
モデル駆動型テレメトリ

•テレメトリについて（1ページ）
•テレメトリのライセンス要件（4ページ）
• Telemetryのインストールとアップグレード（4ページ）
•モデル動作テレメトリの注意事項と制限事項（5ページ）
• CLIを使用したテレメトリの構成（13ページ）
• NX-APIを使用したテレメトリの構成（36ページ）
•テレメトリパスラベル（52ページ）
•ネイティブデータ送信元パス（69ページ）
•ストリーミング Syslog（84ページ）
•その他の参考資料（92ページ）

テレメトリについて
分析やトラブルシューティングのためのデータ収集は、ネットワークの健全性をモニタリング

する上で常に重要な要素であり続けています。

Cisco NX-OSは、ネットワークからデータを収集するための、SNMP、CLIや Syslogといった
複数のメカニズムを提供します。これらのメカニズムには、自動化や拡張に対する制約があり

ます。ネットワーク要素からのデータの最初の要求がクライアントから出された場合、プルモ

デルの使用が制限されることもその制約の1つです。プルモデルは、ネットワーク内に複数の
ネットワーク管理ステーション（NMS）がある場合は拡張しません。このモデルを使用する
と、クライアントが要求した場合に限り、サーバーがデータを送信します。このような要求を

開始するには、手動による介入を続けて行う必要があります。このような手動による介入を続

けると、プルモデルの効率が失われます。

プッシュモデルは、ネットワークからデータを継続的にストリーミングし、クライアントに通

知します。テレメトリはプッシュモデルをイネーブルにし、モニタリングデータにほぼリア

ルタイムでアクセスできるようにします。

モデル駆動型テレメトリ

1

テレメトリコンポーネントとプロセス

テレメトリは、次の 4つの主要な要素で構成されます。

•データ収集：テレメトリデータは、識別名（DN）パスを使用して指定されたオブジェク
トモデルのブランチにあるデータ管理エンジン（DME）データベースから収集されます。
データは定期的に取得されるか（頻度ベース）、指定したパスのオブジェクトで変更が

あった場合にのみ取得できます（イベントベース）。NX-APIを使用して、頻度ベースの
データを収集できます。

•データエンコーディング：テレメトリエンコーダが、収集されたデータを目的の形式で
転送できるようにカプセル化します。

NX-OSは、テレメトリデータを Google Protocol Buffers（GPB）および JSON形式でエン
コードします。

•データトランスポート：NX-OSは、JSONエンコードにHTTPを使用してテレメトリデー
タを転送し、GPBエンコードに Googleリモートプロシージャコール (gRPC)プロトコル
を使用します。gRPCレシーバーは、4MBを超えるメッセージサイズをサポートします。
（証明書が構成されている場合は、HTTPSを使用したテレメトリデータもサポートされ
ます。）

Cisco NX-OSリリース 9.2(1)以降、テレメトリは IPv6接続先および IPv4接続先へのスト
リーミングをサポートするようになりました。

Cisco NX-OSリリース 7.0(3)I7(1)以降、UDPおよびセキュア UDP（DTLS）がテレメトリ
トランスポートプロトコルとしてサポートされています。UDPを受信する接続先を追加
できます。UDPおよびセキュア UDPのエンコーディングは、GPBまたは JSONにするこ
とができます。

次のコマンドを使用して、JSONまたは GPBのデータグラムソケットを使用してデータ
をストリーミングするように UDPトランスポートを構成します。

destination-group num
ip address xxx.xxx.xxx.xxx port xxxx protocol UDP encoding {JSON | GPB }

IPv4接続先の例:

destination-group 100
ip address 171.70.55.69 port 50001 protocol UDP encoding GPB

IPv6接続先の例:

destination-group 100
ipv6 address 10:10::1 port 8000 protocol gRPC encoding GPB

UDPテレメトリには次のヘッダーがあります。

typedef enum tm_encode_ {
TM_ENCODE_DUMMY,
TM_ENCODE_GPB,
TM_ENCODE_JSON,
TM_ENCODE_XML,

モデル駆動型テレメトリ

2

モデル駆動型テレメトリ

テレメトリコンポーネントとプロセス

TM_ENCODE_MAX,
} tm_encode_type_t;

typedef struct tm_pak_hdr_ {
uint8_t version; /* 1 */
uint8_t encoding;
uint16_t msg_size;
uint8_t secure;
uint8_t padding;

}__attribute__ ((packed, aligned (1))) tm_pak_hdr_t;

次のいずれかの方法で、ペイロードの最初の6バイトを使用して、UDPを使用してテレメ
トリデータを処理します。

•受信側が複数のエンドポイントから異なるタイプのデータを受信することになってい
る場合は、ヘッダーの情報を読んで、データのデコードに使用するデコーダー（JSON
または GPB）を決定します。

• 1つのデコーダー（JSONまたは GPB）が必要で、もう 1つのデコーダーは必要ない
場合は、ヘッダーを削除します。

UDPプロトコルを使用した場合、受信側のOSやネットワークの負
荷によってはパケットドロップが発生する場合があります。

（注）

•テレメトリレシーバー：テレメトリレシーバーは、テレメトリデータを保存するリモー
ト管理システムです。

GPBエンコーダーは、汎用キーと値の形式でデータを格納します。また、データを GPB形式
に変換するには、コンパイルされた .protoファイル形式のメタデータが GPBエンコーダに必
要です。

データストリームを正しく受信してデコードするには、受信側でエンコードとトランスポート

サービスを記述した .protoファイルが必要です。エンコードは、バイナリストリームをキー

値の文字列のペアにデコードします。

GPBエンコーディングと gRPCトランスポートを記述する telemetry .protoファイルは、Cisco
の GitLabで入手できます。 https://github.com/CiscoDevNet/nx-telemetry-proto

テレメトリプロセスの高可用性

テレメトリプロセスの高可用性は、次の動作でサポートされています。

• [システムのリロード（System Reload）] —システムのリロード中に、テレメトリ構成と
ストリーミングサービスが復元されます。

• [プロセスの再起動（Process Restart）]：なんらかの理由でテレメトリプロセスがフリー
ズまたは再起動した場合、再起動時に、構成およびストリーミングサービスを復元しま

す。

モデル駆動型テレメトリ

3

モデル駆動型テレメトリ

テレメトリプロセスの高可用性

https://github.com/CiscoDevNet/nx-telemetry-proto

テレメトリのライセンス要件

ライセンス要件製品

テレメトリにはライセンスは必要ありません。ライセンスパッケージに含ま

れていない機能は Cisco NX-OSイメージにバンドルされており、無料で提供
されます。NX-OSライセンス方式の詳細については、『Cisco NX-OS Licensing
Guide』を参照してください。

Cisco NX-OS

Telemetryのインストールとアップグレード

アプリケーションのインストール

テレメトリアプリケーションは機能RPMとしてパッケージ化されており、NX-OSリリースに
含まれています。RPMは、イメージブートアップの一部としてデフォルトでインストールさ
れます。feature telemetryコマンドを使用して、アプリケーションを起動します。RPMファイ
ルは /rpmsディレクトリにあり、次のような名前が付けられています。

telemetry-version-build_ID.libn32_n9000.rpm

telemetry-version-build_ID.libn32_n3000.rpm

次の例のように：

telemetry-2.0.0-7.0.3.I5.1.lib32_n9000.rpm

telemetry-2.0.0-7.0.3.I5.1.lib32_n3000.rpm

増分更新と修正のインストール

RPMをデバイスのブートフラッシュにコピーし、bashプロンプトから次のコマンドを使用し

ます：

feature bash
run bash sudo su

そして、デバイスブートフラッシュにRPMのコピーをします。bashプロンプトから次のコマ

ンドを使用します：

dnf upgrade telemetry_new_version.rpm

アプリケーションがアップグレードされ、アプリケーションを再起動すると変更が表示されま

す。

以前のバージョンにダウングレードします

テレメトリアプリケーションを以前のバージョンにダウングレードするには、bashプロンプ

トから次のコマンドを使用します。

dnf downgrade telemetry

モデル駆動型テレメトリ

4

モデル駆動型テレメトリ

テレメトリのライセンス要件

アクティブなバージョンの確認

現用系なバージョンを確認するには、スイッチの execプロンプトから次のコマンドを実行し

ます。

show install active

[現用系のインストールを表示します（show install active）]コマンドは、アップグレードが実行さ

れた後に、インストールされている現用系なRPMのみを表示します。NX-OSにバンドルされ
ているデフォルトの RPMは表示されません。

（注）

モデル動作テレメトリの注意事項と制限事項
テレメトリ構成時の注意事項および制約事項は、次のとおりです。

•データ管理エンジン（DME）ネイティブモデルをサポートするCiscoNX-OSリリースは、
テレメトリをサポートします。

•以下のサポートが実施されています。

• DMEデータ収集

• NX-APIデータソース

• Googleリモートプロシージャコール（gRPC）トランスポートを介した Googleプロ
トコルバッファ（GPB）エンコーディング

• HTTP経由の JSONエンコーディング

•サポートされている最小の送信間隔（ケイデンス）は、深さが 0の場合の 5秒です。0よ
り大きい深度値の最小ケイデンス値は、ストリーミングされるデータのサイズによって異

なります。最小値未満のどのケイデンスでもを構成すると、望ましくないシステム動作が

発生する可能性があります。

•テレメトリは、最大 5つの遠隔管理受信者（接続先）をサポートします。5つ以上の遠隔
受信者を構成すると、システムが望ましくない動作をする可能性があります。

•テレメトリは、CPU技術情報の最大 20%を消費する可能性があります。

• SSL証明書ベースの認証とストリーミングデータの暗号化を構成するには、certificateSSL
cert path hostname"CN"コマンドで自己署名 SSL証明書を提供します。

• YANGパスにテレメトリケイデンスを設定するためのガイドラインは次のとおりです：

• YANGストリーミングコレクションには 1つのスレッドが必要です。テレメトリに
複数の YANGパスが存在する場合は、それぞれが異なる周期で実行して、同時スケ
ジューリングと結果として生じる遅延を防ぐ必要があります。

モデル駆動型テレメトリ

5

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

• YANGパスのテレメトリケイデンスを構成する前に、合計ストリーミング時間を決
定し、合計ストリーミング時間よりも大きい値にケイデンスを構成します。「YANG

パスの頻度の構成」を参照してください。

古いリリースにダウングレードした後の構成コマンド

古いリリースにダウングレードした後、古いリリースではサポートされていない可能性がある

ため、一部の構成コマンドまたはコマンドオプションが機能不全になる可能性があります。古

いリリースにダウングレードする場合は、新しいイメージが起動した後にテレメトリ機能を構

成解除して再構成します。このシーケンスにより、サポートされていないコマンドまたはコマ

ンドオプションの失敗を回避できます。

次の例は、この手順を表示しています。

•テレメトリ構成をファイルにコピーします。

switch# show running-config | section telemetry
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch# show running-config | section telemetry > telemetry_running_config
switch# show file bootflash:telemetry_running_config
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch#

•ダウングレード操作を実行します。イメージが表示され、スイッチの準備ができたら、テ
レメトリ構成をスイッチにコピーして戻します。

switch# copy telemetry_running_config running-config echo-commands
`switch# config terminal`
`switch(config)# feature telemetry`
`switch(config)# telemetry`
`switch(config-telemetry)# destination-group 100`
`switch(conf-tm-dest)# ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB `
`switch(conf-tm-dest)# sensor-group 100`
`switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0`
`switch(conf-tm-sensor)# subscription 600`
`switch(conf-tm-sub)# dst-grp 100`
`switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000`
`switch(conf-tm-sub)# end`
Copy complete, now saving to disk (please wait)...

モデル駆動型テレメトリ

6

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

Copy complete.
switch#

gRPCエラーの動作

gRPC受信者が 20のエラーを送信した場合、スイッチクライアントは gRPC受信者への接続
を無効化します。gRPC受信者を有効にするには、接続先グループの下の接続先 IPアドレスの
構成を解除して再構成する必要があります。一部のエラーの内容は、次のとおりです。

• gRPCクライアントがセキュアな接続に対して誤った証明書を送信する。

• gRPCレシーバでのクライアントメッセージの処理に時間がかかりすぎて、タイムアウト
が発生する。別のメッセージ処理スレッドを使用してメッセージを処理することで、タイ

ムアウトを回避している。

gRPCトランスポートのテレメトリ圧縮

gRPCトランスポートでは、テレメトリ圧縮のサポートが利用できます。use-compression gzip
コマンドを使用して、圧縮を有効にすることができます。（ no use-compression gzip コマンド
で圧縮を無効にします。）

次の例では、圧縮を有効にします。

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-compression gzip

次の例は、圧縮が有効になっていることを表示しています。

switch(conf-tm-dest)# show telemetry transport 0 stats

Session Id: 0
Connection Stats

Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never

Transmission Stats
Compression: gzip
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms

switch2(config-if)# show telemetry transport 0 stats

Session Id: 0
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Compression: disabled

モデル駆動型テレメトリ

7

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2(config-if)#

以下は、POSTペイロードとしての use-compressionの例です。

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptCompression": {
"attributes": {
"name": "gzip"

}
}

}
]

}
}

gRPCチャンキングのサポート

リリース 9.2(1)以降、gRPCチャンクのサポートが追加されました。ストリーミングを正常に
行うには、gRPCが 12MBを超えるデータ量を受信者に送信する必要がある場合、チャンクを
有効にする必要があります。

gRPCユーザーは、gRPCチャンクを行う必要があります。gRPCクライアント側は断片化を行
い、gRPCサーバ側はリアセンブルを行います。テレメトリは引き続きメモリにバインドされ
ており、メモリサイズがテレメトリに許可されている制限である 12 MBを超えると、データ
が削除される可能性があります。チャンクをサポートするには、「テレメトリコンポーネント

およびプロセス」で説明されているように、gRPCチャンク用に更新された、Ciscoの GibLab
で入手可能なテレメトリ .protoファイルを使用します。

チャンクサイズは 64～ 4096バイトです。

次に、NX-API CLIによる構成例を表示します。
feature telemetry
!
telemetry
destination-group 1
ip address 171.68.197.40 port 50051 protocol gRPC encoding GPB
use-chunking size 4096

destination-group 2
ip address 10.155.0.15 port 50001 protocol gRPC encoding GPB
use-chunking size 64

sensor-group 1
path sys/intf depth unbounded

sensor-group 2
path sys/intf depth unbounded

subscription 1
dst-grp 1

モデル駆動型テレメトリ

8

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

snsr-grp 1 sample-interval 10000
subscription 2
dst-grp 2
snsr-grp 2 sample-interval 15000

次に、NX-API RESTによる構成例を表示します。
{

"telemetryDestGrpOptChunking": {
"attributes": {

"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

}
}

}

Cisco MDSシリーズスイッチなど、gRPCチャンクをサポートしていないシステムでは、次の
エラーメッセージが表示されます。

MDS-9706-86(conf-tm-dest)# use-chunking size 200
ERROR: Operation failed: [chunking support not available]

NX-APIセンサーパスの制限

NX-APIは、show コマンドを使用して、DMEにまだ存在しないスイッチ情報を収集してスト
リーミングできます。ただし、DMEからデータをストリーミングする代わりに NX-APIを使
用すると、次に示すように、固有の拡張制限があります。

•スイッチバックエンドは、showコマンドなどの NX-API呼び出しを動的に処理します。

• NX-APIは、CPUの最大 20%を消費する可能性のあるいくつかのプロセスを生成します。

• NX-APIデータは、CLIから XML、JSONに変換されます。

以下は、過度の NX-APIセンサーパス帯域幅消費を制限するのに役立つ推奨ユーザーフロー
です。

1. showコマンドが NX-APIをサポートしているかどうかを確認します。パイプオプション
を使用して、NX-APIが VSHからのコマンドをサポートしているかどうかを確認できま
す：<command> | jsonまたは<command> | json pretty。

スイッチが JSON出力を返すまでに 30秒以上かかるコマンドは避けてください。（注）

2. フィルタまたはオプションを含めるように showコマンドを調整します。

•個々の出力に対して同じコマンドを列挙することは避けてください。たとえば show
vlan id 100、show vlan id 101などです。代わりに、パフォーマンスを向上させるた
め、可能な場合は常に CLI範囲オプションを使用してください。たとえば show vlan
id 100-110,204です。

モデル駆動型テレメトリ

9

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

サマリーまたはカウンタのみが必要な場合は、showコマンド出力全体をダンプするこ
とは避け、データ収集で必要な帯域幅とデータストレージを制限しないようにしま

す。

3. NX-APIをデータ送信元として使用するセンサーグループでテレメトリを構成します。
showコマンドをセンサーパスとして追加する

4. CPIの使用を制限するために、それぞれの showコマンドの処理時間の 5倍の周期でテレ
メトリを構成します。

5. ストリーミングされた NX-API出力を既存の DMEコレクションの一部として受信して処
理します。

テレメトリの VRFサポート

テレメトリ VRFのサポートにより、トランスポート VRFを指定できます。これは、テレメト
リデータストリームがフロントパネルポートを介して出力され、SSHまたは NGINX制御
セッション間の競合の可能性を回避できることを意味します。

use-vrf vrf-nameコマンドを使用して、トランスポート VRFを指定できます。

次の例では、トランスポート VRFを指定しています。

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-vrf test_vrf

以下は、POSTペイロードとしての use-vrfの例です。

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptVrf": {
"attributes": {
"name": "default"

}
}

}
]

}
}

証明書トラストポイントサポート

NX-OSリリース 10.1（1）以降、既存のグローバルレベルコマンドにtrustpoint キーワードが
追加されました。

次にあるのは、コマンドシンタックスです。

switch(config-telemetry)# certificate ?
trustpoint specify trustpoint label

モデル駆動型テレメトリ

10

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

WORD .pem certificate filename (Max Size 256)
switch(config-telemetry)# certificate trustpoint
WORD trustpoint label name (Max Size 256)
switch(config-telemetry)# certificate trustpoint trustpoint1 ?
WORD Hostname associated with certificate (Max Size 256)
switch(config-telemetry)#certificate trustpoint trustpoint1 foo.test.google.fr

接続先ホスト名サポート

NX-OSリリース 10.1（1）以降、destination-groupコマンドに host キーワードが追加されまし
た。

次に、接続先ホスト名のサポートの例を示します。

switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# ?
certificate Specify certificate
host Specify destination host
ip Set destination IPv4 address
ipv6 Set destination IPv6 address
...
switch(conf-tm-dest)# host ?
A.B.C.D|A:B::C:D|WORD IPv4 or IPv6 address or DNS name of destination
switch(conf-tm-dest)#

switch(conf-tm-dest)# host abc port 11111 ?
protocol Set transport protocol
switch(conf-tm-dest)# host abc port 11111 protocol ?
HTTP
UDP
gRPC
switch(conf-tm-dest)# host abc port 11111 protocol gRPC ?
encoding Set encoding format
switch(conf-tm-dest)# host abc port 11111 protocol gRPC encoding ?
Form-data Set encoding to Form-data only
GPB Set encoding to GPB only
GPB-compact Set encoding to Compact-GPB only
JSON Set encoding to JSON
XML Set encoding to XML
switch(conf-tm-dest)# host ip address 1.1.1.1 port 2222 protocol HTTP encoding JSON
<CR>

ノード識別子のサポート

NX-OSリリース 10.1（1）以降、 use-nodeid コマンドを使用してテレメトリ受信者のカスタム
ノード識別子文字列を設定できます。デフォルトではホスト名が使用されますが、ノード識別

子のサポートにより、テレメトリ受信者データの node_id_strの識別子を設定または変更でき

ます。

usenode-idコマンドを使用して、テレメトリ接続先プロファイルを介してノード識別子を割り
当てることができます。このコマンドはオプションです。

次の例は、ノード識別子の構成を表示しています。

switch-1(config)# telemetry
switch-1(config-telemetry)# destination-profile
switch-1(conf-tm-dest-profile)# use-nodeid test-srvr-10
switch-1(conf-tm-dest-profile)#

次の例は、ノード識別子が構成された後の受信側でのテレメトリ通知を示しています。

モデル駆動型テレメトリ

11

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

Telemetry receiver:
==================================
node_id_str: "test-srvr-10"
subscription_id_str: "1"
encoding_path: "sys/ch/psuslot-1/psu"
collection_id: 3896
msg_timestamp: 1559669946501

hostコマンドの下の use-nodeidサブコマンドを使用します。接続先レベルのuse-nodeid構成
は、グローバルレベルの構成よりも優先されます。

次の例はコマンドシンタックスを表示します。

switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# host 172.19.216.78 port 18112 protocol http enc json
switch(conf-tm-dest-host)# use-nodeid ?
WORD Node ID (Max Size 128)
switch(conf-tm-dest-host)# use-nodeid session_1:18112

テレメトリ受信者の出力の例を表示します：

>> Message size 923
Telemetry msg received @ 23:41:38 UTC

Msg Size: 11
node_id_str : session_1:18112
collection_id : 3118
data_source : DME
encoding_path : sys/ch/psuslot-1/psu
collection_start_time : 1598485314721
collection_end_time : 1598485314721
data :

YANGモデルのストリーミングのサポート

リリース 9.2(1)以降、テレメトリは YANG（「Yet Another Next Generation」）データモデリン
グ言語をサポートします。テレメトリは、デバイス YANGと OpenConfig YANGの両方のデー
タストリーミングをサポートします。

センサグループの単一テレメトリ収集

Cisco NX-OS 10.5(2)F以降、ユーザーは telemetry CLIで新しい CLIオプション
merge-subscriptionsを使用して、センサーグループが複数のサブスクリプションに含まれてお
り、接続先グループで解析ファイルが構成されていない場合に、センサーグループの単一のテ

レメトリコレクションを作成できます。

•この設定はイベントサブスクリプションには使用できません。

•接続先グループとマージサブスクリプションのフィルタファイル設定は、相互に互換性が
ありません。NX-OSではブロックされません。その場合、収集はすべてのセンサーグルー
プに対して個別に行われます。これは以前のリリースと同じです。

•サンプル間隔が大きいサブスクリプションのデータ送信のサンプル間隔は、
min_sample_interval*floor(cur_sample_interval /min_sample_interval)の式を使用して決定され
ます。

• min_sample_intervalは、すべてのサブスクリプションのセンサーグループの最小サン
プル間隔です。

モデル駆動型テレメトリ

12

モデル駆動型テレメトリ

モデル動作テレメトリの注意事項と制限事項

• cur_sample間隔は、そのセンサーグループの特定のサブスクリプションのサンプル間
隔です。

•このオプションは以前のリリースでは使用できません。互換性チェックでの失敗を回避す
るには、ダウングレードする前にこの設定を削除してください。

CLIを使用したテレメトリの構成

NX-OS CLIを使用したテレメトリの構成
次の手順では、ストリーミングテレメトリを有効にし、データストリームの送信元と接続先

を構成します。これらの手順には、SSL/TLS証明書と GPBエンコーディングを有効にして構
成するオプションの手順も含まれています。

始める前に

スイッチは、CiscoNX-OSリリース7.3(0)I5(1)以降のリリースを実行している必要があります。

手順の概要

1. （任意） openssl argument

2. configure terminal
3. feature telemetry
4. feature nxapi
5. nxapi use-vrf management
6. telemetry
7. [no] merge-subscriptions

8. （任意） certificate certificate_path host_URL

9. （任意）トランスポートVRFを指定するか、gRPCトランスポートのテレメトリ圧縮を
有効にします。

10. sensor-group sgrp_id

11. （任意） data-source data-source-type

12. path sensor_path depth 0 [filter-condition filter] [alias path_alias]
13. destination-group dgrp_id

14. （任意） ip address ip_address port port protocol procedural-protocol encoding
encoding-protocol

15. （任意） ipv6 address ipv6_address port port protocol procedural-protocol encoding
encoding-protocol

16. ip_version address ip_address port portnum

17. （任意） use-chunking size chunking_size

18. subscription sub_id

19. snsr-grp sgrp_id sample-interval interval

20. dst-grp dgrp_id

モデル駆動型テレメトリ

13

モデル駆動型テレメトリ

CLIを使用したテレメトリの構成

手順の詳細

手順

目的コマンドまたはアクション

データを受信するサーバー上に SSLまたは TLS証
明書を作成します。ここで、private.keyファイ

（任意） openssl argument

例：

ステップ 1

ルは秘密キーであり、public.crtは公開キーで
す。次のような特定の引数を使用して、SSL/TLS証明

書を生成します。

• RSA秘密キーを生成するには： openssl genrsa
-cipher -out filename.key cipher-bit-length

例：

switch# openssl genrsa -des3 -out server.key
2048

• RSAキーを作成するには：openssl rsa -in
filename.key -out filename.key

例：

switch# openssl rsa -in server.key -out
server.key

•公開キーまたは秘密キーを含む証明書を作成
するには、次の手順を実行します。openssl req

-encoding-standard filename.key filename.csr -new
-new -out -subj '/CN=localhost'

例：

switch# openssl req -sha256 -new -key
server.key -out server.csr
-subj '/CN=localhost'

•公開キーを作成するには：openssl x509 -req
-encoding-standard -days timeframe -in
filename.csr -signkey filename.key -out
filename.csr

例：

switch# openssl x509 -req -sha256 -days 365
-in server.csr -signkey server.key
-out server.crt

グローバル構成モードを開始します。configure terminal

例：

ステップ 2

switch# configure terminal
switch(config)#

モデル駆動型テレメトリ

14

モデル駆動型テレメトリ

NX-OS CLIを使用したテレメトリの構成

目的コマンドまたはアクション

ストリーミングテレメトリ機能を有効にします。feature telemetryステップ 3

NX-APIを有効にします。feature nxapiステップ 4

NX-API通信に使用するVRF管理を有効にします。nxapi use-vrf managementステップ 5

ストリーミングテレメトリの構成モードに入りま

す。

telemetry

例：

ステップ 6

switch(config)# telemetry
switch(config-telemetry)#

複数のサブスクリプションに含まれるすべてのセン

サーグループに対して 1つのコレクションを作成
します。

[no] merge-subscriptions

例：

switch# merge-subscriptions

ステップ 7

既存の SSL/TLS証明書を使用します。（任意） certificate certificate_path host_URL

例：

ステップ 8

switch(config-telemetry)# certificate
/bootflash/server.key localhost

（任意）トランスポートVRFを指定するか、gRPC
トランスポートのテレメトリ圧縮を有効にします。

ステップ 9 • destination-profileコマンドを入力して、デフォ
ルトの接続先プロファイルを指定します。

例： •次のコマンドを任意で入力します。

switch(config-telemetry)# destination-profile • use-vrf vrfで接続先 VRFを指定します。
switch(conf-tm-dest-profile)# use-vrf default

• use-compression gzip を使用して、接続先
の圧縮方法を指定します。

switch(conf-tm-dest-profile)# use-compression
gzip
switch(conf-tm-dest-profile)# use-retry size 10
switch(conf-tm-dest-profile)# source-interface • use-retry size sizeを使用して、送信再試

行の詳細を指定します。再試行バッファ

サイズは 10～1500メガバイトです。

loopback1

• source-interface interface-nameは、構成さ

れたインターフェイスから送信元 IPアド
レスを持つ接続先にデータをストリーミン

グします。

（注）

use-vrfコマンドを構成した後、新しいVRF内に新
しい接続先 IPアドレスを構成する必要がありま
す。ただし、接続先を構成解除して再構成するこ

とにより、同じ接続先 IPアドレスを再利用できま
す。このアクションにより、テレメトリデータは

新しいVRFでも同じ接続先 IPアドレスにストリー
ミングされます。

モデル駆動型テレメトリ

15

モデル駆動型テレメトリ

NX-OS CLIを使用したテレメトリの構成

目的コマンドまたはアクション

ID srgp_idを持つセンサーグループを作成し、セン
サーグループ構成モードを開始します。

sensor-group sgrp_id

例：

ステップ 10

現在は、数字の ID値のみサポートされています。
センサーグループでは、テレメトリレポートのモ

ニタリング対象ノードを定義します。

switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)#

データソースを選択します。データソースとして

YANG、DMEまたは NX-APIのいずれかを選択し
ます。

（任意） data-source data-source-type

例：

switch(config-telemetry)# data-source NX-API

ステップ 11

（注）

DMEはデフォルトのデータソースです。

センサーグループにセンサーパスを追加します。path sensor_path depth 0 [filter-condition filter]
[alias path_alias]

ステップ 12

• Cisco NX-OS 9.3(5)リリース以降では、キー
ワードが導入されています。alias例：

•次のコマンドは、NX-APIではなく、DMEま
たは YANGに適用されます：
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0
filter-condition eq(l2BD.operSt, "down")

• depth設定では、センサーパスの取得レベルを
指定します。0 - 32、unboundedの深さ設定が
サポートされています。

（注）

depth 0デフォルトの深さです。以下の構文を使用し、状態ベースのフィルタ

リングを使用して、operStが upから down NX-APIベースのセンサーパスは、depth 0の
みを使用できます。に変化したときにのみトリガーするようにし

ます。MOが変化しても通知しません。
イベント収集のパスがサブスクライブされて

いる場合、深さは 0とバウンドなしのみをサ
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0

ポートします。その他の値は 0として扱われ
ます。

filter-condition
and(updated(l2BD.operSt),eq(l2BD.operSt,"down"))

UTR側のパスを区別するには、次の構文を使
用します。 •オプションの filter-conditionパラメータを指定

して、イベントベースのサブスクリプション用

の特定のフィルタを作成できます。
switch(conf-tm-sensor)# path
sys/ch/ftslot-1/ft alias ft_1

状態ベースのフィルタ処理の場合、フィルタ処

理は、状態が変化したときと、指定された状態
•次のコマンドは、DMEではなく、NX-APIま
たは YANGに適用されます：
switch(conf-tm-sensor)# path "show interface"
depth 0

でイベントが発生したときの両方を返します。

つまり、eq(l2Bd.operSt, "down")の DN
sys/bd/bd-[vlan]のフィルタ条件は、operStが変

•次のコマンドは、デバイス YANGに適用され
ます。

switch(conf-tm-sensor)# path
Cisco-NX-OS-device:System/bgp-items/inst-items

更されたとき、およびoperStがdownである間
にDNのプロパティが変更されたとき（VLAN
が動作上 downである間に no shutdownコマン
ドが発行された場合など）にトリガーされま

す。

モデル駆動型テレメトリ

16

モデル駆動型テレメトリ

NX-OS CLIを使用したテレメトリの構成

目的コマンドまたはアクション

•次のコマンドは、OpenConfig YANGに適用さ
れます。

switch(conf-tm-sensor)# path
openconfig-bgp:bgp

（注）

query-conditionパラメータ—DMEの場合、
DNに基づいて、次の構文でMOTLおよび一
時データをフェッチするためにquery-condition
パラメータを指定できます。クエリ条件

「rsp-foreign-subtree=ephemeral」。
switch(conf-tm-sensor)# path
Cisco-NX-OS-device:System/bgp-items/inst-items
alias bgp_alias

• YANGモデルの場合、センサーパスの形式は
module_name : YANG_pathです。module_name

•次のコマンドは、NX-APIに適用されます：
switch(conf-tm-sensor)# path "show interface"
depth 0 alias sh_int_alias は YANGモデルファイルの名前です。次に例

を示します。
•次のコマンドは、OpenConfigに適用されます。

•デバイス YANGの場合：
switch(conf-tm-sensor)# path
openconfig-bgp:bgp alias oc_bgp_alias Cisco-NX-OS-device:System/bgp-items/inst-items

• OpenConfig YANGの場合：

openconfig-bgp:bgp

（注）

、、およびパラメータは、現在 YANGではサ
ポートされていません。
depthfilter-conditionquery-condition

openconfig YANGモデルの場合は、に移動し
て、最新リリースの適切なフォルダに移動しま

す。https://github.com/YangModels/yang/tree/
master/vendor/cisco/nx

特定のモデルをインストールする代わりに、す

べての OpenConfigモデルを含む openconfig-all
RPMをインストールできます。パッチRPMの
インストールの詳細については、「バッシュか

らパッチ RPMを追加する」を参照してくださ
い。

次に例を示します。

install add
mtx-openconfig-bgp-1.0.0.0.0-7.0.3.IHD8.1.lib32_n9000.rpm
activate

接続先グループを作成して、接続先グループ構成

モードを開始します。

destination-group dgrp_id

例：

ステップ 13

現在、dgrp_idは、数字の ID値のみをサポートして
います。

switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)#

モデル駆動型テレメトリ

17

モデル駆動型テレメトリ

NX-OS CLIを使用したテレメトリの構成

https://github.com/YangModels/yang/tree/master/vendor/cisco/nx
https://github.com/YangModels/yang/tree/master/vendor/cisco/nx

目的コマンドまたはアクション

エンコードされたテレメトリデータを受信するIPv4
IPアドレスとポートを指定します。

（任意） ip address ip_address port port protocol
procedural-protocol encoding encoding-protocol

例：

ステップ 14

（注）

gRPCはデフォルトのトランスポートプロトコル
です。

switch(conf-tm-sensor)# ip address 171.70.55.69
port 50001 protocol gRPC encoding GPB
switch(conf-tm-sensor)# ip address 171.70.55.69
port 50007 protocol HTTP encoding JSON GPBがデフォルトのエンコーディングです。
switch(conf-tm-sensor)# ip address 171.70.55.69
port 50009 protocol UDP encoding JSON

エンコードされたテレメトリデータを受信するIPv6
IPアドレスとポートを指定します。

（任意） ipv6 address ipv6_address port port
protocol procedural-protocol encoding
encoding-protocol

ステップ 15

（注）

例： gRPCはデフォルトのトランスポートプロトコル
です。switch(conf-tm-sensor)# ipv6 address 10:10::1

port 8000 protocol gRPC encoding GPB
GPBがデフォルトのエンコーディングです。switch(conf-tm-sensor)# ipv6 address 10:10::1

port 8001 protocol HTTP encoding JSON
switch(conf-tm-sensor)# ipv6 address 10:10::1
port 8002 protocol UDP encoding JSON

発信データの宛先プロファイルを作成します。

ip_versionは、ip（IPv4の場合）または ipv6（IPv6
の場合）です。

ip_version address ip_address port portnum

例：

ステップ 16

• IPv4の場合：
switch(conf-tm-dest)# ip address 1.2.3.4 port
50003

接続先グループがサブスクリプションにリンクされ

ている場合、テレメトリデータは、このプロファ

イルで指定されている IPアドレスとポートに送信
されます。

• IPv6の場合：
switch(conf-tm-dest)# ipv6 address 10:10::1
port 8000

gRPCチャンクを有効にして、チャンクサイズを
64～4096バイトに設定します。詳細については、

（任意） use-chunking size chunking_size

例：

ステップ 17

「gRPCチャンクのサポート」セクションを参照し
てください。

switch(conf-tm-dest)# use-chunking size 64

IDを持つサブスクリプションノードを作成し、サ
ブスクリプション構成モードを開始します。

subscription sub_id

例：

ステップ 18

現在、sub_idは、数字の ID値のみをサポートして
います。

switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)#

（注）

DNにサブスクライブする場合は、イベントが確実
にストリーミングされるように、そのDNがREST
を使用して DMEでサポートされているかどうか
を確認します。

モデル駆動型テレメトリ

18

モデル駆動型テレメトリ

NX-OS CLIを使用したテレメトリの構成

目的コマンドまたはアクション

ID sgrp_idのセンサーグループを現在のサブスクリ
プションにリンクして、データのサンプリング間隔

（ミリ秒単位）を設定します。

snsr-grp sgrp_id sample-interval interval

例：

switch(conf-tm-sub)# snsr-grp 100 sample-interval
15000

ステップ 19

間隔の値が 0の場合、イベントベースのサブスク
リプションが作成され、テレメトリデータは、指

定されたMOでの変更時にのみ送信されます。0よ
り大きい間隔値の場合、テレメトリデータが指定

された間隔で定期的に送信される頻度に基いたサブ

スクリプションが作成されます。たとえば、間隔値

が 15000の場合、テレメトリデータは 15秒ごとに
送信されます。

IDdgrp_idを持つ接続先グループをこのサブスクリ
プションにリンクします。

dst-grp dgrp_id

例：

ステップ 20

switch(conf-tm-sub)# dst-grp 100

YANGパスの頻度の設定
YANGパスの頻度は、合計ストリーミング時間よりも長くする必要があります。合計ストリー
ミング時間と頻度が正しく構成されていない場合、テレメトリデータの収集にストリーミング

間隔よりも長くかかることがあります。この状況では、次のことがわかります。

•テレメトリデータが受信側へのストリーミングよりも速く蓄積されるため、徐々に満たさ
れるキュー。

•現在の間隔からではない古いテレメトリデータ。

合計ストリーミング時間よりも大きい値に頻度を構成します。

手順の概要

1. show telemetry control database sensor-groups
2. sensor group number

3. subscription number

4. snsr-grp number sample-interval milliseconds

5. show system resources

モデル駆動型テレメトリ

19

モデル駆動型テレメトリ

YANGパスの頻度の設定

手順の詳細

手順

目的コマンドまたはアクション

合計ストリーミング時間を計算します。show telemetry control database sensor-groups

例：

ステップ 1

合計ストリーミング時間は、各センサーグループの

個々の現在のストリーミング時間の合計です。個々switch-1# show telemetry control database
sensor-groups

のストリーミング時間は、ミリ秒単位のストリーミ
Sensor Group Database size = 2

ング時間（Cur）に表示されます。この例では、合--

計ストリーミング時間は 2.664秒（2515ミリ秒+149
ミリ秒）です。

Row ID Sensor Group ID Sensor Group type
Sampling interval(ms) Linked subscriptions SubID

--
構成された頻度をセンサーグループの合計ストリー

ミング時間と比較します。
1 2 Timer /YANG
5000 /Running 1 1

頻度はサンプル間隔で表示されます。この例では、

合計ストリーミング時間（2.664秒）がケイデンス

Collection Time in ms (Cur/Min/Max):
2444/2294/2460
Encoding Time in ms (Cur/Min/Max): 56/55/57

（デフォルトの 5.000秒）よりも短いため、頻度は
正しく構成されています。

Transport Time in ms (Cur/Min/Max): 0/0/1
Streaming Time in ms (Cur/Min/Max):
2515/2356/28403

Collection Statistics:
collection_id_dropped = 0
last_collection_id_dropped = 0
drop_count = 0

2 1 Timer /YANG
5000 /Running 1 1

Collection Time in ms (Cur/Min/Max): 144/142/1471
Encoding Time in ms (Cur/Min/Max): 0/0/1
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 149/147/23548

Collection Statistics:
collection_id_dropped = 0
last_collection_id_dropped = 0
drop_count = 0

switch-1#
telemetry
destination-group 1
ip address 192.0.2.1 port 9000 protocol HTTP

encoding JSON
sensor-group 1
data-source YANG
path /Cisco-NX-OS-device:System/procsys-items

depth unbounded
sensor-group 2
data-source YANG
path

/Cisco-NX-OS-device:System/intf-items/phys-items
depth unbounded
subscription 1

モデル駆動型テレメトリ

20

モデル駆動型テレメトリ

YANGパスの頻度の設定

目的コマンドまたはアクション

dst-grp 1
snsr-grp 1 sample-interval 5000
snsr-grp 2 sample-interval 5000

合計ストリーミング時間がその頻度以上の場合、間

隔を設定したいセンサーグループを入力します。

sensor group number

例：

ステップ 2

switch-1(config-telemetry)# sensor group1

センサーグループのサブスクリプションを編集しま

す。

subscription number

例：

ステップ 3

switch-1(conf-tm-sensor)# subscription 100

適切なセンサーグループについて、サンプル間隔を

合計ストリーミング時間よりも大きい値に設定しま

す。

snsr-grp number sample-interval milliseconds

例：

switch-1(conf-tm-sub)# snsr-grp number
sample-interval 5000

ステップ 4

この例では、サンプル間隔は 5.000秒に設定されて
います。これは、2.664秒の合計ストリーミング時
間よりも長いため、有効です。

CPUの使用状況を確認してください。show system resources

例：

ステップ 5

この例に示すように、CPUユーザー状態が高い使用
率を示している場合、頻度とストリーミング値が正switch-1# show system resources

Load average: 1 minute: 0.38 5 minutes: 0.43
しく構成されていません。この手順を繰り返して、

頻度を正しく設定します。
15 minutes: 0.43

Processes: 555 total, 3 running
CPU states : 24.17% user, 4.32% kernel,
71.50% idle

CPU0 states: 0.00% user, 2.12% kernel,
97.87% idle

CPU1 states: 86.00% user, 11.00%
kernel, 3.00% idle

CPU2 states: 8.08% user, 3.03% kernel,
88.88% idle

CPU3 states: 0.00% user, 1.02% kernel,
98.97% idle

Memory usage: 16400084K total, 5861652K used,
10538432K free

Current memory status: OK

CLIを使用したテレメトリの構成例
次の手順では、GPBエンコーディングを使用して 10秒のリズムで単一のテレメトリ DMEス
トリームを構成する方法について説明します。

switch# configure terminal
switch(config)# feature telemetry
switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(config-tm-dest)# ip address 171.70.59.62 port 50051 protocol gRPC encoding GPB
switch(config-tm-dest)# exit

モデル駆動型テレメトリ

21

モデル駆動型テレメトリ

CLIを使用したテレメトリの構成例

switch(config-telemetry)# sensor group sg1
switch(config-tm-sensor)# data-source DME
switch(config-tm-dest)# path interface depth unbounded query-condition keep-data-type
switch(config-tm-dest)# subscription 1
switch(config-tm-dest)# dst-grp 1
switch(config-tm-dest)# snsr grp 1 sample interval 10000

この例では、sys/bgpルートMOのデータを宛先 IP 1.2.3.4ポート 50003に 5秒ごとにスト
リーミングするサブスクリプションを作成します。

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

次に、sys/intfのデータを 5秒ごとに、宛先 IP 1.2.3.4ポート 50003にストリーミングし、
test.pemを使用して検証された GPBエンコーディングを使用してストリームを暗号化する
サブスクリプションの作成例を示します。

switch(config)# telemetry
switch(config-telemetry)# certificate /bootflash/test.pem foo.test.google.fr
switch(conf-tm-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
switch(config-dest)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

この例では、sys/cdpのデータを接続先 IP 1.2.3.4ポート 50004に 15秒ごとにストリーミン
グするサブスクリプションを作成します。

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 15000
switch(conf-tm-sub)# dst-grp 100

この例では、750秒ごとに showコマンドデータのケイデンスベースのコレクションを作成し
ます。

switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# ip address 172.27.247.72 port 60001 protocol gRPC encoding GPB
switch(conf-tm-dest)# sensor-group 1
switch(conf-tm-sensor# data-source NX-API
switch(conf-tm-sensor)# path "show system resources" depth 0
switch(conf-tm-sensor)# path "show version" depth 0
switch(conf-tm-sensor)# path "show environment power" depth 0

モデル駆動型テレメトリ

22

モデル駆動型テレメトリ

CLIを使用したテレメトリの構成例

switch(conf-tm-sensor)# path "show environment fan" depth 0
switch(conf-tm-sensor)# path "show environment temperature" depth 0
switch(conf-tm-sensor)# path "show process cpu" depth 0
switch(conf-tm-sensor)# path "show nve peers" depth 0
switch(conf-tm-sensor)# path "show nve vni" depth 0
switch(conf-tm-sensor)# path "show nve vni 4002 counters" depth 0
switch(conf-tm-sensor)# path "show int nve 1 counters" depth 0
switch(conf-tm-sensor)# path "show policy-map vlan" depth 0
switch(conf-tm-sensor)# path "show ip access-list test" depth 0
switch(conf-tm-sensor)# path "show system internal access-list resource utilization"
depth 0
switch(conf-tm-sensor)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-dest)# snsr-grp 1 sample-interval 750000

この例では、sys/fmのイベントベースのサブスクリプションを作成します。sys/fm MOに変
更がある場合にのみ、データは接続先にストリーミングされます。

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 0
switch(conf-tm-sub)# dst-grp 100

動作中に、サンプル間隔を変更することで、センサーグループを周波数ベースからイベント

ベースに変更したり、イベントベースから周波数ベースに変更したりできます。この例では、

センサーグループを前の例から頻度ベースに変更します。次のコマンドの後、テレメトリア

プリケーションは 7秒ごとに sys/fmデータの接続先へのストリーミングを開始します。

switch(config)# telemetry
switch(config-telemetry)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000

複数のセンサーグループと接続先を1つのサブスクリプションにリンクできます。この例のサ
ブスクリプションは、イーサネットポート 1 / 1のデータを 4つの異なる接続先に 10秒ごとに
ストリーミングします。

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-sensor)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001 protocol HTTP encoding JSON
switch(conf-tm-dest)# ip address 1.4.8.2 port 60003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 10000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

モデル駆動型テレメトリ

23

モデル駆動型テレメトリ

CLIを使用したテレメトリの構成例

次に、センサーグループに複数のパスを含め、接続先グループに複数の接続先プロファイルを

含め、サブスクリプションを複数のセンサーグループと宛先グループにリンクできる例を表示

します。

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# path sys/epId-1 depth 0
switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0

switch(config-telemetry)# sensor-group 200
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# path sys/ipv4 depth 0

switch(config-telemetry)# sensor-group 300
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# path sys/bgp depth 0

switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 4.3.2.5 port 50005

switch(conf-tm-dest)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001

switch(conf-tm-dest)# destination-group 300
switch(conf-tm-dest)# ip address 1.2.3.4 port 60003

switch(conf-tm-dest)# subscription 600
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 200 sample-interval 20000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

switch(conf-tm-dest)# subscription 900
switch(conf-tm-sub)# snsr-grp 200 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 300 sample-interval 0
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 300

この例に示すように、show running-config telemetryコマンドを使用してテレメトリ構成を確
認できます。

switch(config)# telemetry
switch(config-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# end
switch# show run telemetry

!Command: show running-config telemetry
!Time: Thu Oct 13 21:10:12 2016

version 7.0(3)I5(1)
feature telemetry

telemetry
destination-group 100
ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB

モデル駆動型テレメトリ

24

モデル駆動型テレメトリ

CLIを使用したテレメトリの構成例

ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB

この例に示すように、use-vrfコマンドと use-compression gzipコマンドを使用して、gRPCの
トランスポート VRFとテレメトリデータ圧縮を指定できます。

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(conf-tm-dest-profile)# use-vrf default
switch(conf-tm-dest-profile)# use-compression gzip
switch(conf-tm-dest-profile)# sensor-group 1
switch(conf-tm-sensor)# path sys/bgp depth unbounded
switch(conf-tm-sensor)# destination-group 1
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-sub)# snsr-grp 1 sample-interval 10000

Telemetry Mergeサブスクリプションの構成例
次に、merge-subscriptionを構成する例を示します。
Telemetry
merge-subscriptions
destination-group 1
ip address 192.186.1.2 port 1 protocol HTTP encoding JSON

Destination-group 2
ip address 192.168.1.3 port 2 protocol gRPC encoding GPB

sensor-group 1
path sys/fm

subscription 1
dst-grp 1
snsr-grp 1 sample-interval 10000

subscription 2
dst-grp 2
snsr-grp 1 sample-interval 25000

センサーグループ 1のデータは 10秒ごとに収集されます。収集されたデータは、10秒ごとに
サブスクリプション 1の接続先に送信され、20秒ごとにサブスクリプション 2の接続先に送信
されます。

サブスクリプション 2の snsr-grp 1の例では、min_sample間隔は 10秒、cur_sample_intervalは
25秒です。したがって、そのデータは 20秒ごとに送信されます。
Sample_interval = 10*floor(25/10)

= 10*2
= 20s

構成の確認

次のコマンドを使用して、IOA構成を確認します。
show telemetry control database sensor-groups
Sensor Group Database size = 1
Row ID Sensor Group ID Sensor Group type Sampling interval(ms) Linked subscriptions
SubID

1 1 Timer /DME 10000/Running 2
1

Collection Time in ms (Cur/Min/Max): 1/1/2
Encoding Time in ms (Cur/Min/Max): 0/0/0

モデル駆動型テレメトリ

25

モデル駆動型テレメトリ

Telemetry Mergeサブスクリプションの構成例

Transport Time in ms (Cur/Min/Max): 10003/10003/10003
Streaming Time in ms (Cur/Min/Max): 10004/10004/10006
Collection Statistics:
collection_id_dropped = 0
last_collection_id_dropped = 0
drop_count = 0
Configuration method: CONFIG_DME-ADMIN
2 1 Timer /DME 20000*/Running 2

2
Collection Time in ms (Cur/Min/Max): 1/1/1
Encoding Time in ms (Cur/Min/Max): 0/0/0
Transport Time in ms (Cur/Min/Max): 4004/4004/4004
Streaming Time in ms (Cur/Min/Max): 4005/4005/4005
Collection Statistics:
collection_id_dropped = 0
last_collection_id_dropped = 0
drop_count = 0
Configuration method: CONFIG_DME-ADMIN
*Calculated sample interval for merge-subscriptions

テレメトリの構成と統計情報の表示

次の NX-OS CLI showコマンドを使用して、テレメトリの構成、統計情報、エラー、および
セッション情報を表示します。

show telemetry yang direct-path cisco-nxos-device

このコマンドは、他のパスよりもパフォーマンスが向上するように直接エンコードされたYANG
パスを表示します。

switch# show telemetry yang direct-path cisco-nxos-device
) Cisco-NX-OS-device:System/lldp-items
2) Cisco-NX-OS-device:System/acl-items
3) Cisco-NX-OS-device:System/mac-items
4) Cisco-NX-OS-device:System/intf-items
5) Cisco-NX-OS-device:System/procsys-items/sysload-items
6) Cisco-NX-OS-device:System/ospf-items
7) Cisco-NX-OS-device:System/procsys-items
8) Cisco-NX-OS-device:System/ipqos-items/queuing-items/policy-items/out-items
9) Cisco-NX-OS-device:System/mac-items/static-items
10) Cisco-NX-OS-device:System/ch-items
11) Cisco-NX-OS-device:System/cdp-items
12) Cisco-NX-OS-device:System/bd-items
13) Cisco-NX-OS-device:System/eps-items
14) Cisco-NX-OS-device:System/ipv6-items

show telemetry control database

次に、テレメトリの構成を反映している内部データベースのコマンドを表示します。

switch# show telemetry control database ?
<CR>
> Redirect it to a file
>> Redirect it to a file in append mode
destination-groups Show destination-groups
destinations Show destinations
sensor-groups Show sensor-groups
sensor-paths Show sensor-paths
subscriptions Show subscriptions

モデル駆動型テレメトリ

26

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

| Pipe command output to filter

switch# show telemetry control database

Subscription Database size = 1

--
Subscription ID Data Collector Type
--
100 DME NX-API

Sensor Group Database size = 1

--
Sensor Group ID Sensor Group type Sampling interval(ms) Linked subscriptions
--
100 Timer 10000(Running) 1

Sensor Path Database size = 1

--
Subscribed Query Filter Linked Groups Sec Groups Retrieve level Sensor Path
--
No 1 0 Full sys/fm

Destination group Database size = 2

--
Destination Group ID Refcount
--
100 1

Destination Database size = 2

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.111 12345 JSON HTTP 1
192.168.20.123 50001 GPB gRPC 1

show telemetry control database sensor-paths

このコマンドは、テレメトリ設定のセンサーパスの詳細を表示します。これには、エンコー

ディング、収集、トランスポート、およびストリーミングのカウンタが含まれます。

switch-1(conf-tm-sub)# show telemetry control database sensor-paths
Sensor Path Database size = 4
--
Row ID Subscribed Linked Groups Sec Groups Retrieve level Path(GroupId) : Query
: Filter
--
1 No 1 0 Full sys/cdp(1) : NA : NA

GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 65785/65785/65785
Collection Time in ms (Cur/Min/Max): 10/10/55
Encoding Time in ms (Cur/Min/Max): 8/8/9
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 18/18/65

2 No 1 0 Self show module(2) : NA :
NA

モデル駆動型テレメトリ

27

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 1107/1106/1107
Collection Time in ms (Cur/Min/Max): 603/603/802
Encoding Time in ms (Cur/Min/Max): 0/0/0
Transport Time in ms (Cur/Min/Max): 0/0/1
Streaming Time in ms (Cur/Min/Max): 605/605/803

3 No 1 0 Full sys/bgp(1) : NA : NA
GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 0/0/44
Encoding Time in ms (Cur/Min/Max): 0/0/0
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 1/1/44

4 No 1 0 Self show version(2) : NA :
NA
GPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
JSON Encoded Data size in bytes (Cur/Min/Max): 2442/2441/2442
Collection Time in ms (Cur/Min/Max): 1703/1703/1903
Encoding Time in ms (Cur/Min/Max): 0/0/0
Transport Time in ms (Cur/Min/Max): 0/0/0
Streaming Time in ms (Cur/Min/Max): 1703/1703/1904

switch-1(conf-tm-sub)#

show telemetry control stats

このコマンドは、テレメトリの構成についての内部データベースの統計を表示します。

switch# show telemetry control stats
show telemetry control stats entered

--
Error Description Error Count
--
Chunk allocation failures 0
Sensor path Database chunk creation failures 0
Sensor Group Database chunk creation failures 0
Destination Database chunk creation failures 0
Destination Group Database chunk creation failures 0
Subscription Database chunk creation failures 0
Sensor path Database creation failures 0
Sensor Group Database creation failures 0
Destination Database creation failures 0
Destination Group Database creation failures 0
Subscription Database creation failures 0
Sensor path Database insert failures 0
Sensor Group Database insert failures 0
Destination Database insert failures 0
Destination Group Database insert failures 0
Subscription insert to Subscription Database failures 0
Sensor path Database delete failures 0
Sensor Group Database delete failures 0
Destination Database delete failures 0
Destination Group Database delete failures 0
Delete Subscription from Subscription Database failures 0
Sensor path delete in use 0
Sensor Group delete in use 0
Destination delete in use 0
Destination Group delete in use 0
Delete destination(in use) failure count 0
Failed to get encode callback 0

モデル駆動型テレメトリ

28

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

Sensor path Sensor Group list creation failures 0
Sensor path prop list creation failures 0
Sensor path sec Sensor path list creation failures 0
Sensor path sec Sensor Group list creation failures 0
Sensor Group Sensor path list creation failures 0
Sensor Group Sensor subs list creation failures 0
Destination Group subs list creation failures 0
Destination Group Destinations list creation failures 0
Destination Destination Groups list creation failures 0
Subscription Sensor Group list creation failures 0
Subscription Destination Groups list creation failures 0
Sensor Group Sensor path list delete failures 0
Sensor Group Subscriptions list delete failures 0
Destination Group Subscriptions list delete failures 0
Destination Group Destinations list delete failures 0
Subscription Sensor Groups list delete failures 0
Subscription Destination Groups list delete failures 0
Destination Destination Groups list delete failures 0
Failed to delete Destination from Destination Group 0
Failed to delete Destination Group from Subscription 0
Failed to delete Sensor Group from Subscription 0
Failed to delete Sensor path from Sensor Group 0
Failed to get encode callback 0
Failed to get transport callback 0
switch# Destination Database size = 1

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.123 50001 GPB gRPC 1

show telemetry data collector brief

このコマンドは、データ収集に関する簡単な統計情報を表示します。

switch# show telemetry data collector brief

--
Collector Type Successful Collections Failed Collections
--
DME 143 0

show telemetry data collector details

このコマンドは、すべてのセンサーパスの詳細を含む、データ収集に関する詳細な統計情報を

表示します。

switch# show telemetry data collector details

--
Succ Collections Failed Collections Sensor Path
--
150 0 sys/fm

show telemetry event collector errors

このコマンドは、イベントコレクションに関するエラー統計情報を表示します。

モデル駆動型テレメトリ

29

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

switch# show telemetry event collector errors

--
Error Description Error Count
--
APIC-Cookie Generation Failures - 0
Authentication Failures - 0
Authentication Refresh Failures - 0
Authentication Refresh Timer Start Failures - 0
Connection Timer Start Failures - 0
Connection Attempts - 3
Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Event Subscription Refresh Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
Subscription Refresh Timer Start Failures - 0
Websocket Connect Failures - 0

show telemetry event collector stats

このコマンドは、すべてのセンサーパスの内訳を含むイベントコレクションに関する統計情

報を表示します。

switch# show telemetry event collector stats

--
Collection Count Latest Collection Time Sensor Path
--

show telemetry control pipeline stats

このコマンドは、テレメトリパイプラインの統計情報を表示します。

switch# show telemetry pipeline stats
Main Statistics:

Timers:
Errors:

Start Fail = 0

Data Collector:
Errors:

Node Create Fail = 0

Event Collector:
Errors:

Node Create Fail = 0 Node Add Fail = 0
Invalid Data = 0

Memory:
Allowed Memory Limit = 1181116006 bytes
Occupied Memory = 93265920 bytes

Queue Statistics:

モデル駆動型テレメトリ

30

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

Request Queue:
High Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Data Queue:
High Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

show telemetry transport

次に、構成されているすべての転送セッションの例を表示します。

switch# show telemetry transport

Session Id IP Address Port Encoding Transport Status

0 192.168.20.123 50001 GPB gRPC Connected

show telemetry transport <session-id>

次のコマンドでは、特定の転送セッションの詳細なセッション情報が表示されます。

switch# show telemetry transport 0

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: gRPC
Status: Disconnected
Last Connected: Fri Sep 02 11:45:57.505 UTC
Last Disconnected: Never
Tx Error Count: 224
Last Tx Error: Fri Sep 02 12:23:49.555 UTC

モデル駆動型テレメトリ

31

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

switch# show telemetry transport 1

Session Id: 1
IP Address:Port 10.30.218.56:51235
Transport: HTTP
Status: Disconnected
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 3
Last Tx Error: Wed Apr 19 15:56:51.617 PDT

次に、IPv6エントリの出力例を示します。
switch# show telemetry transport 0
Session Id: 0
IP Address:Port [10:10::1]:8000
Transport: GRPC
Status: Idle
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None
Event Retry Queue Bytes: 0
Event Retry Queue Size: 0
Timer Retry Queue Bytes: 0
Timer Retry Queue Size: 0
Sent Retry Messages: 0
Dropped Retry Messages: 0

show telemetry transport <session-id> stats

次に、特定の転送セッションの詳細のコマンドを示します。

switch# show telemetry transport 0 stats

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: GRPC
Status: Connected
Last Connected: Mon May 01 11:29:46.912 PST
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None

show telemetry transport <session-id> stats

次に、特定の転送セッションの詳細のコマンドを示します。

Session Id: 0
Transmission Stats

Compression: disabled
Source Interface: not set()
Transmit Count: 319297
Last TX time: Fri Aug 02 03:51:15.287 UTC
Min Tx Time: 1 ms
Max Tx Time: 3117 ms
Avg Tx Time: 3 ms
Cur Tx Time: 1 ms

モデル駆動型テレメトリ

32

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

show telemetry transport <session-id> errors

次のコマンドでは、特定の転送セッションの詳細なエラーの統計情報が表示されます。

switch# show telemetry transport 0 errors
Session Id: 0
Connection Errors
Connection Error Count: 0
Transmission Errors
Tx Error Count: 30
Last Tx Error: Thu Aug 01 04:39:47.083 UTC
Last Tx Return Code: No error

show telemetry control databases sensor-paths

これらの次の構成手順により、次の show telemetry control databases sensor-pathsコマンド出
力が得られます。

feature telemetry

telemetry
destination-group 1
ip address 172.25.238.13 port 50600 protocol gRPC encoding GPB

sensor-group 1
path sys/cdp depth unbounded
path sys/intf depth unbounded
path sys/mac depth 0

subscription 1
dst-grp 1
snsr-grp 1 sample-interval 1000

コマンド出力。

switch# show telemetry control databases sensor-paths

Sensor Path Database size = 3
--

Row ID Subscribed Linked Groups Sec Groups Retrieve level Path(GroupId) :
Query : Filter
--

1 No 1 0 Full sys/cdp(1) : NA
: NA
GPB Encoded Data size in bytes (Cur/Min/Max): 30489/30489/30489
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
CGPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 6/5/54
Encoding Time in ms (Cur/Min/Max): 5/5/6
Transport Time in ms (Cur/Min/Max): 1027/55/1045
Streaming Time in ms (Cur/Min/Max): 48402/5/48402

2 No 1 0 Full sys/intf(1) : N
A : NA
GPB Encoded Data size in bytes (Cur/Min/Max): 539466/539466/539466
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
CGPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 66/64/114
Encoding Time in ms (Cur/Min/Max): 91/90/92
Transport Time in ms (Cur/Min/Max): 4065/4014/5334
Streaming Time in ms (Cur/Min/Max): 48365/64/48365

3 No 1 0 Self sys/mac(1) : NA
: NA

モデル駆動型テレメトリ

33

モデル駆動型テレメトリ

テレメトリの構成と統計情報の表示

GPB Encoded Data size in bytes (Cur/Min/Max): 247/247/247
JSON Encoded Data size in bytes (Cur/Min/Max): 0/0/0
CGPB Encoded Data size in bytes (Cur/Min/Max): 0/0/0
Collection Time in ms (Cur/Min/Max): 1/1/47
Encoding Time in ms (Cur/Min/Max): 1/1/1
Transport Time in ms (Cur/Min/Max): 4/1/6
Streaming Time in ms (Cur/Min/Max): 47369/1/47369

show telemetry transport sessions

次のコマンドは、すべてのトランスポートセッションをループし、1つのコマンドで情報を出
力します。

switch# show telemetry transport sessions
switch# show telemetry transport stats
switch# show telemetry transport errors
switch# show telemetry transport all

次に、テレメトリトランスポートセッションの例を示します。

switch# show telemetry transport sessions
Session Id: 0
IP Address:Port 172.27.254.13:50004
Transport: GRPC
Status: Transmit Error
SSL Certificate: trustpoint1
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 2
Last Tx Error: Wed Aug 19 23:32:21.749 UTC
…
Session Id: 4
IP Address:Port 172.27.254.13:50006
Transport: UDP

テレメトリエフェメラルイベント

エフェメラルイベントをサポートするために、新しいセンサーパスクエリ条件が追加されま

した。アカウンティングログの外部イベントストリーミングを有効にするには、次のクエリ

条件を使用します。

sensor-group 1
path sys/accounting/log query-condition
query-target=subtree&complete-mo=yes¬ify-interval=1

エフェメラルイベントをサポートするその他のセンサーパスは次のとおりです。

sys/pim/inst/routedb-route, sys/pim/pimifdb-adj, sys/pim/pimifdb-prop
sys/igmp/igmpifdb-prop, sys/igmp/inst/routedb, sys/igmpsnoop/inst/dom/db-exptrack,
sys/igmpsnoop/inst/dom/db-group, sys/igmpsnoop/inst/dom/db-mrouter
sys/igmpsnoop/inst/dom/db-querier, sys/igmpsnoop/inst/dom/db-snoop

テレメトリログとトレース情報の表示

ログとトレース情報を表示するには、次の NX-OS CLIコマンドを使用します。

モデル駆動型テレメトリ

34

モデル駆動型テレメトリ

テレメトリログとトレース情報の表示

テクニカルサポートテレメトリを表示

このNX-OSCLIコマンドは、テクニカルサポートログからテレメトリログの内容を収集しま
す。この例では、コマンド出力がブートフラッシュのファイルにリダイレクトされます。

switch# show tech-support telemetry > bootflash:tmst.log

tmtrace.bin

この BASHシェルコマンドは、テレメトリトレースを収集して出力します。

switch# configure terminal
switch(config)# feature bash
switch(config)# run bash
bash-4.2$ tmtrace.bin -d tm-errors
bash-4.2$ tmtrace.bin -d tm-logs
bash-4.2$ tmtrace.bin -d tm-events

例：

bash-4.2$ tmtrace.bin -d tm-logs
[01/25/17 22:52:24.563 UTC 1 29130] [3944724224][tm_ec_dme_auth.c:59] TM_EC: Authentication
refresh url http://127.0.0.1/api/aaaRefresh.json
[01/25/17 22:52:24.565 UTC 2 29130] [3944724224][tm_ec_dme_rest_util.c:382] TM_EC:
Performed POST request on http://127.0.0.1/api/aaaRefresh.json
[01/25/17 22:52:24.566 UTC 3 29130] [3944724224][tm_mgd_timers.c:114] TM_MGD_TIMER:
Starting leaf timer for leaf:0x11e17ea4 time_in_ms:540000
[01/25/17 22:52:45.317 UTC 4 29130] [3944724224][tm_ec_dme_event_subsc.c:790] TM_EC:
Event subscription database size 0
[01/25/17 22:52:45.317 UTC 5 29130] [3944724224][tm_mgd_timers.c:114] TM_MGD_TIMER:
Starting leaf timer for leaf:0x11e17e3c time_in_ms:50000
bash-4.2#

tm-logsオプションは冗長であるため、デフォルトでは有効になっていません。

tmtrace.bin -LD tm-logsコマンドで tm-logsを有効にします。

tmtrace.bin -LW tm-logsコマンドを使用して tm-logsを無効にします。

（注）

show system internal telemetry trace

show system internal telemetry trace [tm-events | tm-errors |tm-logs | all]コマンドは、システムの
内部テレメトリトレース情報を表示します。

switch# show system internal telemetry trace all
Telemetry All Traces:
Telemetry Error Traces:
[07/26/17 15:22:29.156 UTC 1 28577] [3960399872][tm_cfg_api.c:367] Not able to destroy
dest profile list for config node rc:-1610612714 reason:Invalid argument
[07/26/17 15:22:44.972 UTC 2 28577] [3960399872][tm_stream.c:248] No subscriptions for
destination group 1
[07/26/17 15:22:49.463 UTC 3 28577] [3960399872][tm_stream.c:576] TM_STREAM: Subscriptoin
1 does not have any sensor groups

モデル駆動型テレメトリ

35

モデル駆動型テレメトリ

テレメトリログとトレース情報の表示

3 entries printed
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
switch#

switch# show system internal telemetry trace tm-logs
Telemetry Log Traces:
0 entries printed
switch#
switch# show system internal telemetry trace tm-events
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
[07/26/17 15:19:40.610 UTC 4 28577] [3960399872][tm_init_n9k.c:207] Adding telemetry to
cgroup
[07/26/17 15:19:40.670 UTC 5 28577] [3960399872][tm_init_n9k.c:215] Added telemetry to
cgroup successfully!

switch# show system internal telemetry trace tm-errors
Telemetry Error Traces:
0 entries printed
switch#

NX-APIを使用したテレメトリの構成

NX-APIを使用したテレメトリの構成
スイッチ DMEのオブジェクトモデルでは、「DMEのテレメトリモデル」のセクションで説
明されているように、テレメトリ機能の構成がオブジェクトの階層構造で定義されています。

構成する主なオブジェクトは次のとおりです。

• fmEntity —NX-APIおよびテレメトリ機能の状態が含まれています。

• fmNxapi —NX-APIの状態が含まれています。

• fmTelemetry —テレメトリ機能の状態が含まれています。

• telemetryEntity —テレメトリ機能の構成が含まれています。

• telemetrySensorGroup —テレメトリのために監視される 1つ以上のセンサーパスま
たはノードの定義が含まれています。テレメトリエンティティには、1つ以上のセン
サーグループを含めることができます。

• telemetryRtSensorGroupRel—センサーグループをテレメトリサブスクリプショ
ンに関連付けます。

モデル駆動型テレメトリ

36

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

• telemetrySensorPath —モニタリングされるパス。センサーグループには、この
タイプのオブジェクトを複数含めることができます。

• telemetryDestGroup —テレメトリデータを受信する 1つ以上の接続先の定義が含ま
れています。テレメトリエンティティには、1つ以上の接続先グループを含めること
ができます。

• telemetryRtDestGroupRel—接続先グループをテレメトリサブスクリプションに
関連付けます。

• telemetryDest —接続先アドレス接続先グループには、このタイプのオブジェク
トを複数含めることができます。

• telemetrySubscription—1つ以上のセンサーグループからのテレメトリデータを 1つ
以上の接続先グループに送信する方法とタイミングを指定します。

• telemetryRsDestGroupRel—テレメトリサブスクリプションを接続先グループに
関連付けます。

• telemetryRsSensorGroupRel—テレメトリサブスクリプションをセンサーグルー
プに関連付けます。

• telemetryCertificate —テレメトリサブスクリプションを証明書とホスト名に関連付
けます。

NX-APIを使用してテレメトリ機能を設定するには、テレメトリオブジェクト構造の JSON表
現を構築し、HTTPまたは HTTPS POST操作で DMEにプッシュする必要があります。

NX-APIの使用に関する詳細な手順は、『Cisco Nexus 3000 and 9000 Series NX-API REST SDK
User Guide and API Reference（Cisco Nexus 3000および 9000シリーズ NX-API REST SDKユー
ザーガイドと APIリファレンス）』を参照してください。

（注）

始める前に

スイッチは、CiscoNX-OSリリース7.3（0）I5（1）以降のリリースを実行している必要があり
ます。

CLIから NX-APIを実行するようにスイッチを構成する必要があります。
switch(config)# feature nxapi

NX-APIは、管理 VRFを介してテレメトリデータを送信します。
switch(config)# nxapi use-vrf management

nxapi use-vrf vrf_name
nxapi http port port_number

モデル駆動型テレメトリ

37

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

手順の概要

1. テレメトリ機能を有効にします。

2. テレメトリ構成を記述するために、JSONペイロードのルートレベルを作成します。
3. 定義されたセンサーパスを含むセンサーグループを作成します。

4. （任意） SSL/TLS証明書とホストを追加します。
5. テレメトリの接続先グループを定義します。

6. テレメトリの接続先プロファイルを定義します。

7. テレメトリデータの送信先となる IPアドレスとポート番号で構成される、1つ以上のテ
レメトリの接続先を定義します。

8. gRPCチャンクを有効にして、チャンクサイズを 64～ 4096バイトに設定します。
9. テレメトリサブスクリプションを作成して、テレメトリの動作を構成します。

10. ルート要素の下の telemetrySubscription要素に子オブジェクトとしてセンサーグループ
オブジェクトを追加します（telemetryEntity）。

11. サブスクリプションの子オブジェクトとして関係オブジェクトを作成して、サブスクリ

プションをテレメトリセンサーグループに関連付け、データサンプリング動作を指定

します。

12. テレメトリをモニタリングする 1つ以上のセンサーパスまたはノードを定義します。
13. センサーパスを子オブジェクトとしてセンサーグループオブジェクト

（telemetrySensorGroup）に追加します。

14. 接続先を子オブジェクトとして接続先グループオブジェクト（telemetryDestGroup）に
追加します。

15. 接続先グループオブジェクトを子オブジェクトとしてルート要素に追加します

（telemetryEntity）。

16. センサーグループをサブスクリプションに関連付けるために、テレメトリセンサーグ

ループの子オブジェクトとして関係オブジェクトを作成します。

17. テレメトリ接続先グループの子オブジェクトとして関係オブジェクトを作成して、接続

先グループをサブスクリプションに関連付けます。

18. サブスクリプションの子オブジェクトとして関係オブジェクトを作成して、サブスクリ

プションをテレメトリ接続先グループに関連付けます。

19. テレメトリ構成のために、結果の JSON構造を HTTP/HTTPS POSTペイロードとして
NX-APIエンドポイントに送信します。

手順の詳細

手順

目的コマンドまたはアクション

ルート要素は fmTelemetryであり、この要素のベー
スパスは sys/fmです。adminSt属性を有効に構成
します。

テレメトリ機能を有効にします。

例：

{

ステップ 1

"fmEntity" : {

モデル駆動型テレメトリ

38

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

"children" : [{
"fmTelemetry" : {
"attributes" : {
"adminSt" : "enabled"

}
}

}
]

}
}

ルート要素は telemetryEntityであり、この要素の
ベースパスは sys/tmです。dn 属性を sys/tmとし

て構成します。

テレメトリ構成を記述するために、JSONペイロー
ドのルートレベルを作成します。

例：

ステップ 2

{
"telemetryEntity": {

"attributes": {
"dn": "sys/tm"

},
}

}

テレメトリセンサーグループは、クラス

telemetrySensorGroupのオブジェクトで定義され
ます。以下のオブジェクト属性を構成します。

定義されたセンサーパスを含むセンサーグループ

を作成します。

例：

ステップ 3

• id —センサーグループの識別子。現在は、数
字の ID値のみサポートされています。"telemetrySensorGroup": {

"attributes": {
"id": "10", • rn—センサーグループオブジェクトの相対名

（形式: sensor-id）。
"rn": "sensor-10"
"dataSrc": "NX-API"

}, "children": [{

• dataSrc：DEFAULT、DME、YANG、または
NX-APIからデータ送信元を選択します。

}]
}

センサーグループオブジェクトの子には、センサー

パスと 1つ以上の関係オブジェクト
（telemetryRtSensorGroupRel）が含まれ、センサー
グループをテレメトリサブスクリプションに関連

付けます。

telemetryCertificateは、テレメトリサブスクリプ
ション/接続先で SSL/TLS証明書の場所を定義しま
す。

（任意） SSL/TLS証明書とホストを追加します。

例：

{
"telemetryCertificate": {

ステップ 4

"attributes": {
"filename": "root.pem"
"hostname": "c.com"

}
}

}

モデル駆動型テレメトリ

39

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

テレメトリ接続先グループが telemetryEntityで定
義されています。id属性を構成します。

テレメトリの接続先グループを定義します。

例：

ステップ 5

{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
}

}

テレメトリの接続先プロファイルは、

telemetryDestProfileで定義されています。
テレメトリの接続先プロファイルを定義します。

例：

ステップ 6

• adminSt属性を有効に設定します。
{

• telemetryDestOptSourceInterfaceの下で、構成
されたインターフェイスからソース IPアドレ

"telemetryDestProfile": {
"attributes": {

"adminSt": "enabled"
スを持つ接続先にデータをストリーミングする},

"children": [ためのインターフェイス名を使用してname属
性を構成します。

{
"telemetryDestOptSourceInterface":

{
"attributes": {

"name": "lo0"
}

}
}

]
}

}

テレメトリの接続先は、クラス telemetryDestのオ
ブジェクトで定義されます。以下のオブジェクト属

性を構成します。

テレメトリデータの送信先となる IPアドレスと
ポート番号で構成される、1つ以上のテレメトリの
接続先を定義します。

例：

ステップ 7

• addr —接続先の IPアドレス。

{ • port —接続先のポート番号。
"telemetryDest": {

• rn — path-[path]形式の接続先オブジェクトの
相対名。

"attributes": {
"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001", • enc—送信されるテレメトリデータのエンコー

ディングタイプ。NX-OSは以下をサポートし
ます。

"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"

}
}

} • gRPCの Google Protocol Buffer（GBP）。

• Cの JSON。

• UDPおよびセキュアUDP（DTLS）の場合
は GPBまたは JSON。

モデル駆動型テレメトリ

40

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

• proto —送信されるテレメトリデータのトラ
ンスポートプロトコルタイプ。NX-OSは以下
をサポートします。

• gRPC

• HTTP

• VUDPとセキュア UDP（DTLS）

•サポートされているエンコードタイプは次の
とおりです。

• HTTP/JSONはい

• HTTP/Form-dataはいBin Loggingでのみサ
ポートされます。

• GRPC/GPB-Compactはいネイティブデー
タソースのみ。

• GRPC/GPBはい

• UDP/GPBはい

• UDP/JSONはい

詳細については、「gRPCチャンキングのサポート
（8ページ）」を参照してください。

gRPCチャンクを有効にして、チャンクサイズを
64～ 4096バイトに設定します。

例：

ステップ 8

{
"telemetryDestGrpOptChunking": {

"attributes": {
"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

}
}

}

テレメトリサブスクリプションは、クラス

telemetrySubscriptionのオブジェクトで定義されま
す。以下のオブジェクト属性を構成します。

テレメトリサブスクリプションを作成して、テレ

メトリの動作を構成します。

例：

ステップ 9

• id —サブスクリプションの識別子。現在は、
数字の ID値のみサポートされています。"telemetrySubscription": {

"attributes": {
"id": "30", • rn— subs-idという形式のサブスクリプション

オブジェクトの相対名。
"rn": "subs-30"

}, "children": [{
}]

}

モデル駆動型テレメトリ

41

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

サブスクリプションオブジェクトの子には、セン

サーグループ（telemetryRsSensorGroupRel）およ
び接続先グループ（telemetryRsDestGroupRel）の
関係オブジェクトが含まれます。

ルート要素の下の telemetrySubscription 要素に子
オブジェクトとしてセンサーグループオブジェク

トを追加します（telemetryEntity）。

ステップ 10

例：

{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

}
]

}
}

関係オブジェクトはクラス

telemetryRsSensorGroupRelであり、
サブスクリプションの子オブジェクトとして関係

オブジェクトを作成して、サブスクリプションを

テレメトリセンサーグループに関連付け、データ

サンプリング動作を指定します。

ステップ 11

telemetrySubscriptionの子オブジェクトです。関係
オブジェクトの以下のオブジェクト属性を構成しま

す。
例：

• rn— rssensorGroupRel-[sys/tm/sensor-group-id]
形式の関係オブジェクトの相対名。"telemetryRsSensorGroupRel": {

"attributes": {
"rType": "mo", • sampleIntvl—ミリ秒単位のデータサンプリン

グ期間。間隔の値が 0の場合、イベントベー
"rn":

"rssensorGroupRel-[sys/tm/sensor-10]",

スのサブスクリプションが作成され、テレメト"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",

リデータは、指定されたMOでの変更時にの"tDn": "sys/tm/sensor-10",
み送信されます。0より大きい間隔値の場合、"tType": "mo"

}
} テレメトリデータが指定された間隔で定期的

に送信される頻度に基いたサブスクリプション

が作成されます。たとえば、間隔値が15000の
場合、テレメトリデータは 15秒ごとに送信さ
れます。

• tCl— telemetrySensorGroupであるターゲット
（センサーグループ）オブジェクトのクラス。

モデル駆動型テレメトリ

42

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

• tDn— sys/tm/sensor-group-idであるターゲット
（センサーグループ）オブジェクトの識別名。

• rType—管理対象オブジェクト用moの関係タ
イプ。

• tType —管理対象オブジェクト用 moのター
ゲットタイプ。

センサーパスは、クラス telemetrySensorPathのオ
ブジェクトで定義されます。以下のオブジェクト属

性を構成します。

テレメトリをモニタリングする1つ以上のセンサー
パスまたはノードを定義します。

例：

ステップ 12

• path —モニタリングされるパス。単一センサーパス

{
• rn— path-[path]形式のパスオブジェクトの相
対名："telemetrySensorPath": {

"attributes": {
• depth—センサーパスの取得レベル。0の深さ
設定は、ルートMOプロパティのみを取得し
ます。

"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",

• filterCondition—（オプション）イベントベー
スのサブスクリプション用の特定のフィルタを

"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0",

作成します。DMEはフィルター式を提供しま"alias": "cdp_alias",
す。フィルタリングの詳細については、クエリ}

}
の作成に関するCisco APICRESTAPIの使用注}
意事項を参照してください。
https://www.cisco.com/c/en/us/td/docs/switches/

例： datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_
NX-APIの単一センサーパス

{

APIC_REST_API_Configuration_Guide/b_Cisco_
APIC_REST_API_Configuration_Guide_chapter_
01.html#d25e1534a1635

"telemetrySensorPath": {
• alias：このパスのエイリアスを指定します。"attributes": {

"path": "show interface",
"path": "show bgp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

例：

複数のセンサーパス

モデル駆動型テレメトリ

43

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635

目的コマンドまたはアクション

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

},
{

"telemetrySensorPath": {
"attributes": {

"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/dhcp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

例：

BGP無効化イベントの単一センサーパスフィルタ
リング：

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition":

"eq(fmBgp.operSt.\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

センサーパスを子オブジェクトとしてセンサーグ

ループオブジェクト（telemetrySensorGroup）に
追加します。

ステップ 13

接続先を子オブジェクトとして接続先グループオ

ブジェクト（telemetryDestGroup）に追加します。
ステップ 14

モデル駆動型テレメトリ

44

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

接続先グループオブジェクトを子オブジェクトと

してルート要素に追加します（telemetryEntity）。
ステップ 15

関係オブジェクトはクラス

telemetryRtSensorGroupRelであり、
センサーグループをサブスクリプションに関連付

けるために、テレメトリセンサーグループの子オ

ブジェクトとして関係オブジェクトを作成します。

ステップ 16

telemetrySensorGroupの子オブジェクトです。関

例：
係オブジェクトの以下のオブジェクト属性を構成し

ます。

"telemetryRtSensorGroupRel": { • rn —rtsensorGroupRel-[sys/tm/subscription-id]
の形式の関係オブジェクトの相対名。

"attributes": {
"rn":

"rtsensorGroupRel-[sys/tm/subs-30]",
• tCl —サブスクリプションオブジェクト

telemetrySubscriptionのターゲットクラス。
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
} • tDn — sys/tm/subscription-idである、サブスク

リプションオブジェクトのターゲット識別名。

関係オブジェクトはクラス telemetryRtDestGroupRel
であり、telemetryDestGroupの子オブジェクトで

テレメトリ接続先グループの子オブジェクトとし

て関係オブジェクトを作成して、接続先グループ

をサブスクリプションに関連付けます。

ステップ 17

す。関係オブジェクトの以下のオブジェクト属性を

構成します。
例：

• rn —rtdestGroupRel-[sys/tm/subscription-id]の
形式の関係オブジェクトの相対名。"telemetryRtDestGroupRel": {

"attributes": {
"rn": "rtdestGroupRel-[sys/tm/subs-30]", • tCl —サブスクリプションオブジェクト

telemetrySubscriptionのターゲットクラス。"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

• tDn — sys/tm/subscription-idである、サブスク
リプションオブジェクトのターゲット識別名。

}
}

関係オブジェクトはクラス telemetryRsDestGroupRel
であり、telemetrySubscriptionの子オブジェクトで

サブスクリプションの子オブジェクトとして関係

オブジェクトを作成して、サブスクリプションを

テレメトリ接続先グループに関連付けます。

ステップ 18

す。関係オブジェクトの以下のオブジェクト属性を

構成します。
例：

• rn —
rsdestGroupRel-[sys/tm/destination-group-id]の
形式の関係オブジェクトの相対名。

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",
"rn": "rsdestGroupRel-[sys/tm/dest-20]",

• tCl—ターゲット (接続先グループ)オブジェク
トのクラス telemetryDestGroup。"tCl": "telemetryDestGroup",

"tDn": "sys/tm/dest-20",
"tType": "mo" • tDn —接続先グループ IDであるターゲット

（接続先グループ）オブジェクト

sys/tm/destination-group-idの識別名。

}
}

モデル駆動型テレメトリ

45

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

目的コマンドまたはアクション

• rType—管理対象オブジェクト用moの関係タ
イプ。

• tType —管理対象オブジェクト用 moのター
ゲットタイプ。

テレメトリエンティティのベースパスは sys/tm

で、NX-APIエンドポイントは次のとおりです。
テレメトリ構成のために、結果の JSON構造を
HTTP/HTTPS POSTペイロードとしてNX-APIエン
ドポイントに送信します。

ステップ 19

{{URL}}/api/node/mo/sys/tm.json

例

以下は、1つの POSTペイロードに収集された、その前のすべてのステップの例です
（一部の属性が一致しない場合があることに注意してください）。

{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50051",
"enc": "GPB",
"proto": "gRPC"

}
}

}
]

}
},
{

モデル駆動型テレメトリ

46

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成

"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

NX-APIを使用したテレメトリの構成例

宛先へのストリーミングパス

この例では、パス sys/cdpおよび sys/ipv4を接続先 1.2.3.4 ポート 50001に 5秒ごとにスト
リーミングするサブスクリプションを作成します。

POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{

"telemetryEntity": {
"attributes": {

"dn": "sys/tm"
},
"children": [{

"telemetrySensorGroup": {
"attributes": {

"id": "10",
"rn": "sensor-10"

}, "children": [{
"telemetryRtSensorGroupRel": {

"attributes": {
"rn": "rtsensorGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",

モデル駆動型テレメトリ

47

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成例

"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/ipv4",
"rn": "path-[sys/ipv4]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}]
}

}, {
"telemetryDestGroup": {

"attributes": {
"id": "20",
"rn": "dest-20"

},
"children": [{

"telemetryRtDestGroupRel": {
"attributes": {

"rn": "rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetryDest": {

"attributes": {
"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",
"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"

}
}

}]
}

}, {
"telemetrySubscription": {

"attributes": {
"id": "30",
"rn": "subs-30"

},
"children": [{

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",
"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

}
}

}, {

モデル駆動型テレメトリ

48

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成例

"telemetryRsSensorGroupRel": {
"attributes": {

"rType": "mo",
"rn": "rssensorGroupRel-[sys/tm/sensor-10]",
"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",
"tDn": "sys/tm/sensor-10",
"tType": "mo"

}
}

}]
}

}]
}

}

BGP通知のフィルタ条件

次のペイロードの例では、telemetrySensorPathMOの filterCondition属性に従ってBFP機能
が無効になっているときにトリガーされる通知を有効にします。データは 10.30.217.80 ポート

50055にストリーミングされます。

POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "eq(fmBgp.operSt,\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50055",
"enc": "GPB",
"proto": "gRPC"

}
}

}

モデル駆動型テレメトリ

49

モデル駆動型テレメトリ

NX-APIを使用したテレメトリの構成例

]
}

},
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "0",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

テレメトリ構成のための Postmanコレクションの使用

Postmanコレクションの例は、テレメトリ機能の構成を開始する簡単な方法であり、1つのペ
イロードですべてのテレメトリ CLIに相当するものを実行できます。好みのテキストエディ
ターを使用して前述のリンクのファイルを変更し、ペイロードをニーズに合わせて更新してか

ら、Postmanでコレクションを開いてコレクションを実行します。

DMEのテレメトリモデル
テレメトリアプリケーションは、次の構造を持つ DMEでモデル化されます。

model
|----package [name:telemetry]

| @name:telemetry
|----objects

|----mo [name:Entity]
| @name:Entity
| @label:Telemetry System
|--property
| @name:adminSt
| @type:AdminState
|
|----mo [name:SensorGroup]
| | @name:SensorGroup
| | @label:Sensor Group
| |--property
| | @name:id [key]
| | @type:string:Basic
| | @name:dataSrc

モデル駆動型テレメトリ

50

モデル駆動型テレメトリ

DMEのテレメトリモデル

https://github.com/CiscoDevNet/nx-telemetry-proto/tree/master/postman_collections

| | @type:DataSource
| |
| |----mo [name:SensorPath]
| | @name:SensorPath
| | @label:Sensor Path
| |--property
| | @name:path [key]
| | @type:string:Basic
| | @name:filterCondition
| | @type:string:Basic
| | @name:excludeFilter
| | @type:string:Basic
| | @name:depth
| | @type:RetrieveDepth
|
|----mo [name:DestGroup]
| | @name:DestGroup
| | @label:Destination Group
| |--property
| | @name:id
| | @type:string:Basic
| |
| |----mo [name:Dest]
| | @name:Dest
| | @label:Destination
| |--property
| | @name:addr [key]
| | @type:address:Ip
| | @name:port [key]
| | @type:scalar:Uint16
| | @name:proto
| | @type:Protocol
| | @name:enc
| | @type:Encoding
|
|----mo [name:Subscription]

| @name:Subscription
| @label:Subscription
|--property
| @name:id
| @type:scalar:Uint64
|----reldef
| | @name:SensorGroupRel
| | @to:SensorGroup
| | @cardinality:ntom
| | @label:Link to sensorGroup entry
| |--property
| @name:sampleIntvl
| @type:scalar:Uint64
|
|----reldef

| @name:DestGroupRel
| @to:DestGroup
| @cardinality:ntom
| @label:Link to destGroup entry

モデル駆動型テレメトリ

51

モデル駆動型テレメトリ

DMEのテレメトリモデル

テレメトリパスラベル

テレメトリパスラベルについて

NX-OSリリース 9.3(1)以降、モデル駆動型テレメトリはパスラベルをサポートします。パス
ラベルを使用すると、複数のソースからテレメトリデータを一度に簡単に収集できます。この

機能では、収集するテレメトリデータのタイプを指定すると、テレメトリ機能によって複数の

パスからそのデータが収集されます。次に、機能は情報を 1つの統合された場所（パスラベ
ル）に返します。この機能により、次の作業が不要になるため、テレメトリの使用が簡素化さ

れます。

• Cisco DMEモデルに関する深く包括的な知識を持っています。

•収集されるイベントの数と頻度のバランスを取りながら、複数のクエリを作成し、サブス
クリプションに複数のパスを追加します。

•スイッチからテレメトリ情報の複数のチャンクを収集し、有用性を簡素化します。

パスラベルは、モデル内の同じオブジェクトタイプの複数のインスタンスにわたり、カウン

タまたはイベントを収集して返します。パスラベルは、次のテレメトリグループをサポート

します。

•ファン、温度、電力、ストレージ、スーパーバイザ、ラインカードなどのシャーシ情報を
モニタリングする環境。

•すべてのインターフェイスカウンターとステータスの変更をモニタリングするインター
フェイス。

このラベルは、query-conditionコマンドを使用して返されるデータを絞り込むための定義
済みのキーワードフィルタをサポートします。

•リソース。CPU使用率やメモリ使用率などのシステムリソースをモニタリングします。

• VXLAN:VXLANピア、VXLANカウンタ、VLANカウンター、およびBGPピアデータを
含む VXLAN EVPNをモニタリングします。

データの投票またはイベントの受信

センサーグループのサンプル間隔によって、テレメトリデータがパスラベルに送信される方

法とタイミングが決まります。サンプル間隔は、テレメトリデータを定期的に投票するか、イ

ベントが発生したときにテレメトリデータを収集するように構成できます。

•テレメトリのサンプル間隔がゼロ以外の値に設定されている場合、テレメトリは各サンプ
ル間隔中に環境、インターフェイス、情報技術、およびVXLANラベルのデータを定期的
に送信します。

モデル駆動型テレメトリ

52

モデル駆動型テレメトリ

テレメトリパスラベル

•サンプル間隔がゼロに設定されている場合、環境、インターフェイス、情報技術、VXLAN
ラベルで動作状態の更新、およびMOの作成と削除が発生するとテレメトリはイベント通
知を送信します。

データの投票または受信イベントは相互に排他的です。パスラベルごとに投票またはイベント

駆動型テレメトリを構成できます。

パスラベル注意事項と制約事項

テレメトリパスラベル機能には、次の注意事項と制約事項があります。

•この機能は、Cisco DMEデータ送信元のみをサポートします。

•同じセンサーグループ内の通常のDMEパスとユーザビリティパスを混在させて一致させ
ることはできません。たとえば、sys/intfと [インターフェイス（interface）]を同じセン

サーグループに構成することはできません。また、sys/intfと [interface（インターフェイ

ス）]で同じセンサーグループを構成することはできません。この状況が発生した場合、

NX-OSは構成を拒否します。

• oper-speedや counters=[detailed]などのユーザーフィルターキーワードは、[インターフェ

イス（interface）]パスに対してのみサポートされます。

•この機能は、[深度（depth）]や[フィルター条件（filter-condition）]などの他のセンサーパ

スオプションをサポートしていません。

データまたはイベントをポーリングするためのインターフェイスパス

の構成

インターフェイスパスラベルは、すべてのインターフェイスカウンタとステータスの変更を

モニタリングします。次のインターフェイスタイプをサポートします。

•物理

•サブインターフェイス

•管理

•ループバック

• VLAN

•ポートチャネル

インターフェイスパスラベルを構成して、定期的にデータをポーリングするか、イベントを

受信することができます。「データの投票またはイベントの受信（52ページ）」を参照して
ください。

モデル駆動型テレメトリ

53

モデル駆動型テレメトリ

パスラベル注意事項と制約事項

このモデルは、サブインターフェイス、ループバック、または VLANのカウンタをサポート
していないため、ストリームアウトされません。

（注）

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. path interface
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

テレメトリデータのセンサーグループを作成しま

す。

sensor-group sgrp_id

例：

ステップ 3

switch-1(config-telemetry)# sensor-group 6
switch-1(conf-tm-sensor)#

インターフェイスパスラベルを構成して、複数の

個々のインターフェイスに対して 1つのテレメトリ
path interface

例：

ステップ 4

データクエリを送信できるようにします。ラベル
switch-1(conf-tm-sensor)# path interface
switch-1(conf-tm-sensor)# は、複数のインターフェイスのクエリを 1つに統合

します。次に、テレメトリはデータを収集し、ラベ

ルに返します。

モデル駆動型テレメトリ

54

モデル駆動型テレメトリ

データまたはイベントをポーリングするためのインターフェイスパスの構成

目的コマンドまたはアクション

ポーリング間隔の設定方法に応じて、インターフェ

イスデータは定期的に、またはインターフェイスの

状態が変化するたびに送信されます。

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信するか

を決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

非ゼロカウンタのインターフェイスパスの構成

ゼロ以外の値を持つカウンタのみを返す事前定義されたキーワードフィルタを使用して、イン

ターフェイスパスラベルを構成できます。フィルタは counters=[detailed]です。

このフィルタを使用することにより、インターフェイスパスは使用可能なすべてのインター

フェイスカウンターを収集し、収集したデータをフィルタ処理してから、結果を受信側に転送

します。フィルタはオプションであり、使用しない場合、ゼロ値カウンターを含むすべてのカ

ウンターがインターフェイスパスに表示されます。

フィルタの使用は、概念的には show interface mgmt0 counters detailedと類似しています。（注）

モデル駆動型テレメトリ

55

モデル駆動型テレメトリ

非ゼロカウンタのインターフェイスパスの構成

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. path interface query-condition counters=[detailed]
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

テレメトリデータのセンサーグループを作成しま

す。

sensor-group sgrp_id

例：

ステップ 3

switch-1(config-telemetry)# sensor-group 6
switch-1(conf-tm-sensor)#

インターフェイスパスラベルを構成し、すべての

インターフェイスからのゼロ以外のカウンタのみを

照会します。

path interface query-condition counters=[detailed]

例：

switch-1(conf-tm-sensor)# path interface
query-condition counters=[detailed]
switch-1(conf-tm-sensor)#

ステップ 4

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

モデル駆動型テレメトリ

56

モデル駆動型テレメトリ

非ゼロカウンタのインターフェイスパスの構成

目的コマンドまたはアクション

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信するか

を決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

動作速度のインターフェイスパスの構成

指定された動作速度のインターフェイスのカウンタを返す定義済みのキーワードフィルタを使

用して、インターフェイスパスラベルを構成できます。フィルタはoper-speed=[]です。次の

動作速度がサポートされています: auto、10M、100M、1G、10G、40G、200G、および 400G。

このフィルタを使用することにより、インターフェースパスは指定された速度のインターフェー

スのテレメトリデータを収集し、その結果を受信側に転送します。フィルタはオプションで

す。使用しない場合、動作速度に関係なく、すべてのインターフェイスのカウンタが表示され

ます。

フィルタは、複数の速度をコンマ区切りのリストとして受け入れることができます。たとえ

ば、oper-speed=[1G,10G]は、1および 10 Gbpsで動作するインターフェイスのカウンタを取得
します。区切り文字として空白を使用しないでください。

インターフェイスタイプサブインターフェイス、ループバック、および VLANには動作速度
プロパティがないため、フィルタはこれらのインターフェイスタイプをサポートしません。

（注）

モデル駆動型テレメトリ

57

モデル駆動型テレメトリ

動作速度のインターフェイスパスの構成

手順の概要

1. configure terminal
2. telemetry
3. snsr-group sgrp_id sample-interval interval

4. path interface query-condition oper-speed=[speed]
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 3

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信するか

を決定します。

インターフェイスパスラベルを設定し、指定され

た速度 (この例では 1 Gbpsと 40 Gbpsのみ)を実行し
path interface query-condition oper-speed=[speed]

例：

ステップ 4

ているインターフェイスからのカウンターを照会し

ます。
switch-1(conf-tm-sensor)# path interface
query-condition oper-speed=[1G,40G]
switch-1(conf-tm-sensor)#

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

モデル駆動型テレメトリ

58

モデル駆動型テレメトリ

動作速度のインターフェイスパスの構成

目的コマンドまたはアクション

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信するか

を決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

複数のクエリによるインターフェイスパスの構成

インターフェイスパスラベルの同じクエリ条件に対して複数のフィルタを構成できます。そ

の場合、使用する個々のフィルタは ANDで結合されます。

クエリ条件の各フィルタは、コンマを使用して区切ります。query-conditionには、任意の数の
フィルタを指定できますが、追加するフィルタが多いほど、結果の焦点が絞られます。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. path interface query-condition counters=[detailed],oper-speed=[1G,40G]
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

モデル駆動型テレメトリ

59

モデル駆動型テレメトリ

複数のクエリによるインターフェイスパスの構成

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

テレメトリデータのセンサーグループを作成しま

す。

sensor-group sgrp_id

例：

ステップ 3

switch-1(config-telemetry)# sensor-group 6
switch-1(conf-tm-sensor)#

同じクエリで複数の条件を構成します。この例で

は、クエリは次の両方を実行します。

path interface query-condition
counters=[detailed],oper-speed=[1G,40G]

例：

ステップ 4

• 1 Gbpsで実行されているインターフェイスでゼ
ロ以外のカウンターを収集して返します。switch-1(conf-tm-sensor)# path interface

query-condition
counters=[detailed],oper-speed=[1G,40G]
switch-1(conf-tm-sensor)#

• 40 Gbpsで実行されているインターフェイスで
ゼロ以外のカウンターを収集して返します。

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

モデル駆動型テレメトリ

60

モデル駆動型テレメトリ

複数のクエリによるインターフェイスパスの構成

目的コマンドまたはアクション

位）を設定します。サンプリング間隔は、スイッチ

がテレメトリデータを定期的に送信するか、イン

switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

ターフェイスイベントが発生したときに送信するか

を決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

データまたはイベントをポーリングするための環境パスの構成

環境パスラベルは、ファン、温度、電源、ストレージ、スーパーバイザ、ラインカードなどの

シャーシ情報をモニタリングします。テレメトリデータを定期的にポーリングするか、イベン

トが発生したときにデータを取得するように環境パスを構成できます。詳細については、デー

タの投票またはイベントの受信（52ページ）を参照してください。

定期的なポーリングまたはイベントに基づいてシステムリソース情報を返すようにリソース

パスを設定できます。このパスはフィルタリングをサポートしていません。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. path environment
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

モデル駆動型テレメトリ

61

モデル駆動型テレメトリ

データまたはイベントをポーリングするための環境パスの構成

目的コマンドまたはアクション

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

テレメトリデータのセンサーグループを作成しま

す。

sensor-group sgrp_id

例：

ステップ 3

switch-1(config-telemetry)# sensor-group 6
switch-1(conf-tm-sensor)#

複数の個々の環境オブジェクトのテレメトリデータ

をラベルに送信できるようにする環境パスラベルを

path environment

例：

ステップ 4

構成します。ラベルは、複数のデータ入力を 1つの
出力に統合します。

switch-1(conf-tm-sensor)# path environment
switch-1(conf-tm-sensor)#

サンプル間隔に応じて、環境データはポーリング間

隔に基づいてストリーミングされるか、イベントが

発生したときに送信されます。

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、環境イ

ベントが発生したときに送信するかを決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

モデル駆動型テレメトリ

62

モデル駆動型テレメトリ

データまたはイベントをポーリングするための環境パスの構成

イベントまたはデータをポーリングするためのリソースパスの構成

リソースパスは、CPU使用率やメモリ使用率などのシステムリソースをモニタリングします。
このパスを構成して、テレメトリデータを定期的に収集するか、イベントが発生したときに収

集できます。データの投票またはイベントの受信（52ページ）を参照してください。

このパスはフィルタリングをサポートしていません。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. path resources
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

テレメトリデータのセンサーグループを作成しま

す。

sensor-group sgrp_id

例：

ステップ 3

switch-1(config-telemetry)# sensor-group 6
switch-1(conf-tm-sensor)#

複数の個々のシステムリソースのテレメトリデー

タをラベルに送信できるようにするリソースパス

path resources

例：

ステップ 4

ラベルを構成します。ラベルは、複数のデータ入力

を 1つの出力に統合します。
switch-1(conf-tm-sensor)# path resources
switch-1(conf-tm-sensor)#

サンプル間隔に応じて、リソースデータはポーリン

グ間隔に基づいてストリーミングされるか、システ

モデル駆動型テレメトリ

63

モデル駆動型テレメトリ

イベントまたはデータをポーリングするためのリソースパスの構成

目的コマンドまたはアクション

ムメモリが「NotOK」に変更されたときに送信され
ます。

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、リソー

スイベントが発生したときに送信するかを決定しま

す。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

イベントまたはデータをポーリングするための VXLANパスの構成
VXLANパスラベルは、VXLANピア、VXLANカウンタ、VLANカウンタ、BGPピアデータ
など、スイッチの仮想拡張 LAN EVPNに関する情報を提供します。このパスラベルを構成し
て、定期的に、またはイベントが発生したときにテレメトリ情報を収集できます。「データの

投票またはイベントの受信（52ページ）」を参照してください。

このパスはフィルタリングをサポートしていません。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

モデル駆動型テレメトリ

64

モデル駆動型テレメトリ

イベントまたはデータをポーリングするための VXLANパスの構成

4. vxlan environment
5. destination-group grp_id

6. ip address ip_addr port port

7. subscription sub_id

8. snsr-group sgrp_id sample-interval interval

9. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

テレメトリデータのセンサーグループを作成しま

す。

sensor-group sgrp_id

例：

ステップ 3

switch-1(config-telemetry)# sensor-group 6
switch-1(conf-tm-sensor)#

複数の個々の VXLANオブジェクトのテレメトリ
データをラベルに送信できるようにする VXLANパ

vxlan environment

例：

ステップ 4

スラベルを構成します。ラベルは、複数のデータ入
switch-1(conf-tm-sensor)# vxlan environment
switch-1(conf-tm-sensor)# 力を 1つの出力に統合します。サンプル間隔に応じ

て、VXLANデータはポーリング間隔に基づいてス
トリーミングされるか、イベントが発生したときに

送信されます。

テレメトリ接続先グループサブモードに入り、接続

先グループを構成します。

destination-group grp_id

例：

ステップ 5

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを構成し

て、指定された IPアドレスとポートにストリーミン
グします。

ip address ip_addr port port

例：

switch-1(conf-tm-dest)# ip address 1.2.3.4 port
50004
switch-1(conf-tm-dest)#

ステップ 6

モデル駆動型テレメトリ

65

モデル駆動型テレメトリ

イベントまたはデータをポーリングするための VXLANパスの構成

目的コマンドまたはアクション

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションにリ

ンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 8

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、VXLAN
イベントが発生したときに送信するかを決定しま

す。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 9

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

パスラベル構成を確認

いつでも、パスラベルが構成されていることを確認し、実行中のテレメトリ構成を表示してそ

の値を確認できます。

手順の概要

1. show running-config-telemetry

手順の詳細

手順

目的コマンドまたはアクション

テレメトリの現在の実行構成を表示します。show running-config-telemetry

例：

ステップ 1

この例では、センサーグループ 4は、1および 10
Gbpsで実行されているインターフェイスからゼロ以switch-1(conf-tm-sensor)# show running-config

telemetry 外のカウンターを収集するように構成されていま

す。センサーグループ 6は、1と 40 Gbpsで実行さ!Command: show running-config telemetry
れているインターフェイスからすべてのカウンター

を収集するように構成されています。

!Running configuration last done at: Mon Jun 10
08:10:17 2019
!Time: Mon Jun 10 08:10:17 2019

version 9.3(1) Bios:version
feature telemetry

telemetry
destination-profile

モデル駆動型テレメトリ

66

モデル駆動型テレメトリ

パスラベル構成を確認

目的コマンドまたはアクション

use-nodeid tester
sensor-group 4
path interface query-condition

and(counters=[detailed],oper-speed=[1G,10G])
sensor-group 6
path interface query-condition

oper-speed=[1G,40G]
subscription 6
snsr-grp 6 sample-interval 6000

nxosv2(conf-tm-sensor)#

パスラベル情報の表示

パスラベル表示コマンド

show telemetry usabilityコマンドを使用すると、クエリを発行したときにパスラベルがたどる
個々のパスを表示できます。

表示内容コマンド

すべてのパスラベルのすべてのテレメトリパ

ス、または指定されたパスラベルのすべての

テレメトリパス。また、出力には、各パスが

定期的なポーリングまたはイベントに基づい

てテレメトリデータを報告するかどうかが示

されます。

インターフェイスパスラベルには、設定した

キーワードフィルタまたはクエリ条件も含ま

れます。

show telemetry usability {all | environment |
interface | resources | vxlan}

テレメトリと選択されたパス情報の実行構成。show running-config telemetry

コマンドの例

show telemetry usability allコマンドは、このセクションに示されている個々のコマンドをすべ
て連結したものです。

（注）

show telemetry usability environmentコマンドの例を次に示します。

switch-1# show telemetry usability environment
1) label_name : environment

path_name : sys/ch
query_type : poll
query_condition :

rsp-subtree=full&query-target=subtree&target-subtree-class=eqptPsuSlot,eqptFtSlot,eqptSupCSlot,eqptPsu,eqptFt,eqptSensor,eqptLCSlot

モデル駆動型テレメトリ

67

モデル駆動型テレメトリ

パスラベル情報の表示

2) label_name : environment

path_name : sys/ch
query_type : event
query_condition :

rsp-subtree=full&query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(eqptFan.operSt),ne(eqptFan.operSt,"ok")),and(updated(eqptDimm.operSt),ne(eqptDimm.operSt,"ok")),and(updated(eqptFlash.operSt),ne(eqptFlash.operSt,"ok")),and(updated(eqptSpromSup.operSt),ne(eqptSpromSup.operSt,"ok")),and(updated(eqptSpromLc.operSt),ne(eqptSpromLc.operSt,"ok"))))
switch-1#

show telemetry usability interfaceコマンドの出力を次に示します。

switch-1# show telemetry usability interface
1) label_name : interface

path_name : sys/intf
query_type : poll
query_condition :

query-target=children&query-target-filter=eq(l1PhysIf.adminSt,"up")&rsp-subtree=children&rsp-subtree-class=rmonEtherStats,rmonIfIn,rmonIfOut,rmonIfHCIn,rmonIfHCOut

2) label_name : interface

path_name : sys/mgmt-[mgmt0]
query_type : poll
query_condition :

query-target=subtree&query-target-filter=eq(mgmtMgmtIf.adminSt,"up")&rsp-subtree=full&rsp-subtree-class=rmonEtherStats,rmonIfIn,rmonIfOut,rmonIfHCIn,rmonIfHCOut

3) label_name : interface

path_name : sys/intf
query_type : event
query_condition :

query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(ethpmPhysIf.operSt),eq(ethpmPhysIf.operSt,"down")),and(updated(ethpmPhysIf.operSt),eq(ethpmPhysIf.operSt,"up")),and(updated(ethpmLbRtdIf.operSt),eq(ethpmLbRtdIf.operSt,"down")),and(updated(ethpmLbRtdIf.operSt),eq(ethpmLbRtdIf.operSt,"up")),and(updated(ethpmAggrIf.operSt),eq(ethpmAggrIf.operSt,"down")),and(updated(ethpmAggrIf.operSt),eq(ethpmAggrIf.operSt,"up")),and(updated(ethpmEncRtdIf.operSt),eq(
ethpmEncRtdIf.operSt,"down")),and(updated(ethpmEncRtdIf.operSt),eq(ethpmEncRtdIf.operSt,"up"))))

4) label_name : interface

path_name : sys/mgmt-[mgmt0]
query_type : event
query_condition :

query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(imMgmtIf.operSt),eq(imMgmtIf.operSt,"down")),and(updated(imMgmtIf.operSt),eq(imMgmtIf.operSt,"up"))))
switch-1#

show telemetry usability resourcesコマンドの例を次に示します。
switch-1# show telemetry usability resources
1) label_name : resources

path_name : sys/proc
query_type : poll
query_condition : rsp-subtree=full&rsp-foreign-subtree=ephemeral

2) label_name : resources

path_name : sys/procsys
query_type : poll
query_condition :

query-target=subtree&target-subtree-class=procSystem,procSysCore,procSysCpuSummary,procSysCpu,procIdle,procIrq,procKernel,procNice,procSoftirq,procTotal,procUser,procWait,procSysCpuHistory,procSysLoad,procSysMem,procSysMemFree,procSysMemUsage,procSysMemUsed

3) label_name : resources

path_name : sys/procsys/sysmem

モデル駆動型テレメトリ

68

モデル駆動型テレメトリ

パスラベル情報の表示

query_type : event
query_condition :

query-target-filter=and(updated(procSysMem.memstatus),ne(procSysMem.memstatus,"OK"))

switch-1#

show telemetry usability vxlanコマンドの例を次に示します。
switch-1# show telemetry usability vxlan
1) label_name : vxlan

path_name : sys/bd
query_type : poll
query_condition : query-target=subtree&target-subtree-class=l2VlanStats

2) label_name : vxlan

path_name : sys/eps
query_type : poll
query_condition : rsp-subtree=full&rsp-foreign-subtree=ephemeral

3) label_name : vxlan

path_name : sys/eps
query_type : event
query_condition : query-target=subtree&target-subtree-class=nvoDyPeer

4) label_name : vxlan

path_name : sys/bgp
query_type : event
query_condition : query-target=subtree&query-target-filter=or(deleted(),created())

5) label_name : vxlan

path_name : sys/bgp
query_type : event
query_condition :

query-target=subtree&target-subtree-class=bgpDom,bgpPeer,bgpPeerAf,bgpDomAf,bgpPeerAfEntry,bgpOperRtctrlL3,bgpOperRttP,bgpOperRttEntry,bgpOperAfCtrl

switch-1#

ネイティブデータ送信元パス

ネイティブデータ送信元パスについて

NX-OSテレメトリは、特定のインフラストラクチャまたはデータベースに限定されないニュー
トラルデータ送信元であるネイティブデータソースをサポートします。代わりに、ネイティ

ブデータ送信元を使用すると、コンポーネントまたはアプリケーションをフックして、関連

情報を発信テレメトリストリームに挿入できます。ネイティブデータ送信元のパスはインフ

ラストラクチャに属さないため、この機能は柔軟性を提供し、ネイティブアプリケーションは

NX-OSテレメトリと対話できます。

モデル駆動型テレメトリ

69

モデル駆動型テレメトリ

ネイティブデータ送信元パス

ネイティブデータ送信元パスを使用すると、特定のセンサーパスに登録して、セレクトした

テレメトリデータを受信できます。この機能は NX-SDKと連携して、次のパスからのテレメ
トリデータのストリーミングをサポートします。

• IPルートのテレメトリデータを送信する RIBパス。

•静的および動的MACエントリのテレメトリデータを送信するMACパス。

• IPv4と IPv6隣接のテレメトリデータを送信する隣接関係パス。

サブスクリプションを作成すると、選択したパスのすべてのテレメトリデータが基準値として

受信者にストリーミングされます。基準値の後、イベント通知のみが受信者にストリーミング

されます。

ネイティブデータ送信元パスのストリーミングは、次のエンコーディングタイプをサポート

します：

• Google Protobuf（GPB）

• JavaScript Object Notation（JSON）

•コンパクト Google Protobuf (コンパクト GPB)

ネイティブデータ送信元パス用にストリーミングされるテレメトリ

データ

次の表は、各ソースパスについて、サブスクリプションが最初に作成されたとき（ベースライ

ン）とイベント通知が発生したときにストリーミングされる情報を示しています。

モデル駆動型テレメトリ

70

モデル駆動型テレメトリ

ネイティブデータ送信元パス用にストリーミングされるテレメトリデータ

イベント通知（Event
Notifications）

サブスクリプションベースラ

イン

Path Type

全てのルートの送信RIB

モデル駆動型テレメトリ

71

モデル駆動型テレメトリ

ネイティブデータ送信元パス用にストリーミングされるテレメトリデータ

イベント通知（Event
Notifications）

サブスクリプションベースラ

イン

Path Type

イベントの作成、更新、およ

び削除に関するイベント通知

を送信します。次の値は、RIB
パスのテレメトリを介してエ

クスポートされます：

•ネクストホップルーティ
ング情報：

•ネクストホップのア
ドレス

•ネクストホップの発
信インターフェイス

•ネクストホップの
VRF名

•ネクストホップの所
有者

•ネクストホップの優
先度

•ネクストホップのメ
トリック

•ネクストホップのタ
グ

•ネクストホップのセ
グメント識別子

•ネクストホップのト
ンネル識別子

•ネクストホップのカ
プセル化タイプ

•ネクストホップタイ
プのフラグのビット

ごとの OR

•レイヤ 3のルーティング
情報を検証する：

•ルートの VRF名

•ルートプレフィック

モデル駆動型テレメトリ

72

モデル駆動型テレメトリ

ネイティブデータ送信元パス用にストリーミングされるテレメトリデータ

イベント通知（Event
Notifications）

サブスクリプションベースラ

イン

Path Type

スアドレス

•ルートのマスク長

•ルートのネクスト
ホップ数

•イベントの種類

•ネクストホップ

イベントの追加、更新および

削除に関するイベント通知を

送信します。次の値は、MAC
パスのテレメトリを通じてエ

クスポートされます：

• MACアドレス（MAC
address）

• MACアドレスタイプ

• VLAN番号

•インターフェイス名

•イベントタイプ

イベント通知では、静的エン

トリーとダイナミックエント

リーの両方がサポートされて

います。

静的およびダイナミックMAC
エントリに対して DMEから
GETALLを実行します。

MAC

モデル駆動型テレメトリ

73

モデル駆動型テレメトリ

ネイティブデータ送信元パス用にストリーミングされるテレメトリデータ

イベント通知（Event
Notifications）

サブスクリプションベースラ

イン

Path Type

イベントの追加、更新および

削除に関するイベント通知を

送信します。次の値は、隣接

関係（アジャセンシー）パス

のテレメトリを通じてエクス

ポートされます：

• IPアドレス

• MACアドレス

•インターフェイス名

•物理インターフェイス名

• VRF名

•プリファレンス

•隣接の送信元

•隣接関係（アジャセン
シー）のアドレスファミ

リ

•隣接関係（アジャセン
シー）のイベントタイプ

IPv4および IPv6隣接関係（ア
ジャセンシー）を送信しま

す。

隣接

詳細については、Github https://github.com/CiscoDevNet/nx-telemetry-protoを参照してください。

ネイティブデータソースパスの注意事項と制限事項

ネイティブデータ送信元パス機能には、次の注意事項と制約事項があります。

• RIB、MAC、および隣接関係（アジャセンシー）のネイティブデータ送信元パスからのス
トリーミングの場合、センサーパスプロパティの更新は、depth、query-conditionあるい
は、filter-conditionなどのカスタム基準をサポートしません。

• Cisco NX-OSリリース 10.4(3)F以降では、RIBネイティブパスのサンプルベースのサブス
クリプションまたは更新のみをサポートする、新しいクエリ条件が導入されています。

ルーティング情報のネイティブデータ送信元パスの構成

URIBに含まれるすべてのルートに関する情報を送信するルーティング情報のネイティブデー
タ送信元パスを構成できます。登録すると、基準値はすべてのルート情報を送信します。ベー

スラインの後、スイッチがサポートするルーティングプロトコルのルート更新と削除操作につ

モデル駆動型テレメトリ

74

モデル駆動型テレメトリ

ネイティブデータソースパスの注意事項と制限事項

https://github.com/CiscoDevNet/nx-telemetry-proto

いて通知が送信されます。RIB通知で送信されるデータについては、ネイティブデータ送信元
パス用にストリーミングされるテレメトリデータ（70ページ）を参照してください。

始める前に

テレメトリ機能を有効にしていない場合は、ここで有効にします（feature telemetry）。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. data-source native
5. path rib query-condition [data=ephemeral | updates_only]
6. destination-group grp_id

7. ip address ip_addr port port protocol { HTTP | gRPC } encoding { JSON | GPB |
GPB-compact }

8. subscription sub_id

9. snsr-group sgrp_id sample-interval interval

10. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

センサーグループを作成します。sensor-group sgrp_id

例：

ステップ 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

特定のモデルやデータベースを必要とせずに、ネイ

ティブアプリケーションがストリームデータを使

data-source native

例：

ステップ 4

用できるように、データ送信元をネイティブに設定

します。
switch-1(conf-tm-sensor)# data-source native
switch-1(conf-tm-sensor)#

モデル駆動型テレメトリ

75

モデル駆動型テレメトリ

ルーティング情報のネイティブデータ送信元パスの構成

目的コマンドまたはアクション

ルートとルートアップデート情報をストリーミン

グする RIBパスを構成します。
path rib query-condition [data=ephemeral |
updates_only]

例：

ステップ 5

query condition data=ephemeral（オプション）：サ
ンプル間隔0または0以外を設定できます。このサnxosv2(conf-tm-sensor)# path rib

nxosv2(conf-tm-sensor)#
ンプル間隔によって、接続先にルート情報が定期的

例： に送信される頻度が決まります（構成されたサンプ

ル間隔で）。nxosv2(conf-tm-sensor)# path rib query condition
data=ephemeral
nxosv2(conf-tm-sensor)# query condition updates-only（オプション）：サン

プル間隔0でのみサポートされます。このクエリ条例：
件では、最初のスナップショットデータは送信されnxosv2(conf-tm-sensor)# path rib query condition

updates_only
nxosv2(conf-tm-sensor)#

ず、ルート情報の更新のみが接続先に送信されま

す。

テレメトリ接続先グループサブモードに入り、接

続先グループを構成します。

destination-group grp_id

例：

ステップ 6

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを、指定

された IPアドレスとポートにストリーミングする
ip address ip_addr port port protocol {HTTP | gRPC
} encoding { JSON | GPB | GPB-compact }

例：

ステップ 7

ように構成し、データストリームのプロトコルと

エンコードを設定します。switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol http encoding json
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb-compact
switch-1(conf-tm-dest)#

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションに

リンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 9

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、ribイ
ベントが発生したときに送信するかを決定します。

（注）

モデル駆動型テレメトリ

76

モデル駆動型テレメトリ

ルーティング情報のネイティブデータ送信元パスの構成

目的コマンドまたはアクション

サンプリング間隔に応じて、ribセンサーパスは
ポーリング間隔に基づいてストリーミングします。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 10

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

MAC情報のネイティブデータ送信元パスの構成
MACテーブルのすべてのエントリに関する情報を送信するMAC情報のネイティブデータ送
信元パスを構成できます。登録すると、基準値はすべてのMAC情報を送信します。基準値の
後、MACアドレスの追加、更新、および削除操作の通知が送信されます。MAC通知で送信さ
れるデータについては、ネイティブデータ送信元パス用にストリーミングされるテレメトリ

データ（70ページ）を参照してください。

更新または削除イベントの場合、MAC通知は、IP隣接関係を持つMACアドレスに対しての
み送信されます。

（注）

始める前に

テレメトリ機能を有効にしていない場合は、ここで有効にします（feature telemetry）。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. data-source native
5. path mac
6. destination-group grp_id

7. ip address ip_addr port port protocol { HTTP | gRPC } encoding { JSON | GPB |
GPB-compact }

8. subscription sub_id

9. snsr-group sgrp_id sample-interval interval

10. dst-group dgrp_id

モデル駆動型テレメトリ

77

モデル駆動型テレメトリ

MAC情報のネイティブデータ送信元パスの構成

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

センサーグループを作成します。sensor-group sgrp_id

例：

ステップ 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

特定のモデルやデータベースを必要とせずに、ネイ

ティブアプリケーションがストリームデータを使

data-source native

例：

ステップ 4

用できるように、データ送信元をネイティブに設定

します。
switch-1(conf-tm-sensor)# data-source native
switch-1(conf-tm-sensor)#

MACエントリおよびMAC通知に関する情報をス
トリームするMACパスを構成します。

path mac

例：

ステップ 5

nxosv2(conf-tm-sensor)# path mac
nxosv2(conf-tm-sensor)#

テレメトリ接続先グループサブモードに入り、接

続先グループを構成します。

destination-group grp_id

例：

ステップ 6

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを、指定

された IPアドレスとポートにストリーミングする
ip address ip_addr port port protocol {HTTP | gRPC
} encoding { JSON | GPB | GPB-compact }

例：

ステップ 7

ように構成し、データストリームのプロトコルと

エンコードを設定します。switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol http encoding json
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb
switch-1(conf-tm-dest)#

例：

モデル駆動型テレメトリ

78

モデル駆動型テレメトリ

MAC情報のネイティブデータ送信元パスの構成

目的コマンドまたはアクション

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb-compact
switch-1(conf-tm-dest)#

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションに

リンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 9

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信する

かを決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 10

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

すべてのMAC情報のネイティブデータ送信元パスの構成
レイヤ 3およびレイヤ 2から、MACテーブルのすべてのエントリに関する情報を送信する
MAC情報のネイティブデータ送信元パスを構成できます。登録すると、基準値はすべての
MAC情報を送信します。基準値の後、MACアドレスの追加、更新、および削除操作の通知が
送信されます。MAC通知で送信されるデータについては、ネイティブデータ送信元パス用に
ストリーミングされるテレメトリデータ（70ページ）を参照してください。

更新または削除イベントの場合、MAC通知は、IP隣接関係を持つMACアドレスに対しての
み送信されます。

（注）

始める前に

テレメトリ機能を有効にしていない場合は、ここで有効にします（feature telemetry）。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. data-source native
5. path mac-all

モデル駆動型テレメトリ

79

モデル駆動型テレメトリ

すべてのMAC情報のネイティブデータ送信元パスの構成

6. destination-group grp_id

7. ip address ip_addr port port protocol { HTTP | gRPC } encoding { JSON | GPB |
GPB-compact }

8. subscription sub_id

9. snsr-group sgrp_id sample-interval interval

10. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

センサーグループを作成します。sensor-group sgrp_id

例：

ステップ 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

特定のモデルやデータベースを必要とせずに、ネイ

ティブアプリケーションがストリームデータを使

data-source native

例：

ステップ 4

用できるように、データ送信元をネイティブに設定

します。
switch-1(conf-tm-sensor)# data-source native
switch-1(conf-tm-sensor)#

すべてのMACエントリおよびMAC通知に関する
情報をストリームするMACパスを構成します。

path mac-all

例：

ステップ 5

nxosv2(conf-tm-sensor)# path mac-all
nxosv2(conf-tm-sensor)#

テレメトリ接続先グループサブモードに入り、接

続先グループを構成します。

destination-group grp_id

例：

ステップ 6

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを、指定

された IPアドレスとポートにストリーミングする
ip address ip_addr port port protocol {HTTP | gRPC
} encoding { JSON | GPB | GPB-compact }

例：

ステップ 7

ように構成し、データストリームのプロトコルと

エンコードを設定します。

モデル駆動型テレメトリ

80

モデル駆動型テレメトリ

すべてのMAC情報のネイティブデータ送信元パスの構成

目的コマンドまたはアクション

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol http encoding json
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb-compact
switch-1(conf-tm-dest)#

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションに

リンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 9

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信する

かを決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 10

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

IP隣接のネイティブデータパスの構成
スイッチのすべての IPv4と IPv6隣接に関する情報を送信する IP隣接情報のネイティブデー
タ送信元パスを構成できます。登録すると、基準値はすべての隣接情報を送信します。基準値

の後、隣接操作の追加、更新、および削除に関する通知が送信されます。隣接関係通知で送信

されるデータについては、ネイティブデータ送信元パス用にストリーミングされるテレメト

リデータ（70ページ）を参照してください。

始める前に

テレメトリ機能を有効にしていない場合は、ここで有効にします（feature telemetry）。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

モデル駆動型テレメトリ

81

モデル駆動型テレメトリ

IP隣接のネイティブデータパスの構成

4. data-source native
5. path adjacency
6. destination-group grp_id

7. ip address ip_addr port port protocol { HTTP | gRPC } encoding { JSON | GPB |
GPB-compact }

8. subscription sub_id

9. snsr-group sgrp_id sample-interval interval

10. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

センサーグループを作成します。sensor-group sgrp_id

例：

ステップ 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

ネイティブアプリケーションがストリームデータ

を使用できるように、データ送信元をネイティブに

設定します。

data-source native

例：

switch-1(conf-tm-sensor)# data-source native
switch-1(conf-tm-sensor)#

ステップ 4

IPv4と IPv6隣接に関する情報をストリームする隣
接パスを構成します。

path adjacency

例：

ステップ 5

nxosv2(conf-tm-sensor)# path adjacency
nxosv2(conf-tm-sensor)#

テレメトリ接続先グループサブモードに入り、接

続先グループを構成します。

destination-group grp_id

例：

ステップ 6

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

モデル駆動型テレメトリ

82

モデル駆動型テレメトリ

IP隣接のネイティブデータパスの構成

目的コマンドまたはアクション

サブスクリプションのテレメトリデータを、指定

された IPアドレスとポートにストリーミングする
ip address ip_addr port port protocol {HTTP | gRPC
} encoding { JSON | GPB | GPB-compact }

例：

ステップ 7

ように構成し、データストリームのプロトコルと

エンコードを設定します。switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol http encoding json
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb-compact
switch-1(conf-tm-dest)#

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションに

リンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 9

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、イン

ターフェイスイベントが発生したときに送信する

かを決定します。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 10

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

ネイティブデータソースパス情報の表示

NX-OSの show telemetry event collectorコマンドを使用して、ネイティブデータソースパス
の統計情報とカウンタ、またはエラーを表示できます。

統計情報の表示

show telemetry event collector statsコマンドを発行して、各ネイティブデータソースパスの統
計情報とカウンタを表示できます。

RIBパスの統計情報の例：
switch-1# show telemetry event collector stats

モデル駆動型テレメトリ

83

モデル駆動型テレメトリ

ネイティブデータソースパス情報の表示

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 4 Mon Jul 01 13:53:42.384 PST rib(1)
switch-1#

MACパスの統計情報の例：
switch-1# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 3 Mon Jul 01 14:01:32.161 PST mac(1)
switch-1#

隣接パスの統計情報の例：

switch-1# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 7 Mon Jul 01 14:47:32.260 PST adjacency(1)
switch-1#

エラーカウンタの表示

show telemetry event collector statsコマンドを使用して、すべてのネイティブデータソースパ
スのエラーの合計を表示できます。

switch-1# show telemetry event collector errors

-
Error Description Error Count

-
Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
switch-1#

ストリーミング Syslog

テレメトリ用のストリーミング Syslogについて
Cisco NX-OSリリース 9.3(3)以降、モデル駆動型テレメトリは、YANGをデータソースとして
使用するsyslogのストリーミングをサポートします。サブスクリプションを作成すると、すべ
ての syslogが基準値として受信者にストリーミングされます。この機能は NX-SDKと連携し
て、次の syslogパスからのストリーミング syslogデータをサポートします。

モデル駆動型テレメトリ

84

モデル駆動型テレメトリ

ストリーミング Syslog

• Cisco-NX-OS-Syslog-oper:syslog

• Cisco-NX-OS-Syslog-oper:syslog/messages

基準値の後は、syslogイベント通知のみが受信者にストリーミングされます。syslogパスのス
トリーミングは、次のエンコーディングタイプをサポートします：

• Google Protobuf（GPB）

• JavaScript Object Notation（JSON）

ルーティング情報のネイティブデータ送信元パスの構成

URIBに含まれるすべてのルートに関する情報を送信するルーティング情報のネイティブデー
タ送信元パスを構成できます。登録すると、基準値はすべてのルート情報を送信します。ベー

スラインの後、スイッチがサポートするルーティングプロトコルのルート更新と削除操作につ

いて通知が送信されます。RIB通知で送信されるデータについては、ネイティブデータ送信元
パス用にストリーミングされるテレメトリデータ（70ページ）を参照してください。

始める前に

テレメトリ機能を有効にしていない場合は、ここで有効にします（feature telemetry）。

手順の概要

1. configure terminal
2. telemetry
3. sensor-group sgrp_id

4. data-source native
5. path rib query-condition [data=ephemeral | updates_only]
6. destination-group grp_id

7. ip address ip_addr port port protocol { HTTP | gRPC } encoding { JSON | GPB |
GPB-compact }

8. subscription sub_id

9. snsr-group sgrp_id sample-interval interval

10. dst-group dgrp_id

手順の詳細

手順

目的コマンドまたはアクション

コンフィギュレーションモードを入力します。configure terminal

例：

ステップ 1

switch-1# configure terminal
switch-1(config)#

モデル駆動型テレメトリ

85

モデル駆動型テレメトリ

ルーティング情報のネイティブデータ送信元パスの構成

目的コマンドまたはアクション

テレメトリ機能の構成モードに入ります。telemetry

例：

ステップ 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

センサーグループを作成します。sensor-group sgrp_id

例：

ステップ 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

特定のモデルやデータベースを必要とせずに、ネイ

ティブアプリケーションがストリームデータを使

data-source native

例：

ステップ 4

用できるように、データ送信元をネイティブに設定

します。
switch-1(conf-tm-sensor)# data-source native
switch-1(conf-tm-sensor)#

ルートとルートアップデート情報をストリーミン

グする RIBパスを構成します。
path rib query-condition [data=ephemeral |
updates_only]

例：

ステップ 5

query condition data=ephemeral（オプション）：サ
ンプル間隔0または0以外を設定できます。このサnxosv2(conf-tm-sensor)# path rib

nxosv2(conf-tm-sensor)#
ンプル間隔によって、接続先にルート情報が定期的

例： に送信される頻度が決まります（構成されたサンプ

ル間隔で）。nxosv2(conf-tm-sensor)# path rib query condition
data=ephemeral
nxosv2(conf-tm-sensor)# query condition updates-only（オプション）：サン

プル間隔0でのみサポートされます。このクエリ条例：
件では、最初のスナップショットデータは送信されnxosv2(conf-tm-sensor)# path rib query condition

updates_only
nxosv2(conf-tm-sensor)#

ず、ルート情報の更新のみが接続先に送信されま

す。

テレメトリ接続先グループサブモードに入り、接

続先グループを構成します。

destination-group grp_id

例：

ステップ 6

switch-1(conf-tm-sensor)# destination-group 33
switch-1(conf-tm-dest)#

サブスクリプションのテレメトリデータを、指定

された IPアドレスとポートにストリーミングする
ip address ip_addr port port protocol {HTTP | gRPC
} encoding { JSON | GPB | GPB-compact }

例：

ステップ 7

ように構成し、データストリームのプロトコルと

エンコードを設定します。switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol http encoding json
switch-1(conf-tm-dest)#

例：

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb
switch-1(conf-tm-dest)#

例：

モデル駆動型テレメトリ

86

モデル駆動型テレメトリ

ルーティング情報のネイティブデータ送信元パスの構成

目的コマンドまたはアクション

switch-1(conf-tm-dest)# ip address 192.0.2.11
port 50001 protocol grpc encoding gpb-compact
switch-1(conf-tm-dest)#

テレメトリサブスクリプションサブモードに入り、

テレメトリサブスクリプションを構成します。

subscription sub_id

例：

ステップ 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

センサーグループを現在のサブスクリプションに

リンクして、データのサンプリング間隔（ミリ秒単

snsr-group sgrp_id sample-interval interval

例：

ステップ 9

位）を設定します。サンプリング間隔は、スイッチ
switch-1(conf-tm-sub)# snsr-grp 6 sample-interval
5000
switch-1(conf-tm-sub)#

がテレメトリデータを定期的に送信するか、ribイ
ベントが発生したときに送信するかを決定します。

（注）

サンプリング間隔に応じて、ribセンサーパスは
ポーリング間隔に基づいてストリーミングします。

接続先グループをこのサブスクリプションにリンク

します。指定する接続先グループは、

dst-group dgrp_id

例：

ステップ 10

destination-groupコマンドで設定した接続先グルー
プと一致する必要があります。

switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

Syslogパスのテレメトリデータストリーミング
送信元パスごとに、次のテーブルは、サブスクリプションが最初に作成されるときの「ベース

ライン」で、そしてイベントの通知が発生するときに、どんな情報がストリーミングされるか

を示しています。

モデル駆動型テレメトリ

87

モデル駆動型テレメトリ

Syslogパスのテレメトリデータストリーミング

イベント通知サブスクリプションベースラ

イン

パス

スイッチで発生した syslogの
イベント通知を送信します。

• message-id

• node-name

• time-stamp

• time-of-day

• time-zone

• category

• message-name

•重大度

• text

スイッチから既存のすべての

syslogをストリーミングしま
す。

Cisco-NX-OS-Syslog-oper:syslog/messages

syslogパス情報の表示

syslogパスの統計情報とカウンタ、またはエラーを表示するには、CiscoNX-OSの showtelemetry
event collectorコマンドを使用します。

統計情報の表示

show telemetry event collector statsコマンドを入力すると、syslogパスごとの統計情報とカウン
タを表示できます。

次に、syslogパスの統計情報の例を示します。
switch# show telemetry event collector stats

--
Row ID Collection Count Latest Collection Time Sensor Path(GroupId)
--
1 138 Tue Dec 03 11:20:08.200 PST
Cisco-NX-OS-Syslog-oper:syslog(1)
2 138 Tue Dec 03 11:20:08.200 PST
Cisco-NX-OS-Syslog-oper:syslog/messages(1)

エラーカウンタの表示

show telemetry event collector errorsコマンドを使用すると、すべての syslogパスのエラーの合
計を表示できます。

switch(config-if)# show telemetry event collector errors

--
Error Description Error Count
--
Dme Event Subscription Init Failures - 0

モデル駆動型テレメトリ

88

モデル駆動型テレメトリ

Syslogパスのテレメトリデータストリーミング

Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0

JSON出力の例
次に、JSON出力のサンプルを示します。

172.19.216.13 - - [03/Dec/2019 19:38:50] "POST
/network/Cisco-NX-OS-Syslog-oper%3Asyslog%2Fmessages HTTP/1.0" 200 -
172.19.216.13 - - [03/Dec/2019 19:38:50] "POST
/network/Cisco-NX-OS-Syslog-oper%3Asyslog%2Fmessages HTTP/1.0" 200 -
>>> URL : /network/Cisco-NX-OS-Syslog-oper%3Asyslog%2Fmessages
>>> TM-HTTP-VER : 1.0.0
>>> TM-HTTP-CNT : 1
>>> Content-Type : application/json
>>> Content-Length : 578

Path => Cisco-NX-OS-Syslog-oper:syslog/messages
node_id_str : task-n9k-1
collection_id : 40
data_source : YANG
data :

[
[
{
"message-id": 420

},
{
"category": "ETHPORT",
"group": "ETHPORT",
"message-name": "IF_UP",
"node-name": "task-n9k-1",
"severity": 5,
"text": "Interface loopback10 is up ",
"time-of-day": "Dec 3 2019 11:38:51",
"time-stamp": "1575401931000",
"time-zone": ""

}
]

]

•

KVGPBの出力例
次に KVGPBの出力例を示します。
KVGPB Output:
---Telemetry msg received @ 18:22:04 UTC

モデル駆動型テレメトリ

89

モデル駆動型テレメトリ

JSON出力の例

Read frag:1 size:339 continue to block on read..

All the fragments:1 read successfully total size read:339

node_id_str: "task-n9k-1"

subscription_id_str: "1"

collection_id: 374

data_gpbkv {

fields {

name: "keys"

fields {

name: "message-id"

uint32_value: 374

}

}

fields {

name: "content"

fields {

fields {

name: "node-name"

string_value: "task-n9k-1"

}

fields {

name: "time-of-day"

string_value: "Jun 26 2019 18:20:21"

}

fields {

name: "time-stamp"

uint64_value: 1574293838000

}

fields {

name: "time-zone"

string_value: "UTC"

}

モデル駆動型テレメトリ

90

モデル駆動型テレメトリ

KVGPBの出力例

fields {

name: "process-name"

string_value: ""

}

fields {

name: "category"

string_value: "VSHD"

}

fields {

name: "group"

string_value: "VSHD"

}

fields {

name: "message-name"

string_value: "VSHD_SYSLOG_CONFIG_I"

}

fields {

name: "severity"

uint32_value: 5

}

fields {

name: "text"

string_value: "Configured from vty by admin on console0"

}

}

}

}

•

モデル駆動型テレメトリ

91

モデル駆動型テレメトリ

KVGPBの出力例

その他の参考資料

関連資料

マニュアルタイトル関連項目

[VXLAN EVPNソリューションのテレメトリ展

開（Telemetry Deployment for VXLAN EVPN

Solution）]

VXLAN EVPNのテレメトリ展開の構成例。

モデル駆動型テレメトリ

92

モデル駆動型テレメトリ

その他の参考資料

https://pubhub.devnetcloud.com/media/nx-os/docs/telemetryvxlan/Telemetry-Deployment-VXLAN-EVPN.pdf
https://pubhub.devnetcloud.com/media/nx-os/docs/telemetryvxlan/Telemetry-Deployment-VXLAN-EVPN.pdf
https://pubhub.devnetcloud.com/media/nx-os/docs/telemetryvxlan/Telemetry-Deployment-VXLAN-EVPN.pdf

翻訳について
このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては
、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている
場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい
ては米国サイトのドキュメントを参照ください。

