Catalyst 9000スイッチでのNATの設定と確認

内容	
<u>はじめに</u>	
<u>要件</u>	
<u>背景説明</u>	
<u>使用するコンポーネント</u>	
· <u>用語</u> · · · · · · · · · · · · · · · · · · ·	
<u>ネットワーク図</u>	
<u>設定</u>	
<u>設定例</u>	
<u>スタティックNATの確認</u>	
<u>ソフトウェアの検証</u>	
<u>ハードウェアの検査</u>	
<u>ダイナミックNATの確認</u>	
<u>ソフトウェアの検証</u>	
<u>ハードウェアの検査</u>	
<u>ダイナミックNATオーバーロード(PAT)の確認</u>	
<u>ソフトウェアの検証</u>	
<u>ハードウェアの検査</u>	
<u>パケットレベルのデバッグ</u>	
<u>NATスケールのトラブルシューティング</u>	
<u>アドレスのみの変換(AOT)</u>	
関連情報	

はじめに

このドキュメントでは、Catalyst 9000プラットフォームでネットワークアドレス変換(NAT)を設 定および検証する方法について説明します。

前提条件

要件

次の項目に関する知識があることが推奨されます。

- ・ IP アドレッシング
- ・ アクセス コントロール リスト

背景説明

NATの最も一般的なケースは、プライベートIPネットワーク空間をグローバルに一意なインター ネットのルーティング可能なアドレスに変換する場合です。

NATを実行するデバイスは、内部ネットワーク(ローカル)上のインターフェイスと外部ネット ワーク(グローバル)上のインターフェイスを持つ必要があります。

NATデバイスは、NATルール設定に基づいて変換が必要かどうかを判断するために、送信元トラフィックの検査を行います。

変換が必要な場合、デバイスはローカルの送信元IPアドレスをグローバルに一意なIPアドレスに 変換し、NAT変換テーブルで追跡します。

パケットがルーティング可能なアドレスで戻ってくると、デバイスはNATテーブルをチェックして、別の変換が正常に行われているかどうかを確認します。

その場合、ルータは内部グローバルアドレスを適切な内部ローカルアドレスに再変換し、パケットをルーティングします。

使用するコンポーネント

Cisco IOS® XE 16.12.1では、Network AdvantageライセンスでNATを使用できるようになりました。以前のすべてのリリースでは、DNA Advantageライセンスで使用できます。

Platform	NAT機能の導入
C9300	Cisco IOS® XE バージョン 16.10.1
C9400	Cisco IOS® XE バージョン 17.1.1
C9500	Cisco IOS® XEバージョン16.5.1a
C9600	Cisco IOS® XE バージョン 16.11.1

このドキュメントは、Cisco IOS® XEバージョン16.12.4を搭載したCatalyst 9300プラットフォー ムに基づいています

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、クリアな(デフォルト)設定で作業を開始していま す。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を十分確認して ください。

用語

スタティッ ク NAT	ローカルアドレスをグローバルアドレスに1対1でマッピングできます。
ダイナミッ ク NAT	ローカルアドレスをグローバルアドレスのプールにマッピングします。
オーバーロ	ー意のL4ポートを使用する単一のグローバルアドレスにローカルアドレスをマッピ

ードNAT	ングします。
内部ローカ ル	内部ネットワークのホストに割り当てられたIPアドレス。
内部グロー バル	これは、外部ネットワークから見た内部ホストのIPアドレスです。これは、内部ロ ーカルが変換されるアドレスと考えることができます。
外部ローカ ル	内部ネットワークから見た外部ホストのIPアドレス。
外部グロー バル	外部ネットワーク上のホストに割り当てられているIPアドレス。ほとんどの場合、 外部ローカルアドレスと外部グローバルアドレスは同じです。
FMAN-RP	Feature Manager RPの略。これは、プログラミング情報をFMAN-FPに渡すCisco IOS® XEのコントロールプレーンです。
FMAN-FP	Feature ManagerのFP。FMAN-FPはFMAN-RPから情報を受信し、FEDに渡します 。
FED	Forwarding Engine Driver(フォワーディングエンジンドライバ)。FMAN-FPは FEDを使用して、コントロールプレーンからの情報をUnified Access Data Plane(UADP)の特定用途向け集積回路(ASIC)にプログラミングします。

ネットワーク図

設定

設定例

192.168.1.100(内部ローカル)を172.16.10.10(内部グローバル)に変換するスタティック NAT設定:

<#root>

NAT-Device#

show run interface te1/0/1

Building configuration...

Current configuration : 109 bytes Т interface TenGigabitEthernet1/0/1 no switchport ip address 192.168.1.1 255.255.255.0 ip nat inside <-- NAT inside interface end NAT-Device# show run interface te1/0/2 Building configuration... Current configuration : 109 bytes interface TenGigabitEthernet1/0/2 no switchport ip address 10.10.10.1 255.255.255.0 ip nat outside <-- NAT outside interface end ip nat inside source static 192.168.1.100 172.16.10.10 <-- static NAT rule NAT-Device# show ip nat translations Pro Inside global Inside local Outside local Outside global icmp 172.16.10.10:4 192.168.1.100:4 10.20.30.40:4 10.20.30.40:4 <-- active NAT translation --- 172.16.10.10 192.168.1.100 ___ ___ <-- static NAT translation added as a result of the configuration

```
192.168.1.0/24を172.16.10.1 ~ 172.16.10.30に変換するダイナミックNAT設定:
```

<#root>

NAT-Device#

show run interface te1/0/1

Building configuration...

Current configuration : 109 bytes Т interface TenGigabitEthernet1/0/1 no switchport ip address 192.168.1.1 255.255.255.0 ip nat inside <-- NAT inside interface end NAT-Device# show run interface te1/0/2 Building configuration... Current configuration : 109 bytes interface TenGigabitEthernet1/0/2 no switchport ip address 10.10.10.1 255.255.255.0 ip nat outside <-- NAT outside interface end ! ip nat pool TAC-POOL 172.16.10.1 172.16.10.30 netmask 255.255.255.224 <-- NAT pool configuration ip nat inside source list hosts pool TAC-POOL <-- NAT rule configuration ļ ip access-list standard hosts <-- ACL to match hosts to be 10 permit 192.168.1.0 0.0.0.255 NAT-Device# show ip nat translations Pro Inside global Inside local Outside local Outside global icmp 172.16.10.10:6 192.168.1.100:6 10.20.30.40:6 10.20.30.40:6 --- 172.16.10.10 192.168.1.100 ___ ___

192.168.1.0/24を10.10.10.1 (ip nat outsideインターフェイス)に変換するダイナミックNATオー バーロード(PAT)の設定:

<#root>

NAT-Device#				
show run interface tel	/0/1			
Building configuration				
Current configuration	: 109 bytes			
! interface TenGigabitEt no switchport in address 192.168.1.1	hernet1/0/1			
ip nat inside		< NAT inside	interface	
end				
NAT-Device#				
show run interface tel	/0/2			
Building configuration				
Current configuration	: 109 bytes			
! interface TenGigabitEt no switchport in address 10,10,10,1	hernet1/0/2			
ip nat outside	2331233123310	< NAT outside	interface	
end				
!				
ip nat inside source l	ist hosts interf	ace TenGigabitEther	net1/0/2 overload	< NAT configuration
!				
ip access-list standar	d hosts			< ACL to match hos
10 permit 192.168.1.0	0.0.0.255			
変換のたびに、内部グ	ローバルアドレ	スのポートが1ずつ:	増加することに注意し	てください。
<#root>				
NAT-Device#				
show ip nat translatio	ns			
Pro Inside global	Inside local	Outside local	Outside global	

icmp 10.10.10.1:1024 192.168.1.100:1 10.20.30.40:1 10.20.30.40:1024

<-- Notice layer 4 port increments

icmp 10.10.10.1:1025 192.168.1.100:2 10.20.30.40:2 10.20.30.40:1025

<-- Notice layer 4 port increments

icmp	10.10.10.1:1026	192.168.1.100:3	10.20.30.40:3	10.20.30.40:1026
icmp	10.10.10.1:1027	192.168.1.100:4	10.20.30.40:4	10.20.30.40:1027
icmp	10.10.10.1:1028	192.168.1.100:5	10.20.30.40:5	10.20.30.40:1028
icmp	10.10.10.1:1029	192.168.1.100:6	10.20.30.40:6	10.20.30.40:1029
icmp	10.10.10.1:1030	192.168.1.100:7	10.20.30.40:7	10.20.30.40:1030
icmp	10.10.10.1:1031	192.168.1.100:8	10.20.30.40:8	10.20.30.40:1031

10.10.10.1:1024 = inside global

192.168.1.100:1 = inside local

スタティックNATの確認

ソフトウェアの検証

変換されたアクティブフローがない場合、スタティックNATによる変換の半分が表示されること が予想されます。 フローがアクティブになると、ダイナミック変換が作成されます

<#root>

NAT-Device#

show ip nat translations

Pro Inside global	Inside local	Outside local	Outside global
icmp 172.16.10.10:10	192.168.1.100:10	10.20.30.40:10	10.20.30.40:10

<-- dynamic translation

--- 172.16.10.10 192.168.1.100 --- ---

<-- static configuration from NAT rule configuration

show ip nat translations verboseコマンドを使用すると、フローが作成された時間と変換にかかる

時間を確認できます。

<#root>

NAT-Device#

show ip nat translations verbose

Pro Inside global Inside local Outside local Outside global icmp 172.16.10.10:10 192.168.1.100:10 10.20.30.40:10 10.20.30.40:10

create 00:00:13, use 00:00:13, left 00:00:46,

<-- NAT timers

```
flags:
extended, use_count: 0, entry-id: 10, lc_entries: 0
--- 172.16.10.10 192.168.1.100 --- ---
create 00:09:47, use 00:00:13,
flags:
static, use_count: 1, entry-id: 9, lc_entries: 0
```

NAT統計情報をチェックします。NATヒットカウンタは、フローがNATルールに一致し、作成されると増加します。

NATミスカウンタは、トラフィックがルールに一致しても変換を作成できない場合に増加します。

<#root>

NAT-DEVICE#

show ip nat statistics

Total active translations: 1 (

1 static,

0 dynamic; 0 extended)

<-- 1 static translation

Outside interfaces:

TenGigabitEthernet1/0/1 <-- NAT outside interface

Inside interfaces:

TenGigabitEthernet1/0/2 <-- NAT inside interface

Hits: 0 Misses: 0

<-- NAT hit and miss counters.

CEF Translated packets: 0, CEF Punted packets: 0 Expired translations: 0 Dynamic mappings: -- Inside Source [Id: 1] access-list hosts interface TenGigabitEthernet1/0/1 refcount 0

変換が行われるためには、NATフローの送信元と宛先の隣接関係が必要です。アジャセンシー関 係IDを書き留めます。

<#root>

NAT-Device#

show ip route 10.20.30.40

Routing entry for 10.20.30.40/32 Known via "static", distance 1, metric 0 Routing Descriptor Blocks: * 10.10.10.2 Route metric is 0, traffic share count is 1

NAT-Device#

show platform software adjacency switch active f0

Adjacency id:

0x29(41)

<-- adjacency ID

```
Interface: TenGigabitEthernet1/0/1, IF index: 52, Link Type: MCP_LINK_IP
Encap: 0:ca:e5:27:3f:e4:70:1f:53:0:b8:e4:8:0
Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500
Flags: no-l3-inject
Incomplete behavior type: None
Fixup: unknown
Fixup_Flags_2: unknown
Nexthop addr:
```

192.168.1.100

<-- source adjacency

```
IP FRR MCP_ADJ_IPFRR_NONE 0
aom id: 464, HW handle: (nil) (created)
```

Adjacency id:

0x24 (36)

<-- adjacency ID

Interface: TenGigabitEthernet1/0/2, IF index: 53, Link Type: MCP_LINK_IP Encap: 34:db:fd:ee:ce:e4:70:1f:53:0:b8:d6:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-l3-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr:

10.10.10.2

<-- next hop to 10.20.30.40

IP FRR MCP_ADJ_IPFRR_NONE 0
aom id: 452, HW handle: (nil) (created)

スイッチがトラフィックを受信し、スイッチがNATフローを作成するかどうかを確認するために 、NATデバッグをイネーブルにできます

✤ 注:NATの対象となるICMPトラフィックは常にソフトウェアで処理されるため、プラットフォームのデバッグにはICMPトラフィックのログは表示されません。

<#root>

NAT-Device#

debug ip nat detailed

IP NAT detailed debugging is on NAT-Device# *Mar 8 23:48:25.672: NAT: Entry assigned id 11

<-- receive traffic and flow created

*Mar 8 23:48:25.672: NAT: i: icmp (192.168.1.100, 11) -> (10.20.30.40, 11) [55] *Mar 8 23:48:25.672: NAT:

s=192.168.1.100->172.16.10.10

, d=10.20.30.40 [55]NAT: dyn flow info download suppressed for flow 11

<-- source is translated

*Mar 8 23:48:25.673: NAT: o: icmp (10.20.30.40, 11) -> (172.16.10.10, 11) [55] *Mar 8 23:48:25.674: NAT: s=10.20.30.40,

d=172.16.10.10->192.168.1.100

[55]NAT: dyn flow info download suppressed for flow 11

<-- return source is translated

*Mar 8 23:48:25.675: NAT: i: icmp (192.168.1.100, 11) -> (10.20.30.40, 11) [56]

フローが期限切れになるか、削除されると、デバッグにDELETEアクションが表示されます。

<#root>

*Mar 31 17:58:31.344: FMANRP-NAT: Received flow data, action:

DELETE

<-- action is delete

*Mar 31 17:58:31.344: id 2, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40,
dst_global_addr 10.20.30.40, src_local_port 31783, src_global_port 31783,
dst_local_port 23, dst_global_port 23,
proto 6, table_id 0 inside_mapping_id 0,
outside_mapping_id 0, inside_mapping_type 0,
outside_mapping_type 0

ハードウェアの検査

NATルールが設定されると、デバイスはNAT領域5のTCAMでこのルールをプログラムします。ル ールがTCAMにプログラムされていることを確認します。

出力は16進数であるため、IPアドレスへの変換が必要です。

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region NAT_1 (370) type 6 asic 3 Printing entries for region NAT_2 (371) type 6 asic 3 Printing entries for region NAT_3 (372) type 6 asic 3 Printing entries for region NAT_4 (373) type 6 asic 3

Printing entries for region NAT_5 (374) type 6 asic 3

<-- NAT Region 5

c0a80164

<--

inside local IP address 192.168.1.100 in hex (c0a80164)

AD 10087000:0000073

ac100a0a

:00000000

<-- inside global IP address 172.16.10.10 in hex (ac100a0a)

AD 10087000:0000073

最後に、フローがアクティブになると、ハードウェアプログラミングは、NAT領域1でTCAMを検 証することで確認できます。

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<-- NAT Region 1

0a141e28:c0a80164

AD 10087000:00000b0

TAQ-2 Index-33 (A:0,C:1) Valid StartF-0 StartA-0 SkipF-0 SkipA-0

ac100a0a:0a141e28

AD 10087000:00000b1

Starting at Index-32 Key1 from right to left:

c0a80164

= 192.168.1.100 (Inside Local)

0a141e28

= 10.20.30.40 (Outside Global)

0000017

= 23 (TCP destination port)

06005ac9

= 06 for TCP and 5ac9 is 23241 which is source port from "show ip nat translations" of the inside host Repeat the same for Index-33 which is the reverse translation:

0a141e28

= 10.20.30.40 (Outside Global)

ac100a0a

= 172.16.10.10 (Inside Global)

00005ac9

= 23241 TCP Destination port

0600017

= 06 for TCP and 17 for TCP source port 23

ダイナミックNATの確認

ソフトウェアの検証

内部IPアドレスを変換するアドレスのプールが設定されていることを確認します。

この設定では、192.168.1.0/24ネットワークをアドレス172.16.10.1 ~ 172.16.10.254に変換でき ます

<#root>

NAT-Device#

show run | i ip nat

ip nat inside

<-- ip nat inside on inside interface

ip nat outside

<-- ip nat outside on outside interface

ip nat pool MYPOOL 172.16.10.1 172.16.10.254 netmask 255.255.255.0 <-- Pool of addresses to translate

ip nat inside source list hosts pool MYPOOL

<-- Enables hosts that match ACL "H

NAT-Device#

show ip access-list 10 <-- ACL to match hosts to be translated

Standard IP access list 10
10 permit 192.168.1.0, wildcard bits 0.0.0.255
NAT-Device#

ダイナミックNATでは、設定のみによるエントリは作成されないことに注意してください。変換 テーブルにデータを入力する前に、アクティブフローを作成する必要があります。

<#root>

NAT-Device#

show ip nat translations

<....>

NAT統計情報をチェックします。NATヒットカウンタは、フローがNATルールに一致し、作成されると増加します。

NATミスカウンタは、トラフィックがルールに一致しても変換を作成できない場合に増加します。

<#root>

NAT-DEVICE#

```
Total active translations: 3794 (1 static,
3793 dynamic
; 3793 extended)
<-- dynamic translations
Outside interfaces:
TenGigabitEthernet1/0/1
                               <-- NAT outside interface
Inside interfaces:
TenGigabitEthernet1/0/2
                              <-- NAT inside interface
Hits: 3793
Misses: 0
<-- 3793 hits
CEF Translated packets: 0, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
                                <-- rule for dynamic mappings
-- Inside Source
[Id: 1]
access-list hosts interface TenGigabitEthernet1/0/1
 refcount 3793
<-- NAT rule displayed
送信元と宛先の隣接関係が存在することを確認します。
<#root>
NAT-Device#
show platform software adjacency switch active f0
Number of adjacency objects: 4
Adjacency id:
```

0x24(36)

<-- adjacency ID

show ip nat statistics

Interface: TenGigabitEthernet1/0/2, IF index: 53, Link Type: MCP_LINK_IP Encap: 34:db:fd:ee:ce:e4:70:1f:53:0:b8:d6:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-13-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr: 10.10.10.2 <-- adjacency to destination IP FRR MCP_ADJ_IPFRR_NONE 0 aom id: 449, HW handle: (nil) (created) Adjacency id: 0x25 (37) <-- adjacency ID Interface: TenGigabitEthernet1/0/1, IF index: 52, Link Type: MCP_LINK_IP Encap: 0:ca:e5:27:3f:e4:70:1f:53:0:b8:e4:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-13-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr: 192.168.1.100 <-- source adjacency IP FRR MCP_ADJ_IPFRR_NONE 0 aom id: 451, HW handle: (nil) (created)

隣接関係が確認された後、NATの問題が存在する場合は、プラットフォームに依存しないNATの デバッグから始めることができます

<#root>

NAT-Device#

debug ip nat

IP NAT debugging is on NAT-Device#

debug ip nat detailed

IP NAT detailed debugging is on

NAT-Device#

show logging

*May 13 01:00:41.136: NAT: Entry assigned id 6 *May 13 01:00:41.136: NAT: Entry assigned id 7 *May 13 01:00:41.136: NAT: i:

tcp (192.168.1.100, 48308)

-> (10.20.30.40, 23) [30067]

<-- first packet ingress without NAT

*May 13 01:00:41.136: NAT: TCP Check for Limited ALG Support *May 13 01:00:41.136: NAT:

s=192.168.1.100->172.16.10.10

, d=10.20.30.40 [30067]NAT: dyn flow info download suppressed for flow 7

<-- confirms source address translation

*May 13 01:00:41.136: NAT: attempting to setup alias for 172.16.10.10 (redundancy_name , idb NULL, flag *May 13 01:00:41.139: NAT: o:

tcp (10.20.30.40, 23)

-> (172.16.10.10, 48308) [40691]

<-- return packet from destination to be translated

*May 13 01:00:41.139: NAT: TCP Check for Limited ALG Support *May 13 01:00:41.139: NAT: s=10.20.30.40,

d=172.16.10.10->192.168.1.100

[40691]NAT: dyn flow info download suppressed for flow 7

<-- return packet is translated

*May 13 01:00:41.140: NAT: i: tcp (192.168.1.100, 48308) -> (10.20.30.40, 23) [30068]

また、FMAN-RPのNAT動作をデバッグすることもできます。

<#root>

NAT-Device#

debug platform software nat all

NAT platform all events debugging is on

```
Log Buffer (100000 bytes):
*May 13 01:04:16.098: FMANRP-NAT: Received flow data, action:
ADD
<-- first packet in flow so we ADD an entry
*May 13 01:04:16.098: id 9, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40
<-- verify inside local/global and outside local/global
dst_global_addr 10.20.30.40, src_local_port 32529, src_global_port 32529,
dst_local_port 23, dst_global_port 23
<-- confirm ports, in this case they are for Telnet
proto 6, table_id 0 inside_mapping_id 1,
outside_mapping_id 0, inside_mapping_type 2,
outside_mapping_type 0
*May 13 01:04:16.098: FMANRP-NAT: Created TDL message for flow info:
ADD id 9
*May 13 01:04:16.098: FMANRP-NAT: Sent TDL message for flow data config:
ADD id 9
*May 13 01:04:16.098: FMANRP-NAT: Received flow data, action:
MODIFY
                  <-- subsequent packets are MODIFY
*May 13 01:04:16.098: id 9, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40,
dst_global_addr 10.20.30.40, src_local_port 32529, src_global_port 32529,
dst_local_port 23, dst_global_port 23,
proto 6, table_id 0 inside_mapping_id 1,
outside_mapping_id 0, inside_mapping_type 2,
outside_mapping_type 0
*May 13 01:04:16.098: FMANRP-NAT: Created TDL message for flow info:
MODIFY id 9
*May 13 01:04:16.098: FMANRP-NAT: Sent TDL message for flow data config:
MODIFY id 9
```

期限切れや手動削除などの理由でルールが削除されると、DELETEアクションが表示されます。

<#root>

*May 13 01:05:20.276: FMANRP-NAT: Received flow data, action:

DELETE <-- DELETE action

*May 13 01:05:20.276: id 9, flags 0x1, domain 0
src_local_addr 192.168.1.100, src_global_addr 172.16.10.10, dst_local_addr 10.20.30.40,
dst_global_addr 10.20.30.40, src_local_port 32529, src_global_port 32529,
dst_local_port 23, dst_global_port 23,
proto 6, table_id 0 inside_mapping_id 0,
outside_mapping_id 0, inside_mapping_type 0,
outside_mapping_type 0

ハードウェアの検査

変換されるトラフィックに一致するNATルールが、NAT領域5の下のハードウェアに正しく追加さ れているかどうかを確認します。

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<<<< empty due to no active flow

Printing entries for region NAT_2 (371) type 6 asic 1 Printing entries for region NAT_3 (372) type 6 asic 1 Printing entries for region NAT_4 (373) type 6 asic 1 Printing entries for region NAT_5 (374) type 6 asic 1

fffff00

c0a80100

AD 10087000:0000073

ffffff00 = 255.255.255.0 in hex

最後に、アクティブな変換がNAT TCAM領域1で正しくプログラムされていることを確認する必要があります

<#root>

NAT-Device#

show ip nat translations

Pro	Inside global	Inside local	Outside local	Outside global
tcp	172.16.10.10:54854	192.168.1.100:54854	10.20.30.40:23	10.20.30.40:23
	172.16.10.10	192.168.1.100		

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

0a141e28

:

c0a80164

AD 10087000:00000b0

ac100a0a

2

0a141e28

AD 10087000:00000b1

Printing entries for region NAT_2 (371) type 6 asic 1 Printing entries for region NAT_3 (372) type 6 asic 1 Printing entries for region NAT_4 (373) type 6 asic 1

```
Printing entries for region NAT_5 (374) type 6 asic 1
```

Starting at Index-32 Key 1 from right to left:

c0a80164

- 192.168.1.100 (inside local)

0a141e28

- 10.20.30.40 (outside local/global)

0000017

- TCP port 23

0600d646

- 6 for TCP protocol and 54854 for TCP source port

Starting at Index-33 Key 1 from right to left

0a141e28

- 10.20.30.40 destination address

ac100a0a

- 172.16.10.10 (inside global source IP address)

0000d646

- TCP source port

06000017

- TCP protocol 6 and 23 for the TCP destination port

ダイナミックNATオーバーロード(PAT)の確認

ソフトウェアの検証

PATを確認するログプロセスは、ダイナミックNATと同じです。正しいポート変換を確認し、ポ ートがハードウェアで正しくプログラムされていることを確認するだけです。

PATは、NATルールに追加された「overload」キーワードによって実現されます。

<#root>

NAT-Device#

show run | i ip nat

ip nat inside

<-- ip nat inside on NAT inside interface

ip nat outside

<-- ip nat outside on NAT outside interface

ip nat pool MYPOOL 172.16.10.1 172.16.10.254 netmask 255.255.255.0 <-- Address pool to translate to

ip nat inside source list hosts pool MYPOOL overload

<-- Links ACL hosts to address pool

送信元と宛先の隣接関係が存在することを確認します。

<#root>

```
NAT-Device#
```

show ip route 10.20.30.40

```
Routing entry for 10.20.30.40/32
Known via "static", distance 1, metric 0
Routing Descriptor Blocks:
```

10.10.10.2

Route metric is 0, traffic share count is 1

NAT-Device#

show platform software adjacency switch active f0

Number of adjacency objects: 4

Adjacency id:

0x24

(36)

<-- adjacency ID

Interface: TenGigabitEthernet1/0/2, IF index: 53, Link Type: MCP_LINK_IP Encap: 34:db:fd:ee:ce:e4:70:1f:53:0:b8:d6:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-l3-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown
Nexthop addr:

10.10.10.2 <-- adjacency to destination

IP FRR MCP_ADJ_IPFRR_NONE 0
aom id: 449, HW handle: (nil) (created)

Adjacency id:

0x25

(37)

<-- adjacency ID

Interface: TenGigabitEthernet1/0/1, IF index: 52, Link Type: MCP_LINK_IP Encap: 0:ca:e5:27:3f:e4:70:1f:53:0:b8:e4:8:0 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500 Flags: no-l3-inject Incomplete behavior type: None Fixup: unknown Fixup_Flags_2: unknown Nexthop addr:

192.168.1.100 <-- source adjacency

IP FRR MCP_ADJ_IPFRR_NONE 0
aom id: 451, HW handle: (nil) (created)

フローがアクティブなときに、変換が変換テーブルに追加されることを確認します。PATでは、 ダイナミックNATのようにハーフエントリが作成されないことに注意してください。

内部ローカルアドレスと内部グローバルアドレスのポート番号を追跡します。

<#root>

NAT-Device#

show ip nat translations

Pro	Inside global	Inside local	Outside local	Outside global
tcp	172.16.10.10:1024	192.168.1.100:52448	10.20.30.40:23	10.20.30.40:23

NAT統計情報をチェックします。NATヒットカウンタは、フローがNATルールに一致し、作成されると増加します。

NATミスカウンタは、トラフィックがルールに一致しても変換を作成できない場合に増加します。

<#root>

NAT-DEVICE# show ip nat statistics Total active translations: 3794 (1 static, 3793 dynamic ; 3793 extended) <-- dynamic translations Outside interfaces: TenGigabitEthernet1/0/1 <-- NAT outside interface Inside interfaces: <-- NAT inside interface TenGigabitEthernet1/0/2 Hits: 3793 Misses: 0 <-- 3793 hits CEF Translated packets: 0, CEF Punted packets: 0 Expired translations: 0 Dynamic mappings: <-- rule for dynamic mappings -- Inside Source [Id: 1] access-list hosts interface TenGigabitEthernet1/0/1 refcount 3793

<-- NAT rule displayed

Platform Independent NATのデバッグは、ポート変換が発生していることを示しています。

<#root>

NAT-Device#

debug ip nat detailed

IP NAT detailed debugging is on
NAT-Device#

debug ip nat

IP NAT debugging is on

NAT-device#

show logging

Log Buffer (100000 bytes):

*May 18 23:52:20.296: NAT: address not stolen for 192.168.1.100, proto 6 port 52448 *May 18 23:52:20.296: NAT: Created portlist for proto tcp globaladdr 172.16.10.10 *May 18 23:52:20.296: NAT: Allocated Port for 192.168.1.100 -> 172.16.10.10:

wanted 52448 got 1024 <-- confirms PAT is used

*May 18 23:52:20.296: NAT: Entry assigned id 5
*May 18 23:52:20.296: NAT: i: tcp (192.168.1.100, 52448) -> (10.20.30.40, 23) [63338]
*May 18 23:52:20.296: NAT: TCP Check for Limited ALG Support
*May 18 23:52:20.296: NAT: TCP

s=52448->1024

, d=23

<-- confirms NAT overload with PAT

*May 18 23:52:20.296: NAT:

s=192.168.1.100->172.16.10.10, d=10.20.30.40

[63338]NAT: dyn flow info download suppressed for flow 5

<-- shows inside translation

*May 18 23:52:20.297: NAT: attempting to setup alias for 172.16.10.10 (redundancy_name , idb NULL, flag
*May 18 23:52:20.299: NAT: o: tcp (10.20.30.40, 23) -> (172.16.10.10, 1024) [55748]
*May 18 23:52:20.299: NAT: TCP Check for Limited ALG Support
*May 18 23:52:20.299: NAT: TCP s=23,

d=1024->52448

<-- shows PAT on return traffic

*May 18 23:52:20.299: NAT: s=10.20.30.40, d=172.16.10.10->192.168.1.100 [55748]NAT: dyn flow info downl

<#root>

NAT-Device#

debug platform software nat all

NAT platform all events debugging is on NAT-Device#

*May 18 23:52:20.301: FMANRP-NAT: Received flow data, action: ADD <-- first packet in flow ADD operation *May 18 23:52:20.301: id 5, flags 0x5, domain 0 src_local_addr 192.168.1.100, src_global_addr 172.16.10.10 , dst_local_addr 10.20.30.40, <-- source translation dst_global_addr 10.20.30.40, src_local_port 52448, src_global_port 1024 , <-- port translation dst_local_port 23, dst_global_port 23, proto 6, table_id 0 inside_mapping_id 1, outside_mapping_id 0, inside_mapping_type 2, outside_mapping_type 0 <snip>

ハードウェアの検査

NATルールがNAT領域5のハードウェアに正しくインストールされていることを確認します。

<#root>

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<-- NAT_1 empty due to no active flow

Printing entries for region NAT_2 (371) type 6 asic 1 Printing entries for region NAT_3 (372) type 6 asic 1 Printing entries for region NAT_4 (373) type 6 asic 1 Printing entries for region NAT_5 (374) type 6 asic 1

AD 10087000:0000073

fffff00

c0a80100

AD 10087000:0000073

ffffff00 = 255.255.255.0 in hex for our subnet mask in NAT ACL

c0a80100 = 192.168.1.0 in hex for our network address in NAT ACL

最後に、フローがアクティブなときに、NAT_Region 1の下のハードウェアTCAMにNATフローが プログラムされることを確認できます

<#root>

NAT-Device#

show ip nat translations

 Pro Inside global
 Inside local
 Outside local
 Outside global

 tcp 172.16.10.10:1024
 192.168.1.100:20027
 10.20.30.40:23
 10.20.30.40:23

NAT-Device#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region

NAT_1

(370) type 6 asic 1

<-- NAT region 1

06004e3b

:00000000:

0000017

:0000000:0000000:

0a141e28

:

c0a80164

AD 10087000:00000b0

0600017

:0000000:

00000400

:0000000:0000000:

0a141e28

:

0a141e28

AD 10087000:00000b1

Starting at Index-32 Key1 from right to left:

c0a80164

- 192.168.1.100 (inside local source address)

0a141e28

- 10.20.30.40 (inside global address/outside local address)

0000017

- 23 (TCP destination port)

06004e3b

- TCP source port 20027 (4e3b) and TCP protocol 6

Starting at Index-33 Key1 from right to left:

0a141e28

- 10.20.30.40 (outside global address/outside local address)

ac100a0a

- 172.16.10.10 (inside global)

00000400

- TCP inside global source port 1024

- TCP protocol 6 and TCP source port 23

パケットレベルのデバッグ

ハードウェアのNATルールに一致するフローの最初のパケットは、処理されるデバイスのCPUに パントされる必要があります。パントパスに関連するデバッグ出力を表示するには、FEDパント パストレースをデバッグレベルに有効にして、パケットがパントされていることを確認します。 CPUリソースを必要とするNATトラフィックは、トランジットトラフィックCPUキューに入りま す。

トランジットトラフィックのCPUキューで、パケットがアクティブにパントされているかどうか を確認します。

<#root>

NAT-DEVICE#

show platform software fed switch active punt cpuq clear <-- clear statistics

NAT-DEVICE#

show platform software fed switch active punt cpuq 18 <-- transit traffic queue

Punt CPU Q Statistics

CPU Q Id :

18

CPU Q Name :

CPU_Q_TRANSIT_TRAFFIC

Packets received from ASIC : 0

Send to IOSd total attempts : 0 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 0 RX packets dq'd after intack : 0 Active RxQ event : 0 <-- no punt traffic for NAT

RX spurious interrupt : 0 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 Replenish Stats for all rxq: -----Number of replenish : 0 Number of replenish suspend : 0 Number of replenish un-suspend : 0 -----NAT-DEVICE# show platform software fed switch active punt cpuq 18 <-- after new translation Punt CPU Q Statistics CPU Q Id : 18 CPU Q Name : CPU_Q_TRANSIT_TRAFFIC Packets received from ASIC : 5 <-- confirms the UADP ASIC punts to Send to IOSd total attempts : 5 Send to IOSd failed count : 0 RX suspend count : 0 RX unsuspend count : 0 RX unsuspend send count : 0 RX unsuspend send failed count : 0 RX consumed count : 0 RX dropped count : 0 RX non-active dropped count : 0 RX conversion failure dropped : 0 RX INTACK count : 5 RX packets dq'd after intack : 0 Active RxQ event : 5 RX spurious interrupt : 0 RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 Replenish Stats for all rxq: -----Number of replenish : 18 Number of replenish suspend : 0 Number of replenish un-suspend : 0 _____

NATスケールのトラブルシューティング

次の表に示すように、現在のハードウェアでサポートされているNAT TCAMエントリの最大数。

💊 注:アクティブなNAT変換ごとに2つのTCAMエントリが必要です。

Platform TCAMエントリの最大数

Catalyst 9300	5000
Catalyst 9400	14000
Catalyst 9500	14000
Catalyst 9500の高性能	15500
Catalyst 9600	15500

スケールの問題が疑われる場合は、プラットフォームの制限に照らして確認するTCP/UDP NAT変換の総数を確認できます。

<#root>

NAT-Device#

show ip nat translations | count tcp

Number of lines which match regexp =

621 <-- current number of TCP translations

NAT-Device#

show ip nat translations | count udp

Number of lines which match regexp =

4894 <-- current number of UDP translations

NAT TCAMスペースを使い果たした場合、スイッチハードウェアのNATモジュールはこれらの変換を処理できません。このシナリオでは、NAT変換の対象となるトラフィックは、処理されるデ バイスのCPUにパントされます。

これは遅延を引き起こす可能性があり、NATパントトラフィックを行うコントロールプレーンポ リサーキューで増加するドロップによって確認できます。NATトラフィックが流れるCPUキュー は「トランジットトラフィック」です。

<#root>

NAT-Device#

show platform hardware fed switch active gos queue stats internal cpu policer

====							
QId	PlcIdx	Queue Name	Enabled	(default) Rate	(set) Rate	Queue Drop(Bytes)	Queue Drop(Frames)
<sn<sup>-</sn<sup>	 ip>						
14	13	Sw forwarding	Yes	1000	1000	0	0
15	8	Topology Control	Yes	13000	16000	0	0

CPU Queue Statistics

18	13	Transit Traffic	Yes	1000	1000	34387271	399507
17	6	DHCP Snooping	Yes	500	500	0	0
16	12	Proto Snooping	Yes	2000	2000	0	0

<-- drops for NAT traffic headed towards the CPU

19	10	RPF Failed	Yes	250	250	0	0
20	15	MCAST END STATION	Yes	2000	2000	0	0
<sni< td=""><td>p></td><td></td><td></td><td></td><td></td><td></td><td></td></sni<>	p>						

17.xコードで使用可能なNAT TCAMスペースを確認します。この出力は、スペースが最大化され るようにNATテンプレートがアクティブになっている9300からのものです。

<#root>

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam utilization

Codes: EM - Exact_Match, I - Input, O - Output, IO - Input & Output, NA - Not Applicable

CAM Utilization for ASIC [0]

Table	Subtype	Dir	Max	Used	%Used	V4	V6	MPLS	Other
Mac Address Table	EM	I	32768	22	0.07%	0	0	0	22
Mac Address Table	TCAM	I	1024	21	2.05%	0	0	0	21
L3 Multicast	EM	I	8192	0	0.00%	0	0	0	0
L3 Multicast	TCAM	I	512	9	1.76%	3	6	0	0
L2 Multicast	EM	I	8192	0	0.00%	0	0	0	0
L2 Multicast	TCAM	I	512	11	2.15%	3	8	0	0
IP Route Table	EM	I	24576	16	0.07%	15	0	1	0
IP Route Table	TCAM	I	8192	25	0.31%	12	10	2	1
QOS ACL	TCAM	IO	1024	85	8.30%	28	38	0	19
Security ACL	TCAM	IO	5120	148	2.89%	27	76	0	45
Netflow ACL	TCAM	I	256	6	2.34%	2	2	0	2
PBR ACL	TCAM	I	5120	24	0.47%	18	6	0	0
Netflow ACL	TCAM	0	768	6	0.78%	2	2	0	2
Flow SPAN ACL	TCAM	IO	1024	13	1.27%	3	6	0	4
Control Plane	TCAM	I	512	281	54.88%	130	106	0	45
Tunnel Termination	TCAM	I	512	18	3.52%	8	10	0	0
Lisp Inst Mapping	TCAM	I	512	1	0.20%	0	0	0	1
Security Association	TCAM	I	256	4	1.56%	2	2	0	0
Security Association CTS Cell Matrix/VPN	TCAM	0	256	5	1.95%	0	0	0	5
Label CTS Cell Matrix/VPN	EM	0	8192	0	0.00%	0	0	0	0
Label	TCAM	0	512	1	0.20%	0	0	0	1
Client Table	EM	I	4096	0	0.00%	0	0	0	0
Client Table	TCAM	I	256	0	0.00%	0	0	0	0
Input Group LE	TCAM	I	1024	0	0.00%	0	0	0	0
Output Group LE	TCAM	0	1024	0	0.00%	0	0	0	0
Macsec SPD	TCAM	I	256	2	0.78%	0	0	0	2

16.xコードで使用可能なNAT TCAMスペースを確認します。次の出力は、SDMアクセステンプレートを使用した9300からのもので、NAT TCAMエントリの使用可能スペースが最大化されることはありません。

<#root>

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam utilization

CAM Utilization for ASIC [0]				
Table	Max Values	Used Values		
Unicast MAC addresses	32768/1024	20/21		
L3 Multicast entries	8192/512	0/9		
L2 Multicast entries	8192/512	0/11		
Directly or indirectly connected routes	24576/8192	5/23		
QoS Access Control Entries	5120	85		
Security Access Control Entries	5120	145		
Ingress Netflow ACEs	256	8		
Policy Based Routing ACEs	1024	24 < NAT usage in PRB TCAM		
Egress Netflow ACEs	768	8		
Flow SPAN ACEs	1024	13		
Control Plane Entries	512	255		
Tunnels	512	17		
Lisp Instance Mapping Entries	2048	3		
Input Security Associations	256	4		
SGT_DGT	8192/512	0/1		
CLIENT_LE	4096/256	0/0		
INPUT_GROUP_LE	1024	0		
OUTPUT_GROUP_LE	1024	0		
Macsec SPD	256	2		

NAT TCAMの使用可能なハードウェアスペースは、NATを優先するようにSDMテンプレートを変 更することで増やすことができます。これにより、TCAMエントリの最大数に対するハードウェ アサポートが割り当てられます。

<#root>

NAT-Device#conf t Enter configuration commands, one per line. End with CNTL/Z. NAT-Device(config)#

sdm prefer nat

NATテンプレートへの変換前と変換後のSDMを比較すると、使用可能なTCAMスペースがQoS Access Control Entries(ACE;アクセスコントロールエントリ)とPolicy Based Routing(PBR;ポリシーベースルーティング)ACEと交換されていることを確認できます。

PBR TCAMではNATがプログラムされます。

<#root> NAT-Device# show sdm prefer Showing SDM Template Info This is the Access template. Number of VLANs: 4094 Unicast MAC addresses: 32768 Overflow Unicast MAC addresses: 1024 L2 Multicast entries: 8192 Overflow L2 Multicast entries: 512 L3 Multicast entries: 8192 Overflow L3 Multicast entries: 512 Directly connected routes: 24576 Indirect routes: 8192 Security Access Control Entries: 5120 QoS Access Control Entries: 5120 Policy Based Routing ACEs: 1024 <-- NAT <....> NAT-Device# show sdm prefer Showing SDM Template Info This is the NAT template. Number of VLANs: 4094 Unicast MAC addresses: 32768 Overflow Unicast MAC addresses: 1024 L2 Multicast entries: 8192 Overflow L2 Multicast entries: 512 L3 Multicast entries: 8192 Overflow L3 Multicast entries: 512 Directly connected routes: 24576 Indirect routes: 8192 Security Access Control Entries: 5120 QoS Access Control Entries: 1024 Policy Based Routing ACEs: 5120 <-- NAT <snip>

アドレスのみの変換(AOT)

AOTは、NATの要件がフローのレイヤ4ポートではなくIPアドレスフィールドだけを変換すること である場合に使用できるメカニズムです。これが要件を満たしている場合、AOTはハードウェア で変換および転送されるフローの数を大幅に増やすことができます。

- AOTが最も効果的なのは、NATフローの大部分が1つまたは少数の宛先セットに宛てられている場合です。
- AOTはデフォルトで無効になっています。イネーブルにした後、現在のNAT変換をクリアする必要があります。

✤ 注:AOTは、スタティックNATおよびPATを含まないダイナミックNATでのみサポートされます。

つまり、AOTを許可するNAT設定は次の場合のみです。

#ip nat inside source static <source> <destination>
#ip nat inside source list <list> pool <pool name>

次のコマンドでAOTを有効にできます。

<#root>

NAT-Device(config)#

no ip nat create flow-entries

AOT NATルールが正しくプログラムされていることを確認します。この出力は、スタティック NAT変換からのものです。

<#root>

NAT-DEVICE#

show running-config | include ip nat

ip nat outside ip nat inside

no ip nat create flow-entries

<-- AOT enabled

ip nat inside source static 10.10.10.100 172.16.10.10 <-- static NAT enabled

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT_

```
Printing entries for region NAT_1 (376) type 6 asic 1

Printing entries for region NAT_2 (377) type 6 asic 1

Printing entries for region NAT_3 (378) type 6 asic 1

Printing entries for region NAT_4 (379) type 6 asic 1

Printing entries for region NAT_5 (380) type 6 asic 1
```

0a0a0a64

AD 10087000:0000073

ac100a0a

:00000000 AD 10087000:00000073

```
0a0a0a64 = 10.10.10.100 (inside local)
ac100a0a = 172.16.10.10 (inside global)
```

フローがアクティブになったときに、送信元と宛先のIPアドレスだけがプログラムされていることを確認して、TCAMのAOTエントリを確認します。

<#root>

NAT-DEVICE#

show platform hardware fed switch active fwd-asic resource tcam table pbr record 0 format 0 | begin NAT

Printing entries for region NAT_1 (376) type 6 asic 1 Printing entries for region NAT_2 (377) type 6 asic 1

c0a80164:0a0a0a64 <-- no L4 ports, only source and destination IP is programmed

AD 10087000:00000b2

ac100a0a

:00000000 AD 10087000:00000b3

0a0a0a64 = 10.10.10.100 in hex (inside local IP address)

c0a80164 = 192.168.1.100 in hex (outside local/outside global)
ac100a0a = 172.16.10.10 (inside global)

関連情報

- Catalyst 9300 17.3.x NATコンフィギュレーションガイド
- Catalyst 9400 17.3.x NATコンフィギュレーションガイド
- Catalyst 9500 17.3.x NATコンフィギュレーションガイド
- Catalyst 9600 17.3.x NATコンフィギュレーションガイド
- <u>テクニカル サポートとドキュメント Cisco Systems</u>

シスコ社内 情報

<u>CSCvz46804</u>NAT TCAMリソースが枯渇した場合、またはNATエントリを正常にプログラム できない場合に、syslogを追加する機能拡張。 翻訳について

シスコは世界中のユーザにそれぞれの言語でサポート コンテンツを提供するために、機械と人に よる翻訳を組み合わせて、本ドキュメントを翻訳しています。ただし、最高度の機械翻訳であっ ても、専門家による翻訳のような正確性は確保されません。シスコは、これら翻訳の正確性につ いて法的責任を負いません。原典である英語版(リンクからアクセス可能)もあわせて参照する ことを推奨します。