Nexus 7000 F1 Module ELAM Procedure

Sommario

Introduzione <u>Topologia</u> <u>Determinare il motore di inoltro in ingresso</u> <u>Configurazione del trigger</u> <u>Avvia l'acquisizione</u> <u>Interpreta i risultati</u> Ulteriore verifica

Introduzione

Questo documento descrive i passaggi utilizzati per eseguire un ELAM su un modulo Cisco Nexus 7000 (N7K) F1, spiega gli output più rilevanti e come interpretare i risultati.

Suggerimento: Fare riferimento al documento <u>ELAM Overview</u> per una panoramica su ELAM.

Topologia

Nell'esempio, un host sulla VLAN 10 (10.1.1.101 con indirizzo MAC 0050.56a1.1a01), la porta Eth3/18 invia una richiesta ICMP (Internet Control Message Protocol) a un host sulla VLAN 10 (10.1.1.102 con indirizzo MAC 0050.56a1.1aef), la porta Eth3/26. Per acquisire questo tipo di dati, viene utilizzato ELAM. singolo frame da 10.1.1.101 a **10.1.1.102**. È importante ricordare che ELAM consente di acquisire solo un singolo frame.

Per eseguire un ELAM sulla N7K, è necessario prima connettersi al modulo appropriato (è necessario avere il privilegio di amministratore di rete):

```
N7K# attach module 3
Attaching to module 3 ...
To exit type 'exit', to abort type '$.'
module-3#
```

Determinare il motore di inoltro in ingresso

Èprevisto che il traffico entri nello switch sulla porta **Eth3/18**. Quando si controllano i moduli nel sistema, si osserverà che il **modulo 3** è un modulo F1. È importante ricordare che la N7K è completamente distribuita e che i moduli, non il supervisore, prendono le decisioni di inoltro per il traffico della corsia dati.

N7K#show module 3ModPortsModule-TypeModelStatus-------------------3321/10 Gbps Ethernet ModuleN7K-F132XP-15ok

Per i moduli F1, eseguire l'ELAM sul Layer 2 (L2) Forwarding Engine (FE) con nome in codice interno **Orion**. La N7K F1 ha 16 FE per modulo, quindi è necessario determinare l'**Orion** ASIC che viene utilizzato per la FE sulla porta **Eth3/18**. Immettere questo comando per verificare:

<pre>module-3# show hardware (some output omitted)</pre>	e internal dev-po	rt-map
CARD_TYPE: DCE >Front Panel ports:32	32 port 10G	
Device name	Dev role	Abbr num_inst:
>Orion Fwding Driver	DEV_LAYER_2_LOO	KUP L2LKP 16
++++FRONT P2	ANEL PORT TO ASIC	INSTANCE MAP++++
FP port PHYS MAC_() l2lkp Queue	SWICHF
18 8 8	8 8	1

Nell'output, è possibile vedere che la porta Eth3/18 si trova sull'istanza Orion (L2LKP) 8.

```
module-3# elam asic orion instance 8
module-3(orion-elam)#
```

Configurazione del trigger

L'**Orion** ASIC dispone di una serie molto limitata di trigger ELAM rispetto alle altre FE sulla piattaforma N7K. Ciò è dovuto al fatto che F1 è un modulo solo L2. Pertanto, prende decisioni di commutazione in base alle informazioni sull'indirizzo MAC (o SwitchID negli ambienti FabricPath).

Con Nexus Operating Systems (NX-OS), è possibile utilizzare il punto interrogativo per separare il trigger ELAM:

da	Destination mac-address
mim_da	Destination mac-in-mac-address
mim_sa	Source mac-in-mac-address
sa	Source mac-address
vlan	

Per questo esempio, il frame viene acquisito in base agli indirizzi MAC di origine e di destinazione sul blocco decisionale in entrata.

Nota: Il modulo F1 non richiede trigger DBUS e RBUS separati.

Trigger:

module-3(orion-elam)# trigger di field sa 0050.56a1.1a01 da 0050.56a1.1aef

Avvia l'acquisizione

Il modulo F1 è diverso dagli altri moduli N7K, in quanto l'ELAM inizia immediatamente dopo la configurazione del trigger. Per controllare lo stato dell'ELAM, immettere il comando **status**:

module-3(orion-elam)# status

Armed

Quando il frame che corrisponde al trigger viene ricevuto dal FE, lo stato ELAM viene visualizzato come **Triggered**:

module-3(orion-elam)# status
Triggered

Interpreta i risultati

Per visualizzare i risultati ELAM, immettere il comando **show capture**. Di seguito è riportato l'estratto dei dati ELAM più importante per questo esempio (alcuni output sono omessi):

<pre>module-3(orion-elam)#</pre>	show	capture			
dc3v4_si[11:0]	:		17		
vlanx	:		a		
di	:		1e	or	1f
res_eth_da	:		5056a11aef		
res_eth_sa	:		5056a11a01		

Nota: Con il modulo F1, i dati ELAM utilizzati per prendere la decisione di inoltro e i dati che contengono il risultato dell'inoltro vengono combinati nello stesso output. Inoltre, il formato dell'indirizzo MAC nell'output ELAM non include gli zeri precedenti.

Destination MAC (res_eth_da) 5056allaef = 0050.56al.laef
Source MAC (res_eth_sa) 5056alla01 = 0050.56al.la01

Con questo output, è possibile verificare la logica di destinazione locale (LTL) di origine (dc3v4_si), la LTL di destinazione (di), la VLAN (vlanx) e gli indirizzi MAC di origine e di destinazione (rispettivamente, 5056a11a01 e 5056a11aef).

L'LTL di origine (**dc3v4_si**) rappresenta la porta su cui viene ricevuto il frame. Il comando ELAM F1 visualizza due risultati per il comando LTL di destinazione (**1e o 1f**). Ciò si verifica perché il parser ELAM non è in grado di leggere il bit meno significativo dei dati ELAM, il che produce un risultato ambiguo. Pertanto, Cisco consiglia di convalidare la voce dell'indirizzo MAC hardware per l'indirizzo di destinazione e di verificarla con il LTL di destinazione nell'ELAM.

N7K# show system internal pixm info ltl 0x17 Type LTL

PHY_PORT Eth3/18

L'output mostra che l'LTL di origine **0x17** è mappato alla porta **Eth3/18**. Ciò conferma che il frame viene ricevuto sulla porta **Eth3/18**.

module-3# show hardware mac address-table fe 8
address 0050.56a1.1aef vlan 10 vdc 1

(some output omitted)

 FE
 Valid
 PI
 BD
 MAC
 Index

 |
 |
 |
 |
 |
 |

 8
 1
 0
 34
 0050.56al.laef
 0x0001f

N7K# show system internal pixm info ltl 0x1f Type LTL

PHY_PORT Eth3/26

Con questo output, è possibile verificare che l'istanza **8 di** Orion (la FE che prende la decisione di inoltro per **Eth3/18**) abbia una voce di indirizzo MAC hardware di **0x1f** per l'indirizzo MAC di destinazione **0050.56a1.1aef**. Questo indice è anche la destinazione LTL (**di**) all'interno dei dati F1 ELAM.

Inoltre, è possibile verificare che LTL **0x1f** esegua il mapping alla porta **Eth3/26**. Ciò conferma che il frame viene inviato dalla porta **Eth3/26**.

Ulteriore verifica

Per verificare in che modo lo switch alloca il pool LTL, immettere il comando **show system internal pixm info Itl-region**. L'output di questo comando è utile per comprendere lo scopo di una LTL se non corrisponde a una porta fisica. Un buon esempio è un **Drop** LTL:

N7K# **show system internal pixm info ltl 0x11a0** 0x11a0 is not configured

N7K# show system internal pixm i	nfo ltl-region	
LTL POOL TYPE	SIZE RANG	3
DCE/FC Pool	1024 0x000) to 0x03ff
SUP Inband LTL	32 0x040) to 0x041f
MD Flood LTL	1 0x042)
Central R/W	1 0x042	L
UCAST Pool	1536 0x042	2 to 0x0a21

PC Pool	1720	0x0a22 to 0x10d9
LC CPU Pool	32	0x1152 to 0x1171
EARL Pool	72	0x10da to 0x1121
SPAN Pool	48	0x1122 to 0x1151
UCAST VDC Use Pool	16	0x1172 to 0x1181
UCAST Generic Pool	30	0x1182 to 0x119f
LISP Pool	4	0x1198 to 0x119b
Invalid SI	1	0x119c to 0x119c
ESPAN SI	1	0x119d to 0x119d
Recirc SI	1	0x119e to 0x119e
Drop DI	2	0x119f to 0x11a0
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	Ox1fff
UCAST Reserved for Future Use Region	2048	0x2000 to 0x27ff
=================> UCAST MCAST BO	UNDARY <====	
VDC OMF Pool	32	0x2800 to 0x281f