

ライン カード冗長性

ラインカードは冗長方式の高可用性をサポートします。ラインカード冗長性により、局所的なシステム障害が発生した場合に堅牢な自動スイッチオーバーおよびリカバリを可能にすることで、顧客宅内機器(CPE)のダウンタイムを制限することができます。

機能情報の確認

ご使用のソフトウェア リリースでは、このモジュールで説明されるすべての機能がサポートさ れているとは限りません。最新の機能情報と注意事項については、ご使用のプラットフォームと ソフトウェア リリースに対応したリリース ノートを参照してください。このモジュールに記載 されている機能の詳細を検索し、各機能がサポートされているリリースのリストを確認する場合 は、このマニュアルの最後にある機能情報の表を参照してください。

プラットフォームのサポートおよびシスコ ソフトウェア イメージのサポートに関する情報を検 索するには、Cisco Feature Navigator を使用します。Cisco Feature Navigator には、http:// tools.cisco.com/ITDIT/CFN/からアクセスできます。http://www.cisco.com/のアカウントは必要あり ません。

目次

- Cisco cBR シリーズルータに関するハードウェア互換性マトリクス, 2 ページ
- ・ ラインカード冗長性の前提条件, 3ページ
- ・ ラインカード冗長性の制限事項、3ページ
- ラインカード冗長性の情報、3ページ
- ラインカード冗長性の設定方法、4 ページ
- ラインカード冗長性の設定の確認、7ページ
- その他の参考資料, 10 ページ
- ラインカード冗長性に関する機能情報,11ページ

Cisco cBR シリーズ ルータに関するハードウェア互換性 マトリクス

(注)

Cisco IOS-XE の特定のリリースで追加されたハードウェア コンポーネントは、特に明記しない限り、以降のすべてのリリースでもサポートされます。

Cisco CMTS プラットフォーム	プロセッサ エンジン	インターフェイス カード
Cisco cBR-8 コンバージドブ ロードバンド ルータ	Cisco IOS-XE リリース 16.5.1 以降のリリース	Cisco IOS-XE リリース 16.5.1 以降のリリース
	Cisco cBR-8スーパーバイザ:	Cisco cBR-8 CCAP ラインカー
	• PID : CBR-CCAP-SUP-160G	• PID : CBR-LC-8D30-16U30
	• PID : CBR-CCAP-SUP-60G	• PID : CBR-LC-8D31-16U30
	• PID : CBR-SUP-8X10G-PIC	• PID : CBR-RF-PIC
		• PID : CBR-RF-PROT-PIC
		• PID : CBR-CCAP-LC-40G-R
		Cisco cBR-8 ダウンストリーム PHY モジュール :
		• PID : CBR-D30-DS-MOD
		• PID : CBR-D31-DS-MOD
		Cisco cBR-8 アップストリーム PHY モジュール :
		• PID : CBR-D30-US-MOD
		• PID : CBR-D31-US-MOD

表 1: Cisco cBR シリーズ ルータに関するハードウェア互換性マトリクス

ライン カード冗長性の前提条件

- ・少なくとも1つの RF Through PIC とその対応するインターフェイス ライン カードが、プラ イマリ カードとして設定されるシャーシにインストールされている必要があります。
- RF Protect PIC とその対応するインターフェイス ライン カードが、セカンダリ カードとして 設定されるシャーシにインストールされている必要があります。

ライン カード冗長性の制限事項

- Cisco cBR-8 ルータのスロット3 およびスロット6 にインストールされたラインカードをセカ ンダリカードとして設定することはできません。
- RF Protect PIC は、(より大きいスロット番号を持つ)下部スロットにのみ RF 信号を送信で きます。したがって、セカンダリカードのスロット番号は、冗長グループの中で最小の番号 である必要があります。

(注) シャーシの最上部スロット (スロット0) に RF Protect PIC をインストールし、 これをセカンダリ カードとして設定することをお勧めします。

- RF Through PIC は、上部スロットから下部スロットにのみ RF 信号を送信できます。したがって、セカンダリカードとプライマリカードの間にはいかなる RF Blank PIC もインストールしないでください。
- セカンダリカードがアクティブなときにプライマリまたはセカンダリカードの設定を変更 することはできません。
- ・冗長グループ内にセカンダリカードがある場合は、最後のプライマリカードを削除することはできません。セカンダリカードを削除してから、プライマリカードを削除する必要があります。
- プライマリカードのロールが standby の場合は、プライマリカードに戻してから、冗長グループから削除する必要があります。

ラインカード冗長性の情報

ラインカードの冗長性は予定外のダウンタイムを短縮します。ライン カード冗長性を設定する と、ルータ上に保護ゾーン(冗長グループ)が作成され、プライマリカードとセカンダリカード の設定が同期されます。

次のイベントにより、アクティブカードからスタンバイカードへのスイッチオーバーをトリガー できます。

- redundancy linecard-group switchover from slot *slot* コマンドを使用した手動スイッチオー バー。
- hw-module slot reload コマンドを使用したライン カードのリロード。
- ラインカードのクラッシュ。
- ・ラインカードの活性挿抜(OIR)。

セカンダリ カードは、スイッチオーバー後、リロードを実行します。ライン カードの OIR また はクラッシュによってトリガーされた予定外のスイッチオーバー後、プライマリ カードがホット スタンバイになった場合、自動的にプライマリ カードに戻るようルータを設定することができま す。

次に、ラインカードの冗長性の状態を示します。

- Unavail: ラインカードは使用できない状態です。
- Init: ラインカードは起動していません。
- Active Cold:アクティブカードが設定をダウンロード中です。
- Active:アクティブカードは設定が完了し動作中です。
- Stdby Cold:スタンバイカードの設定はアクティブカードと同期されています。
- Stdby Warm: (セカンダリカードのみ)スタンバイカードは完全に同期され、スイッチオーバーの準備ができています。これはセカンダリスタンバイカードが安定している状態です。
- Stdby Hot: プライマリスタンバイカードは完全に同期されています。これはプライマリスタンバイカードが安定している状態です。プライマリカードとスイッチオーバーするセカンダリスタンバイカードは選択されており、すぐにアクティブになります。これはセカンダリカードがアクティブになる移行状態です。

N+1 ライン カード冗長性

Cisco cBR-8 ルータはラインカードの N+1 冗長方式をサポートします。単一の RF Protect PIC を複数の RF Through PIC (プライマリカード) に対するセカンダリカードとし設定できます。この冗長方式では、セカンダリカードがプライマリカードに対してアクティブなカードになると、冗長方式が 1+1 冗長性に変更されます。

Cisco cBR-8 ルータは単一の保護ゾーンまたは冗長グループ(グループ0)をサポートします。

ラインカード冗長性の設定方法

この項の構成は、次のとおりです。

ラインカードの手動スイッチオーバーの設定

はじめる前に

ライン カードは、アクティブ ロールのウォーム スタンバイ状態またはホット スタンバイ状態で ある必要があります。カードのロールと状態を確認するには、show redundancy linecard all コマ ンドを使用します。

制限事項

- スタンバイスーパーバイザは起動しているけれども、SSOはまだ開始されていない場合、手動スイッチオーバーは実行できません。
- •手動で開始したスイッチオーバーは自動復帰できません。

手順

	コマンドまたはアクション	目的
ステップ1	enable	特権EXECモードをイネーブルにします。
	例: Router> enable	 パスワードを入力します(要求された場合)。
ステップ2	redundancy linecard-group switchover from slot <i>slot</i>	アクティブなラインカードから手動スイッ チオーバーを行います。
	例: Router# redundancy linecard-group switchover from slot 9	

N+1 ラインカード冗長性の設定

手順

I

	コマンドまたはアクション	目的
ステップ1	enable	特権 EXEC モードをイネーブルにします。
	例: Router> enable	 ・パスワードを入力します(要求された 場合)。

	コマンドまたはアクション	目的
ステップ 2	configure terminal 例: Router# configure terminal	グローバルコンフィギュレーションモード を開始します。
ステップ3	redundancy 例: Router(config)# redundancy	冗長性をイネーブルにし、冗長性コンフィ ギュレーション モードを開始します。
ステップ4	linecard-group group-idinternal-switch 例: Router(config-red)# linecard-group 0 internal-switch	冗長グループを設定し、ライン カードの冗 長性コンフィギュレーション モードを開始 します。
ステップ5	description group-description 例: Router(config-red-lc)# description RedundancyGroup0	(任意)冗長グループの説明を設定します。
ステップ6	class 1:N 例: Router(config-red-lc)# class 1:N	冗長グループの N+1 冗長性クラスを設定し ます。
ステップ1	revertive seconds 例: Router(config-red-lc)# revertive 60	(任意) プライマリ カードの自動復帰時間 を秒単位で設定します。
ステップ8	member slot slotprimary 例: Router(config-red-lc)# member slot 1 primary	 冗長グループにライン カードをプライマリカードとして追加します。 (注) 冗長グループに追加するプライマリカードごとに、この手順を繰り返してください。
ステップ9	member slot slotsecondary 例: Router(config-red-lc)# member slot 0 secondary	冗長グループにライン カードをプライマリ カードとして追加します。
ステップ 10	end 例: Router(config-red-lc)# end	特権 EXEC モードに戻ります。

ラインカード冗長性の設定の確認

• show redundancy linecard group all: 冗長グループ情報を表示します。

次に、このコマンドの出力例を示します。

Router# show redundancy linecard group all

```
Group Identifier: 0
Revertive, Revert Timer: OFF (60000 sec)
Reserved Cardtype: 0xFFFFFFF 4294967295
Group Redundancy Type: INTERNAL SWITCH
Group Redundancy Class: 1:N
Group Redundancy Configuration Type: LINECARD GROUP
Primary: Slot 6
Primary: Slot 7
Secondary: Slot 0
```

• show redundancy linecard all: すべてのライン カードのロールと状態の情報を表示します。

次に、このコマンドの出力例を示します。

Router# show redundancy linecard all

Slot	Subslot	LC Group	My State	Peer State		Peer Slot	Peer Subslot	Role	Mode
9	-	0	Active	Stdby Co	old	0	-	Active	Primary
8	-	0	Active	Stdby Wa	arm	0	-	Active	Primary
7	-	0	Active	Stdby Wa	arm	0	-	Active	Primary
6	-	0	Active	Stdby Co	old	0	-	Active	Primary
3	-	0	Active	Stdby Co	old	0	-	Active	Primary
2	-	0	Active	Stdby Co	old	0	-	Active	Primary
1	-	0	Active	Stdby Co	old	0	-	Active	Primary
0	-	0	-	-		Multiple	None	Standby	Secondary

(注) セカンダリカードのロールが Standby である場合、複数のプライマリカードのピアとなっているため、セカンダリカードの有効な My State はありません。 セカンダリカードには複数のピア状態あります。たとえば、いくつかのプライマリカードはコールドスタンバイで、他のプライマリカードはウォームスタンバイです。

次に、セカンダリカードがプライマリカードに対してアクティブになり、N+1 冗長性が 1+1 冗長性に変化した場合のコマンドの出力例を示します。

Router# show redundancy linecard all

Slot	Subslot	LC Group	My State	Peer State	Peer Slot	Peer Subslot	Role	Mode
9	_	0	Stdby Hot	Active	0	_	Standby	Primary
8	-	0	Active	Unavail	0	-	Active	Primary
7	-	0	Active	Unavail	0	-	Active	Primary
6	-	0	Active	Unavail	0	-	Active	Primary
3	-	0	Active	Unavail	0	-	Active	Primary
2	-	0	Active	Unavail	0	-	Active	Primary
1	-	0	Active	Unavail	0	-	Active	Primary

0 - 0 Active Stdby Hot 9 - Active Secondary

• show redundancy linecard slot: ラインカードの冗長性に関する情報を表示します。

次に、コマンドの出力例を示します。

Router# show redundancy linecard slot 9

LC Redundancy Is Configured: LC Group Number: 0 LC Slot: 9 (idx=9) LC Peer Slot: 0 LC Card Type: 0x4076 , 16502 LC Name: 9 LC Mode: Primary LC Role: Active LC My State: Active LC Peer State: Stdby Warm

• show redundancy linecard history: すべてのライン カードの状態変更履歴を表示します。

次に、コマンドの出力例を示します。

Router# show redundancy linecard history

Jan 05 2012 12:24:27 20559 - st_mem(9): MY State Change, (Active Wait) -> (Active)
Jan 05 2012 12:24:27 20559 - st_mem(9): MY FSM execution, Active Wait:Init:State Ntfy
Jan 05 2012 12:24:27 20559 - st_mem(9): MY State Change, (Active LC Cfg Dnld) -> (Active
Wait)
Jan 05 2012 12:24:27 20559 - st_mem(9): MY FSM execution, Active LC Cfg Dnld:Init:Cfg
Dnld Done
Jan 05 2012 12:24:27 20559 - st_mem(9): MY State Change, (Active Cold) -> (Active LC
Cfg Dnld)
Jan 05 2012 12:23:09 12763 - st_mem(9): MY FSM execution, Active Cold:Init:Cfg Dnld
Jan 05 2012 12:23:09 12763 - st_mem(9): MY FSM execution, Active Cold:Init:Cfg Dnld
Jan 05 2012 12:23:09 12760 - st_mem(9): MY FSM execution, Init:Init:Up
Jan 05 2012 12:21:39 3746 - st_mem(9): PEER FSM Execution, Init:Init:Reset

• show Icha rfsw: 内部 RF スイッチ PIC の状態情報を表示します。

次に、コマンドの出力例を示します。

Router# show lcha rfsw

• show Icha logging level: ケーブル モデム ライン カードのログを表示します。

次に、コマンドの出力例を示します。

Router# show lcha logging level noise

11:02:03.313 CST Tue Nov 18 2014 [error] [slot=3] [txn=229] Peer-Up Message [tag=1011] to slot 3 complete [36144 ms]; status=nak response 11:02:03.313 CST Tue Nov 18 2014 [error] [slot=0] [txn=229] Slot 0 downloaded configuration for slot 3; result=peer-up notification failed 11:02:03.316 CST Tue Nov 18 2014 [noise] [slot=0] [txn=none] lcha_plfm_get_max_port_count_for_slot: slot 0 maximum port count is 1794 11:02:03.316 CST Tue Nov 18 2014 [noise] [slot=0] [txn=none] lcha_plfm_get_starting_port_index: slot 0 starting port count is 0 11:02:03.331 CST Tue Nov 18 2014 [note] [slot=0] [txn=none] Slot 0 is being reset 11:02:04.352 CST Tue Nov 18 2014 [note] [slot=0] [txn=none] slot 0 removed セカンダリカードがアクティブである場合、show コマンドでプライマリカードまたはセカンダリカードのスロット番号を使用できます。

次に、スロット8のプライマリカードがスロット0のセカンダリカードに切り替わった後の、show interfaces コマンドの出力例を示します。

Router# show interfaces c0/0/0

Cable0/0/0 is up, line protocol is up Hardware is CMTS MD interface, address is 0000.0000.031e (bia 0000.0000.031e) MTU 1500 bytes, BW 26000 Kbit/sec, DLY 1000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation MCNS, loopback not set Keepalive set (10 sec) ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: weighted fair Output queue: 0/1000/64/0 (size/max total/threshold/drops) Conversations 0/0/256 (active/max active/max total) Reserved Conversations 0/0 (allocated/max allocated) Available Bandwidth 19500 kilobits/sec 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 13000 bits/sec, 17 packets/sec 0 packets input, 0 bytes, 0 no buffer Received 0 broadcasts (0 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 140520 packets output, 14052672 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out Router# show interfaces c8/0/0 Cable0/0/0 is up, line protocol is up Hardware is CMTS MD interface, address is 0000.0000.031e (bia 0000.0000.031e) MTU 1500 bytes, BW 26000 Kbit/sec, DLY 1000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation MCNS, loopback not set Keepalive set (10 sec) ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: weighted fair Output queue: 0/1000/64/0 (size/max total/threshold/drops) Conversations 0/0/256 (active/max active/max total) Reserved Conversations 0/0 (allocated/max allocated) Available Bandwidth 19500 kilobits/sec 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 14000 bits/sec, 18 packets/sec 0 packets input, 0 bytes, 0 no buffer Received 0 broadcasts (0 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 140616 packets output, 14062272 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out

セカンダリカードがアクティブである場合、show running-config コマンドにより、セカンダリカードの出力が表示されます。

______ (注)

セカンダリ カードがアクティブの場合、show running-config コマンドの出力 は、プライマリ カードに関しては空になります。

次に、スロット8のプライマリカードがスロット0のセカンダリカードに切り替わった後の、show running-config コマンドの出力例を示します。

Router# show running-config | begin controller Upstream-Cable 0

controller Upstream-Cable 0/0/0
us-channel 0 channel-width 1600000 1600000
us-channel 0 docsis-mode atdma
us-channel 0 minislot-size 4
us-channel 0 modulation-profile 221
no us-channel 0 shutdown
us-channel 1 channel-width 1600000 1600000
us-channel 1 docsis-mode atdma
Router# show running-config | begin controller Upstream-Cable 8
Router#

その他の参考資料

関連資料

Router#

関連項目	マニュアル タイトル
CMTS コマンド	Cisco CMTS Cable Command Reference

シスコのテクニカル サポート

説明	リンク
シスコのサポート Web サイトでは、シスコの 製品やテクノロジーに関するトラブルシュー ティングにお役立ていただけるように、マニュ アルやツールをはじめとする豊富なオンライン リソースを提供しています。	http://www.cisco.com/support
お使いの製品のセキュリティ情報や技術情報を 入手するために、Cisco Notification Service (Field Notice からアクセス) 、Cisco Technical Services Newsletter、Really Simple Syndication (RSS) フィードなどの各種サービスに加入できます。	
シスコのサポート Web サイトのツールにアク セスする際は、Cisco.com のユーザ ID およびパ スワードが必要です。	

ラインカード冗長性に関する機能情報

Cisco Feature Navigator を使用すると、プラットフォームおよびソフトウェアイメージのサポート 情報を検索できます。Cisco Feature Navigator を使用すると、ソフトウェアイメージがサポートす る特定のソフトウェアリリース、フィーチャセット、またはプラットフォームを確認できます。 Cisco Feature Navigator には、http://www.cisco.com/go/cfn からアクセスします。Cisco.com のアカウ ントは必要ありません。

(注)

ſ

次の表は、特定のソフトウェア リリース トレインで各機能のサポートが導入されたときのソ フトウェア リリースのみを示しています。その機能は、特に断りがない限り、それ以降の一 連のソフトウェア リリースでもサポートされます。

表 2: ライン カード冗長性に関する機能情報

機能名	リリース	機能情報
ライン カード冗長性	Cisco IOS XE Fuji 16.7.1	この機能が Cisco cBR シリーズ コンバージド ブロードバンド ルータに統合されました。

Cisco cBR コンバージド ブロードバンド ルータ DOCSIS ソフトウェア コンフィギュレーション ガイド (Cisco IOS XE Fuji 16.7.x 用) ■

■ Cisco cBR コンバージド ブロードバンド ルータ DOCSIS ソフトウェア コンフィギュレーション ガイド (Cisco IOS XE Fuji 16.7.x 用)