guida al test e alla convalida del throughput wireless 802.11ac

Sommario

Introduzione Prerequisiti Requisiti Componenti usati Comprendere Misura Verifica e convalida Risoluzione dei problemi

Introduzione

In questo documento viene descritto come testare il throughput wireless di un access point basato su 802.11ac e quale throughput attendersi in determinate condizioni.

Prerequisiti

Requisiti

In questo documento si presume che la configurazione sia già funzionante con punti di accesso 802.11ac che forniscono già la connettività ai client

Componenti usati

Le informazioni di questo documento si basano sulla tecnologia e sulle velocità 802.11ac.

Cisco AP con tecnologia Wave1:

serie 3700

serie 2700

serie 1700

serie 1570

Cisco AP con tecnologia Wave2:

serie 4800

serie 3800

serie 2800

serie 1850

serie 1830

serie 1560

serie 1540

Comprendere

	802.11n	802.11n IEEE Specification	802.11ac Wave 1 Today	802.11ac Wave2 WFA Certification Process Continues	802.11ac IEEE Specification
Band	2.4 GHz & 5 GHz	2.4 GHz & 5 GHz	5 GHz	5 GHz	5 GHz
MIMO	Single User (SU)	Single User (SU)	Single User (SU)	Multi User (MU)	Multi User (MU)
PHY Rate	450 Mbps	600 Mbps	1.3 Gbps	2.34 Gbps - 3.47 Gbps	6.9 Gbps
Channel Width	20 or 40 MHz	20 or 40 MHz	20, 40, 80 MHz	20, 40, 80, 80-80, 160 MHz	20, 40, 80, 80-80, 160 MHz
Modulation	64 QAM	64 QAM	256 QAM	256 QAM	256 QAM
Spatial Streams	3	4	3	3-4	8
MAC Throughout*	293 Mbps	390 Mbps	845 Mbps	1.52 Gbps- 2.26 Gbps	4.49 Gbps

Lo standard 802.11ac può essere suddiviso in due standard: Wave1 e Wave2:

* Assuming a 65% MAC efficiency with highest MCS

802.11ac Wave1: supporta velocità dati fino a 1,3 Gb/s su 3 flussi spaziali con channel bonding a 80 MHz.

802.11ac Wave2: supporta velocità dati fino a 3,47 Gb/s su 4 flussi spaziali con channel bonding a 160 MHz. Questi numeri sono solo i numeri teorici dello standard; le differenze saranno applicate a seconda del foglio dati AP specifico.

802.11ac non è direttamente definito nella velocità della velocità dei dati, ma è piuttosto una combinazione di schema di codifica a modulazione 10 (MCS 0-MCS 9), una larghezza di canale che va da 20mhz (1 canale) a 160Mhz (8 canali), una serie di flussi spaziali (tipicamente da 1 a 4). Anche l'intervallo di guardia breve o lungo (GI) aggiungerà una modifica del 10% circa a questo. Di seguito è riportata una tabella per valutare una velocità di trasferimento in Mbps se si conoscono tutti questi fattori:

Flussi spaziali	VHT MCS Indice	Modulazione	Velocità di codifica	20 MHz Velocita (Mb/s)	z à dati	40 MHz Velocità dati (Mb/s)		80 MHz Velocità dati (Mb/s)		MHz Velocità	a dati
				800ns	400ns	800ns	400ns	800ns	400ns	800ns	40

				GI	GI	GI	GI	GI	GI	GI	GI
1	0	BPSK	1/2	6.5	7.2	13.5	15.0	29.3	32.5	58.5	65
	1	QPSK	1/2	13.0	14.4	27.0	30.0	58.5	65.0	117.0	13
	2	QPSK	3/4	19.5	21.7	40.5	45.0	87.8	97.5	175.5	19
	3	16-QAM	1/2	26.0	28.9	54.0	60.0	117.0	130.0	234.0	26
	4	16-QAM	3/4	39.0	43.3	81.0	90.0	175.5	195.0	351.0	39
	5	64-QAM	2/3	52.0	57.8	108.0	120.0	234.0	260.0	468.0	52
	6	64-QAM	3/4	58.5	65.0	121.5	135.0	263.3	292.5	526.5	58
	7	64-QAM	5/6	65.0	72.2	135.0	150.0	292.5	325.0	585.0	65
	8	256-QAM	3/4	78.0	86.7	162.0	180.0	351.0	390.0	702.0	78
	9	256-QAM	5/6	n/d	n/d	180.0	200.0	390.0	433.3	780.0	86
2	0	BPSK	1/2	13.0	14.4	27.0	30.0	58.5	65.0	117.0	13
	1	QPSK	1/2	26.0	28.9	54.0	60.0	117.0	130.0	234.0	26
	2	QPSK	3/4	39.0	43.3	81.0	90.0	175.5	195.0	351.0	39
	3	16-QAM	1/2	52.0	57.8	108.0	120.0	234.0	260.0	468.0	52
	4	16-QAM	3/4	78.0	86.7	162.0	180.0	351.0	390.0	702.0	78
	5	64-QAM	2/3	104.0	115.6	216.0	240.0	468.0	520.0	936.0	10
	6	64-QAM	3/4	117.0	130.0	243.0	270.0	526.5	585.0	1053.0	11
	7	64-QAM	5/6	130.0	144.4	270.0	300.0	585.0	650.0	1170.0	13
	8	256-QAM	3/4	156.0	173.3	324.0	360.0	702.0	780.0	1404.0	15
	9	256-QAM	5/6	n/d	n/d	360.0	400.0	780.0	866.7	1560.0	17
3	0	BPSK	1/2	19.5	21.7	40.5	45.0	87.8	97.5	175.5	19
	1	QPSK	1/2	39.0	43.3	81.0	90.0	175.0	195.0	351.0	39
	2	QPSK	3/4	58.5	65.0	121.5	135.0	263.0	292.5	526.5	58
	3	16-QAM	1/2	78.0	86.7	162.0	180.0	351.0	390.0	702.0	78
	4	16-QAM	3/4	117.0	130.0	243.0	270.0	526.5	585.0	1053.0	11
	5	64-QAM	2/3	156.0	173.3	324.0	360.0	702.0	780.0	1404.0	15
	6	64-QAM	3/4	175.5	195.0	364.5	405.0	n/d	n/d	1579.5	17
	7	64-QAM	5/6	195.0	216.7	405.0	450.0	877.5	975.0	1755.0	19
	8	256-QAM	3/4	234.0	260.0	486.0	540.0	1053.0	1170.0	2106.0	23
	9	256-QAM	5/6	260.0	288.9	540.0	600.0	1170.0	1300.0	n/d	n/c
4	0	BPSK	1/2	26.0	28.9	54.0	60.0	117.0	130.0	234.0	26
	1	QPSK	1/2	52.0	57.8	108.0	120.0	234.0	260.0	468.0	52
	2	QPSK	3/4	78.0	86.7	162.0	180.0	351.0	390.0	702.0	78
	3	16-QAM	1/2	104.0	115.6	216.0	240.0	468.0	520.0	936.0	10
	4	16-QAM	3/4	156.0	173.3	324.0	360.0	702.0	780.0	1404.0	15
	5	64-QAM	2/3	208.0	231.1	432.0	480.0	936.0	1040.0	1872.0	20
	6	64-QAM	3/4	234.0	260.0	486.0	540.0	1053.0	1170.0	2106.0	23
	7	64-QAM	5/6	260.0	288.9	540.0	600.0	1170.0	1300.0	2340.0	26
	8	256-QAM	3/4	312.0	346.7	648.0	720.0	1404.0	1560.0	2808.0	31
	9	256-QAM	5/6	n/d	n/d	720.0	800.0	1560.0	1733.3	3120.0	34
	9	256-QAM	5/6	n/d	n/d	1440.0	1600.0	3120.0	3466.7	6240.0	69

Nota: La velocità dati NON è uguale alla velocità effettiva raggiungibile prevista. Ciò è dovuto alla natura dello standard 802.11, che ha un notevole sovraccarico amministrativo (frame di gestione, contesa, collisione, riconoscimenti,...) e può dipendere dal collegamento SNR, RSSI e altri fattori significativi.

Tenere presente che la connettività wireless è un ambiente condiviso, il che significa che la quantità di client connessi all'access point condividerà il throughput effettivo tra di loro. Inoltre, sempre più clienti implicano più conflitti e inevitabilmente ancora più collisioni. L'efficienza della cella di copertura diminuirà drasticamente con l'aumento del numero di client.

È una regola pratica:

Throughput previsto = Data Rate x 0,65

Nel nostro caso:

780 x 0,65 = 507

Il throughput di 507 Mbps è quello che ci si può aspettare in buone condizioni in un laboratorio con un singolo client.

Misura

In generale, possiamo avere due scenari quando eseguiamo un test del throughput:

• Gli access point sono in modalità di switching locale Flexconnect

• I punti di accesso sono in modalità locale o in modalità di commutazione centrale Flexconnect Tali scenari verranno analizzati singolarmente:

(Grafico 1)

Nel caso del diagramma 1 si suppone che gli access point siano in modalità locale e che la commutazione centrale Flexconnect sia in modalità locale.

Ciò significa che tutto il traffico del client viene incapsulato nel tunnel CAPWAP e terminato sul WLC.

(Grafico 2)

La linea rossa nel diagramma 2 mostra il flusso del traffico proveniente dal client wireless.

Il server iPerf deve essere il più vicino possibile al punto di terminazione del traffico, preferibilmente collegato allo stesso switch del WLC e usare la stessa VLAN.

Nel caso della commutazione locale Flexconnect, il traffico del client viene terminato sull'access point stesso. Considerando che il server iPerf deve essere impostato in modo che si avvicini al punto di terminazione del traffico dei client wireless, collegare il server iPerf allo stesso switch e alla stessa VLAN a cui è collegato l'access point. Nel nostro caso si tratta di uno switch di accesso (diagramma 3).

(Grafico 3)

I test iPerf possono essere suddivisi in due categorie: a monte e a valle.

Tenendo presente che il server iPerf è in ascolto e che il client iPerf sta generando il traffico, quando il server iPerf si trova sul lato cablato, questo test viene considerato a monte.

Il client wireless utilizzerà l'applicazione iPerf per inviare il traffico alla rete.

Il test in downstream è viceversa, ovvero il server iPerf è impostato sul client wireless stesso e il client iPerf è sul lato cablato che spinge il traffico al client wireless, in questo scenario viene considerato downstream.

Il test deve essere eseguito utilizzando TCP e UDP. Per eseguire i test, è possibile utilizzare i seguenti comandi:

iperf3 -s <- this command starts iPerf server</pre>

iperf3 -c SERVER_ADDRESS -u -b700M <- this command initiates UDP iPerf test with bandwidth of 700 Mbps

iperf3 -c SERVER_ADDRESS <- this command initiates a simple TCP iPerf test</pre>

iperf3 -c SERVER_ADDRESS -w WIDOW_SIZE -P NUM_OF_PARALLEL_TCP_STREAMS <- this commands initiates a more complex TCP iPerf test where you can adjust the window size as well the number of parallel TCP streams.

Please not that in this case you should consider the sum of all the streams as the result **Esempio di output iPerf3**:

TCP iPerf3:

[ID]	Interval		Trans	sfer	Bandwidth	
[5]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[5]	0.00-10.06	sec	188	MBytes	157 Mbits/sec	receiver
[ID]	Interval		Trans	sfer	Bandwidth	
[5]	0.00-10.05	sec	0.00	Bytes	0.00 bits/sec	sender
[5]	0.00-10.05	sec	304	MBytes	254 Mbits/sec	receiver
	Wit	th 10 parallel	TCP	stream	ns:		
[ID]	Interval		Trans	sfer	Bandwidth	
[5]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[5]	0.00-10.06	sec	88.6	MBytes	73.9 Mbits/sec	receiver
[7]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[7]	0.00-10.06	sec	79.2	MBytes	66.0 Mbits/sec	receiver
[9]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[9]	0.00-10.06	sec	33.6	MBytes	28.0 Mbits/sec	receiver
[11]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[11]	0.00-10.06	sec	48.7	MBytes	40.6 Mbits/sec	receiver
[13]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[13]	0.00-10.06	sec	77.0	MBytes	64.2 Mbits/sec	receiver
[15]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[15]	0.00-10.06	sec	61.8	MBytes	51.5 Mbits/sec	receiver
[17]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[17]	0.00-10.06	sec	46.1	MBytes	38.4 Mbits/sec	receiver
[19]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[19]	0.00-10.06	sec	43.9	MBytes	36.6 Mbits/sec	receiver
[21]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[21]	0.00-10.06	sec	33.3	MBytes	27.8 Mbits/sec	receiver
[23]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[23]	0.00-10.06	sec	88.8	MBytes	74.0 Mbits/sec	receiver
[:	SUM]	0.00-10.06	sec	0.00	Bytes	0.00 bits/sec	sender
[:	SUM]	0.00-10.06	sec	601	MBytes	501 Mbits/sec	receiver

UDP iPerf3:

Talvolta iPerf si comporta in modo errato e non fornisce la larghezza di banda media al termine del test UDP.

Èancora possibile sommare la larghezza di banda per ogni secondo e quindi deviarla per numero di secondi:

Ac	ccept	ed connection	from	192.168.240.	.38, port 49264		
[5]	local 192.168.	.240.4	13 port 5201	connected to 192	.168.240.3	8 port 51711
[ID]	Interval		Transfer	Bandwidth	Jitter	Lost/Total Datagrams
[5]	0.00-1.00	sec	53.3 MBytes	447 Mbits/sec	0.113 ms	32/6840 (0.47%)
[5]	1.00-2.00	sec	63.5 MBytes	533 Mbits/sec	0.129 ms	29/8161 (0.36%)
[5]	2.00-3.00	sec	69.8 MBytes	586 Mbits/sec	0.067 ms	30/8968 (0.33%)
[5]	3.00-4.00	sec	68.7 MBytes	577 Mbits/sec	0.071 ms	29/8827 (0.33%)
[5]	4.00-5.00	sec	68.0 MBytes	571 Mbits/sec	0.086 ms	55/8736 (0.63%)
[5]	5.00-6.00	sec	68.6 MBytes	576 Mbits/sec	0.076 ms	70/8854 (0.79%)
[5]	6.00-7.00	sec	66.8 MBytes	561 Mbits/sec	0.073 ms	34/8587 (0.4%)
[5]	7.00-8.00	sec	67.1 MBytes	563 Mbits/sec	0.105 ms	44/8634 (0.51%)
[5]	8.00-9.00	sec	66.7 MBytes	559 Mbits/sec	0.183 ms	144/8603 (1.7%)
[5]	9.00-10.00	sec	64.1 MBytes	536 Mbits/sec	0.472 ms	314/8415 (3.7%)
[5]	10.00-10.05	sec	488 KBytes	76.0 Mbits/sec	0.655 ms	2/63 (3.2%)
-							
[ID]	Interval		Transfer	Bandwidth	Jitter	Lost/Total Datagrams
[5]	0.00-10.05	sec	0.00 Bytes	0.00 bits/sec 0	.655 ms 7	83/84688 (0.92%)
[5	SUM]	0.0-10.1 sec	224	datagrams re	eceived out-of-or	der	

Nota: si prevede che i risultati di iPerf saranno leggermente migliori sullo switch locale Flexconnect rispetto allo scenario di switching centrale.

Questo è causato dal fatto che il traffico dei client è incapsulato in CAPWAP, che aggiunge un maggiore sovraccarico al traffico e in generale il WLC agisce come un collo di bottiglia poiché è il punto di aggregazione per tutto il traffico dei client wireless.

Inoltre, si prevede che il test UDP iPerf darà risultati migliori in un ambiente pulito, in quanto è il metodo di trasferimento più efficiente quando la connessione è affidabile. TCP, tuttavia, potrebbe vincere in caso di frammentazione grave (quando si utilizza TCP Adjust MSS) o connessione inaffidabile

Verifica e convalida

Per verificare a quale velocità dati è connesso il client, è necessario eseguire il seguente comando nella CLI del WLC:

(Cisco Controller) >show client detail 94:65:2d:d4	1:8c:d6
Client MAC Address	94:65:2d:d4:8c:d6
Client Username	N/A
AP MAC Address	00:81:c4:fb:a8:20
AP Name	AIR-AP3802I-E-K9
AP radio slot Id	1
Client State	Associated
Client User Group	
Client NAC OOB State	Access
Wireless LAN Id	2
Wireless LAN Network Name (SSID)	speed-test-WLAN-avitosin
Wireless LAN Profile Name	speed-test
Hotspot (802.11u)	Not Supported
BSSID	00:81:c4:fb:a8:2e
Connected For	91 secs
Channel	52
IP Address	192.168.240.33
Gateway Address	192.168.240.1
Netmask	255.255.255.0
Association Id	1
Authentication Algorithm	Open System
Reason Code	1
Status Code	0
More or (q)uit	
Session Timeout	1800
Client CCX version	No CCX support
QoS Level	Silver
Avg data Rate	0
Burst data Rate	0
Avg Real time data Rate	0
Burst Real Time data Rate	0
802.1P Priority Tag	disabled
CTS Security Group Tag	Not Applicable
KTS CAC Capability	No
Qos Map Capability	No
WMM Support	Enabled
APSD ACs	BK BE VI VO
Current Rate	m9 ss2
Supported Rates	12.0,18.0,24.0,36.0,48.0,

Mobility State..... Local Mobility Move Count..... 0 Security Policy Completed..... Yes Policy Manager State..... RUN AAA Role Type..... none Local Policy Applied..... none --More-- or (q)uit IPv4 ACL Name..... none FlexConnect ACL Applied Status..... Unavailable IPv4 ACL Applied Status..... Unavailable IPv6 ACL Name..... none IPv6 ACL Applied Status..... Unavailable Layer2 ACL Name..... none Layer2 ACL Applied Status..... Unavailable mDNS Status..... Disabled mDNS Profile Name..... none No. of mDNS Services Advertised..... 0 Policy Type..... N/A Encryption Cipher..... None Protected Management Frame No Management Frame Protection..... No EAP Type..... Unknown Interface..... vlan240 Quarantine VLAN...... 0 Local Bridging VLAN..... 240 Client Capabilities: CF Pollable..... Not implemented CF Poll Request..... Not implemented --More-- or (q)uit Short Preamble..... Not implemented PBCC..... Not implemented Channel Agility..... Not implemented Listen Interval..... 1 Fast BSS Transition..... Not implemented 11v BSS Transition..... Implemented Client Wifi Direct Capabilities: WFD capable..... No Manged WFD capable..... No Cross Connection Capable..... No Support Concurrent Operation..... No Fast BSS Transition Details: Client Statistics: Number of Bytes Received..... 183844 Number of Bytes Sent..... 119182 Total Number of Bytes Sent..... 119182 Total Number of Bytes Recv..... 183844 Number of Bytes Sent (last 90s)..... 119182 Number of Bytes Recv (last 90s)..... 183844 Number of Packets Received..... 2536 Number of Packets Sent..... 249 Number of Interim-Update Sent..... 0 Number of EAP Id Request Msg Timeouts..... 0 --More-- or (q)uit Number of EAP Id Request Msg Failures..... 0 Number of EAP Request Msg Timeouts..... 0 Number of EAP Request Msg Failures..... 0 Number of EAP Key Msg Timeouts..... 0

Number of EAP Key Msg Failures..... 0 Number of Data Retries..... 0 Number of RTS Retries..... 0 Number of Duplicate Received Packets..... 0 Number of Decrypt Failed Packets..... 0 Number of Mic Failured Packets..... 0 Number of Mic Missing Packets..... 0 Number of RA Packets Dropped..... 0 Number of Policy Errors..... 0 Radio Signal Strength Indicator..... -25 dBm Signal to Noise Ratio..... 67 dB Client Rate Limiting Statistics: Number of Data Packets Received..... 0 Number of Data Rx Packets Dropped..... 0 Number of Data Bytes Received..... 0 Number of Data Rx Bytes Dropped..... 0 Number of Realtime Packets Received..... 0 Number of Realtime Rx Packets Dropped..... 0 Number of Realtime Bytes Received..... 0 --More-- or (q)uit Number of Realtime Rx Bytes Dropped..... 0 Number of Data Packets Sent..... 0 Number of Data Tx Packets Dropped..... 0 Number of Data Bytes Sent..... 0 Number of Data Tx Bytes Dropped..... 0 Number of Realtime Packets Sent..... 0 Number of Realtime Tx Packets Dropped..... 0 Number of Realtime Bytes Sent..... 0 Number of Realtime Tx Bytes Dropped..... 0 Nearby AP Statistics: DNS Server details: DNS server IP 10.48.39.33 DNS server IP 0.0.0.0 Assisted Roaming Prediction List details:

Client Dhcp Required: False Allowed (URL)IP Addresses

AVC Profile Name: none

È possibile visualizzare la velocità di connessione del client specifico:

Frequenza corrente.....m9 ss2

Il che significa che il client sta utilizzando l'indice MCS 9 (m9) su due flussi spaziali (ss2)

Con il comando "show client detail <MAC>" non è possibile verificare se il client è connesso tramite un collegamento di canale a 20/40/80 MHz.

Questa operazione può essere eseguita direttamente sul punto di accesso:

Esempio Wave2 AP:

AIR-AP3802I-E-K9#**show controllers dot11Radio 1 client 94:65:2D:D4:8C:D6** mac radio vap aid state encr Maxrate is_wgb_wired wgb_mac_addr 94:65:2D:D4:8C:D6 1 1 1 FWD OPEN MCS92SS false 00:00:00:00:00:00

Legacy Rates(Mbps): 12 18 24 36 48 54 HT Rates(MCS):M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 VHT Rates: 1SS:M0-7 2SS:M0-9 HT:yes VHT:yes 80MHz:yes 40MHz:yes AMSDU:yes AMSDU_long:yes 11w:no MFP:no 11h:yes encrypt_polocy: 1 _wmm_enabled:yes qos_capable:yes WME(11e):no WMM_MIXED_MODE:no short_preamble:no short_slot_time:no short_hdr:no SM_dyn:yes short_GI_20M:yes short_GI_40M:yes short_GI_80M:yes LDPC:yes is_wgb_wired:no is_wgb:no Additional info for client 94:65:2D:D4:8C:D6 RSSI: -25 PS : Legacy (Awake) Tx Rate: 0 Kbps Rx Rate: 0 Kbps VHT_TXMAP: 0 CCX Ver: 0 Statistics for client 94:65:2D:D4:8C:D6 mac intf TxData TxMgmt TxUC TxBytes TxFail TxDcrd RxData RxMgmt RxBytes RxErr TxRt RxRt idle_counter stats_ago expiration 94:65:2D:D4:8C:D6 apr1v1 254 0 254 121390 0 0 2568 0 185511 0 585000 866700 300 2.492000 1640 Per TID packet statistics for client 94:65:2D:D4:8C:D6 Priority Rx Pkts Tx Pkts Rx(last 5 s) Tx (last 5 s) QID Tx Drops Tx Cur Qlimit 1424 146 17 3 136 0 0 4096 0 0 4096 0 0 0 0 137 0 1 0 34 26 0 0 0 0 0 0 4096 2 0 138 3 34 0 0 139 0 0 4096 0 0 0 140 0 4096 4 0 0 0 0 5 0 141 0 4096 6 0 0 0 0 142 0 0 4096 7 0 0 0 0 143 0 0 4096

Nel caso dell'access point Wave1, è necessario eseguire i debug:

```
debug dotl1 dotl1radio 1 trace print rates
*Mar 5 06:21:50.175: 469A706-1 D48CD6 - add-rbf, tmr 4 pak 19 rssi -41 dBm rate a8.2-8
*Mar 5 06:21:50.175: 469A8B1-1 D48CD6 - added to rbf, status 30 istatus 40164 cl ri 1 mvl ri
0000 req 1 in 1
```

Il significato dell'output del comando debug è illustrato nella figura seguente:

P COM3 - PuTTY	A		- 0 <mark>- X</mark>
*Nov 11 14:18:30.399: E51A6597-1 2A34EA - cu a9.3b8s	3200/ 12, 241718 2893, 60990 1798,	1, 84192550, 48 0 5	
*Nov 11 14:18:31.355: E529AAB9-1 2A34EA - cu a9.3b8s	3200/ 18, 239890 4386, 59654 1493,	1, 83686037, 48 0 5	
*Nov 11 14:18:32.379: E5392E40-1 2A34EA - cu a9.3b8s	3200/ 22, 244127 5477, 63705 1155,	2, 83346737, 48 0 5	
*Nov 11 14:18:33.367: E5486504-1 2A34EA - cu a9.3b8s	3200/ 26, 244189 6392, 59840 1946,	2, 83006137, 48 0 5	
*Nov 11 14:18:34.375: E557D438-1 2A34EA - cu a9.3b8s	3200/ 26, 245739 6485, 62540 1891,	2, 83006137, 48 0 5	
*Nov 11 14:18:35.403: E56704EC-1 2A34EA - cu a9.3b8s	3200/ 27, 247733 6810, 61648 1818,	2, 82920825, 47 0 5	
*Nov 11 14:18:36.387: E5764491-1 2A34EA - cu a9.3b8s	3200/ 27, 245914 6815, 61406 1160,	2, 82920825, 48 0 5	
*Nov 11 14:18:37.375: E5858E53-1 2A34EA - cu a9.3b8s	27, 247678 6831, 61540 1962,	2, 82920825, 48 0 5	
*Nov 11 14:18:38.379: E594E681-1 2A34EA - cu a9.3	246635 6613, 61497 1673,	2, 83006137, 48 0 5	
*Nov 11 14:18:39.387: E5A44DEF-1 2A34EA - cu a9 a=11a	m=11n) ?45019 6282, 60512 1487,	2, 83091450, 48 0 5	
*Nov 11 14:18:40.379: E5B3782F-1 2A34EA - cu a/ 9=MC	13868 6408, 60159 1286,	2, 83006137, 47 0 5	
*Nov 11 14:18:41.391: E5C2CB10-1 2A34EA - cu / 3=Spa	Streams 4971 6110, 62643 1664,	2, 83176600, 48 0 5	
*Nov 11 14:18:42.415: E5D2247D-1 2A34EA - cu b=bea	orming (- for 682 5617, 61208 1180,	2 83 Packets sent in last second	
*Nov 11 14:18:43.431: E5F 2A34EA - cu no BF	202 5737, 64192 1607,	2, 3202100, 10 0 0	
*Nov 11 14:18:44.403: Client Mac 34EA - cu 8=80 M	z (4=40, 2=20) ;249 5554, 60206 1103,	, 83346737, 48 0 5	
*Nov 11 14:18:45.443: Address IEA - cu & S=Sho	Suard (blank 0628 5022 1728,	2, 8334 Retries in last second	
*Nov 11 14:18:46.519: EA - cu a: for LG	529 Packets/Retries 1665,	2, 176600, 46 0 5	
*Nov 11 14:18:47.527: 4EA - cu a	248' in last 5 seconds 7 97	83176600, 48 0 5	
*Nov 11 14:18:48.575: E 4EA - cu / 3D	1, 2509.	2, 82920825, 48 0 5	
*Nov 11 14:18:49.503: E63LA 1 2A5 EA - cu a9.3b8s	0200/ 25, 247600 00, 01735 00,	30° 450, 48 0 5	
*Nov 11 14:18:50.511: E64E098F-1 2A34EA - cu a9.3b8s	3200/ 25, 246844 6383, 62709 1606;	2, 5Packet Error Rate (%)	
*Nov 11 14:18:51.539: E65D52F8-1 2A34EA - cu a9.3b8s	3200/ 26, 249643 6594, 62832 1701,	2, 830, 137, 48 0 5	
*Nov 11 14:18:52.531: E66CBC33-1 2A34EA - cu a9.3b8s	3200/ 23, 249515 5941, 62239 1335,	2, 83261750, 48 0 5	
*Nov 11 14:18:53.519: E67BDA6D-1 2A34EA - cu a9.3b8s	3200/ 23, 250004 5958, 62224 1316,	2, 83261750, 48 0 5	

L'ultima opzione per controllare la velocità connessa è catturazioni OTA. Nelle informazioni radio del pacchetto dati sono disponibili le informazioni necessarie:

Ŧ	80	2.11 radio information
		PHY type: 802.11ac (8)
		Short GI: True
		Bandwidth: 80 MHz (4)
		STBC: Off
		TXOP_PS_NOT_ALLOWED: True
		Short GI Nsym disambiguation: False
		LDPC extra OFDM symbol: False
		Beamformed: False
	${\mathbb T}$	User 0: MCS 9
		MCS index: 9 (256-QAM 5/6)
		Spatial streams: 2
		Space-time streams: 2
		FEC: LDPC (1)
		Data rate: 866.7 Mb/s
		Group Id: 0
		Partial AID: 284
		Data rate: 866.7 Mb/s
		Channel: 36
		Frequency: 5180MHz
		Signal strength (dBm): -47dBm
		Noise level (dBm): -93dBm
		TSF timestamp: 3626993379
		0 = Last part of an A-MPDU: False
		0. = A-MPDU delimiter CRC error: False
		A-MPDU aggregate ID: 1070
	►	[Duration: 40µs]

Questa acquisizione OTA è stata eseguita con un client macbook 11ac.

Considerando le informazioni che riceviamo dal WLC e dall'access point, il client è connesso su m9 ss2 a 80 MHz channel bonding + Long GI (800ns), il che significa che possiamo aspettarci una velocità di trasmissione dati di 780 Mbps.

Nota: I punti di accesso in modalità sniffer non registreranno correttamente le velocità dati di 11ac prima della versione 8.5.130. Per decidere correttamente, sarà necessario utilizzare anche Wireshark 2.4.6 o versioni successive.

Risoluzione dei problemi

Se non si ottengono i risultati previsti durante il test, sono disponibili diversi modi per risolvere il problema e raccogliere le informazioni necessarie prima di aprire una richiesta TAC.

I problemi relativi al throughput possono essere causati da quanto segue:

- Cliente

- AP

- Percorso cablato (problemi correlati alla commutazione)

-WLC

Risoluzione dei problemi del client

- Il primo passaggio consiste nell'aggiornare i driver dei dispositivi client wireless all'ultima versione
- Il secondo passaggio consiste nell'eseguire il test iPerf con i client che hanno una scheda wireless diversa per verificare se si ottengono gli stessi risultati

Risoluzione dei problemi AP

In alcuni casi, il punto di accesso sta diminuendo il traffico, oppure determinati frame o si

comporta in modo errato.

Per ottenere maggiori informazioni, sono necessarie acquisizioni over the air (OTA) e sessioni span sulla porta dello switch AP (lo span deve essere eseguito sullo switch a cui è collegato l'access point)

L'OTA viene acquisita e l'SPAN deve essere eseguito durante il test utilizzando un SSID aperto per poter vedere il traffico trasmesso all'access point e il traffic access point sta passando al client e viceversa.

Sono noti diversi bug per questo comportamento:

<u>CSCvg07438</u> : AP3800: Basso throughput dovuto alle perdite di pacchetti nei punti di accesso sia nei pacchetti frammentati che in quelli non frammentati

<u>CSCva 58429</u> : Cisco 1532i AP: throughput ridotto (switching locale FlexConnect + EoGRE)

Risoluzione dei problemi relativi ai percorsi cablati

Èpossibile che si siano verificati dei problemi con lo switch stesso. È necessario verificare la quantità di perdite sulle interfacce e controllare se tali perdite aumentano durante i test.

Provare a utilizzare un'altra porta sullo switch per collegare l'AP o il WLC.

In alternativa è possibile collegare un client allo stesso switch (a cui è collegato il punto di terminazione del client [AP/WLC]) e collegarlo alla stessa VLAN, quindi eseguire i test da cablato a cablato sulla stessa VLAN per verificare se sono presenti problemi nel percorso cablato.

risoluzione dei problemi WLC

Èpossibile che il WLC stia eliminando il traffico (quando i punti di accesso sono in modalità locale) dal client.

Èpossibile mettere l'access point in modalità Flexconnect e la WLAN in modalità di switching locale, quindi eseguire i test.

Se si riscontrano differenze significative nella velocità di trasmissione in modalità locale (commutazione centrale) rispetto alla commutazione locale di Flexconnect e non vi sono problemi sullo switch collegato al WLC, è molto probabile che il WLC stia riducendo il traffico.

Per risolvere il problema, seguire il piano d'azione:

- Le acquisizioni SPAN sulla porta dello switch WLC (devono essere effettuate sullo switch)

- Acquisizioni SPAN sulla porta AP
- Acquisizioni OTA del client
- Debug seguenti sul WLC:

debug fastpath dump fpapool debug fastpath dump dpcp-stats

debug fastpath dump detailstats

debug fastpath dump stats

Eseguendo la procedura di risoluzione dei problemi descritta in precedenza e fornendo i risultati a TAC, il processo di risoluzione dei problemi risulterà più rapido.