

RIPの設定

この章は、次の項で構成されています。

- RIP について (1ページ)
- RIP のライセンス要件 (4ページ)
- RIP の前提条件 (4 ページ)
- RIP に関する注意事項と制約事項 (4ページ)
- RIP パラメータのデフォルト設定 (5ページ)
- RIP の設定 (5 ページ)
- RIP の設定の確認 (20ページ)
- RIP 統計情報の表示 (20ページ)
- RIP の設定例 (20 ページ)
- 関連項目 (21ページ)

RIPについて

RIPの概要

RIP はユーザデータグラムプロトコル(UDP)データパケットを使用して、小規模なインターネットワークでルーティング情報を交換します。RIPv2 は IPv をサポートしています。RIPv2 は RIPv2 プロトコルがサポートするオプションの認証機能を使用します(「RIPv2 の認証」の項を参照)。

RIPでは次の2種類のメッセージを使用します。

- 要求:他の RIP 対応ルータからのルート アップデートを要求するためにマルチキャストアドレス 224,0.0.9 に送信されます。
- 応答: デフォルトでは30秒間隔で送信されます(「RIP設定の検証」の項を参照)。ルータも、要求メッセージの受信後に応答メッセージを送信します。応答メッセージには、RIPルートテーブル全体が含まれます。RIPルーティングテーブルが1つの応答パケットに収まらない場合、RIPは1つの要求に対して複数の応答パケットを送信します。

RIP はルーティングメトリックとして、ホップカウントを使用します。ホップカウントは、パケットが宛先に到達するまでに、通過できるルータの数です。直接接続されているネットワークのメトリックは1です。到達不能ネットワークのメトリックは16です。RIP はこのようにメトリックの範囲が小さいので、大規模なネットワークに適したルーティングプロトコルではありません。

RIPv2 認証

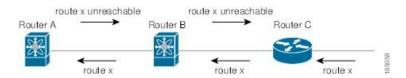
RIP メッセージに認証を設定して、ネットワークでの不正な、または無効なルーティング更新を防止できます。Cisco NX-OS は簡易パス ワードまたは MD5 認証ダイジェストをサポートしています。

認証キーのキーチェーン管理を使用することによって、インターフェイスごとにRIP認証を設定できます。キーチェーン管理によって、MD5認証ダイジェストまたは単純テキストパスワード認証で使用される認証キーの変更を制御できます。キーチェーンの作成の詳細については、『Cisco Nexus 3600 Series NX-OS Security Configuration Guide』を参照してください。

MD5 認証ダイジェストを使用するには、ローカルルータとすべてのリモート RIP ネイバーで 共有されるパスワードを設定します。Cisco NX-OS は、メッセージ自体と暗号化されたパス ワードに基づいて MD5 の一方向メッセージ ダイジェストを作成し、このダイジェストを RIP メッセージ(要求または応答)とともに送信します。受信側の RIP ネイバーは、同じ暗号パス ワードを使用して、ダイジェストを検証します。メッセージが変更されていない場合は、計算 が一致し、RIP メッセージは有効と見なされます。

MD5 認証ダイジェストの場合はさらに、ネットワークでメッセージが再送されないように、各 RIP メッセージにシーケンス番号が組み込まれます。

Split Horizon


スプリット ホライズンを使用すると、ルートを学習したインターフェイスから RIP がルート をアドバタイズしないようにできます。

スプリット ホライズンは、RIP アップデートおよびクエリー パケットの送信を制御する方法です。インターフェイス上でスプリットホライズンがイネーブルの場合、Cisco NX-OS はそのインターフェイスから学習した宛先にはアップデート パケットを送信しません。この方法でアップデート パケットを制御すると、ルーティング ループの発生する可能性が小さくなります。

ポイズンリバースを指定してスプリットホライズンを使用すると、ルートを学習したインターフェイス経由では到達不能であると RIP が学習したルートをアドバタイズするように、インターフェイスを設定できます。

次の図に、ポイズンリバースをイネーブルにしてスプリットホライズンを指定した、RIPネットワークの例を示します。

図 1: スプリット ホライズン ポイズン リバースを指定した RIP

ルータ C はルート X について学習し、そのルートをルータ B にアドバタイズします。ルータ B はルート X をルータ A にアドバタイズしますが、ルート X の到達不能アップデートをルータ C に送り返します。

デフォルトでは、スプリットホライズンはすべてのインターフェイスでイネーブルになっています。

ルートのフィルタリング

RIP 対応インターフェイスでルート ポリシーを設定すれば、RIP アップデートをフィルタリン グすることができます。Cisco NX-OS は、ルート ポリシーが許可するルートのみでルートテーブルを更新します。

ルート集約

指定したインターフェイスに複数のサマリー集約アドレスを設定できます。ルート集約を使用すると、固有性の強い一連のアドレスをすべての固有アドレスを代表する1つのアドレスに置き換えることによって、ルートテーブルを簡素化できます。たとえば、10.1.1.0/24、10.1.2.0/24、および10.1.3.0/24というアドレスを1つの集約アドレス10.1.0.0/16に置き換えることができます。

RIP はルーティング テーブルに含まれている固有性の強いルートが多いほど、固有性の強いルートの最大メトリックと同じメトリックのインターフェイスからのサマリーアドレスをアドバタイズします。

(注)

Cisco NX-OS は、自動ルート集約をサポートしていません。

ルートの再配布

RIPを使用すると、スタティックルートや他のプロトコルからのルートを再配布できます。再配布を指定したルートマップを設定して、どのルートが RIP に渡されるかを制御する必要があります。ルートポリシーを使用すると、宛先、送信元プロトコル、ルートタイプ、ルートタグなどの属性に基づいて、ルートをフィルタリングできます。詳細については、Route Policy Manager の設定を参照してください。

RIP ルーティング ドメインにルートを再配布しても、デフォルトでは Cisco NX-OS がそのつ ど、RIP ルーティング ドメインにデフォルトルートを再配布することはありません。RIP にデフォルト ルートを生成し、ルート ポリシーでそのルートを制御できます。

RIP にインポートされたすべてのルートに使用する、デフォルトのメトリックも設定できます。

ロード バランシング

ロードバランシングを使用すると、ルータは、宛先アドレスから等距離内にあるすべてのルータのネットワークポートにトラフィックを分散できます。ロードバランシングは、ネットワークセグメントの使用率を向上させ、有効ネットワーク帯域幅を増加させます。

Cisco NX-OS は、等コストマルチパス(ECMP)機能をサポートします。RIP ルートテーブル およびユニキャスト RIB の等コストパスは最大 16 です。これらのパスの一部または全部でトラフィックのロード バランシングが行われるように、RIP を設定できます。

RIP のハイ アベイラビリティ

Cisco NX-OS は、RIP のステートレス リスタートをサポートします。 リブートまたはスーパー バイザ スイッチオーバー後に、Cisco NX-OS が実行コンフィギュレーションを適用し、RIP が ただちに要求パケットを送信して、ルーティング テーブルに再入力します。

RIP 仮想化のサポート

Cisco NX-OS は、同一システム上で動作する複数の RIP プロトコルインスタンスをサポートします。 RIP は、仮想ルーティングおよび転送(VRF)インスタンスをサポートします。

RIPのライセンス要件

製品	ライセンス要件
	RIP にライセンスは必要ありません。ライセンス パッケージに含まれていない機能は nx にバンドルされており、無料で提供されます。Cisco NX-OS ライセンス方式の詳細について NX-OS Licensing Guide』を参照してください。

RIP の前提条件

• RIP をイネーブルにします(「RIP のネーブル化」セクションを参照)。

RIPに関する注意事項と制約事項

RIPには、次の注意事項および制限事項があります。

- Cisco NX-OS は、RIPv1 をサポートしません。RIPv1 パケットを受信した Cisco NX-OS は、メッセージを記録してパケットをドロップします。
- Cisco NX-OS は、RIPv1 ルータとの隣接関係を確立しません。
- RIP では IPv6 はサポートされていません。

RIP パラメータのデフォルト設定

次の表に、RIPパラメータのデフォルト設定値を示します。

デフォルトの RIP パラメータ

パラメータ	デフォルト
ロードバランシングを行う最大パス数	16
RIP 機能	ディセーブル
スプリット ホライズン	有効(Enabled)

RIPの設定

RIP のイネーブル化

RIP を設定するには、その前に RIP を有効にする必要があります。

手順の概要

- 1. configure terminal
- 2. [no] feature rip
- 3. (任意) show feature
- 4. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal	グローバル設定モードを開始します。
	例:	
	<pre>switch# configure terminal switch(config)#</pre>	

	コマンドまたはアクション	目的
ステップ2	[no] feature rip	RIP 機能を有効にします。
	例:	
	switch(config)# feature rip	
ステップ3	(任意) show feature	有効および無効にされた機能を表示します。
	例:	
	switch(config)# show feature	
ステップ4	(任意) copy running-config startup-config	この設定変更を保存します。
	例:	
	switch(config)# copy running-config startup-config	

RIP インスタンスの作成

RIP インスタンスを作成し、そのインスタンスのアドレス ファミリを設定できます。

始める前に

RIP をイネーブルにします (「RIP のネーブル化」セクションを参照)。

手順の概要

- 1. configure terminal
- 2. [no] router rip instance-tag
- 3. address-family ipv4 unicast
- 4. (任意) show ip rip [instance instance-tag] [vrf vrf-name]
- **5.** (任意) distance value
- 6. (任意) maximum-paths number
- 7. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal	グローバル コンフィギュレーション モードを開始
	例:	します。
	<pre>switch# configure terminal switch(config)#</pre>	

	コマンドまたはアクション	目的
ステップ2	<pre>[no] router rip instance-tag 例: switch(config)# router RIP Enterprise switch(config-router)#</pre>	<i>instance tag</i> を設定して、新しい RIP インスタンスを 作成します。
ステップ3	address-family ipv4 unicast 例: switch(config-router)# address-family ipv4 unicast switch(config-router-af)#	この RIP インスタンスのアドレス ファミリを設定し、アドレスファミリコンフィギュレーションモードを開始します。
ステップ4	(任意) show ip rip [instance instance-tag] [vrf vrf-name] 例: switch(config-router-af)# show ip rip	すべての RIP インスタンスの RIP 要約情報を表示します。
ステップ5	(任意) distance value 例 : switch(config-router-af)# distance 30	RIP のアドミニストレーティブディスタンスを設定します。範囲は $1 \sim 255$ です。デフォルトは 120 です。「アドミニストレーティブディスタンス」のセクションを参照してください。
ステップ6	(任意) maximum-paths number 例: switch(config-router-af)# maximum-paths 6	RIP がルートテーブルで維持する等コストパスの最大数を設定します。有効な範囲は 1 ~ 64 です。デフォルトは 16 です。
ステップ 7	(任意) copy running-config startup-config 例: switch(config-router-af)# copy running-config startup-config	この設定変更を保存します。

例

次に、IPv4に対応するRIPインスタンスを作成し、ロードバランシングのための等コストパス数を設定する例を示します。

switch# configure terminal
switch(config)# router rip Enterprise
switch(config-router)# address-family ipv4 unicast
switch(config-router-af)# max-paths 10
switch(config-router-af)# copy running-config startup-config

RIP インスタンスの再起動

RIPインスタンスを再起動し、インスタンスに関連付けられているすべてのネイバーを削除できます。

RIP インスタンスを再起動し、関連付けられたすべてのネイバーを削除するには、グローバル設定モードで次のコマンドを使用します。

手順の概要

1. restart rip instance-tag

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ1		RIP インスタンスを再起動し、すべてのネイバーを 削除します。

インターフェイスでの RIP の設定

始める前に

RIP をイネーブルにします (「RIP のネーブル化」セクションを参照)。

手順の概要

- 1. configure terminal
- 2. interface interface-type slot/port
- 3. ip router rip instance-tag
- 4. (任意) show ip rip [instance instance-tag] interface [interface-type slot/port] [vrf vrf-name] [detail]
- 5. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal	グローバル設定モードを開始します
	例:	
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	interface interface-type slot/port	インターフェイス設定モードを開始します。
	例:	

	コマンドまたはアクション	目的
	<pre>switch(config)# interface ethernet 1/2 switch(config-if)#</pre>	
ステップ3	ip router rip instance-tag	このインターフェイスを RIP インスタンスに関連付
	例:	けます。
	switch(config-if)# ip router rip Enterprise	
ステップ4	(任意) show ip rip [instance instance-tag] interface [interface-type slot/port] [vrf vrf-name] [detail]	インターフェイスの RIP 情報を表示します。
	例:	
	switch(config-if) # show ip rip Enterprise tethernet 1/2	
ステップ5	(任意) copy running-config startup-config	この設定変更を保存します。
	例:	
	<pre>switch(config-if)# copy running-config startup-config</pre>	

例

次に、RIP インスタンスに Ethernet 1/2 インターフェイスを追加する例を示します。

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# ip router rip Enterprise
switch(config)# copy running-config startup-config
```

RIP 認証の設定

インターフェイスに RIP パケットの認証を設定できます。

始める前に

RIP をイネーブルにします(「RIP のネーブル化」セクションを参照)。

認証をイネーブルにする前に、必要に応じてキーチェーンを設定します。キーチェーンの実装の詳細については、『Cisco Nexus 3600 Series NX-OS Security Configuration Guide』を参照してください。

手順の概要

- 1. configure terminal
- 2. interface interface-type slot/port
- 3. ip rip authentication mode {text | md5}
- 4. ip rip authentication key-chain key

5. (任意) copy running-config startup-config

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ1	configure terminal 例:	グローバル設定モードを開始します
	switch# configure terminal switch(config)#	
ステップ2	interface interface-type slot/port	インターフェイス設定モードを開始します。
	例: switch(config)# interface ethernet 1/2 switch(config-if)#	
ステップ3	<pre>ip rip authentication mode {text md5} 例: switch(config-if)# ip rip authentication mode md5</pre>	クリアテキストまたは MD5 認証ダイジェストとして、このインターフェイスにおける RIP 認証タイプを設定します。
ステップ4	ip rip authentication key-chain key 例: switch(config-if)# ip rip authentication key-chain RIPKey	このインターフェイス上で RIP に使用する認証キーを設定します。
ステップ5	(任意) copy running-config startup-config 例: switch(config-if)# copy running-config startup-config	この設定変更を保存します。

例

次に、キーチェーンを作成し、RIPインターフェイス上でMD5 認証を設定する例を示します。

```
switch# configure terminal
switch(config)# key chain RIPKey
switch(config-keychain)# key 2
switch(config-keychain-key)# accept-lifetime 00:00:00 Jan 01 2000 infinite
switch(config-keychain-key)# send-lifetime 00:00:00 Jan 01 2000 infinite
switch(config-keychain-key)# exit
switch(config-keychain)# exit
switch(config-keychain)# exit
switch(config)# interface ethernet 1/2
switch(config-if)# ip rip authentication mode md5
switch(config-if)# ip rip authentication key-chain RIPKey
switch(config-if)# copy running-config startup-config
```

パッシブ インターフェイスの設定

インターフェイスを受動モードに設定することによって、ルートを受信するが、ルートアップ デートの送信は行わないように RIP インターフェイスを設定できます。

受動モードでRIPインターフェイスを設定するには、インターフェイス設定モードで次のコマンドを使用します。

手順の概要

1. ip rip passive-interface

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ1	ip rip passive-interface	インターフェイスを受動モードに設定します。
	例:	
	<pre>switch(config-if)# ip rip passive-interface</pre>	

ポイズン リバースを指定したスプリット ホライズンの設定

インターフェイスの設定でポイズンリバースをイネーブルにすると、RIPが学習したルートについて、ルートを学習したインターフェイス経由では到達不能であることをアドバタイズできます。

インターフェイス上で、ポイズンリバースを指定してスプリットホライズンを設定するには、 インターフェイス コンフィギュレーション モードで次のコマンドを使用します。

手順の概要

1. ip rip poison-reverse

手順の詳細

	コマンドまたはアクション	目的
ステップ1	ip rip poison-reverse	ポイズン リバースを指定してスプリット ホライズ
	例: switch(config-if)# ip rip poison-reverse	ンをイネーブルにします。ポイズンリバースを指定 したスプリット ホライズンは、デフォルトでディ セーブルです。

ルート集約の設定

ルーティング テーブルでサマリー アドレスによって表される集約アドレスを作成できます。 Cisco NX-OS は、固有性の強いすべてのルートの中でメトリックが最小のサマリー アドレス メトリックをアドバタイズします。

インターフェイス上でサマリーアドレスを設定するには、インターフェイスコンフィギュレーション モードで次のコマンドを使用します。

手順の概要

1. ip rip summary-address ip-prefix/mask-len

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ1	ip rip summary-address ip-prefix/mask-len	IPv4アドレスに対応する、RIP用のサマリーアドレ
	例:	スを設定します。
	<pre>switch(config-if)# ip rip summary-address 1.1.1.1/32</pre>	

ルートの再配布の設定

別のルーティングプロトコルからのルーティング情報を受け入れて、RIPネットワークを通じてその情報を再配布するように、RIPを設定できます。再配布されたルートを任意で、デフォルトルートとして割り当てることができます。

始める前に

RIP を有効にします(「RIP の有効化」セクションを参照)。

再配布を設定する前に、ルートマップを設定します。ルートマップの設定の詳細については、 「ルートマップの設定」 セクションを参照してください。

手順の概要

- 1. configure terminal
- 2. router rip instance-tag
- 3. address-family ipv4 unicast
- **4.** redistribute {bgp as | direct | {eigrp | isis | ospf | ospfv3 | rip} instance-tag | static} route-map map-name
- **5.** (任意) **default-information originate** [always] [route-map map-name]
- **6.** (任意) **default-metric** *value*
- 7. (任意) show ip rip route [ip-prefix [longer-prefixes | shorter-prefixes]] [vrf vrf-name] [summary]

8. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ1	configure terminal	グローバル コンフィギュレーション モードを開始
	例:	します。
	<pre>switch# configure terminal switch(config)#</pre>	
ステップ2	router rip instance-tag	instance tag を設定して、新しい RIP インスタンスを
	例:	作成します。
	<pre>switch(config)# router rip Enterprise switch(config-router)#</pre>	
ステップ3	address-family ipv4 unicast	アドレスファミリ コンフィギュレーション モード
	例:	に入ります。
	<pre>switch(config-router)# address-family ipv4 unicast switch(config-router-af)#</pre>	
ステップ4	redistribute {bgp as direct {eigrp isis ospf ospfv3 rip} instance-tag static} route-map map-name	他のプロトコルからのルートを RIP に再配布しま す。
	例:	
	switch(config-router-af)# redistribute eigrp 201 route-map RIPmap	
ステップ5	(任意) default-information originate [always] [route-map map-name]	RIP にデフォルト ルートを生成し、必要に応じて ルート マップにより制御します。
	例:	
	<pre>switch(config-router-af)# default-information originate always</pre>	
ステップ6	(任意) default-metric value	再配布されたすべてのルートにデフォルトメトリッ
	例:	クを設定します。有効な範囲は1~15です。デフォ
	<pre>switch(config-router-af)# default-metric 2</pre>	ルトは1です。
ステップ 7	(任意) show ip rip route [ip-prefix [longer-prefixes shorter-prefixes]] [vrf vrf-name] [summary]	RIP のルートを表示します。
	例:	
	<pre>switch(config-router-af)# show ip rip route</pre>	

	コマンドまたはアクション	目的
ステップ8	(任意) copy running-config startup-config	この設定変更を保存します。
	例:	
	<pre>switch(config-router-af)# copy running-config startup-config</pre>	

例

次に、EIGRP を RIP に再配布する例を示します。

switch# configure terminal
switch(config)# router rip Enterprise
switch(config-router)# address-family ipv4 unicast
switch(config-router-af)# redistribute eigrp 201 route-map RIPmap
switch(config-router-af)# copy running-config startup-config

Cisco IOS RIP との互換性のため、Cisco NX-OS RIP を設定

Cisco NX-OS RIP を、ルートがアドバタイズされ、処理される方法で Cisco IOS RIP のように動作するよう設定できます。

直接接続されたルートが、Cisco NX-OS RIPではコスト1として処理され、Cisco IOS RIPではコスト0として処理されます。ルートが Cisco NX-OS RIPでアドバタイズされる場合、受信デバイスはすべての受信ルートに+1の最小のコストを増加し、ルーティングテーブルにルートをインストールします。Cisco IOS RIPにおいて、このコストの増加は送信側ルータで実行され、受信側ルータは変更なしでルートをインストールします。Cisco NX-OS および Cisco IOSデバイスの両方が連携しているときに、この動作の違いにより問題が発生する可能性があります。Cisco IOS RIPなど、ルートをアドバタイズし、処理するために、Cisco NX-OS RIPの設定に応じて、次の互換性の問題を回避できます。

始める前に

RIP をイネーブルにします (「RIP のネーブル化」セクションを参照)。

手順の概要

- 1. configure terminal
- 2. router rip instance-tag
- 3. [no] metric direct 0
- 4. (任意) show running-config rip
- 5. (任意) copy running-config startup-config

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ1	configure terminal 例: switch# configure terminal switch(config)#	グローバル コンフィギュレーション モードを開始 します。
ステップ2	router rip instance-tag 例: switch(config)# router rip 100 switch(config-router)#	instance tag を設定して、新しい RIP インスタンスを作成します。インスタンス タグには 100、201、または 20 文字までの英数字を入力できます。
ステップ3	[no] metric direct 0 例: switch(config-router)# metric direct 0	ルートがアドバタイズされ、処理される方法でCisco IOS RIP と Cisco NX-OS RIP が互換性を持つように するため、直接接続するルータすべてをデフォルト であるコスト 1 の代わりにコスト 0 で設定します。 (注) このコマンドは、Cisco IOS デバイスを含む RIP ネットワークに存在するすべての Cisco NX-OS デバイス で設定する必要があります。
ステップ4	(任意) show running-config rip 例: switch(config-router)# show running-config rip	現在実行中のRIPコンフィギュレーションを表示します。
ステップ5	(任意) copy running-config startup-config 例: switch(config-router)# copy running-config startup-config	この設定変更を保存します。

例

次に、すべての直接ルートをコスト 0 からコスト 1 に返すことによって、Cisco IOS RIP と Cisco NX-OS RIP の互換性をディセーブルにする例を示します。

```
switch# configure terminal
switch(config)# router rip 100
switch(config-router)# no metric direct 0
switch(config-router)# show running-config rip
switch(config-router)# copy running-config startup-config
```

仮想化の設定

複数の RIP インスタンスを設定し、複数の VRF を作成し、同じまたは複数の RIP インスタンスを各 VRF で使用するようにできます。 VRF に RIP インターフェイスを割り当てます。

(注)

インターフェイスの VRF を設定した後に、インターフェイスの他のすべてのパラメータを設定します。インターフェイスの VRF を設定すると、そのインターフェイスのすべての設定が削除されます。

始める前に

RIP をイネーブルにします(「RIP のネーブル化」セクションを参照)。

手順の概要

- 1. configure terminal
- 2. vrf context vrf-name
- 3. exit
- 4. router rip instance-tag
- **5. vrf** *vrf*-name
- 6. (任意) address-family ipv4 unicast
- 7. (任意) redistribute {bgp as | direct | {eigrp | isis | ospf | ospfv3 | rip} instance-tag | static} route-map map-name
- **8.** interface ethernet *slot/port*
- **9. vrf member** *vrf-name*
- **10. ip-address** *ip-prefix/length*
- 11. ip router rip instance-tag
- **12.** (任意) **show ip rip [instance** *instance-tag*] **interface** [*interface-type slot/port*] [**vrf** *vrf-name*]
- 13. (任意) copy running-config startup-config

手順の詳細

	コマンドまたはアクション	目的
ステップ 1	configure terminal	グローバル コンフィギュレーション モードを開始
	例: switch# configure terminal	します。
	switch(config)#	
ステップ2	vrf context vrf-name	新しい VRF を作成し、VRF 設定モードを開始しま
	例:	す。

	コマンドまたはアクション	目的
	<pre>switch(config) # vrf context RemoteOfficeVRF switch(config-vrf) #</pre>	
ステップ3	exit 例: switch(config-vrf)# exit switch(config)#	VRF設定モードを終了します。
ステップ4	router rip instance-tag 例: switch(config)# router rip Enterprise switch(config-router)#	instance tag を設定して、新しい RIP インスタンス を作成します。
ステップ5	vrf vrf-name 例: switch(config-router)# vrf RemoteOfficeVRF switch(config-router-vrf)#	新しい VRF を作成します。
ステップ6	(任意) address-family ipv4 unicast 例: switch(config-router-vrf)# address-family ipv4 unicast switch(config-router-vrf-af)#	この RIP インスタンスの VRF アドレス ファミリを 設定します。
ステップ 1	(任意) redistribute {bgp as direct {eigrp isis ospf ospfv3 rip} instance-tag static} route-map map-name 例: switch(config-router-vrf-af)# redistribute eigrp 201 route-map RIPmap	他のプロトコルからのルートを RIP に再配布します。 ルート マップの設定の詳細については、「ルート マップの設定」を参照してください。
ステップ8	interface ethernet slot/port 例: switch(config-router-vrf-af)# interface ethernet 1/2 switch(config-if)#	インターフェイス設定モードを開始します。
ステップ9	vrf member vrf-name 例: switch(config-if)# vrf member RemoteOfficeVRF	このインターフェイスを VRF に追加します。
ステップ10	ip-address ip-prefix/length 例: switch(config-if)# ip address 192.0.2.1/16	このインターフェイスのIPアドレスを設定します。 このステップは、このインターフェイスを VRF に 割り当てたあとに行う必要があります。
ステップ 11	ip router rip instance-tag 例:	このインターフェイスを RIP インスタンスに関連 付けます。

	コマンドまたはアクション	目的
	switch(config-if)# ip router rip Enterprise	
ステップ 12	(任意) show ip rip [instance instance-tag] interface [interface-type slot/port] [vrf vrf-name]	VRF のインターフェイスに関する RIP 情報を表示 します。
	例: switch(config-if)# show ip rip Enterprise ethernet 1/2	
ステップ13	(任意) copy running-config startup-config	この設定変更を保存します。
	例: switch(config-if)# copy running-config startup-config	

例

次に、VRF を作成して、その VRF にインターフェイスを追加する例を示します。

```
switch# configure terminal
switch(config)# vrf context RemoteOfficeVRF
switch(config-vrf)# exit
switch(config)# router rip Enterprise
switch(config-router)# vrf RemoteOfficeVRF
switch(config-router-vrf)# address-family ipv4 unicast
switch(config-router-vrf-af)# redistribute eigrp 201 route-map RIPmap
switch(config-router-vrf-af)# interface ethernet 1/2
switch(config-if)# vrf member RemoteOfficeVRF
switch(config-if)# ip address 192.0.2.1/16
switch(config-if)# ip router rip Enterprise
switch(config-if)# copy running-config startup-config
```

RIPの調整

ネットワーク要件に適合するように RIP を調整できます。 RIP では複数のタイマーを使用して、ルーティングアップデート間隔、ルートが無効になるまでの時間の長さ、およびその他のパラメータを決定します。 これらのタイマーを調整すると、インターネットワークのニーズに適合するように、ルーティング プロトコルのパフォーマンスを調整できます。

(注)

ネットワーク上のすべての RIP 対応ルータで、RIP タイマーに同じ値を設定する必要があります。

RIP を調整するには、アドレス ファミリ コンフィギュレーション モードで次のオプション コマンドを使用します。

コマンド	目的
timers basic update timeout holddown garbage-collection	RIP タイマーを秒数で設定します。パラメータは次のとおりです。
例: switch(config-router-af)# timers basic 40 120 120 100	 update:指定できる範囲は5~任意の正の整数。デフォルトは30です。 timeout:ルートの無効を宣言するまでに、Cisco NX-OS が待機する時間。タイムアウトインターバルが終了するまでに、このルートのアップデート情報をCisco NX-OS が受信しなかった場合、Cisco NX-OS はルートの無効を宣言します。指定できる範囲は1~任意の正の整数です。デフォルトは180です。 holddown:無効ルートに関するよりよいルート情報をCisco NX-OS が無視する時間。指定できる範囲は0~任意の正の整数です。デフォルトは180です。 garbage-collection: Cisco NX-OS がルートを無効として表示してから、Cisco NX-OS がそのルートをルーティングテーブルから削除するまでの時間。指定できる範囲は1~任意の正の整数です。デフォルトは120です。

RIP を調整するには、インターフェイス コンフィギュレーション モードで次のオプション コマンドを使用します。

コマンド	目的
ip rip metric-offset value	このインターフェイスで受信する各ルートの
例: switch(config-if)# ip rip metric-offset 10	メトリックに値を追加します。有効な範囲は $1 \sim 15$ です。デフォルトは 1 です。
ip rip route-filter {prefix-list list-name route-map map-name [in out]	着信または発信 RIP アップデートをフィルタ リングするための、ルート マップを指定しま
例:	す。
<pre>switch(config-if)# ip rip route-filter route-map InputMap in</pre>	

RIPの設定の確認

RIP の設定を表示するには、次のいずれかの作業を行います。

コマンド	目的
show ip rip instance [instance-tag] [vrf vrf-name]	RIP インスタンスの状態を表示します。
show ip rip [instance instance-tag] interface slot/port detail [vrf vrf-name]	インターフェイスの RIP ステータスを表示します。
show ip rip [instance instance-tag] neighbor [interface-type number] [vrf vrf-name]	RIP ネイバー テーブルを表示します。
show ip rip [instance instance-tag] route [ip-prefix/length [longer-prefixes shorter-prefixes]] [summary] [vrf vrf-name]	RIP ルート テーブルを表示します。
show running-configuration rip	現在実行中の RIP コンフィギュレーションを表示します。

RIP 統計情報の表示

RIP の統計情報を表示するには、次のコマンドを使用します。

コマンド	目的
show ip rip [instance instance-tag] policy statistics redistribute {bgp as direct {eigrp isis ospf ospfv3 rip} instance-tag static} [vrf vrf-name]	RIP ポリシー統計情報を表示します。
show ip rip [instance instance-tag] statistics interface-type number [vrf vrf-name]	RIP の統計情報を表示します。

clear rip policy statistics redistribute *protocol process-tag* コマンドを使用して、ポリシー統計情報をクリアします。

clear ip rip statistics コマンドを使用し、して、RIP 統計情報をクリアします。

RIP の設定例

VRF で Enterprise RIP インスタンスを作成し、その RIP インスタンスにイーサネット インターフェイス 1/2 の例を示します。さらに、enthernet interface 1/2 の認証を設定し、この RIP ドメインに EIGRP を再配布する例も示します

```
vrf context NewVRF
!
feature rip
```

```
router rip Enterprise
vrf NewVRF
address-family ipv4 unicast
redistribute eigrp 201 route-map RIPmap
maximum-paths 10
!
interface ethernet 1/2
vrf member NewVRF
ip address 192.0.2.1/16
ip router rip Enterprise
ip rip authentication mode md5
ip rip authentication key-chain RIPKey
```

関連項目

ルートマップの詳細については、ルートポリシーマネージャの構成を参照してください。

関連項目

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。