Nexus 7000 F2 Module ELAM Procedure

Sommario

Introduzione <u>Topologia</u> <u>Determinare il motore di inoltro in ingresso</u> <u>Configurazione del trigger</u> <u>Avvia l'acquisizione</u> <u>Interpreta i risultati</u> Ulteriore verifica

Introduzione

Questo documento descrive i passaggi utilizzati per eseguire un ELAM su un modulo Cisco Nexus 7000 (N7K) F2, spiega gli output più rilevanti e come interpretare i risultati.

Suggerimento: Fare riferimento al documento <u>ELAM Overview</u> per una panoramica su ELAM.

Topologia

Nell'esempio, un host sulla VLAN 10 (10.1.1.101 con indirizzo MAC 0050.56a1.1a01), la porta Eth6/4 invia una richiesta ICMP (Internet Control Message Protocol) a un host sulla VLAN 10 (10.1.1.102 con indirizzo MAC 0050.56a1.1aef), la porta Eth6/3. Per acquisire questo singolo frame, viene utilizzato ELAM da 0.1.1.101 a **10.1.1.102**. È importante ricordare che ELAM consente di acquisire solo un singolo frame.

Per eseguire un ELAM sulla N7K, è necessario prima connettersi al modulo appropriato (è

necessario avere il privilegio di amministratore di rete):

```
N7K# attach module 6
Attaching to module 6 ...
To exit type 'exit', to abort type '$.'
module-6#
```

Determinare il motore di inoltro in ingresso

Èprevisto che il traffico entri nello switch sulla porta **Eth6/4**. Quando si controllano i moduli nel sistema, si osserverà che il **modulo 6** è un modulo F2. È importante ricordare che la N7K è completamente distribuita e che i moduli, non il supervisore, prendono le decisioni di inoltro per il traffico della corsia dati.

 N7K#
 show module 6

 Mod
 Ports
 Module-Type
 Model
 Status

 --- ---- ----- -----

 6
 48
 1/10 Gbps Ethernet Module
 N7K-F248XP-25E
 ok

 Per i moduli F2, eseguire l'ELAM sul Layer 2 (L2) Forwarding Engine (FE) con il nome in codice interno Clipper. Il bus di dati L2 FE (DBUS) contiene le informazioni di intestazione originali prima delle ricerche L2 e Layer 3 (L3), mentre il bus di risultati (RBUS) contiene i risultati dopo entrambe le ricerche L3 e L2.

L'N7K F2 ha 12 FE per modulo, quindi è necessario determinare l'ASIC **Clipper** utilizzato per l'FE sulla porta **Eth6/4**. Immettere questo comando per verificare:

module-0	6# show l	nardware	interna	l dev-po	ort-map			
CARD_TYI >Front I	PE: Panel poi	48 pc cts:48	ort 10G					
Device 1	name		Dev rol	e		Abbr num_i	nst:	
>Clippe:	r FWD		DEV_LAY	ER_2_LO(ЭКUР	L2LKP 12		+
+		++FRO1	NT PANEL	PORT TO	D ASIC I	INSTANCE MA	P+++	+ +
FP port	PHYS	MAC_0	L2LKP	L3LKI	P QUEU	JE SWICHF		
3	0	0	0	0	0	0		
4	0	0	0	0	0	0		
 .								.

Nell'output, è possibile vedere che la porta Eth6/4 si trova sull'istanza Clipper (L2LKP) 0.

module-6# elam asic clipper instance 0
module-6(clipper-elam)# layer2
module-6(clipper-l2-elam)#

Configurazione del trigger

L'ASIC **Clipper** supporta i trigger ELAM per più tipi di frame. Il trigger ELAM deve essere allineato al tipo di frame. Se il frame è un frame IPv4, il trigger deve essere anche IPv4. Un frame IPv4 non

viene acquisito con un altro trigger. La stessa logica si applica a IPv6.

?

Clipper ASIC supporta i seguenti tipi di frame:

<pre>module-6(clipper-l2-elam)# trigger dbus</pre>								
arp	ARP Frame Format							
fc	Fc hdr Frame Format							
ipv4	IPV4 Frame Format							
ipv6	IPV6 Frame Format							
other	L2 hdr Frame Format							
pup	PUP Frame Format							
rarp	Rarp hdr Frame Format							
valid	On valid packet							

Con Nexus Operating Systems (NX-OS), è possibile utilizzare il punto interrogativo per separare il trigger ELAM. Sono disponibili diverse opzioni per ELAM sul modulo F2:

```
module-6(clipper-l2-elam)# trigger dbus ipv4 ingress if ?
  <CR>
  destination-ipv4-address destination ipv4 address
  destination-mac-address Inner destination mac address
  source-index Source index
  source-ipv4-address source ipv4 address
  source-mac-address Inner source mac address
  vlan vlan
  etc?
```

Nell'esempio, il frame viene acquisito in base agli indirizzi IPv4 di origine e di destinazione, quindi vengono specificati solo i valori specificati.

Clipper richiede l'impostazione di trigger per DBUS e RBUS. Questa opzione è diversa dai moduli della serie M, in quanto non è necessario specificare un'istanza di Packet Buffer (PB). Ciò semplifica il trigger RBUS.

```
Di seguito è riportato il trigger DBUS:
```

```
module-6(clipper-12-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.1.1.101 destination-ipv4-address 10.1.1.102
Di seguito è riportato il trigger RBUS:
```

module-6(clipper-l2-elam)# trigger rbus ingress if trig

Avvia l'acquisizione

Dopo aver selezionato la FE in entrata e configurato il trigger, è possibile avviare l'acquisizione:

module-6(clipper-l2-elam)# start
Per controllare lo stato dell'ELAM, immettere il comando status:

L2 DBUS **Armed** ELAM instance 0: L2 RBUS Configuration: trigger rbus ingress if trig L2 RBUS **Armed** Quando il frame che corrisponde al trigger viene ricevuto dal FE, lo stato ELAM viene visualizzato come **Triggered**:

module-6(clipper-l2-elam)# status
ELAM instance 0: L2 DBUS Configuration: trigger dbus ipv4 ingress if
 source-ipv4-address 10.1.1.101 destination-ipv4-address 10.1.1.102
L2 DBUS Triggered
ELAM instance 0: L2 RBUS Configuration: trigger rbus ingress if trig
L2 RBUS Triggered

Interpreta i risultati

Per visualizzare i risultati ELAM, immettere i comandi **show dbus** e **show rbus**. Di seguito è riportato l'estratto dei dati ELAM più importante per questo esempio (alcuni output sono omessi):

module-6(clipper-l2-elam)# show dbus _____ L2 DBUS CONTENT - IPV4 PACKET _____ _____ . . . vlan: 0xadestination-index: 0x0source-index: 0x3bundle-port: 0x0sequence-number: 0x3fvl: 0x0 sequence-number . . . source-ipv4-address: 10.1.1.101 destination-ipv4-address: 10.1.1.102 destination-mac-address: 0050.56a1.1aef source-mac-address: 0050.56a1.1a01 module-6(clipper-l2-elam)# show rbus _____ L2 RBUS INGRESS CONTENT _____ l2-rbus-trigger : 0x1 sequence-number : 0x3f l3-multicast-di **vlan-id** di-ltl-index: 0x2source-index: 0x3 : 0x0 : 0xa

Con i dati **DBUS**, è possibile verificare che il frame venga ricevuto sulla VLAN 10 (**vlan: 0xa**) con un indirizzo MAC di origine di **0050.56a1.1a01** e un indirizzo MAC di destinazione di **0050.56a1.1aef**. Inoltre, questo è un frame IPv4 che ha origine da **10.1.1.101** e è destinato a **10.1.1.102**.

Suggerimento: Sono disponibili diversi altri campi utili non inclusi in questo output, ad esempio il valore TOS (Type of Service), i flag IP, la lunghezza IP e la lunghezza del frame L2.

Per verificare su quale porta viene ricevuto il frame, immettere il comando **SRC_INDEX** (la logica di destinazione locale (LTL) di origine). Immettere questo comando per eseguire il mapping di una LTL a una porta o a un gruppo di porte per la scheda N7K:

N7K# show system internal pixm info ltl 0x3 Type LTL

PHY_PORT Eth6/4

L'output mostra che un **indice** di **origine** di **0x3** è mappato alla porta **Eth6/4**. Ciò conferma che il frame viene ricevuto sulla porta **Eth6/4**.

Con i **dati RBUS**, è possibile verificare che il frame sia attivato sulla VLAN 10 (**vlan-id: 0xa**). Inoltre, è possibile confermare la porta in uscita dall'**indice di-Itl** (LTL di destinazione):

N7K# show system internal pixm info ltl 0x2 Type LTL

PHY_PORT Eth6/3

L'output mostra che un **indice di-Itl** di **0x2** è mappato alla porta **Eth6/3**. Ciò conferma che il frame è stato commutato dalla porta **Eth6/3**.

Ulteriore verifica

Per verificare in che modo lo switch alloca il pool LTL, immettere il comando **show system internal pixm info ltl-region**. L'output di questo comando è utile per comprendere lo scopo di una LTL se non corrisponde a una porta fisica. Un buon esempio è un **Drop** LTL:

N7K# **show system internal pixm info ltl 0x11a0** 0x11a0 is not configured

N7K# show system internal pixm info ltl-region

LTL POOL TYPE	SIZE	RANGE					
DCE/FC Pool	1024	0x0000 to 0x03ff					
SUP Inband LTL	32	0x0400 to 0x041f					
MD Flood LTL	1	0x0420					
Central R/W	1	0x0421					
UCAST Pool	1536	0x0422 to 0x0a21					
PC Pool	1720	0x0a22 to 0x10d9					
LC CPU Pool	32	0x1152 to 0x1171					
EARL Pool	72	0x10da to 0x1121					
SPAN Pool	48	0x1122 to 0x1151					
UCAST VDC Use Pool	16	0x1172 to 0x1181					
UCAST Generic Pool	30	0x1182 to 0x119f					
LISP Pool	4	0x1198 to 0x119b					
Invalid SI	1	0x119c to 0x119c					
ESPAN SI	1	0x119d to 0x119d					
Recirc SI	1	0x119e to 0x119e					
Drop DI	2	0x119f to 0x11a0					
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf					
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	Ox1fff					
UCAST Reserved for Future Use Region	2048	0x2000 to 0x27ff					
======================================							
VDC OMF Pool	32	0x2800 to 0x281f					