のブランク文字で囲まれていません。）

以下は、複数のコマンドの例です。

（注）

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

NX-API CLI
29

NX-API CLI

NX-APIリクエスト要素

説明NX-APIリクエスト要素

使用可能な出力メッセージ形式は次のとおりです。

（注）

XML形式を指定します。xml

JSON形式で出力を指定します。json

（注）

CiscoNX-OSCLIはXML出力をサポートしています。つ
まり、JSON出力は XMLから変換されます。変換はス
イッチで処理されます。

計算のオーバーヘッドを管理するために、JSON出力は
出力の量によって決定されます。出力が 1 MBを超える
場合、出力は XML形式で返されます。出力がチャンク
されている場合、XML出力のみがサポートされます。

HTTP/HTTPSヘッダーの content-typeヘッダーは、応答
形式（XMLまたは JSON）のタイプを示します。

output_format

JSON-RPCが入力リクエスト形式である場合、次の表にリストされている NX-API要素を使用
して、CLIコマンドを指定します。

表 3 : JSON-RPC形式の NX-API要求要素

説明NX-APIリクエスト要素

JSON-RPCプロトコルのバージョンを指定する文字列。

バージョンは 2.0であることが必要です。

jsonrpc

呼び出されるメソッドの名前を含む文字列。

NX-APIは、次のいずれかをサポートします。

• cli：showまたは構成コマンド

• cli_ascii：showまたは構成コマンド。フォーマットせ
ずに出力

• cli_array：showコマンド専用。cliに似ていますが、
cli_arrayはデータを角括弧（[]）で囲まれた 1つの
要素のリスト、つまり配列として返します。

method

NX-API CLI
30

NX-API CLI

NX-APIリクエスト要素

説明NX-APIリクエスト要素

メソッドの呼び出し中に使用されるパラメータ値を保持

する構造化された値。

以下が含まれている必要があります。

• cmd：CLIコマンド

• version：NX-APIリクエストのバージョン識別子

params

コンフィギュレーション CLIに対してのみ有効であり、
showコマンドに対しては有効ではありません。構成ロー
ルバックオプション次のいずれかのオプションを指定で

きます。

• Stop-on-error：最初に失敗した CLIで停止します。

• Continue-on-error：失敗した CLIを無視し、他の CLI
を続行します。

• Rollback-on-error：システム設定を以前の状態にロー
ルバックします。

ロールバック

構成検証設定この要素を使用すると、スイッチに適用す

る前にコマンドを検証できます。これにより、設定を適

用する前に、設定の整合性（必要なハードウェアリソー

スの可用性など）を確認できます。[検証タイプ
（Validation Type）]ドロップダウンリストから検証タイ
プを選択します。

• Validate-Only：設定を検証しますが、設定は適用しま
せん。

• Validate-and-Set：設定を検証し、検証が成功した場合
はスイッチに設定を適用します。

検証

構成の排他ロックを指定できます。これにより、このロッ

クが保持されている場合、他の管理エージェントまたは

プログラミングエージェントは構成を変更できません。

ロック

クライアントによって確立されるオプションの識別子。

指定されている場合は、文字列、数値、または null値を
含む必要があります。値は nullにならないはずです。数
値には小数部を含めません。ユーザーが idパラメータを
指定しなかった場合、サーバーはリクエストが単なる通

知であるとみなし、応答はしません。パラメータはid: 1
などのように指定します。

id

NX-API CLI
31

NX-API CLI

NX-APIリクエスト要素

NX-API応答要素
CLIコマンドに応答する NX-API要素を次の表に示します。

表 4 : NX-API応答要素

説明NX-API応答要素

NX-APIバージョン。version

実行するコマンドのタイプ。type

応答のセッション識別子。この要素は、応答メッセージがチャ

ンクされている場合にのみ有効です。

sid

すべてのコマンド出力を囲むタグ。

複数のコマンドが cli_showまたは cli_show_asciiにある場合、各
コマンド出力は単一の出力タグで囲まれます。

メッセージタイプが cli_confまたは bashの場合、cli_confおよ
び bashコマンドにはコンテキストが必要なため、すべてのコマ
ンドに単一の出力タグがあります。

outputs

単一のコマンド出力の出力を囲むタグ。

cli_confと bashメッセージタイプの場合、この要素にはすべて
のコマンドの出力が含まれます。

出力

リクエストで指定された 1つのコマンドを囲むタグ。この要素
は、要求入力要素を適切な応答出力要素に関連付けるのに役立

ちます。

input

コマンド応答の本文。本文

コマンドの実行から返された原因コード。

NX-APIは、ハイパーテキスト転送プロトコル（HTTP）ステー
タスコードレジストリ

（http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml）
で説明されている標準規格の HTTP原因コードを使用します。

コード

返された原因コードに関連付けられたエラーメッセージ。msg

NX-APIへのアクセスの制限
ACLは、VRFが構成されておらず、管理VRFがNX- API向けに構成されている場合にも適用
されるようになりました。

NX-API CLI
32

NX-API CLI

NX-API応答要素

デフォルトおよびカスタム VRFのアクセス制限は iptableを介して行なわれます。iptable内で
は、VRF名を指定することによって実行されます。

iptableの更新

iptableを使用すると、VRFがNX-API通信用に設定されている場合に、デバイスへのHTTPま
たは HTTPSアクセスを制限できます。このセクションでは、既存の iptableへの HTTPおよび
HTTPSアクセスをブロックするルールを追加、確認、および削除する方法を示します。

手順

ステップ 1 HTTPアクセスをブロックするルールを作成するには、次の手順を実行します。
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

（注）

この手順に記載されている managementは VRF名です。 management | default | custom vrf nameを使用で
きます。

ステップ 2 HTTPSアクセスをブロックするルールを作成するには、次の手順を実行します。
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

ステップ 3 適用されたルールを確認するには、次の手順を実行します。

bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

ステップ 4 ポート 80への 10.155.0.0/24サブネットを持つすべてのトラフィックをブロックするルールを作成して確認
するには、次の手順を実行します。

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

NX-API CLI
33

NX-API CLI

iptableの更新

ステップ 5 以前に適用したルールを削除して確認するには、次の手順を実行します。

この例では、最初のルールを INPUTから削除します。

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

次のタスク

iptablesのルールを bashシェルで変更した場合、リロード後は保持されません。ルールを永続
的にするには、を参照してください。リロード間で Iptableを永続化する（34ページ）

リロード間で Iptableを永続化する

iptableのルールを bashシェルで変更した場合、リロード後は保持されません。このセクショ
ンでは、リロード後も変更された iptableを永続化する方法について説明します。

始める前に

iptableを変更したとします。

手順

ステップ 1 iptables_init.logという名前のファイルを /etcディレクトリに作成します：
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

ステップ 2 iptableの変更を保存する /etc/sys/iptablesファイルを作成します：
bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables

ステップ 3 次の一連のコマンドを使用して、/etc/init.dディレクトリに「iptables_init」という起動スクリプトを作成し
ます：

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

NX-API CLI
34

NX-API CLI

リロード間で Iptableを永続化する

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables
echo "iptables init script executed" > /etc/iptables_init.log

}
case "$1" in
start)
start_script
;;
stop)
;;

restart)
sleep 1
$0 start
;;

*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

ステップ 4 起動スクリプトに適切な権限を設定します：

bash-4.3# chmod 777 /etc/init.d/iptables_int

ステップ 5 chkconfigユーティリティを使用して、「iptables_int」起動スクリプトを「オン」に設定します：
bash-4.3# chkconfig iptables_init on

「iptables_init」起動スクリプトは、リロードを実行するたびに実行されます。これで iptableルールを永続
的にすることができました。

カーネルスタック ACL
カーネルスタックACLは、インバンドコンポーネントとアウトバンドコンポーネントを管理
するための ACLを構成するための一般的な CLIインフラストラクチャです。

NX-API CLI
35

NX-API CLI

カーネルスタック ACL

カーネルスタック ACLは、NX-OS ACL CLIを使用して、管理およびフロントパネルポート
上の管理アプリケーションを保護します。単一の ACLを設定することで、NX-OS上のすべて
の管理アプリケーションを保護できる必要があります。

カーネルスタック ACLは、ユーザーの手動介入を修正し、ACLが mgmt0インターフェイス
に適用されるときに iptableエントリを自動的にプログラムするコンポーネントです。

以下は、カーネルスタック ACLを構成する例です。
swtich# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ip access-list kacl1
switch(config-acl)# statistics per-entry
switch(config-acl)# 10 deny tcp any any eq 443
switch(config-acl)# 20 permit ip any any
switch(config-acl)# end
switch#

switch(config-if)# interface mgmt0
switch(config-if)# ip access-group acl1 in
switch(config-if)# ipv6 traffic-filter acl6 in
switch(config-if)#

switch# sh ip access-lists kacl1
IP access list kacl1
statistics per-entry
10 deny tcp any any eq 443 [match=136]
20 permit ip any any [match=44952]
switch(config)#

以下は、構成に基づいた iptablesエントリのカーネルスタックフィルタリングです。
bash-4.4# ip netns exec management iptables -L -n -v --line-numbers
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
1 9 576 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443
2 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0
3 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
bash-4.4#

カーネルスタック ACLサポートの制限は次のとおりです。

•この機能は、mgmt0インターフェイスでのみサポートされ、他のインバンドインターフェ
イスではサポートされません。

• ACLエントリの 5つのタプル（protocol、source-ip、destination-ip、source-port、および
destination-port）は、iptablesにプログラムされています。ACLエントリで提供される残り
のオプションは iptablesでプログラムされておらず、そのような場合に警告の syslogをス
ローします。

たとえば、「警告:一部のACLオプションは kstackではサポートされていません。部分的
なルールのみがインストールされます。」

NX-API CLI
36

NX-API CLI

カーネルスタック ACL

•デバイスユーザーがホスト bashアクセス権を持っている場合、ユーザーは手動で iptables
を更新できます。この更新により、プログラムされている iptableルールが破損する可能性
があります。

•検証される ACEの最大数は、IPv4トラフィックの場合は 100、IPv6トラフィックの場合
は加えてさらに100です。このスケール以上を適用すると、スループットに影響を与える
可能性があります。

NX-API応答コードの表
次に、NX-API応答の考えられる NX-APIエラー、エラーコード、およびメッセージを示しま
す。

次に、NX-API応答の考えられる NX-APIエラー、エラーコード、およびメッセージを示しま
す。

リクエスト形式が XMLまたは JSONフォーマットの場合、NX-APIエラー、エラーコード、
および NX-API応答のメッセージは次のとおりです。

標準の HTTPエラーコードは、ハイパーテキスト転送プロトコル (HTTP)ステータスコード
レジストリ (http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml)にあります。

（注）

表 5 : NX-API応答コード

メッセージコード[NX-API応答（NX-API Response）]

成功。200成功

要求により、出力は別の場所にパイプされ

ます。

204CUST_OUTPUT_PIPED

Bashコマンドエラー。400BASH_CMD_ERR

チャンクは、1つのコマンドだけを受け入
れます。

400CHUNK_ALLOW_ONE_CMD_ERR

CLIの実行エラー400CLI_CLIENT_ERR

CLIコマンドエラーの入力。400CLI_CMD_ERR

eoc値は、リクエストのセッション IDと
して許可されていません。

400EOC_NOT_ALLOWED_ERR

着信メッセージが無効です。400IN_MSG_ERR

要求のリモートIPを取得できません。400INVALID_REMOTE_IP_ERR

NX-API CLI
37

NX-API CLI

NX-API応答コードの表

メッセージバージョンの不一致400MSG_VER_MISMATCH

入力コマンドがありません。400NO_INPUT_CMD_ERR

セッション IDとして入力された文字が無
効です。

400SID_NOT_ALLOWED_ERR

権限が拒否されました。401PERM_DENY_ERR

構成モードは [表示（show）]を許可しま
せん。

405CONF_NOT_ALLOW_SHOW_ERR

表示モードでは構成できません。405SHOW_NOT_ALLOW_CONF_ERR

連続する showコマンドの最大数を超えま
した。最大値は 10です。

413EXCEED_MAX_SHOW_ERR

応答サイズが大きすぎます。413MSG_SIZE_LARGE_ERR

応答サイズが最大メッセージサイズを超

えたため、処理を停止しました。最大サイ

ズは 200 MBです。

413RESP_SIZE_LARGE_ERR

同時チャンクリクエストの最大数は超え

ています。最大は 2です。
429EXCEED_MAX_INFLIGHT_CHUNK_REQ_ERR

最大セッション数に到達しました。新しい

ユーザー/クライアントの場合は、しばら
くしてからもう一度お試しください。

429MAX_SESSIONS_ERR

要求したオブジェクトが存在しません。432OBJ_NOT_EXIST

バックエンド処理エラー。500BACKEND_ERR

チェックポイントの作成をするエラー。500CREATE_CHECKPOINT_ERR

チェックポイントの削除中にエラーが発生

しました。

500DELETE_CHECKPOINT_ERR

システム内部ファイル操作エラー。500FILE_OPER_ERR

システムの内部LIBXMLNSエラー。これ
は要求フォーマットのエラーです。

500LIBXML_NS_ERR

システムの内部 LIBXML解析エラー。こ
れは要求フォーマットのエラーです。

500LIBXML_PARSE_ERR

システムの内部 LIBXMLパスコンテキス
トエラー。これは要求フォーマットのエ

ラーです。

500LIBXML_PATH_CTX_ERR

NX-API CLI
38

NX-API CLI

NX-API応答コードの表

システムの内部メモリ割り当てエラー。500MEM_ALLOC_ERR

ロールバックの実行中にエラーが発生しま

した。

500ROLLBACK_ERR

サーバーがビジー状態のため、リクエスト

は拒否されました。

500SERVER_BUSY_ERR

入力またはキャッシュからユーザーが見つ

かりません。

500USER_NOT_FOUND_ERR

揮発性メモリは一杯です。メモリスペー

スを解放して、再試行してください。

500VOLATILE_FULL

XMLから JSONへの変換エラー。500XML_TO_JSON_CONVERT_ERR

Bashコマンドはサポートされていません。501BASH_CMD_NOT_SUPPORTED_ERR

チャンクはXML出力のみを許可します。501CHUNK_ALLOW_XML_ONLY_ERR

応答のチャンクは、showコマンドでのみ

許可されます。

501CHUNK_ONLY_ALLOWED_IN_SHOW_ERR

チャンク応答の生成中にタイムアウトしま

した。

501CHUNK_TIMEOUT

CLIコマンドはサポートされていません。501CLI_CMD_NOT_SUPPORTED_ERR

大量の出力の可能性があるため、JSONは
サポートされていません。

501JSON_NOT_SUPPORTED_ERR

不正な XML出力。501MALFORMED_XML

メッセージタイプはサポートされていま

せん

501MSG_TYPE_UNSUPPORTED_ERR

出力リダイレクトはサポートされていませ

ん。

501OUTPUT_REDIRECT_NOT_SUPPORTED_ERR

このコマンドへのパイプXMLは入力では
許可されていません。

501PIPE_XML_NOT_ALLOWED_IN_INPUT

この入力タイプにはパイプを使用できませ

ん。

501PIPE_NOT_ALLOWED_IN_INPUT

応答が許容最大値を超えています。最大は

10 MBです。チャンクを有効にして XML
または JSON出力を使用します。

501RESP_BIG_USE_CHUNK_ERR

構造化出力はサポートされていません。501STRUCT_NOT_SUPPORTED_ERR

NX-API CLI
39

NX-API CLI

NX-API応答コードの表

不明なエラー。600ERR_UNDEFINED

JSONおよび XML構造化出力
NX-OSは、次の構造化された出力フォーマットで、さまざまな showコマンドの標準規格出力
のリダイレクトをサポートしています。

• XML
• JSON. JSON出力の上限は 60 MBです。
• JSONフォーマット出力の標準規格ブロックを読みやすくした JSON Prettyもあります。
JSON出力の上限は 60 MBです。

• NX-OSリリース 9.3（1）で導入された JSON Nativeと JSON Pretty Nativeは、追加のコマ
ンド解釈レイヤーをバイパスすることにより、JSON出力をより高速かつ効率的に表示し
ます。JSON Nativeおよび JSON Pretty Nativeは、出力のデータ型を保持します。出力用の
文字列に変換する代わりに、整数を整数として表示します。

NX-OS CLIで、標準のNX-OS出力を JSONまたはXMLインタープリターに「パイプ接続」す
ると、これらのフォーマットへの変換が行われます。たとえば、show ip accessコマンドを発
行する際、論理パイプ（|）を続けて、その後に出力形式を指定できます。こうすると、NX-OS
コマンドの出力が適切に構造化され、その形式でエンコードされます。この機能により、プロ

グラムによるデータの解析が可能になり、ソフトウェアストリーミングテレメトリを介した

スイッチからのストリーミングデータがサポートされます。CiscoNX-OSのほとんどのコマン
ドは、JSON、JSON Pretty、JSONネイティブ、JSONネイティブ Pretty、およびXML出力をサ
ポートしています。整合性チェッカーコマンドなど、一部のコマンドは、すべての形式をサ

ポートしてはいません。整合性チェッカーコマンドは XMLをサポートしていますが、JSON
のバリアントはどれもサポートしていません。

検証エラーを回避するには、ファイルリダイレクトを使用して JSON出力をファイルにリダイ
レクトし、そのファイル出力を使用します。

例:
Switch#show version | json > json_output ; run bash cat /bootflash/json_output

（注）

この機能の選択された例を以下に表示します。

JSONの概要（JavaScriptオブジェクト表記）
JSONは、判読可能なデータのために設計された軽量テキストベースのオープンスタンダード
で、XMLの代替になります。JSONはもともと JavaScriptから設計されましたが、言語に依存
しないデータ形式です。コマンド出力では、JSONおよび JSONプリティ形式、および JSON
ネイティブおよび JSONプリティネイティブがサポートされています。

NX-API CLI
40

NX-API CLI

JSONおよび XML構造化出力

ほぼすべての最新のプログラミング言語で何らかの方法でサポートされている 2つの主要な
データ構造は次のとおりです。

•順序付きリスト ::配列
•順序付けられていないリスト（名前/値のペア）::オブジェクト

コマンドの JSONまたは XML出力には、NX-APIサンドボックスからもアクセスできます。
show

CLIの実行
switch-1-vxlan-1# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SWITCH-1", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco AA-C0000
S-29-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "SWITCH-1-VXLAN-1(FOC1234A01B)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

XMLおよび JSON出力の例
このセクションでは、XMLおよび JSON出力として表示される NX-OSコマンドの例について
説明します。

次の例は、ハードウェアテーブルのユニキャストおよびマルチキャストルーティングエント

リを JSON形式で表示する方法を示しています。

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

次に、ハードウェアテーブルのユニキャストおよびマルチキャストルーティングエントリを

XML形式で表示する例を示します。

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>

NX-API CLI
41

NX-API CLI

XMLおよび JSON出力の例

<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

この例では、JSON形式でスイッチ上に LLDPタイマーを表示する方法を示します。

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

この例では、XML形式でスイッチ上に LLDPタイマーを表示する方法を示します。

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>

NX-API CLI
42

NX-API CLI

XMLおよび JSON出力の例

</nf:rpc-reply>
]]>]]>
switch(config)#

この例は、ACL統計を XML形式で表示する方法を示しています。
switch-1(config-acl)# show ip access-lists acl-test1 | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:1.0:aclmgr" xmlns:nf="urn:ietf:p
arams:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
<ip_ipv6_mac>ip</ip_ipv6_mac>
<access-lists>
<__XML__OPT_Cmd_show_acl_name>
<name>acl-test1</name>
<__XML__OPT_Cmd_show_acl_capture>
<__XML__OPT_Cmd_show_acl_expanded>
<__XML__OPT_Cmd_show_acl___readonly__>
<__readonly__>
<TABLE_ip_ipv6_mac>
<ROW_ip_ipv6_mac>
<op_ip_ipv6_mac>ip</op_ip_ipv6_mac>
<show_summary>0</show_summary>
<acl_name>acl-test1</acl_name>
<statistics>enable</statistics>
<frag_opt_permit_deny>permit-all</frag_opt_permit_deny>
<TABLE_seqno>
<ROW_seqno>
<seqno>10</seqno>
<permitdeny>permit</permitdeny>
<ip>ip</ip>
<src_ip_prefix>192.0.2.1/24</src_ip_prefix>
<dest_any>any</dest_any>
</ROW_seqno>
</TABLE_seqno>
</ROW_ip_ipv6_mac>
</TABLE_ip_ipv6_mac>
</__readonly__>
</__XML__OPT_Cmd_show_acl___readonly__>
</__XML__OPT_Cmd_show_acl_expanded>
</__XML__OPT_Cmd_show_acl_capture>
</__XML__OPT_Cmd_show_acl_name>
</access-lists>
</__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1(config-acl)#

この例は、ACL統計を JSON形式で表示する方法を示しています。
switch-1(config-acl)# show ip access-lists acl-test1 | json
{"TABLE_ip_ipv6_mac": {"ROW_ip_ipv6_mac": {"op_ip_ipv6_mac": "ip", "show_summar
y": "0", "acl_name": "acl-test1", "statistics": "enable", "frag_opt_permit_deny
": "permit-all", "TABLE_seqno": {"ROW_seqno": {"seqno": "10", "permitdeny": "pe
rmit", "ip": "ip", "src_ip_prefix": "192.0.2.1/24", "dest_any": "any"}}}}}
switch-1(config-acl)#

次の例は、スイッチの冗長ステータスを JSON形式で表示する方法を示しています。

NX-API CLI
43

NX-API CLI

XMLおよび JSON出力の例

switch-1# show system redundancy status | json
{"rdn_mode_admin": "HA", "rdn_mode_oper": "None", "this_sup": "(sup-1)", "this_
sup_rdn_state": "Active, SC not present", "this_sup_sup_state": "Active", "this
_sup_internal_state": "Active with no standby", "other_sup": "(sup-1)", "other_
sup_rdn_state": "Not present"}
nxosv2#
switch-1#

この例は、スイッチの冗長性情報を JSON Pretty Native形式で表示する方法を示しています。
switch-1# show system redundancy status | json-pretty native
{

"rdn_mode_admin": "HA",
"rdn_mode_oper": "None",
"this_sup": "(sup-1)",
"this_sup_rdn_state": "Active, SC not present",
"this_sup_sup_state": "Active",
"this_sup_internal_state": "Active with no standby",
"other_sup": "(sup-1)",
"other_sup_rdn_state": "Not present"

}
switch-1#

次の例は、スイッチのOSPFルーティングパラメータを JSONネイティブ形式で表示する方法
を示しています。

switch-1# show ip ospf | json native
{"TABLE_ctx":{"ROW_ctx":[{"ptag":"Blah","instance_number":4,"cname":"default","
rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr
_grace_period":"PT60S","gr_state":"inactive","gr_last_status":"None","support_t
os0_only":"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false"
,"admin_dist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S"
,"spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_
time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"m
ax_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cn
t":0,"asopaque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_
nssa":0,"act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa
":0,"no_discard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"100","ins
tance_number":3,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":
"true","gr_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive"
,"gr_last_status":"None","support_tos0_only":"true","support_opaque_lsa":"true"
,"is_abr":"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_
time":"PT0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0
S","lsa_hold_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_
aging_pace":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"
asext_lsa_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"
area_normal":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal"
:0,"act_area_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_
rt_int":"false"},{"ptag":"111","instance_number":1,"cname":"default","rid":"0.0
.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr_grace_pe
riod":"PT60S","gr_state":"inactive","gr_last_status":"None","support_tos0_only"
:"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false","admin_d
ist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S","spf_max
_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_time":"PT
5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"max_metric
_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cnt":0,"aso
paque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_nssa":0,"
act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa":0,"no_d
iscard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"112","instance_num
ber":2,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","g
r_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive","gr_last
_status":"None","support_tos0_only":"true","support_opaque_lsa":"true","is_abr"
:"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_time":"PT
0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_h

NX-API CLI
44

NX-API CLI

XMLおよび JSON出力の例

old_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pac
e":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa
_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"area_norm
al":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal":0,"act_a
rea_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_rt_int":"
false"}]}}
switch-1#

次の例は、OSPFルーティングパラメータを JSON Pretty Native形式で表示する方法を示して
います。

switch-1# show ip ospf | json-pretty native
{

"TABLE_ctx": {
"ROW_ctx": [{

"ptag": "Blah",
"instance_number": 4,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",
"gr_last_status": "None",
"support_tos0_only": "true",
"support_opaque_lsa": "true",
"is_abr": "false",
"is_asbr": "false",
"admin_dist": 110,
"ref_bw": 40000,
"spf_start_time": "PT0S",
"spf_hold_time": "PT1S",
"spf_max_time": "PT5S",
"lsa_start_time": "PT0S",
"lsa_hold_time": "PT5S",
"lsa_max_time": "PT5S",
"min_lsa_arr_time": "PT1S",
"lsa_aging_pace": 10,
"spf_max_paths": 8,
"max_metric_adver": "false",
"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}, {
"ptag": "100",
"instance_number": 3,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",

NX-API CLI
45

NX-API CLI

XMLおよび JSON出力の例

"gr_state": "inactive",

... content deleted for brevity ...

"max_metric_adver": "false",
"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}]
}

}
switch-1#

次に、XML形式で IPルート要約を表示する例を示します。
switch-1# show ip route summary | xml
<?xml version="1.0" encoding="ISO-8859-1"?> <nf:rpc-reply
xmlns="http://www.cisco.com/nxos:1.0:urib"
xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<ip>
<route>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip>
<__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
<__XML__OPT_Cmd_urib_show_ip_route_command_topology>
<__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
<__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
<__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
<__XML__OPT_Cmd_urib_show_ip_route_command_summary>
<__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
<__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
<__readonly__>
<TABLE_vrf>
<ROW_vrf>
<vrf-name-out>default</vrf-name-out>
<TABLE_addrf>
<ROW_addrf>
<addrf>ipv4</addrf>
<TABLE_summary>
<ROW_summary>
<routes>938</routes>
<paths>1453</paths>
<TABLE_unicast>
<ROW_unicast>
<clientnameuni>am</clientnameuni>
<best-paths>2</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>local</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>

NX-API CLI
46

NX-API CLI

XMLおよび JSON出力の例

<clientnameuni>direct</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>broadcast</clientnameuni>
<best-paths>203</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>ospf-10</clientnameuni>
<best-paths>1038</best-paths>
</ROW_unicast>
</TABLE_unicast>
<TABLE_route_count>
<ROW_route_count>
<mask_len>8</mask_len>
<count>1</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>24</mask_len>
<count>600</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>31</mask_len>
<count>13</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>32</mask_len>
<count>324</count>
</ROW_route_count>
</TABLE_route_count>
</ROW_summary>
</TABLE_summary>
</ROW_addrf>
</TABLE_addrf>
</ROW_vrf>
</TABLE_vrf>
</__readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
</__XML__OPT_Cmd_urib_show_ip_route_command_summary>
</__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
</__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
</__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
</__XML__OPT_Cmd_urib_show_ip_route_command_topology>
</__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip>
</route>
</ip>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1#

次の例は、JSON形式で IPルート要約を表示する例を示します。
switch-1# show ip route summary | json
{"TABLE_vrf": {"ROW_vrf": {"vrf-name-out": "default", "TABLE_addrf": {"ROW_addrf":
{"addrf": "ipv4", "TABLE_summary": {"ROW_summary": {"routes": "938", "paths": "
1453", "TABLE_unicast": {"ROW_unicast": [{"clientnameuni": "am", "best-paths": "2"},
{"clientnameuni": "local", "best-paths": "105"}, {"clientnameuni": "direct",
"best-paths": "105"}, {"clientnameuni": "broadcast", "best-paths": "203"},
{"clientnameuni": "ospf-10", "best-paths": "1038"}]}, "TABLE_route_count": {"ROW_route_
count": [{"mask_len": "8", "count": "1"}, {"mask_len": "24", "count": "600"}, {"mask_len":

NX-API CLI
47

NX-API CLI

XMLおよび JSON出力の例

"31", "count": "13"}, {"mask_len": "32", "count": "324"}]}}}}}}}}
switch-1#

次の例は、JSON Pretty形式で IPルート要約を表示する例を示します。
switch-1# show ip route summary | json-pretty
{

"TABLE_vrf": {
"ROW_vrf": {

"vrf-name-out": "default",
"TABLE_addrf": {

"ROW_addrf": {
"addrf": "ipv4",
"TABLE_summary": {

"ROW_summary": {
"routes": "938",
"paths": "1453",
"TABLE_unicast": {

"ROW_unicast": [
{

"clientnameuni": "am",
"best-paths": "2"

},
{

"clientnameuni": "local",
"best-paths": "105"

},
{

"clientnameuni": "direct",
"best-paths": "105"

},
{

"clientnameuni": "broadcast",
"best-paths": "203"

},
{

"clientnameuni": "ospf-10",
"best-paths": "1038"

}
]

},
"TABLE_route_count": {

"ROW_route_count": [
{

"mask_len": "8",
"count": "1"

},
{

"mask_len": "24",
"count": "600"

},
{

"mask_len": "31",
"count": "13"

},
{

"mask_len": "32",
"count": "324"

}
]

}
}

}
}

}

NX-API CLI
48

NX-API CLI

XMLおよび JSON出力の例

}
}

}
switch-1#

次の例は、JSONネイティブ形式で IPルートテーブルを表示する方法を示しています。
switch-1(config)# show ip route summary | json native
{"TABLE_vrf":{"ROW_vrf":[{"vrf-name-out":"default","TABLE_addrf":{"ROW_addrf":[{"addrf":"ipv4","TABLE_summary":{"ROW_summary":[{"routes":3,"p
aths":3,"TABLE_unicast":{"ROW_unicast":[{"clientnameuni":"broadcast","best-paths":3}]},"TABLE_route_count":{"ROW_route_count":[{"mask_len":8,
"count":1},{"mask_len":32,"count":2}]}}]}}]}}]}}
switch-1(config)#

JSONネイティブ（および JSONプリティネイティブ）では、整数が真の整数として表される
ことに注意してください。たとえば、「mask len:」は実際の値 32として表示されます。

次の例は、JSONプリティネイティブ形式で IPルートテーブルを表示する方法を示していま
す。

switch-1(config)# show ip route summary | json-pretty native
{
"TABLE_vrf": {
"ROW_vrf": [{

"vrf-name-out": "default",
"TABLE_addrf": {

"ROW_addrf": [{
"addrf": "ipv4",
"TABLE_summary": {

"ROW_summary": [{
"routes": 3,
"paths": 3,

"TABLE_unicast": {
"ROW_unicast": [{

"clientnameuni": "broadcast",
"best-paths": 3

}]
},
"TABLE_route_count": {

"ROW_route_count":[{
"mask_len": 8,
"count": 1

}, {
"mask_len": 32,
"count": 2

}]
}

}]
}

}]
}

}]
}

}
switch-1(config)#

サンプル NX-APIスクリプト
ユーザーはNX-APIでスクリプトを使用する方法を示すサンプルスクリプトにアクセスできま
す。サンプルスクリプトにアクセスするには、次のリンクをクリックして、必要なソフトウェ

アリリースに対応するディレクトリを選択します：Cisco Nexus 9000 NX-OS NX-API

NX-API CLI
49

NX-API CLI

サンプル NX-APIスクリプト

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

NX-API CLI
50

NX-API CLI

サンプル NX-APIスクリプト

翻訳について
このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては
、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている
場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい
ては米国サイトのドキュメントを参照ください。

	NX-API CLI
	NX-API CLI について
	注意事項と制約事項
	転送
	メッセージ形式
	セキュリティ

	NX-API CLI の使用
	NX-API で権限を root にエスカレーションする
	NX-API 管理コマンド
	NX-API を使用したインタラクティブ コマンドの操作
	NX-API クライアント認証
	NX-API クライアント基本認証
	NX-API のクライアント証明書認証
	注意事項と制約事項
	NX-API のクライアント証明書認証の前提条件
	NX-API クライアント証明書認証の構成
	証明書認証用の Python スクリプトの例
	cURL 証明書要求の例
	証明書認証の検証

	NX-API リクエスト要素
	NX-API 応答要素
	NX-API へのアクセスの制限
	iptable の更新
	リロード間で Iptable を永続化する

	カーネル スタック ACL
	NX-API 応答コードの表
	JSON および XML 構造化出力
	JSON の概要（JavaScript オブジェクト表記）
	XML および JSON 出力の例

	サンプル NX-API スクリプト

