
gNOI：操作インターフェイス

• gNOIについて（1ページ）
• gNOIのガイドラインと制限事項（3ページ）
• gNOIの構成（3ページ）
• System .Proto（3ページ）
• OS .Proto（12ページ）
• Cert .Proto（13ページ）
•ファイル proto（13ページ）
• Put（14ページ）
• Factory Reset .Proto（15ページ）
• Containerz .Proto（16ページ）
• gNOIのトラブルシューティング（33ページ）

gNOIについて
gRPCネットワークオペレーションインターフェイス（gNOI）は、ネットワークデバイス上
で操作コマンドを実行するための gRPCベースのマイクロサービスセットを定義します。

gNOIは Googleリモートプロシジャコール（gRPC）をトランスポートプロトコルとして使用
します。構成は gNMIと同じです。gNMI構成の詳細については、gRPCエージェントを参照
してください。gNOI RPC要求を送信するには、各 RPCに gNOIクライアントインターフェイ
スを実装するクライアントが必要です。Cisco NX-OSリリース 10.1(1)では、gNOIは限られた
数のコンポーネントに対してリモートプロシージャコール（RPC）を定義しており、その一部
はハードウェア（光インターフェイスなど）に関連しています。

Protoファイルは gRPCマイクロサービス用に定義されており、GitHubで入手できます。
https://github.com/openconfig/gnoi

gNOI：操作インターフェイス
1

cisco-nexus-9000-series-nx-os-programmability-guide-106x_chapter42.pdf#nameddest=unique_342
https://github.com/openconfig/gnoi

表 1 :サポートされる gNOI RPC

サポートありgNOI RPCプロトコル

〇pingSystem

はいトレースルート

はい時間

はいSetPackage

はいSwitchControlプロセッサ

はいリブート

はいRebootStatus

はいCancelReboot

はいアクティブ化OS

はいインターフェイス

はいLoadCertificateCert

はいgetFile

はいPut

はいStat

はい削除

はい開始FactoryReset

対応[展開（Deploy）]Containerz

はいListImage

はいRemoveImage

はいRemoveContainer

はいListContainer

はいStartContainer

はいStopContainer

はいUpdateContainer

はいLog

はいCreateVolume

はいRemoveVolume

はいListVolume

gNOI：操作インターフェイス
2

gNOI：操作インターフェイス

gNOIについて

gNOIのガイドラインと制限事項
gNOI機能には、次の注意事項と制約事項があります。

•最大 16のアクティブな gNOI RPCがサポートされます。

• Cisco Nexus 9000シリーズスイッチは、1つの gNMIサービスと 2つの gNOIマイクロサー
ビスを持つ 1つのエンドポイントを実行します。

このドキュメントは、gNOIクライアントの例を提供します。参照されるクライアントは、gNOI
要求と応答の raw交換を示す Pythonスクリプトです。ユーザーは、関心がある自分のクライ
アントを使用するものとします。

（注）

gNOIの構成
gNMIは、gRPCエージェントの子機能です。gRPCエージェントを有効にするには、 gRPC
エージェントを参照してください。現在、gNOIの個別の構成はありません。

現在、gNOIの個別の構成はありません。

System .Proto
システム protoサービスは、設定およびテレメトリパイプラインの外部でターゲットを管理で
きるようにする操作可能な RPCのコレクションです。

次に、システム protoの RPCサポートの詳細を示します。

制限事項説明（Description）サポートRPC

do_not_resolveオプ
ションはサポートされ

ていません。

ターゲットでpingコマ
ンドを実行し、結果を

ストリームバックしま

す。一部のターゲット

では、すべての結果が

使用可能になるまで結

果がストリーミングさ

れない場合がありま

す。パケット数が明示

的に指定されていない

場合は、ping5が使用
されます。

ping/ping6 cliコマンドping

gNOI：操作インターフェイス
3

gNOI：操作インターフェイス

gNOIのガイドラインと制限事項

cisco-nexus-9000-series-nx-os-programmability-guide-106x_chapter42.pdf#nameddest=unique_342
cisco-nexus-9000-series-nx-os-programmability-guide-106x_chapter42.pdf#nameddest=unique_342

制限事項説明（Description）サポートRPC

itial_ttl、marx_ttl、
wait、
do_not_fragment、
do_not_resolve、および
l4protocolオプション
はサポートされていま

せん。

ターゲットで traceroute
コマンドを実行し、結

果をストリームバック

します。一部のター

ゲットでは、すべての

結果が使用可能になる

まで結果がストリーミ

ングされない場合があ

ります。最大ホップカ

ウント 30が使用され
ます。

traceroute/traceroute6 cli
コマンド

トレースルート

-ターゲットの現在の時

刻を返します。通常、

ターゲットが応答して

いるかどうかをテスト

するために使用されま

す。

ローカル時刻時間

bootflash:ファイルシス
テム上の RPMまたは
OSイメージのみをサ
ポートします。

ターゲットのインス

トールコマンドを実行

します。これは、OS
画像または RPMのい
ずれかのインストール

をサポートします。

install{ add | activate }
install all nxos

SetPackage

スイッチオーバーは即

座に発生します。その

結果、応答がクライア

ントに返されることが

保証されない場合があ

ります。

現在のルートプロセッ

サから指定されたルー

トプロセッサに切り替

えます。スイッチオー

バーは即座に発生しま

す。応答がクライアン

トに返されることが保

証されない場合があり

ます。

system switchover cliコ
マンド

SwitchControlプロセッ
サ

messageオプションは
サポートされません。

delayオプションはス
イッチのリロードでサ

ポートされます。path
オプションは 1つのモ
ジュール番号を受け入

れます。

ターゲットをリブート

します。

reload moduleリブート

gNOI：操作インターフェイス
4

gNOI：操作インターフェイス
System .Proto

制限事項説明（Description）サポートRPC

-ターゲットのリブート

のステータスを返しま

す。

show version [module]
cliコマンド

RebootStatus

-保留中の再起動要求を

キャンセルします。

reload cancelCancelReboot

SetPackage
gNOI setpackage RPCは、ソフトウェアパッケージをスイッチにコピーし、必要に応じてアク
ティブ化できるメカニズムを提供します。ソフトウェアパッケージは、RPC発信者から直接コ
ピーすることも、リモートダウンロードを指定することもできます。いずれの場合も、パッ

ケージをインストールする前に、ハッシュを使用してパッケージの転送が確認されます。

setpackage RPCと関連するすべてのメッセージについての完全な定義は、次を参照してくださ
い：

https://github.com/openconfig/gnoi/blob/main/system/system.proto#L61

この RPCの目的は、ソフトウェアパッケージをスイッチにインストールすることです。ソフ
トウェアパッケージは、RPMまたはブート可能 NXOSシステムイメージのいずれかです。
RPMパッケージは、シスコの署名付きRPMまたはサードパーティRPMのいずれかです。サー
ドパーティ RPMの場合、インストール前に次の構成が必要です。

• system software allow third-party

SetPackageのガイドラインと制約事項

次に、SetPackageに関するガイドラインと制限事項を示します：

•標準規格のNXOSシステムイメージとRPMパッケージのみがサポートされています。そ
の他のファイルタイプは拒否され、RPCに失敗します。

•パッケージは「bootflash:」ファイルシステムにのみコピーできます。

• NXOSシステムイメージがサードパーティのアプリケーションパッケージと組み合わさ
れているバンドルイメージはサポートされません。

• RemoteDownload.source_addressオプションのサポートなし

• Package.filenameは標準規格のNXOSファイル命名規則に準拠する必要があり、「bootflash:」
にのみ存在する必要があります。

• Package.versionは空であるか、バージョン文字列に設定されます。空の場合、チェックは
行われません。設定されている場合、このバージョンの文字列はインストールされている

パッケージの文字列に一致する必要があります。

gNOI：操作インターフェイス
5

gNOI：操作インターフェイス
SetPackage

https://github.com/openconfig/gnoi/blob/main/system/system.proto#L61

• SSH/SFTPを使用するリモートコピー操作では、パスワードなしの sshを使用する必要が
あります。これは管理者が構成する必要があります。これは、RPC操作の範囲外です。
RemoteDownloadで指定されたパスワード。ログイン情報は拒否され、RPCに失敗します。

• HTTP(S)を使用するリモートコピー操作では、プロキシの使用が必要になる場合がありま
す。これには、/etc/.curlrcでの手動構成が必要です。

•リモートコピーは、RemoteDownload.source_vrfに特に指定されていない限り、VRFが「デ
フォルト」であると想定します。

RPCオプション

次の表に、パッケージメッセージのフィールドと値を示します。この情報はクライアントの実

装に依存しないことに注意してください。これは protobufメッセージとそれらに含まれるデー
タの形式にすぎません。各 protobufメッセージを適切に構築するのはクライアントの責任で
す。

値説明オプション

bootflash:上の有効な NXOSファイル名。スイッチ上のパッケージの

宛先ファイル名

string filename

空にするか、パッケージバージョンに設定する

可能性があります

パッケージバージョンの文

字列。

string version

activate = falseおよび OS image

スイッチをリロードせずにイメージをインス

トール

activate = falseおよび RPM

RPMを有効にせずにリポジトリにインストー
ルする

activate = trueおよび OS image

イメージをインストールし、スイッチをリロー

ドする

activate = trueおよび RPM

RPMをインストールして有効にする

NXOS SMURPMの場合、スイッチをリロード
する場合とリロードしない場合があります。こ

れは、SMUの影響範囲によって決定されます。
SMURPMのリリース情報を参照してください。

パッケージをインストール

のみ、またはインストール

パッケージを追加でアクティ

ブ化するかどうかを指定し

ます。デフォルトは ‘'false’
です。

bool activate

gNOI：操作インターフェイス
6

gNOI：操作インターフェイス

RPCオプション

非インタラクティブなリモートコピーをのみサ

ポートします：パスワードなしの SSHが設定
されている必要があります。RemoteDownload
メッセージで提供されるリモート情報。

パッケージを別のサーバー

の場所から取得するように

指定します。

remote_download

次の表は、RemoteDownloadメッセージを示しています。

値説明オプション

http(s) :

example.com/path/to/package.rpm

sftp/scp:

a.b.c.d:/path/to/package.rpm

取得元のホストとパスの情報を指定し

ます。ホスト名または IPを使用でき
ます。

path

SFTP、SCP、HTTP、HTTPS。パスワー
ドレスである必要があります

（scp/sftp）。

リモートコピープロトコルprotocol

サポート対象外source_address

指定されていない場合、「デフォルト」

が使用されます

リモートコピーを実行する vrf。source_vrf

必要な場合、ユーザー名とパスワードコピーのためにリモートリソースに

アクセスするためのクレデンシャル

credentials

リモートコピー操作には必須です。リモートサーバーのコピー操作に使

用するユーザー名

•ユーザ
名

パスワードが必要な場合（http（s））。
scp/sftpでは、パスワードレスの sshキー
が必要なため、必要ありません。

必要な場合のパスワード。クリアテキ

ストまたはハッシュ

•パス
ワード

プロキシ：http/httpsを介したリモートダウンロードの場合、プロキシを介してのみダウンロー
ドが可能なシナリオが存在します。このような場合、ユーザーはcurlプロキシ情報を更新する
必要があります。

次の例を参照してください。

これにより、リモートダウンロードが指定されたプロキシを通過できるようになり、そのよう

な構成はスイッチのリロード後も保持されます。

feature bash
run bash sudo su -
<edit> /etc/.curlrc
--proxy http://<proxy>:<proxy-port>
ln -s /etc/.curlrc /etc/curlrc

（注）

gNOI：操作インターフェイス
7

gNOI：操作インターフェイス

RPCオプション

応答とスイッチのリロードのタイミング：SetPackageがスイッチをリロードすると、場合に
よってはスイッチがすぐにリロードされ、ネットワーク接続が中断されることがあります。ク

ライアントが gNOI応答を受信できない可能性があることが予想されます。

（注）

次に、setpackage RPCを使用してスイッチにソフトウェアをインストールするクライアントの
インタラクションの例を示します。これらは、さまざまなクライアントを使用して RPCの使
用方法を説明する例です。他のクライアントは同様のオプションを使用しますが、詳細は異な

ります。

例：RPMのインストール、アクティブ化なし

./gnxi-console --host <ip> --port 50051 --cafile /tmp/grpc.pem --hostnameoverride
ems.cisco.com -u admin -p <passwd> --operation gnoi.system.setpackage --arg
local_file=/nobackup/xyzbbarfiel/nxos64-cs.10.6.1.IQD9.0.29.F.bin,package.filename=bootflash:nxos64-cs.10.6.1.IQD9.0.29.F.bin,chunk_size=64000,hash.method=3,checksum=0ad2bf5c3b0be5b7363ac1e18fcc5f8f,package.activate=false

[gnoi.system.setpackage]-------------------------------

SetPackageRequest package {

filename: "bootflash:nxos64-cs.10.6.1.IQD9.0.29.F.bin"

}

Sent 50777 content RPC messages

End>>

hash {

method: MD5

hash: "\n\322\277\\;\013\345\2676:\301\341\217\314_\217"

}

Hex coded checksum: 0ad2bf5c3b0be5b7363ac1e18fcc5f8f

[RESP] : 0

n9k_pi2(config)# show boot

Current Boot Variables:

sup-1

NXOS variable = bootflash:/nxos64-cs.10.6.1.IQD9.0.29.F.bin

例： OSイメージのインストール、アクティブ化

gNOI：操作インターフェイス
8

gNOI：操作インターフェイス

RPCオプション

./gnxi-console --host <ip> --port 50051 --cafile /tmp/grpc.pem --hostnameoverride
ems.cisco.com -u admin -p <passwd> --operation gnoi.system.setpackage --arg
local_file=/nobackup/xyzbbarfiel/nxos64-cs.10.6.1.IQD9.0.29.F.bin,package.filename=bootflash:nxos64-cs.10.6.1.IQD9.0.29.F.bin,chunk_size=64000,hash.method=3,checksum=0ad2bf5c3b0be5b7363ac1e18fcc5f8f,package.activate=true

[gnoi.system.setpackage]-------------------------------

SetPackageRequest package { filename: "bootflash:nxos64-cs.10.6.1.IQD9.0.29.F.bin"
activate: true }

Sent 50777 content RPC messages

End>>

hash {

method: MD5

hash: "\n\322\277\\;\013\345\2676:\301\341\217\314_\217"

}

Hex coded checksum: 0ad2bf5c3b0be5b7363ac1e18fcc5f8f

[RESP] : 0

// switch reloaded into new image

例： OSイメージのインストール、リモートダウンロード

./gnxi-console --host <ip> --port 50051 --cafile /tmp/grpc.pem --hostnameoverride
ems.cisco.com -u admin -p <passwd> --operation gnoi.system.setpackage --arg
package.remote_download.path=<ip>:/nobackup/xyz/nxos64-cs.10.6.1.IQD9.0.29.F.bin,package.filename=bootflash:nxos64-cs.10.6.1.IQD9.0.29.F.bin,chunk_size=64000,hash.method=3,checksum=0ad2bf5c3b0be5b7363ac1e18fcc5f8f,package.remote_download.protocol=4,package.remote_download.credentials.username=<user>,package.remote_download.source_vrf=management,package.activate=false

[gnoi.system.setpackage]-------------------------------

SetPackageRequest package {

filename: "bootflash:nxos64-cs.10.6.1.IQD9.0.29.F.bin"

remote_download {

path: "10.30.216.231:/nobackup/xyz/nxos64-cs.10.6.1.IQD9.0.29.F.bin"

protocol: SCP

credentials {

username: "<user_id>"

}

source_vrf: "management" } }

End>>

gNOI：操作インターフェイス
9

gNOI：操作インターフェイス

RPCオプション

hash {

method: MD5

hash: "\n\322\277\;\013\345\2676:\301\341\217\314_\217"

}

Hex coded checksum: 0ad2bf5c3b0be5b7363ac1e18fcc5f8f

[RESP] : 0

n9k_pi2(config)# show boot

Current Boot Variables:

sup-1

NXOS variable = bootflash:/nxos64-cs.10.6.1.IQD9.0.29.F.bin

Boot Variables on next reload:

sup-1

NXOS variable = bootflash:/nxos64-cs.10.6.1.IQD9.0.29.F.bin

例：RPMのインストール、アクティブ化なし

> gnoi-client --host <ip> --port <port> -u admin -p <pass> system.setpackage
--arg local_file=valgrind-3.14.0-r0.corei7_64.rpm,

package.filename=bootflash:valgrind-3.14.0-r0.corei7_64.rpm,
package.version=3.14.0,
hash.method=3,
package.activate=false

[REQ]

SetPackageRequest

package {

filename: "bootflash:valgrind-3.14.0-r0.corei7_64.rpm"

}

Sent 16010 content RPC messages

End>>

hash {

method: MD5

hash: "\002\313\016j\233A\"\235\261\325`\333\350>\314\346"

}

Hex coded checksum: 02cb0e6a9b41229db1d560dbe83ecce6

gNOI：操作インターフェイス
10

gNOI：操作インターフェイス

RPCオプション

[RESP] : 0

例：RPMのインストール、アクティブ化

n9k_pi2# show install active

Active Packages:

gnxi-console --host <ip> --port 50051 --cafile /tmp/grpc.pem --hostnameoverride
ems.cisco.com -u admin -p <passwd> --operation gnoi.system.setpackage --arg
local_file=/auto/mtx-dev/sanity/images/valgrind-3.14.0-r0.corei7_64.rpm,package.filename=bootflash:valgrind-3.14.0-r0.corei7_64.rpm,chunk_size=64000,hash.method=3,checksum=02cb0e6a9b41229db1d560dbe83ecce6,package.activate=true

[gnoi.system.setpackage]-------------------------------

SetPackageRequest

package {

filename: "bootflash:valgrind-3.14.0-r0.corei7_64.rpm"

activate: true

}

Sent 65 content RPC messages

End>>

hash {

method: MD5

hash: "\002\313\016j\233A\"\235\261\325`\333\350>\314\346"

}

Hex coded checksum: 02cb0e6a9b41229db1d560dbe83ecce6

[RESP] : 0

n9k_pi2# show install active

gNOI：操作インターフェイス
11

gNOI：操作インターフェイス

RPCオプション

Active Packages:

valgrind-3.14.0-r0.corei7_64

OS .Proto
OSサービスは、ターゲット上の OSインストールに対するインターフェイスを提供します。
OSパッケージのファイル形式は、プラットフォームによって異なります。プラットフォーム
は、提供された OSパッケージが有効でブート可能であることを検証する必要があります。こ
れには、既知の良好なハッシュに対するハッシュチェックを含める必要があります。ハッシュ

は OSパッケージに埋め込むことをお勧めします。

ターゲットは、独自の永続ストレージと OSインストールプロセスを管理します。一連の個別
の OSパッケージを保存し、着信する新しい OSパッケージ用に常にプロアクティブにスペー
スを解放します。ターゲットには、有効な着信 OSパッケージ用の十分なスペースが常にある
ことが保証されます。現在実行中の OSパッケージは削除しないでください。クライアント
は、最後に正常にインストールされたパッケージが使用可能であることを期待する必要があり

ます。

次に、OSプロトコルの RPCサポートの詳細を示します。

制限事項説明（Description）サポートRPC

再起動に失敗した場合

は、ロールバックまた

は回復できません。

要求された OSバー
ジョンを、次回のリ

ブート時に使用される

バージョンとして設定

します。この RPC
は、ターゲットを再起

動します。

install all nxos
bootflash:///img_name

アクティブ化

-[検証（Verify）]は、
実行中の OSバージョ
ンを確認します。この

RPCは、ターゲットの
起動中に成功するまで

複数回呼び出される場

合があります。

show version検証

インストール RPCはサポートされていません。（注）

gNOI：操作インターフェイス
12

gNOI：操作インターフェイス
OS .Proto

Cert .Proto
証明書管理サービスは、ターゲットによってエクスポートされます。ローテーション、インス

トール、およびその他の証明書プロトコル RPCはサポートされていません。

制限事項説明（Description）サポートRPC

-CA証明書のバンドル
をロードします。

crypto ca import
<trustpoint>

pkcs12 <file>
<passphrase>

LoadCertificate

ファイル proto
ファイル protoは、file.proto RPCの機能に基づいてメッセージをストリーミングします。

Get、Stat、および Remove RPCは、bootflash、bootflash://sup-remote、logflash、
logflash://sup-remote、usb、volatile、volatile://sup-remote、および debugのファイルシステムを
サポートします。Put RPCは bootflashのみをサポートしています。

次に、ファイル protoの RPCサポートの詳細を示します。

制限事項説明（Description）サポートRPC

ファイルサイズの上限

は 32 MBです。
Getはターゲットから
ファイルの内容を読み

取り、ストリーミング

します。ファイルは連

続したメッセージに

よってストリーミング

されます。各メッセー

ジには最大 64 KBの
データが含まれます。

最後のメッセージが送

信された後、送信され

たデータのハッシュが

送信され、ストリーム

が閉じられます。ファ

イルが存在しない場

合、またはファイルの

読み取り中にエラーが

発生した場合は、エ

ラーが返されます。

結果

gNOI：操作インターフェイス
13

gNOI：操作インターフェイス
Cert .Proto

制限事項説明（Description）サポートRPC

最大ファイルサイズ

（Maximum file size
(MB)）

bootflashのみ：サポー
トされています

ターゲットスイッチに

ファイルをアップロー

ドします。ファイルの

接続先は、NXOS命名
構文に従います。ファ

イルタイプに制限はあ

りません。

Put

-Statは、ターゲット上
のファイルに関するメ

タデータを返します。

ファイルが存在しない

場合、またはファイル

のメタデータへのアク

セス中にエラーが発生

した場合は、エラーが

返されます。

Stat

-Removeは、ターゲッ
トから指定されたファ

イルを削除します。

ファイルが存在しない

場合、ディレクトリで

ある場合、または削除

操作でエラーが発生し

た場合は、エラーが返

されます。

削除

Put
Put操作により、ユーザはファイルをスイッチにアップロードできます。「remote_file」フィー
ルドは、NX-OSの「copy」コマンドで必要な命名規則に従う必要があります。たとえば、
「bootflash:example.txt」などです。スイッチにコピーされるファイルには、次の制限が適用さ
れます。

• 3.5GBの最大ファイルサイズ

•ターゲットファイルシステムはローカル bootflash:である必要があります。

• RPCユーザーには、ターゲットファイルへの書き込み権限が必要です。

PutRequestメッセージの形式は、次の URLで詳しく説明されています：
https://github.com/openconfig/gnoi/blob/main/file/file.proto#L78

例

gNOI：操作インターフェイス
14

gNOI：操作インターフェイス
Put

https://github.com/openconfig/gnoi/blob/main/file/file.proto#L78

> gnoi-client --host <ip> --port <port> -u admin -p <pass> file.put
--arg local_file=valgrind-3.14.0-r0.corei7_64.rpm,

local_file=bootflash:valgrind-3.14.0-r0.corei7_64.rpm,
remote_file=bootflash:test.rpm,
hash.method=3

[REQ]

Open>>

open {

remote_file: "bootflash:test.rpm"

permissions: 493

}

...

End>>

hash {

method: MD5

hash: "\002\313\016j\233A\"\235\261\325`\333\350>\314\346"

}

Hex coded checksum: 02cb0e6a9b41229db1d560dbe83ecce6

[RESP] : 0

Factory Reset .Proto
この .protoは現在、1つのRPCのみを定義しています。「https://github.com/openconfig/gnoi/blob/
master/factory_reset/factory_reset.proto」を参照してください。

制限事項説明（Description）サポートRPC

詳細については、後述

の内容を参照してくだ

さい。

ターゲットで

factory-restコマンドを
実行します。

factory-reset module all
[bypass-secure-erase]
preserve-image force

FactoryReset

gNOI：操作インターフェイス
15

gNOI：操作インターフェイス
Factory Reset .Proto

https://github.com/openconfig/gnoi/blob/master/factory_reset/factory_reset.proto
https://github.com/openconfig/gnoi/blob/master/factory_reset/factory_reset.proto

FactoryReset
gNOIの初期設定へのリセット操作を行うと、指定されたモジュールのすべての永続ストレー
ジが消去されます。これには、構成、すべてのログデータ、およびフラッシュとSSD（ソリッ
ドステートドライブ）のすべての内容が含まれます。リセットは直前のブートイメージでブー

トし、ライセンスを含むすべてのストレージを消去します。 gNOIの初期設定へのリセット
は、次の 2つのモードをサポートしています。

•再フォーマットと再パーティションのみが可能な高速消去。

•データをセキュアに消去してワイプし、回復不可能にする、セキュア消去。

値Descriptionオプション

NX-OSでは trueに設定するこ
とはサポートされていませ

ん。現在のブートイメージを

保持する必要があります。

工場出荷時のOSバージョンに
ロールバックするかどうかを

指定します。

factory_os

zero_fill = true：factory-reset
module all preserve-image force
を指定します。

zero_fill = false：factory-reset
module all bypass-secure-erase
preserve-image forceを指定しま
す。

時間のかかる、全面的なセ

キュア消去を実行するかどう

かを指定します。

zero_fill

Containerz .Proto
NX-OSは、特権 bashシェルを介したネイティブのDockerアクセスをサポートしています。詳
細については、『Cisco Nexus 9000シリーズ NX-OSプログラマビリティガイド』の「Cisco
NX-OSでの Dockerを使用」の章を参照してください。

この gNOIコンテナは、既存の NX-OS Docker機能に関する GRPC-ishラッパーインターフェ
イスをさらに提供します。containerz APIインターフェイスを利用するには、ユーザーは最初
に上記のガイドラインに従って Dockerサービスを起動してプロビジョニングする必要があり
ます。ネイティブの Dockerサービスが実行され、NX-OS bashシェル経由でアクセスできるよ
うになると、ユーザーはコンテナを使用して Dockerサービスを管理できます。NX-OSは、
containerz要求を受信すると、与えられた gnoi要求を対応する dockerコマンドに変換して呼び
出します。dockerコマンド出力は、それぞれの containerz応答形式に変換されてクライアント
に配信されます。

gNOI：操作インターフェイス
16

gNOI：操作インターフェイス
FactoryReset

https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/programmability/cisco-nexus-9000-series-nx-os-programmability-guide-105x/m-n9k-using-docker-with-cisco-nx-os-101x.html?bookSearch=true
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/programmability/cisco-nexus-9000-series-nx-os-programmability-guide-105x/m-n9k-using-docker-with-cisco-nx-os-101x.html?bookSearch=true

図 1 :

次に、Containerz protoの RPCサポートの詳細を示します：

制限事項説明（Description）サポートRPC

is_pluginオプションがサポー
トされていません

tar形式の dockerイメージをアップロードし、リ
ポジトリにインストールする

docker image load展開

デプロイされたイメージの一覧表示docker image lsListImage

イメージの削除docker image rmRemoveImage

コンテナの削除docker container rmRemoveContainer

コンテナの一覧表示（List containers）docker container lsListContainer

新しいコンテナまたは停止したコンテナを開始す

る

docker container run

docker container start

StartContainer

コンテナの停止または再起動docker container stop

docker container restart

StopContainer

コンテナの更新docker container stop

docker container start

UpdateContainer

コンテナログを取得するdocker container logsLog

「ローカル」ドライバのみを

サポートします

「ローカルマウントオプショ

ン」はサポートされていませ

ん

dockerボリュームの作成docker volume createCreateVolume

「強制」オプションはサポー

トされていません

dockerボリュームの削除docker volume rmRemoveVolume

Dockerボリュームのリストdocker volume lsListVolume

StartPlugin、StopPlugin、ListPlugin、および RemovePlugin RPCはサポートされていません。（注）

gNOI：操作インターフェイス
17

gNOI：操作インターフェイス
Containerz .Proto

<Deploy>

展開操作により、ユーザーはDockerイメージ(「tar」または「tar.gz」形式)をスイッチにアップ
ロードし、スイッチのリポジトリに登録できます。

展開 RPCについては、次の場所に記載されています：

https://github.com/openconfig/gnoi/blob/main/containerz/containerz.proto#L54

展開 RPCの目的は、イメージアーカイブを Dockerイメージレジストリにロードすることで
す。展開RPCは、「docker load」コマンドラインと同等の機能を提供します。イメージアーカ
イブファイルは、GZIPまたは TARファイルで、有効な Dockerイメージが含まれている必要
があります。

遅延展開に関するガイドラインおよび制限事項

展開操作に関するガイドラインと制限事項は次のとおりです。

•展開するファイルは、Gzipまたは TAR形式の有効なDockerイメージである必要がありま
す。

•プラグインは、サポートされません。

•非インタラクティブなリモートコピーのみを実行できます。つまり、 SCP/SFTPの場合、
管理者は RPCを実行する前にパスワードレス SSHをセットアップ必要があります。

•リモートダウンロードの場合、スイッチは ImageTransferReadyを送信せず、クライアント
は ImageTransferEndを送信しないと見なされます。

RPCオプション

RPCの実行中に次のprotobufメッセージが交換されます（詳細については、RPCプロトコルの
定義を参照してください）。これらのメッセージは、クライアントによってスイッチに送信さ

れます。

ImageTransferメッセージは、展開操作を開始するためにクライアントからスイッチに送信され
る最初のメッセージです。

値説明メッセージオプション

有効な Dockerイメージ名インストールしたイメージに付ける名前文字列の名前

有効な dockerイメージタグインストール後に画像に適用されるタグ文字列のタグ

ユーザーは画像サイズを指定する必要があり

ます。この値は「docker inspect <image> | grep
Size」で確認できます。イメージは、空き
Dockerパーティション領域の80%を超えては
なりません。

インストールされるイメージのサイズ（バ

イト）。これは、イメージをロードするの

に十分な空き領域があることを確認するた

めにチェックされます。

Unit64 image_size

いいえ（False）サポート対象外Bool is_plugin

gNOI：操作インターフェイス
18

gNOI：操作インターフェイス
Containerz .Proto

https://github.com/openconfig/gnoi/blob/main/containerz/containerz.proto#L54

値説明メッセージオプション

スイッチがリモートサーバからコピーしてい

る場合はオプションです。非インタラクティ

ブなリモートコピーをのみサポートします：

パスワードなしの SSHが設定されている必要
があります。RemoteDownloadメッセージで提
供されるリモート情報。

RemoteDownload remote_download

RemoteDownloadメッセージを示す表

値説明オプション

http(s) :

example.com/path/to/package.rpm

sftp/scp:

a.b.c.d:/path/to/package.rpm

取得元のホストとパスの情報を指定します。

ホスト名または IPを使用できます。
path

SFTP、SCP、HTTP、HTTPS。パスワードレス
である必要があります（scp/sftp）。

リモートコピープロトコルprotocol

サポート対象外source_address

指定されていない場合、「デフォルト」が使用

されます

リモートコピーを実行する vrf。source_vrf

必要な場合、ユーザー名とパスワードコピーのためにリモートリソースにアクセス

するためのクレデンシャル

credentials

リモートコピー操作には必須です。リモートサーバーのコピー操作に使用する

ユーザー名

•ユーザ名

パスワードが必要な場合（http（s））。scp/sftp
では、パスワードレスのsshキーが必要なため、
必要ありません。

必要な場合のパスワード。クリアテキストま

たはハッシュ

•パスワード

バイトメッセージ

値説明オプション

コピーされるイメージアーカイブファイルの

rawバイト数。
このメッセージは、スイッチに直接コピーを

行う場合にデータを伝送します。

content

ImageTransferEndメッセージ

値説明オプション

このメッセージには、データがありません。これは、スイッチに転送されたバイトの終了

を通知する空のメッセージです。

<none>

gNOI：操作インターフェイス
19

gNOI：操作インターフェイス
Containerz .Proto

次の protobufメッセージは、DeployResponseメッセージの形式でスイッチからクライアントに
送信されます。

• ImageTransferReady：スイッチはデータを受信する準備が整っています。

• ImageTransferProgress：これまでに受信したバイト数をクライアントに示します。

• ImageTransferSuccess --クライアントへの転送が成功したことを示します

• Google.rpc.Status：RPCステータスコード

ImageTransferReadyメッセージ

値説明オプション

常に 64KBを要求します各コンテンツメッセージで伝送するデータ量

をクライアントに示します。

chunk_size

ImageTransferProgressメッセージ

値説明オプション

2MBの受信データごとに送信された、受信さ
れた合計バイト数。このメッセージは、リモー

トコピーのときには送信されません。

データコピーでこれまでにスイッチに正常に

転送されたバイト数

Bytes_received

ImageTransferSuccessメッセージ

値説明オプション

文字列の Docker名。レジストリにロードされたイメージの名前名前

文字列としての Dockerタグこのイメージに使用されたタグtag

バイト単位の unit64値読み込まれた画像サイズimage_size

クライアント RPCインタラクションの例

次の例は、特定のクライアントを使用した展開 RPCの使用方法を示しています。詳細は他の
クライアントによって異なりますが、これは基本的な相互作用を示しています。

例：直接アップロード

./gnxi-console --host 172.22.244.142 --port 50051 --cafile /tmp/grpc.pem --hostnameoverride
ems.cisco.com -u admin -p <passwd>
--operation gnoi.containerz.deploy --arg
image_transfer.name=alpine_dev,image_transfer.tag="DEV-1.0.1",image_transfer.image_size=3309581,
image_transfer.is_plugin=false,local_file=/auto/mtx-dev/sanity/docker/docker_alpine_latest.tar.gz

[gnoi.containerz.deploy]-------------------------------
Transfer>>
image_transfer {
name: "alpine_dev"
tag: "DEV-1.0.1"

gNOI：操作インターフェイス
20

gNOI：操作インターフェイス
Containerz .Proto

image_size: 3309581
}

[RESP] : 0
image_transfer_ready {
chunk_size: 64000

}

Sent 52 chunks
End>>
image_transfer_end {
}

[RESP] : 0
image_transfer_progress {
bytes_received: 2112000

}

[RESP] : 0
image_transfer_success {
name: "alpine_dev"
tag: "DEV-1.0.1"
image_size: 3309581

}

The state of docker on n9k:

bash-5.1# docker image ls
REPOSITORY TAG IMAGE ID CREATED
SIZE
busybox latest af4709625109 5 months ago
4.27MB
alpine_dev DEV-1.0.1 2c64cf60f6f0 6 months ago
7.35MB

例：リモート展開

(pyats) [sjc-ads-7111]$./gnxi-console --host <ip> --port 50051 --cafile /tmp/grpc.pem
--hostnameoverride ems.cisco.com -u admin -p <passwd> --operation gnoi.containerz.deploy
--arg
image_transfer.name=alpine,image_transfer.tag=new_image,image_transfer.image_size=7349436,image_transfer.remote_download.path=10.0.0.1:/auto/mtx-dev/sanity/docker/docker_alpine_latest.tar.gz,image_transfer.remote_download.protocol=4,image_transfer.remote_download.source_vrf=management,image_transfer.remote_download.credentials.username=<userid>

[gnoi.containerz.deploy]-------------------------------
Transfer>> image_transfer {

name: "alpine"
tag: "new_image"
image_size: 7349436
remote_download {

path: "10.0.0.1:/auto/mtx-dev/sanity/docker/docker_alpine_latest.tar.gz"
protocol: SCP
credentials {

username: "<user>"
}

source_vrf: "management" } }
[RESP] : 0 image_transfer_success {

name: "alpine"
tag: "new_image"
image_size: 7349436

}
bash-5.1# docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
busybox latest af4709625109 8 months ago 4.27MB
alpine new_image 2c64cf60f6f0 9 months ago 7.35MB

gNOI：操作インターフェイス
21

gNOI：操作インターフェイス
Containerz .Proto

<ListImage>

ListImage操作は、スイッチのローカルリポジトリ内のイメージのリストを返します。各イメー
ジには、イメージ ID、名前、タグなどの情報が含まれます。

ListImage操作は、次のオプションのどれでもサポートします。

値Descriptionオプション

int32としての有効なイメージエントリ数「limit」は、「docker image list」コマンドと
同じ表示順序に従って、応答で返されるイメー

ジエントリの数を制限します。

Limit

キーと値の有効な文字列ListImage操作は、フィルタに一致するすべて
の画像を返します

Filter

{key:value}

次の例は、ListImage操作の使用方法を示しています。
> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.listimage
--arg limit=2

[REQ]
limit: 2

[RESP] : 1
id: "f7a401783329"
image_name: "ghcr.io/openconfig/gnmic"
tag: "latest"

[RESP] : 2
id: "2c64cf60f6f0"
image_name: "alpine"
tag: "latest"

<RemoveImage>

RemoveImage操作は、名前で識別される Dockerコンテナを削除します。

デフォルトでは、イメージが一部のコンテナによって使用されている場合、操作は失敗しま

す。「force」オプションを使用すると、イメージを強制的に停止して削除できます。ただし、
この場合、dockerはイメージのタグを解除するだけです。

RemoveImage操作は、次のオプションをサポートします。

値説明オプション

文字列としての有効なイメージ名削除するイメージ名Name

有効な文字列削除するタグタグ

True/False。デフォルト値は falseに設定されて
います。

「force=true」の場合、イメージは強制的に削
除/タグなしにされます

強制

次の例は、RemoveImage操作の使用方法を示しています。

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.removeimage

gNOI：操作インターフェイス
22

gNOI：操作インターフェイス
Containerz .Proto

--arg name=alpine

[REQ]
name: "alpine"

[RESP]
code: UNKNOWN
detail: "Error response from daemon: conflict: unable to remove repository reference
\"alpine\" (must force) - container 21e718a3bf52 is using its referenced image
2c64cf60f6f0\n"

次の例は、強制削除（タグ解除のみ）を示しています。

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.removeimage
--arg name=alpine,force=True

[REQ]
name: "alpine"
force: true

[RESP]
code: SUCCESS
detail: "Untagged: alpine:latest\n"

次の例は、コンテナが停止した後に再度強制削除することを示しています。

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.removeimage
--arg name= 2c64cf60f6f0,force=True

[REQ]
name: "foo"
force: true

[RESP]
code: UNKNOWN
detail: "Deleted:
sha256:2c64cf60f6f05256c049f58403d0c3b33f2145a70830cb8e24efa826854c1a46\n"

<StartContainer>

StartContainer操作は、新しいコンテナを開始するか、以前に停止したコンテナを再起動するた
めに使用できます。判断は、次の条件に基づきます。

•コンテナが存在しない場合は、新しいコンテナを開始します

• otherwise

•コンテナがすでに実行されている場合は、エラーを返します。

•コンテナが停止しているが、リクエストにインスタンス名だけではない多くのフィー
ルドが含まれている場合は、エラーを返します。

•コンテナが停止し、リクエストにインスタンス名のみが含まれている場合は、コンテ
ナを開始します。

StartContainerは次のオプションをサポートしています

値Descriptionオプション

文字列としての有効なイメージ名コンテナを起動するイメージ名image_name

gNOI：操作インターフェイス
23

gNOI：操作インターフェイス
Containerz .Proto

有効な文字列コンテナを開始するイメージタグtag

有効なコマンド文字列新しいコンテナで実行するコマンドcmd

文字列としての有効な instance_name新しいコンテナの識別子instance_name

有効な内部および外部ポート

例：内部ポート = 2001

外部ポート = 1001

コンテナの外部に公開される内部ポートのリ

スト

port

-内部

-外部

文字列としての環境変数値またはキーと値の

ペアだけにすることができます

例：VAR1または VAR1=val

コンテナでの環境変数の設定環境 =<VAR1>：<value>

有効なネットワーク文字列

これは、「ホスト」、「ブリッジ」、または

ランタイムで使用可能なその他のネットワー

クです。

このコンテナを接続するネットワークネットワーク（network）

有効な機能のリストは、
https://man7.org/linux/man-pages/man7/capabilities.7.html
で確認できます。これはデフォルトの機能セッ

トです。

AUDIT_WRITE、CHOWN、DAC_OVERRIDE、
FOWNER、FSETID、KILL、MKNOD、

NET_BIND_SERVICE、NET_RAW、
SETFCAP、SETGID、SETPCAP、SETUID、
SYS_CHROOTです。

追加する機能Cap.ADD

削除される機能Cap.REMOVE

有効な再起動ポリシーは次のとおりです。

NONE、ALWAYS、UNLESS_STOPPED、
ON_FAILURE

再起動ポリシーの設定Restart.policy

unit32としての有効な試行回数再起動の試行を設定Restart.attempts

文字列としての有効な UIDおよび GIDこのコンテナを実行するユーザーとグループ

を設定

RunAs.user

RunAs.group

文字列ラベル。キーまたはキー値のペアのみ

にすることができます。

例: my-labelまたはcom.example.foo=bar

メタデータをコンテナに設定するためのキー

と値のペア

ラベル（Label）

<key>:<val>

有効な CPUの数。

例：値 0.5は、このコンテナが最大で

CPUの半分を使用できることを示します。

このコンテナで使用できる最大CPUの数を設
定。

Limits.max_cpu

gNOI：操作インターフェイス
24

gNOI：操作インターフェイス
Containerz .Proto

https://man7.org/linux/man-pages/man7/capabilities.7.html

有効なメモリ制限（バイト単位）。この制限

は、使用可能な最大メモリよりも小さくする

必要があります。

例：soft_mem_bytes = 7000000

メモリのソフト制限を設定Limits.soft_mem_bytes

有効なメモリ制限（バイト単位）。

例：limit.hard_mem_bytes = 9000000

メモリのハード制限を設定Limits.hard_mem_bytes

ガイドラインと制約事項

• StartContainer操作は、「docker run」 CLIを介して実現されます。この CLIでサポートさ
れる最大長は 2500バイトです。

• RunAsの場合、現在の Dockerは UIDと GIDのみをサポートします。コンテナは UIDと
GIDの任意の値で開始し、ユーザー名とグループ名が指定されると失敗します。

•コンテナの起動中に警告が発生した場合、NXOSは警告を返さずにコンテナを起動しま
す。

次の例は、StartContainer操作を示しています。

例：新しいコンテナの開始

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.startcontainer
--arg instance_name=foo,

image_name=busybox,
cmd="sh -c \"sleep 300\"",
volume=my_volume:/docker

[REQ]
image_name: "busybox"
cmd: "sh -c \"sleep 300\""
instance_name: "foo"
volumes {
name: "my_volume"
mount_point: "/docker"

}

[RESP]
start_ok {
instance_name: "foo"

}

例：新しいコンテナの開始

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.startcontainer
--arg image_name=alpine,

cmd="sh -c \"while true; do $(echo date); sleep 1; done\"",
instance_name=foo,
volume=my_volume:/docker:True,
env=VAR1:value1,env=VAR2:value2,
cap.add=FOWNER,
cap.add=AUDIT_WRITE,
cap.remove=SETFCAP,
cap.remove=NET_RAW,
network=host,
restart.policy=3,restart.attempts=2,
run_as.user=1001,run_as.group=2003,

gNOI：操作インターフェイス
25

gNOI：操作インターフェイス
Containerz .Proto

label=env:prod,label=team:neteng,
limits.max_cpu=1.5,
limits.soft_mem_bytes=7000000,
limits.hard_mem_bytes=90000000,
port=1001:2001

[REQ]
image_name: "alpine2"
cmd: "sh -c \"while true; do date; sleep 1; done\""
instance_name: "foo"
ports {
internal: 2001
external: 1001

}
environment {
key: "VAR1"
value: "value1"

}
environment {
key: "VAR2"
value: "value2"

}
volumes {
name: "my_volume"
mount_point: "/docker"
read_only: true

}
network: "host"
cap {
add: "FOWNER"
add: "AUDIT_WRITE"
remove: "SETFCAP"
remove: "NET_RAW"

}
restart {
policy: ON_FAILURE
attempts: 2

}
run_as {
user: "1001"
group: "2003"

}
labels {
key: "env"
value: "prod"

}
labels {
key: "team"
value: "neteng"

}
limits {
max_cpu: 1.5
soft_mem_bytes: 7000000
hard_mem_bytes: 90000000

}

[RESP]
start_ok {
instance_name: "foo"

}

例：既存の実行中のコンテナの開始

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.startcontainer
--arg instance_name=foo,

image_name=busybox

gNOI：操作インターフェイス
26

gNOI：操作インターフェイス
Containerz .Proto

[REQ]
image_name: "busybox"
instance_name: "foo "

[RESP]
start_error {
error_code: UNKNOWN
details: "container is already running"

}

例：既存の停止したコンテナの起動

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.startcontainer
--arg instance_name=foo

[REQ]
instance_name: "foo "

[RESP]
start_ok {
instance_name: "foo "

}

<RemoveContainer>

RemoveContainer操作は、名前で識別される Dockerコンテナを削除します。

デフォルトでは、コンテナがまだ実行中の場合、操作は失敗します。forceオプションを使用
すると、コンテナを強制的に停止して削除できます。

RemoveContainer操作では、次のオプションがサポートされています。

値Descriptionオプション

文字列としての有効なコンテナ名削除するコンテナ名Name

True/False。デフォルト値は falseに設定されて
います。

「force=True」の場合、コンテナは停止し、強
制的に削除されます

強制

Dockerイメージとコンテナの前には一定の独立性があるため、基礎となるイメージが削除され
た場合でも、コンテナは存在し続ける可能性があることを認識することが重要です。ユーザー

はイメージとコンテナを慎重に削除する必要があります。

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.removecontainer

[REQ]
name: "foo"

[RESP]
code: RUNNING
detail: "Error response from daemon: You cannot remove a running container
706723d4ae83e3fa7b5dcfe4edbb8edd570ea8af690c3eef2526f9c603bfba97. Stop the container
before attempting removal or force remove\n"

例：強制削除

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.removecontainer
--arg force=True

gNOI：操作インターフェイス
27

gNOI：操作インターフェイス
Containerz .Proto

[REQ]
name: "foo"
force: true

[RESP]
code: SUCCESS
detail: "Container removed successfully"

<ListContainer>

ListContainer操作は、スイッチのローカルリポジトリ内のコンテナのリストを返します。

各コンテナには、イメージ名、コンテナ ID、名前、実行ステータス、コンテナランタイムに
よって計算されたラベルとイメージハッシュを含むメタデータなどの情報が含まれます。

ListContainer操作では、次のオプションがサポートされます

値Descriptionオプション

True/False。デフォルト値は falseに設定され
ています。

「all」オプションを使用すると、実行中のコ
ンテナと実行されていないコンテナをすべて

返すことができます。デフォルトでは、

ListContainer操作は実行中のコンテナのみを
返します。

すべて

int32としての有効なコンテナエントリ数「limit」は、「docker container list」コマンド
と同じ表示順序に従って、応答で返されるコ

ンテナエントリの数を制限します。

Limit

キーと値の有効な文字列ListImage操作は、フィルタに一致するすべて
の画像を返します

Filter

{key:value}

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.listcontainer
--arg name=my_volume

[REQ]

[RESP] : 1
id: "706723d4ae83e3fa7b5dcfe4edbb8edd570ea8af690c3eef2526f9c603bfba97"
name: "my_volume"
image_name: "alpine"
status: RUNNING
hash {
method: SHA256
hash: "sha256:2c64cf60f6f05256c049f58403d0c3b33f2145a70830cb8e24efa826854c1a46"

}

例：すべてのコンテナ

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.listcontainer
--arg all=True

[REQ]
all: true

[RESP] : 1

gNOI：操作インターフェイス
28

gNOI：操作インターフェイス
Containerz .Proto

id: "706723d4ae83e3fa7b5dcfe4edbb8edd570ea8af690c3eef2526f9c603bfba97"
name: "foo"
image_name: "alpine"
status: RUNNING
hash {
method: SHA256
hash: "sha256:2c64cf60f6f05256c049f58403d0c3b33f2145a70830cb8e24efa826854c1a46"

}

[RESP] : 2
id: "21e718a3bf525635b606b6a121bf8a79c323da4edc044f2e6c3811cd3219de94"
name: "test"
image_name: "alpine"
status: STOPPED
hash {
method: SHA256
hash: "sha256:2c64cf60f6f05256c049f58403d0c3b33f2145a70830cb8e24efa826854c1a46"

}

<StopContainer>

StopContainer操作は、名前で識別される Dockerコンテナを停止します。これは、「docker
container stop」コマンドを介して実行されます。「restart」オプションを指定した場合、「docker
chain restart」コマンドを使用して dockerコンテナも再起動します。

StopContainer操作は次のオプションをサポートしています

値Descriptionオプション

文字列としての有効な instance_name停止するコンテナインスタンスInstance_name

True/False。デフォルト値は falseに設定されて
います。

このオプションが trueの場合、コンテナは強
制的に停止されます

force

True/False。デフォルト値は falseに設定されて
います。

このオプションが trueの場合、コンテナは
「docker container restart」を使用して再起動さ
れます。

再起動

制限と不具合

•実行中のコンテナがStopContainer操作を使用して停止されると、エラーを返さずにコンテ
ナを停止するのに 10秒かかります。

•実行中のコンテナを「force」オプションで停止すると、コンテナは5秒後に停止します。

次の例は、StopContainer操作を示しています。

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.stopcontainer
--arg instance_name=foo

[REQ]
Instance_name: "foo"

[RESP]
code: SUCCESS
details: "Container stopped/re-started successfully"

gNOI：操作インターフェイス
29

gNOI：操作インターフェイス
Containerz .Proto

<UpdateContainer>

UpdateContainer操作は、新しいイメージと引数でコンテナインスタンスを更新します。更新
が失敗すると、コンテナは以前の状態に復元されます。

現在、ネイティブのDockerはこの操作をサポートしていないため、NX-OSはシーケンスDocker
操作を介してこの機能を実現することに注意してください。

1. 現在実行中の場合は、指定されたコンテナを停止する

2. コンテナの名前をバックアップとしての一時的な名前に変更します

3. 指定された新しいイメージと引数を使用して、同じコンテナ名で新しいコンテナを開始し
ます。

4. 新しいコンテナの実行に成功した場合は、バックアップコンテナを削除します。

5. 新しいコンテナの実行に失敗した場合は、復元を試みます

•新しいコンテナを停止して削除します。

•バックアップを元のコンテナ名に戻します

•実行していた場合、コンテナを開始します。

UpdateContainer操作では、次のオプションがサポートされています。

値Descriptionオプション

文字列としての有効なインスタンス名更新する実行コンテナの名前。instance_name

文字列としての有効なイメージ名コンテナを更新するイメージ。image_name

文字列としての有効なタグコンテナを更新するためのタグ。image_tag

True/False。デフォルト値は falseに設定されて
います。

この操作を非同期で実行するかどうかasync

コンテナを実行するための startContainer操作でサポートされているすべてのオプション。

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.updatecontainer
--arg instance_name=foo,image_name=alpine,params=<same as StartContainer>

[REQ]
instance_name: "foo"
image_name: ”alpine”
params {
instance_name: "foo"
cap {
}
...
}

[RESP]
updateOk: {
instanceName: “foo”
}

gNOI：操作インターフェイス
30

gNOI：操作インターフェイス
Containerz .Proto

<Log>

ログ操作により、「docker container logs」コマンドと同様に、クライアントはコンテナログを
取得できます。操作で、ログを「フォローする」かどうかを選択できます。

• Follow=Falseの場合、スイッチは現在のログをフェッチして返します。

• Follow=Trueの場合、スイッチは現在のログを返し、RPCがクライアントによってキャン
セルされるか、コンテナが停止するまで、新しいログをストリーミングします。

ログ操作は、次のオプションのどれでもサポートします

値Descriptionオプション

文字列としての有効なコンテナ識別子コンテナ名instance_name

True/False。デフォルト値は [False]に設定され
ています。

設定されている場合、クライアントがキャン

セルするまで、ストリームは開いたままにな

ります。

follow

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.log
--arg instance_name=test

[REQ]
instance_name: "test"

[RESP] : 1
msg: "Wed Jun 11 20:21:05 UTC 2025\nWed Jun 11 20:21:06 UTC 2025\nWed Jun 11 20:21:07
UTC 2025\nWed Jun 11 20:21:08 UTC 2025\nWed Jun 11 20:21:09 UTC 2025\nWed Jun 11 20:21:10
UTC 2025\nWed Jun 11 20:21:11 UTC 2025\nWed Jun 11 20:21:12 UTC 2025\n
Wed Jun 11 20:21:13 UTC 2025\nWed Jun 11 20:21:14 UTC 2025\nWed Jun 11 20:21:15 UTC
2025\nWed Jun 11 20:21:16 UTC 2025\nWed Jun 11 20:21:17 UTC 2025\nWed Jun 11 20:21:18
UTC 2025\nWed Jun 11 20:21:19 UTC 2025\nWed Jun 11 20:21:20 UTC 2025\nWed Jun 11 20:21:21
UTC 2025\nWed Jun 11 20:21:22 UTC 2025\nWed Jun 11 20:21:23 UTC 2025\nWed Jun 11 20:21:24
UTC 2025\n"

[RESP] : 2
msg: "Wed Jun 11 20:21:25 UTC 2025\n

例：ログをたどる

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.log
--arg instance_name=test,follow=True

[REQ]
instance_name: "test"

…

[RESP] : 16
msg: "Wed Jun 11 20:26:06 UTC 2025\nWed Jun 11 20:26:07 UTC 2025\nWed Jun 11 20:26:08
UTC 2025\nWed Jun 11 20:26:09 UTC 2025\nWed Jun 11 20:26:10 UTC 2025\nWed Jun 11 20:26:11
UTC 2025\nWed Jun 11 20:26:12 UTC 2025\nWed Jun 11 20:26:13 UTC 2025\n"

[RESP] : 17
msg: "Wed Jun 11 20:26:14 UTC 2025\n"

[RESP] : 18
msg: "Wed Jun 11 20:26:15 UTC 2025\n"

gNOI：操作インターフェイス
31

gNOI：操作インターフェイス
Containerz .Proto

…

<CreateVolume>

CreateVolume操作では、名前で識別される Dockerボリュームが作成されます。

ユーザーは、このボリュームを複数のコンテナにマウントできます。

CreateVolume操作は、次のオプションのどれでもサポートします

値Descriptionオプション

文字列としての有効なボリューム名ボリュームの名前名前

NXOSは「LOCAL」ドライバのみをサポート
します。

ボリュームドライバドライバ

NXOSはこのオプションをサポートしていま
せん。

ドライバのオプション。実際のオプション

キーと値はドライバ固有です。

オプション

文字列ラベル。キーまたはキー値のペアのみ

にすることができます。

例: my-labelまたはcom.example.foo=bar

ボリュームに適用するラベル。ラベルはボ

リュームのメタデータです。

ラベル

注意事項と制限事項

• NXOSは、「LOCAL」のドライバ ro createボリュームのみをサポートします。

• NXOSは「ローカルマウントオプション」をサポートしていません。

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.createvolume
--arg name=my_volume

[REQ]
name: "my_volume"

[RESP] : 1
name: “my_volume”

\

<RemoveVolume>

RemoveVolume操作は、名前で識別される Dockerボリュームを削除します。

RemoveVolume操作は次のオプションをサポートしています

値Descriptionオプション

有効なボリューム名の文字列削除するボリューム名名前

NXOSでサポートされていませんボリュームを強制的に削除するforce

ガイドラインと制約事項

gNOI：操作インターフェイス
32

gNOI：操作インターフェイス
Containerz .Proto

•「force」オプションはdockerではサポートされていないため、ボリュームを正常に削除で
きるように、すべてのコンテナからボリュームを切り離してください

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.removevolume
--arg name=my_volume

[REQ]
name: "my_volume"

[RESP] : 1
name: “my_volume”

<ListVolume>

ListVolume操作は Dockerボリュームのリストを返します。

これには、ボリューム名、作成されたタイムスタンプ、ドライバ、およびボリュームのオプ

ションと該当する場合、ラベルが含まれます。

ListVolume操作は次のオプションをサポートします

値Descriptionオプション

キーと値の有効な文字列ListVolume操作では、フィルタに一致するす
べてのボリュームが返されます

Filter

{key:value}

例

> gnoi-client --host <ip> --port <port> -u admin -p <pass> containerz.listvolume

[REQ]

[RESP] : 1
name: "92945dc4e9ffdf571c85994738562b1d1f54158f784cac3eadc080c558e034ee"
created {
seconds: 1748490463

}
driver: "local"

gNOIのトラブルシューティング

gNOIのデバッグ
gNOIのステータスを確認するには、次のコマンドを入力します。

gNOI：操作インターフェイス
33

gNOI：操作インターフェイス

gNOIのトラブルシューティング

showコマンド
説明コマンド

カウンタまたは呼び出しをクリーンアップす

るために使用されます。

clear grpc gnoi rpc

イベント履歴からイベントとエラーをデバッ

グします。

debug grpc events {events|errors}

show grpc nxsdk event-history {events|errors}

カウンタまたは呼び出しをクリーンアップす

るために使用されます。

clear grpc gnoi rpc

出力例
show grpc gnmi service statistics

=============
gRPC Endpoint
=============

Vrf : management
Server address : [::]:50051

Status : Running - certificate expired
Cert notBefore : Jun 20 16:43:49 2023 GMT
Cert notAfter : Jun 21 16:43:49 2023 GMT
Client Root Cert notBefore : n/a
Client Root Cert notAfter : n/a

Max concurrent calls : 16
Active calls : 0

Bashコマンド
特に、containerzについては、「Cisco Nexus 9000シリーズ NX-OSプログラマビリティガイ
ド」の「CiscoNX-OSでDockerを使用」の章のデバッグ手順を参照してください。基本的に、
ユーザーは Dockerユーティリティに直接アクセスして、デバッグ目的で各イメージとコンテ
ナの詳細を調べることができるものとします。

説明コマンド

dockerイメージをリストdocker image list

Dockerコンテナをリストdocker container list

Dockerボリュームをリストdocker volume list

出力例

Docker image list

gNOI：操作インターフェイス
34

gNOI：操作インターフェイス

showコマンド

https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/programmability/cisco-nexus-9000-series-nx-os-programmability-guide-105x/m-n9k-using-docker-with-cisco-nx-os-101x.html?bookSearch=true
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/programmability/cisco-nexus-9000-series-nx-os-programmability-guide-105x/m-n9k-using-docker-with-cisco-nx-os-101x.html?bookSearch=true

REPOSITORY TAG IMAGE ID CREATED SIZE

busybox latest af4709625109 8 months ago 4.27MB

alpine latest 2c64cf60f6f0 9 months ago 7.35MB

docker container list

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

root@nxosv-104#docker container list -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

9bd2156dd341 busybox:latest "sh" 5 days ago Exited (255) 3
days ago stupefied_euclid

c8d945cfc5f6 busybox:latest "/bin/bash" 5 days ago Created
determined_lehmann

7463c28fd039 busybox "sh -c 'while true; …" 5 days ago Exited (255) 3
days ago busy_test

26dc68f0e4d2 alpine:latest "/bin/bash" 5 days ago Created
admiring_raman

0f5de1376925 alpine:latest "/bin/bash" 5 days ago Created
vigilant_keller

4ac6c84be9f1 alpine:latest "/bin/bash" 5 days ago Created
optimistic_dirac

e5b43676fc98 alpine "sh -c 'sleep 100'" 3 weeks ago Exited (0) 3 weeks
ago gnoi_docker_container_20250519_183038_7

d912c55525ae alpine "sh -c 'sleep 100'" 3 weeks ago Exited (0) 3 weeks
ago gnoi_docker_container_20250519_183028_6

0360fcde5af4 alpine "sh -c 'sleep 100'" 3 weeks ago Exited (0) 3 weeks
ago gnoi_docker_container_20250519_183019_5

53f2e94399ca alpine "sh -c 'sleep 100'" 3 weeks ago Exited (0) 3 weeks
ago gnoi_docker_container_20250519_182049_4

35130a5e3f86 alpine "sh -c 'sleep 100'" 3 weeks ago Exited (0) 3 weeks
ago gnoi_docker_container_20250519_182039_3

5d6dbe0dc904 alpine "sh -c 'sleep 100'" 3 weeks ago Exited (0) 3 weeks
ago gnoi_docker_container_20250519_181102_2

デバッグログの収集

gNOIは、gRPCエージェントの子サービスです。詳細については、「gRPCエージェント」の
章を参照してください。

gNOI：操作インターフェイス
35

gNOI：操作インターフェイス

デバッグログの収集

cisco-nexus-9000-series-nx-os-programmability-guide-106x_chapter42.pdf#nameddest=unique_342

Dockerログ

特に、containerzについては、次の場所のログを調査してください。このファイルには、Docker
デーモンのデバッグメッセージが維持されます。詳細については、

https://docs.docker.com/engine/daemon/logs/を参照してください。
/var/log/docker

gNOI：操作インターフェイス
36

gNOI：操作インターフェイス

デバッグログの収集

翻訳について
このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては
、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている
場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい
ては米国サイトのドキュメントを参照ください。

	gNOI：操作インターフェイス
	gNOI について
	gNOI のガイドラインと制限事項
	gNOI の構成
	System .Proto
	SetPackage
	SetPackage のガイドラインと制約事項
	RPC オプション

	OS .Proto
	Cert .Proto
	ファイル proto
	Put
	Factory Reset .Proto
	FactoryReset

	Containerz .Proto
	gNOI のトラブルシューティング
	gNOI のデバッグ
	show コマンド
	出力例
	Bash コマンド
	デバッグ ログの収集

