Risoluzione dei problemi relativi alle operazioni del Control Plane sugli switch Catalyst 9000

Sommario

Introduzione
Premesse
Terminologia
Catalyst 9000 CoP
Implementazione CoPP
Criterio predefinito
Regola CoPP
Risoluzione dei problemi
Metodologia
Comandi Show
Determinare l'utilizzo complessivo e storico
Verifica Control Plane Policing
Raccogliere informazioni sul traffico puntato
Ispeziona traffico associato alla CPU
Scenari comuni
Perdita ICMP (Ping) intermittente su IP locale
Reindirizzamenti ICMP elevati e funzionamento DHCP lento
<u>Ulteriori risorse</u>

Introduzione

In questo documento viene descritto come risolvere i problemi e convalidare lo stato del control plane sugli switch Catalyst della famiglia 9000 con Cisco IOS® XE.

Premesse

Il compito principale di uno switch è inoltrare i pacchetti nel più breve tempo possibile. La maggior parte dei pacchetti viene inoltrata nell'hardware, ma alcuni tipi di traffico devono essere gestiti dalla CPU del sistema. Il traffico che arriva alla CPU viene gestito il più rapidamente possibile. Si prevede che alla CPU venga rilevata una certa quantità di traffico, ma una sovrabbondanza genera problemi operativi. Per impostazione predefinita, la famiglia di switch Catalyst 9000 incorpora un robusto meccanismo CoPP (Control Plane Policing) per prevenire i problemi causati dalla sovrasaturazione del traffico della CPU.

In alcuni casi di utilizzo si verificano problemi imprevisti in funzione del normale funzionamento. La correlazione tra causa ed effetto a volte non è ovvia, il che rende il problema difficile da affrontare.

Questo documento fornisce gli strumenti per convalidare lo stato del control plane e fornisce un flusso di lavoro su come affrontare i problemi che coinvolgono il punt o il percorso di inserimento del control plane. Fornisce inoltre diversi scenari comuni basati sui problemi riscontrati sul campo.

Tenete presente che il percorso del punt della CPU è una risorsa limitata. I moderni switch di inoltro hardware possono gestire volumi di traffico sempre maggiori. La famiglia di switch Catalyst 9000 supporta circa 19.000 pacchetti al secondo (pps) aggregati alla CPU in un determinato momento. Supera questa soglia e il traffico puntato viene sorvegliato senza pesare.

Terminologia

- Driver del motore di inoltro (FED): questo è il cuore dello switch Cisco Catalyst ed è responsabile di tutta la programmazione/inoltro hardware
- IOSd: questo è il daemon Cisco IOS in esecuzione sul kernel Linux. Viene eseguito come processo software all'interno del kernel
- Packet Delivery System (PDS): si tratta dell'architettura e del processo con cui i pacchetti vengono consegnati da e verso i vari sottosistemi. Ad esempio, controlla il modo in cui i pacchetti vengono consegnati dalla FED all'IOSd e viceversa
- Control Plane (CP):il control plane è un termine generico utilizzato per raggruppare le funzioni e il traffico che interessano la CPU dello switch Catalyst. Ciò include il traffico, ad esempio il protocollo Spanning Tree Protocol (STP), il protocollo HSRP (Hot Standby Router Protocol) e i protocolli di routing destinati allo switch o inviati dallo switch. Sono inclusi anche protocolli a livello di applicazione come Secure Shell (SSH) e Simple Network Management Protocol (SNMP) che devono essere gestiti dalla CPU
- Data Plane (DP): in genere il piano dati comprende gli ASIC hardware e il traffico inoltrati senza l'assistenza del Control Plane
- Punt:Pacchetto di controllo del protocollo in entrata che ha intercettato il DP inviato al CP per elaborarlo
- Inject:Pacchetto di protocollo generato da CP inviato a DP per l'uscita su interfacce I/O
- LSMPI:Interfaccia Punt memoria condivisa Linux

Catalyst 9000 CoP

La base della protezione della CPU sulla famiglia di switch Catalyst 9000 è CoPP. Con CoPP, viene applicata una policy QoS (Quality of Service) generata dal sistema sul percorso punt/inserimento della CPU. Il traffico basato sulla CPU viene raggruppato in molte classi diverse e successivamente mappato sui singoli policy hardware associati alla CPU. I policer impediscono la sovracorsaturazione della CPU da parte di una particolare classe di traffico.

Implementazione CoPP

Il traffico basato sulla CPU viene classificato nelle code. Queste code/classi sono definite dal sistema e non possono essere configurate dall'utente. I criteri sono configurati nell'hardware. La famiglia Catalyst 9000 supporta 32 policer hardware per 32 code.

I valori specifici variano da piattaforma a piattaforma. In generale, esistono 32 code definite dal

sistema. Queste code si riferiscono a mappe di classi, che si riferiscono agli indici dei policer. Gli indici del policer hanno una frequenza del policer predefinita. Questo tasso è configurabile dall'utente, sebbene le modifiche apportate al criterio CoPP predefinito aumentino la vulnerabilità a un impatto imprevisto sul servizio.

Mappe classi - Nomi	Indice Policer (n. Policer)	Code CPU (n. coda)
system- cpp- Police- data	WK_CPP_POLICE_DATA(0)	WK_CPU_Q_ICMP_GEN(3) WK_CPU_Q_BROADCAST(12) WK_CPU_Q_ICMP_REDIRECT(6)
system- cpp- Police-I2- control	WK_CPP_POLICE_L2_CONTROL(1)	WK_CPU_Q_L2_CONTROL(1)
system- cpp- Police- routing- control	WK_CPP_POLICE_ROUTING_CONTROL(2)	WK_CPU_Q_ROUTING_CONTROL(4) WK_CPU_Q_LOW_LATENCY (27)
system- cpp- Police- control- low- priority	WK_CPP_POLICE_CO NTROL_LOW_PRI(3)	WK_CPU_Q_GENERAL_PUNT(25)
system- cpp- Police- punt- webauth	WK_CPP_POLICE_PU NT_WEBAUTH(7)	WK_CPU_Q_PUNT_WEBAUTH(2)
system- cpp- Police- controllo- topologia	WK_CPP_POLICE_TOPOLOGY_CONTROL(8)	WK_CPU_Q_TOPOLOGY_CONTROL(15)
system- cpp- Police- multicast	WK_CPP_POLICE_MULTICAST(9)	WK_CPU_Q_TRANSIT_TRAFFIC(18) WK_CPU_Q_MCAST_DATA(30)

Valori definiti dal sistema per CoPP

Mappe classi - Nomi	Indice Policer (n. Policer)	Code CPU (n. coda)
system- cpp- Police- sys-data	WK_CPP_POLICE_SYS _DATI(10)	WK_CPU_Q_LEARNING_CACHE_OVFL(1 WK_CPU_Q_CRYPTO_CONTROL(23) WK_CPU_Q_EXCEPTION(24) WK_CPU_Q_EGR_EXCEPTION(28) WK_CPU_Q_NFL_SAMPLED_DATA(26) WK_CPU_Q_GOLD_PKT(31) WK_CPU_Q_RPF_FAILED(19)
system- cpp- Police- dot1x- auth	WK_CPP_POLICE_DOT1X(1)	WK_CPU_Q_DOT1X_AUTH(0)
system- cpp- Police- protocol- snooping	WK_CPP_POLICE_PR(12)	WK_CPU_Q_PROTO_SNOOPING(16)
system- cpp- Police-sw- forward	WK_CPP_POLICE_SW_FWD (13)	WK_CPU_Q_SW_FORWARDING_Q(14) WK_CPU_Q_LOGGING(21) WK_CPU_Q_L2_LVX_DATA_PACK(1)
system- cpp- Police- forus	WK_CPP_POLICE_FORUS(14)	WK_CPU_Q_FORUS_ADDR_RESOLUTIO
system- cpp- Police- multicast- end- station	WK_CPP_POLICE_MULTICAST_SNOOPING(15)	WK_CPU_Q_MCAST_END_STA_TION_SE
system- cpp- default	WK_CPP_POLICE_DEFAULT_POLICER(16)	WK_CPU_Q_DHCP_SNOOPING(17)

Mappe classi - Nomi	Indice Policer (n. Policer)	Code CPU (n. coda)
		WK_CPU_Q_UNUSED(7) WK_CPU_Q_EWLC_CONTROL(9)
		WK_CPU_Q_EWLC_DATA(10)
system- cpp- Police- stackwise- virt-control	WK_CPP_STACKWISE_VIRTUAL_CONTROL(5)	WK_CPU_Q_STACKWISE_VIRTUAL_CON
system- cpp- Police- I2Ivx- control	WK_CPP_ L2_LVX_CONT_PACK(4)	WK_CPU_Q_L2_LVX_CONT_PACK(8)

Ogni coda è correlata a un tipo di traffico o a un insieme di funzionalità specifico. L'elenco che segue non è esaustivo:

	Code CF	יU e fun	zionalità	associate
--	---------	----------	-----------	-----------

Code CPU (n. coda)	Funzionalità
WK_CPU_Q_DOT1X_AUTH(0)	Autenticazione basata sulla porta IEEE 802.1x
	Protocollo DTP (Dynamic Trunking Protocol)
	Protocollo VLAN Trunking Protocol (VTP)
WK_CPU_Q_L2_CONTROL(1)	Protocollo PAgP (Port Aggregation Protocol)
	Protocollo CISP (Client Information Signaling Protocol)
	Protocollo di inoltro sessione messaggi
	Protocollo MVRP (Multiple VLAN

Code CPU (n. coda)	Funzionalità					
	Registration Protocol)					
	MMN (Metropolitan Mobile Network)					
	LLDP (Link Level Discovery Protocol)					
	UDLD (UniDirectional Link Detection)					
	Protocollo LACP (Link Aggregation Control Protocol)					
	Protocollo CDP (Cisco Discovery Protocol)					
	STP (Spanning Tree Protocol)					
	Host come Telnet, Pingv4 e Pingv6 e SNMP					
WK_CPU_Q_FORUS_TRAFFIC(2)	Rilevamento keepalive/loopback					
	Protocollo IPSec (Initiate-Internet Key Exchange)					
WK_CPU_Q_ICMP_GEN(3)	ICMP - destinazione non raggiungibile ICMP-TTL scaduto					
	Protocollo RIPv1 (Routing Information Protocol versione 1)					
	RIPv2					
	IGRP (Interior Gateway Routing Protocol)					
	Border Gateway Protocol (BGP)					
WK_CPU_Q_ROUTING_CONTROL(4)	PIM-UDP					
	Protocollo VRRP (Virtual Router Redundancy Protocol)					
	Protocollo HSRPv1 (Hot Standby Router Protocol versione 1)					
	HSRPv2					

Code CPU (n. coda)	Funzionalità					
	Protocollo GLBP (Gateway Load Balancing Protocol)					
	Protocollo LDP (Label Distribution Protocol)					
	Protocollo WCCP (Web Cache Communication Protocol)					
	Protocollo RIPng (Routing Information Protocol next-generation)					
	OSPF (Open Shortest Path First)					
	Open Shortest Path First versione 3 (OSPFv3)					
	Protocollo EIGRP (Enhanced Interior Gateway Routing Protocol)					
	Enhanced Interior Gateway Routing Protocol versione 6 (EIGRPv6)					
	DHCPv6					
	PIM (Protocol Independent Multicast)					
	PIMv6 (Protocol Independent Multicast versione 6)					
	Protocollo HSRPng (Hot Standby Router Protocol next-generation)					
	Controllo IPv6					
	GRE (Generic Routing Encapsulation) keepalive					
	Punt Network Address Translation (NAT)					
	IS-IS (Intermediate System-to-Intermediate System)					
WK_CPU_Q_FORUS_ADDR_RESOLUTION(5)	Protocollo ARP (Address Resolution Protocol)					
	router adiacenti					

Code CPU (n. coda)	Funzionalità				
WK_CPU_Q_ICMP_REDIRECT(6)	Reindirizzamento Internet Control Message Protocol (ICMP)				
WK_CPU_Q_INTER_FED_TRAFFIC(7)	Inserimento del dominio bridge di layer 2 per la comunicazione interna.				
WK_CPU_Q_L2_LVX_CONT_PACK(8)	Pacchetto ID Exchange (XID)				
WK_CPU_Q_EWLC_CONTROL(9)	Embedded Wireless Controller (eWLC) [Control and Provisioning of Wireless Access Point (CAPWAP) (UDP 5246)]				
WK_CPU_Q_EWLC_DATA(10)	pacchetto dati eWLC (CAPWAP DATA, UDP 5247)				
WK_CPU_Q_L2_LVX_DATA_PACK(1)	Pacchetto unicast sconosciuto su cui è stato eseguito il push per la richiesta di mapping.				
WK_CPU_Q_BROADCAST(12)	Tutti i tipi di trasmissione				
WK_CPU_Q_OPENFLOW(13)	Overflow della cache di apprendimento (livello 2 + livello 3)				
	Dati - elenco di controllo di accesso (ACL) completo				
	Dati - Opzioni IPv4				
	Dati - Hop-by-hop IPv6				
	Dati: risorse insufficienti/cattura di tutto				
	Dati - Inoltro percorso inverso (RPF) incompleto				
	Pacchetto verde				
WK_CPU_Q_TOPOLOGY_CONTROL(15)	STP (Spanning Tree Protocol)				

Code CPU (n. coda)	Funzionalità
	Protocollo REP (Resilient Ethernet Protocol)
	Protocollo SSTP (Shared Spanning Tree Protocol)
WK_CPU_Q_PROTO_SNOOPING(16)	Snooping ARP (Address Resolution Protocol) per l'ispezione ARP dinamica (DAI)
WK_CPU_Q_DHCP_SNOOPING(17)	snooping DHCP
WK_CPU_Q_TRANSIT_TRAFFIC(18)	Questa opzione viene usata per i pacchetti puntati da NAT, che devono essere gestiti nel percorso software.
WK_CPU_Q_RPF_FAILED(19)	Dati - mRPF (multicast RPF) non riuscito
WK_CPU_Q_MCAST_END_STATION _SERVIZIO(20)	Controllo IGMP (Internet Group Management Protocol) / MLD (Multicast Listener Discovery)
WK_CPU_Q_LOGGING(21)	Registrazione Access Control List (ACL)
WK_CPU_Q_PUNT_WEBAUTH(2)	Autenticazione Web
WK_CPU_Q_HIGH_RATE_APP(23)	Trasmissione
WK_CPU_Q_EXCEPTION(24)	Indicazione IKE Violazione di apprendimento IP Violazione della sicurezza delle porte IP
	Violazione dell'indirizzo IP statico Controllo ambito IPv6 Eccezione RCP (Remote Copy Protocol)

Code CPU (n. coda)	Funzionalità
	Errore RPF unicast
WK_CPU_Q_SYSTEM_CRITICAL(25)	Segnalazione supporti/ARP proxy wireless
WK_CPU_Q_NFL_SAMPLED_DATA(26)	Dati campionati da Netflow e MSP (Media Services Proxy)
WK_CPU_Q_LOW_LATENCY(27)	BFD (Bidirectional Forwarding Detection), PTP (Precision Time Protocol)
WK_CPU_Q_EGR_EXCEPTION(28)	Eccezione risoluzione in uscita
WK_CPU_Q_STACKWISE_VIRTUAL_CONTROL(29)	Protocolli di stacking sul lato anteriore, ossia SVL
WK_CPU_Q_MCAST_DATA(30)	Dati: creazione (S,G) Dati - join locali Dati - Registrazione PIM Dati - Switchover SPT Dati - Multicast
WK_CPU_Q_GOLD_PKT(31)	Oro

Criterio predefinito

Per impostazione predefinita, il criterio CoPP generato dal sistema viene applicato al percorso punt/inserimento. È possibile visualizzare il criterio predefinito utilizzando i comandi comuni basati su MQC. Può essere visualizzato anche nella configurazione dello switch. L'unica regola che può essere applicata in entrata o in uscita dalla CPU o dal control-plane è quella definita dal sistema.

Utilizzare "show policy-map control-plane" per visualizzare la policy applicata al control-plane:

<#root>

Catalyst-9600#

```
show policy-map control-plane
```

Control Plane

Service-policy input: system-cpp-policy
Class-map: system-cpp-police-ios-routing (match-any)
0 packets, 0 bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: none
police:
 rate 17000 pps, burst 4150 packets
 conformed 95904305 bytes; actions:
 transmit
 exceeded 0 bytes; actions:
 drop
.

<snip>

```
Class-map: class-default (match-any)
O packets, O bytes
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: any
```

Regola CoPP

Le velocità dei policer CoPP sono configurabili dall'utente. Gli utenti possono inoltre disattivare le code.

In questo esempio viene illustrato come regolare un singolo valore del policer. In questo esempio, la classe adeguata è "system-cpp-Police-protocol-snooping".

```
<#root>
Device>
enable
Device#
configure terminal
Device(config)#
policy-map system-cpp-policy
Device(config-pmap)#
Device(config-pmap)#
class system-cpp-police-protocol-snooping
```

Device(config-pmap-c)# Device(config-pmap-c)# police rate 100 pps Device(config-pmap-c-police)# Device(config-pmap-c-police)# exit Device(config-pmap-c)# exit Device(config-pmap)# exit Device(config)# Device(config)# control-plane Device(config-cp)# Device(config)# control-plane Device(config-cp)# service-policy input system-cpp-policy Device(config-cp)# Device(config-cp)# end

Device#

show policy-map control-plane

In questo esempio viene illustrato come disabilitare completamente una coda. procedere con cautela quando si disabilitano le code, in quanto ciò potrebbe causare una possibile sovracapacità della CPU.

<#root>

```
Device>
enable
Device#
configure terminal
Device(config)#
policy-map system-cpp-policy
Device(config-pmap)#
Device(config-pmap)#
class system-cpp-police-protocol-snooping
Device(config-pmap-c)#
no police rate 100 pps
Device(config-pmap-c)#
end
```

Risoluzione dei problemi

Metodologia

L'utilizzo della CPU è influenzato da due attività di base: i processi e l'interruzione. I processi sono attività strutturate che la CPU esegue mentre l'interruzione fa riferimento a pacchetti intercettati sul dataplane e inviati alla CPU per l'azione. Insieme, queste attività costituiscono l'utilizzo totale della CPU. Poiché CoPP è abilitato per impostazione predefinita, l'impatto del servizio non è necessariamente correlato a un utilizzo elevato della CPU. Se CoPP esegue il proprio lavoro, l'utilizzo della CPU non subisce un impatto significativo. È importante considerare l'utilizzo complessivo della CPU, ma l'utilizzo complessivo non racconta l'intera storia. I comandi e le utilità show in questa sezione vengono usati per valutare rapidamente lo stato della CPU e per identificare i dettagli rilevanti sul traffico basato sulla CPU.

Linee guida:

- Determinare se il problema riguarda il control plane. La maggior parte del traffico di transito viene inoltrata nell'hardware. Solo alcuni tipi di traffico e alcuni scenari coinvolgono la CPU e il control-plane, quindi tenete presente questo nel corso dell'indagine.
- Comprendere le previsioni di utilizzo. È importante comprendere l'aspetto dell'utilizzo normale in modo da poter identificare eventuali deviazioni dalla norma.

- Convalidare l'utilizzo complessivo sia per i processi che per le interruzioni. Identificare tutti i
 processi che assorbono volumi imprevisti di cicli della CPU. Se l'utilizzo non rientra
 nell'intervallo previsto, è possibile che si verifichino problemi. È importante comprendere
 l'utilizzo medio di un sistema, in modo da riconoscere le deviazioni al di fuori della norma.
 Tenete presente che l'utilizzo da solo non è un quadro completo della salute dei control
 plane.
- Determinare se si verificano cali in aumento nel CoPP. Le cali del CoPP non sono sempre indicative di un problema, ma se si risolve un problema relativo a una classe di traffico attivamente monitorata, questo è un forte indicatore di rilevanza.

Comandi Show

Lo switch consente un rapido controllo dello stato della CPU e delle statistiche CoPP. La CLI è inoltre utile per determinare rapidamente il punto di entrata del traffico basato sulla CPU.

Determinare l'utilizzo complessivo e storico

 L'opzione "Mostra processi ordinati nella CPU" viene utilizzata per visualizzare l'utilizzo complessivo della CPU. L'argomento "ordinato" ordina l'output del processo in base alla percentuale di utilizzo. I processi che utilizzano più risorse CPU sono i primi dell'output. L'utilizzo a causa di interruzioni è fornito anche come percentuale.

<#root>
Catalyst-9600#
show processes cpu sorted
CPU utilization for five seconds: 92%/13%; one minute: 76%; five minutes: 73%

<<<--- Utilization is displayed for 5 second (both process and interrupt), 1 minute and 5 minute interva

92% refers to the o

The 13% value refe

PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	7 Proc	ess					
<<<·	Runtime	statistics,	as well as	utiliza	tion ave	erages	are	displa	yed here.	The	process	is	also	ident
344	547030523	607054509	901	38.13%	30.61%	29.32%	5 () SISE	Switcher	Th				
345	394700227	615024099	641	31.18%	22.68%	21.66%	5 () SISE	Main Thr	ead				
98	112308516	119818535	937	4.12%	4.76%	5.09%	5 () Crim	nson flush	l tr				
247	47096761	92250875	510	2.42%	2.21%	2.18%	5 () Spar	ning Tree	9				
123	35303496	679878082	51	1.85%	1.88%	1.84%	5 () IOSX	E-RP Punt	Se				
234	955	5 1758	543	1.61%	0.71%	0.23%	5 3	S SSH	Process					
547	5360168	5484910	977	1.04%	0.46%	0.44%	5 () DHCE	D Receive	2				
229	27381066	963726156	28	1.04%	1.34%	1.23%	5 () IP Ir	nput					
79	13183805	5 108951712	121	0.48%	0.55%	0.55%	5 () IOSD	ipc task					

9	1073134	315186	3404	0.40%	0.06%	0.03%	0 Check heaps
37	11099063	147506419	75	0.40%	0.54%	0.52%	0 ARP Input
312	2986160	240782059	12	0.24%	0.12%	0.14%	0 DAI Packet Proce
<snip></snip>							
565	0	1	0	0.00%	0.00%	0.00%	0 LICENSE AGENT
566	14	1210	11	0.00%	0.00%	0.00%	0 DHCPD Timer
567	40	45	888	0.00%	0.00%	0.00%	0 OVLD SPA Backgro
568	12	2342	5	0.00%	0.00%	0.00%	0 DHCPD Database
569	0	12	0	0.00%	0.00%	0.00%	0 SpanTree Flush
571	0	1	0	0.00%	0.00%	0.00%	0 EM Action CNS
572	681	140276	4	0.00%	0.00%	0.00%	0 Inline power inc

 "Mostra cronologia CPU processi" fornisce un grafico cronologico dell'utilizzo della CPU negli ultimi 60 secondi, 5 minuti e 72 ore.

<#root>

Catalyst-9600#

show processes cpu history

<<<--- The numbers at the top of each column represent the highest value seen throughout the time period

22255555999994444444444400000888888888881111177777333335555500

It is read top-down. "9" over "2" in this example means "92%" for example.

100 *** ***** ******* 90 80 ***** ************* 70 60 50 40 ****************** 30 ******* 20 ******** 10

<<<--- The "*" represents the highest value during the given time period. This relates to a momentary sp

In this example, utilization spiked to 92% in the last 5 seconds.

0 5 0 5 0 5 0 5 0 5 0 5 0 CPU% per second (last 60 seconds) * = maximum CPU% # = average CPU% <<<--- The "#" represents the average utilization. This indicates sustained utilization.

In this example, within the last 5 minutes the average utilization was sustained around 70% while

the maximum utilization spiked to 94%.

```
665656566646555666655656575654556567737555567574545545775957554648576757
90
0
  5 0 5 0 5 0
      5
       0 5 0 5
          0
  CPU% per hour (last 72 hours)
  * = maximum CPU% # = average CPU%
```

Verifica Control Plane Policing

 Utilizzare "show platform hardware feed <switch> active qos queue stats internal cpu policer" per visualizzare le statistiche CoPP aggregate e ulteriori informazioni sulla struttura della coda/del policer. Questo output fornisce una visualizzazione storica delle statistiche del policer dall'ultimo reset del control plane. Anche questi contatori sono cancellabili manualmente. In genere, la prova di cadute del control-plane da parte del policer indica un problema con la coda/classe associata, ma assicurarsi che le cadute incrementino attivamente mentre si verifica il problema. Eseguire il comando più volte per osservare l'aumento dei valori di rilascio della coda.

<#root>

Catalyst9500#

show platform hardware fed active qos queue stats internal cpu policer

CPU Queue Statistics Queue (default) (set) Queue QId PlcIdx Queue Name Rate Rate Enabled Drop(Bytes) Drop(Frames) <-- The top section of this output gives a historical view of CoPP drops. Run the command several times _____ CPU queues correlate with a Policer Index (PlcIdx) and Queue (QId). DOT1X Auth Yes Note that multiple policer indices map to the same queue for some classes. L2 Control Yes Forus traffic Yes ICMP GEN Yes Routing Control Yes Forus Address resolution Yes ICMP Redirect Yes Inter FED Traffic Yes L2 LVX Cont Pack Yes EWLC Control Yes EWLC Data Yes L2 LVX Data Pack Yes BROADCAST Yes Openflow Yes Sw forwarding Yes Topology Control Yes Proto Snooping Yes DHCP Snooping Yes Transit Traffic Yes RPF Failed Yes MCAST END STATION Yes LOGGING Yes Punt Webauth Yes High Rate App Yes Exception Yes System Critical Yes NFL SAMPLED DATA Yes Low Latency Yes EGR Exception Yes Stackwise Virtual OOB Yes MCAST Data Yes Gold Pkt Yes

* NOTE: CPU queue policer rates are configured to the closest hardware supported value

Policer	Policer Accept	Policer Accept	Policer Drop	Policer Drop
Index	Bytes	Frames	Bytes	Frames
		·	~	
0	59894	613	0	0
T	15701689	57082	0	0
2	5562892	63482	0	0
3	3536	52	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	2347194476	32649666	0	0
9	0	0	0	0
10	0	0	0	0
11	0	0	0	0
12	0	0	0	0
13	577043	8232	769024	12016
14	719225176	11182355	83027876	1297199
15	132766	1891	0	0
16	0	0	0	0
17	0	0	0	0
18	0	0	0	0
19	0	0	0	0

CPU Queue Policer Statistics

Second Level Policer Statistics

<-- Second level policer information begins here. Catalyst CoPP is organized with two policers to allow

=====	===	==:		==	==	 	==	==	 ==	==	==	==	==	==	==:	==	 ==:	 ==	 ==	==	==:	==	==	==:		 	==	

20	2368459057	32770230	0	0
21	719994879	11193091	0	0

Policer Index Mapping and Settings

level-2	:	level-1	(default)	(set)
PlcIndex		PlcIndex	rate	rate
20	:	1 2 8	13000	17000
21		0 4 7 9 10 11 12 13 14 15	6000	6000
	====			

Second Level Policer Config

level - 1 $level - 2$	lerrel-2

QId	PlcIdx	PlcIdx	Queue	Name	Enabled	
	Tevet-T	Tevel-5			level-2	

0	11	21	DOT1X Auth	Yes
1	1	20	L2 Control	Yes
2	14	21	Forus traffic	Yes
3	0	21	ICMP GEN	Yes
4	2	20	Routing Control	Yes
5	14	21	Forus Address resolution	Yes
6	0	21	ICMP Redirect	Yes
7	16	-	Inter FED Traffic	No
8	4	21	L2 LVX Cont Pack	Yes
9	19	-	EWLC Control	No
10	16	-	EWLC Data	No
11	13	21	L2 LVX Data Pack	Yes
12	0	21	BROADCAST	Yes
13	10	21	Openflow	Yes

13	21	Sw forwarding	Yes
8	20	Topology Control	Yes
12	21	Proto Snooping	Yes
6	-	DHCP Snooping	No
13	21	Transit Traffic	Yes
10	21	RPF Failed	Yes
15	21	MCAST END STATION	Yes
13	21	LOGGING	Yes
7	21	Punt Webauth	Yes
18	-	High Rate App	No
10	21	Exception	Yes
3	-	System Critical	No
10	21	NFL SAMPLED DATA	Yes
2	20	Low Latency	Yes
10	21	EGR Exception	Yes
5	-	Stackwise Virtual OOB	No
9	21	MCAST Data	Yes
3	-	Gold Pkt	No
	13 8 12 6 13 10 15 13 7 18 10 3 10 2 10 5 9 3	132182012216 $-$ 132110211521132172118 $-$ 10213 $-$ 102122010215 $-$ 9213 $-$	1321Sw forwarding820Topology Control1221Proto Snooping6-DHCP Snooping1321Transit Traffic1021RPF Failed1521MCAST END STATION1321LOGGING721Punt Webauth18-High Rate App1021Exception3-System Critical1021NFL SAMPLED DATA220Low Latency1021EGR Exception5-Stackwise Virtual OOB921MCAST Data3-Gold Pkt

CPP Classes to queue map

<-- Information on how different traffic types map to different queues are found here.

PlcIdx	CPP Class	:	Queues
0	system-cpp-police-data	:	ICMP GEN/ BROADCAST/ ICMP Redirect/
10	system-cpp-police-sys-data	:	Openflow/ Exception/ EGR Exception/ NFL SAMPLED DATA/
13	system-cpp-police-sw-forward	:	Sw forwarding/ LOGGING/ L2 LVX Data Pack/ Transit Tra
9	system-cpp-police-multicast	:	MCAST Data/
15	system-cpp-police-multicast-end-station	:	MCAST END STATION /
7	system-cpp-police-punt-webauth	:	Punt Webauth/
1	system-cpp-police-12-control	:	L2 Control/
2	system-cpp-police-routing-control	:	Routing Control/ Low Latency/
3	system-cpp-police-system-critical	:	System Critical/ Gold Pkt/
4	system-cpp-police-121vx-control	:	L2 LVX Cont Pack/
8	system-cpp-police-topology-control	:	Topology Control/
11	system-cpp-police-dot1x-auth	:	DOT1X Auth/
12	system-cpp-police-protocol-snooping	:	Proto Snooping/
6	system-cpp-police-dhcp-snooping	:	DHCP Snooping/
14	system-cpp-police-forus	:	Forus Address resolution/ Forus traffic/
5	system-cpp-police-stackwise-virt-control	:	Stackwise Virtual OOB/
16	system-cpp-default	:	Inter FED Traffic/ EWLC Data/
18	system-cpp-police-high-rate-app	:	High Rate App/
19	system-cpp-police-ewlc-control	:	EWLC Control/
20	system-cpp-police-ios-routing	:	L2 Control/ Topology Control/ Routing Control/ Low La
21	system-cpp-police-ios-feature	:	ICMP GEN/ BROADCAST/ ICMP Redirect/ L2 LVX Cont Pack

Raccogliere informazioni sul traffico puntato

Questi comandi vengono utilizzati per raccogliere informazioni sul traffico puntato alla CPU, tra cui il tipo di traffico e i punti fisici di ingresso.

• È possibile utilizzare l'opzione "Show platform software fed <switch> active punt cpuq all" o "Show platform software fed <switch> active punt cpuq <0-31 Queue ID>" per visualizzare le statistiche relative a tutte o a una coda CPU specifica.

<#root>

C9300#

show platform software fed switch active punt cpuq all

Punt CPU Q Statistics

CPU Q Id CPU Q Name Packets received from ASIC Send to IOSd total attempts Send to IOSd failed count RX unsuspend count RX unsuspend send failed count RX unsuspend send failed count RX unsuspend send failed count RX onsumed count RX non-active dropped count RX non-active dropped count RX non-active dropped count RX packets dq'd after intack Active RxQ event RX spurious interrupt RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0 CPU Q Id CPU Q Name Packets received from ASIC Send to IOSd total attempts Send to IOSd total attempts Send to IOSd failed count RX unsuspend count RX unsuspend send failed count RX unsuspend send failed count RX unsuspend send failed count RX unsuspend send failed count RX non-active dropped count RX packets dq'd after intack Active RXQ event RX spurious interrupt		0 CPU_Q_DOT1X_AUTH 964 964 0 0 0 0 0 0 0 0 0 964 0 0 0 0 0 0 0 0 0 0 0 0 0
RX phy_idb fetch failed: 0 RX table_id fetch failed: 0 RX invalid punt cause: 0	•	2
CPU Q Id CPU Q Name Packets received from ASIC Send to IOSd total attempts Send to IOSd failed count RX suspend count RX unsuspend count RX unsuspend send failed count RX consumed count RX dropped count		2 CPU_Q_FORUS_TRAFFIC 176669 0 0 0 0 0 0 0 0 0 0 0 0

RX non-active dropped count	:	0						
RX conversion failure dropped	:	0						
RX INTACK count	:	165584						
RX packets dq'd after intack	:	12601						
Active RxQ event	:	165596						
RX spurious interrupt	:	11851						
RX phy_idb fetch failed: 0								
RX table_id fetch failed: 0								
RX invalid punt cause: 0								
<snip></snip>								

C9300#

show platform software fed switch active punt cpuq 16 <-- Queue ID 16 correlates with Protocol Snooping

Punt CPU Q Statistics

CPU Q Id	: 16
CPU Q Name	: CPU_Q_PROTO_SNOOPING
Packets received from ASIC	: 55661
Send to IOSd total attempts	: 55661
Send to IOSd failed count	: 0
RX suspend count	: 0
RX unsuspend count	: 0
RX unsuspend send count	: 0
RX unsuspend send failed count	: 0
RX consumed count	: 0
RX dropped count	: 0
RX non-active dropped count	: 0
RX conversion failure dropped	: 0
RX INTACK count	: 55659
RX packets dq'd after intack	: 9
Active RxQ event	: 55659
RX spurious interrupt	: 23
RX phy_idb fetch failed: 0	
RX table_id fetch failed: 0	
RX invalid punt cause: 0	
Replenish Stats for all rxq:	
Number of replenish	• 4926842
Number of replenish suspend	: 0
Number of replenish un-suspend	. 0

 Utilizzare "show platform software fed <switch> active punt cause summary" per esaminare rapidamente tutti i diversi tipi di traffico rilevati sulla CPU. Vengono visualizzate solo le cause diverse da zero.

<#root>
C9300#
show platform software fed switch active punt cause summary
Statistics for all causes
Cause Cause Info Rcvd Dropped

7	ARP request or response	142962	0
11	For-us data	490817	0
21	RP<->QFP keepalive	448742	0
24	Glean adjacency	2	0
55	For-us control	415222	0
58	Layer2 bridge domain data packe	3654659	0
60	IP subnet or broadcast packet	37167	0
75	EPC	17942	0
96	Layer2 control protocols	358614	0
97	Packets to LFTS	964	0
109	snoop packets	48867	0

 Utilizzare il comando "show platform software fed <switch> active punt rate interfaces" per visualizzare rapidamente le interfacce con traffico basato sulla CPU in entrata nel sistema. Questo comando visualizza solo le interfacce con una coda di input diversa da zero.

<#root>

C9300#

show platform software fed switch active punt rates interfaces

Punt Rate on Interfaces Statistics

Packets per second averaged over 10 seconds, 1 min and 5 mins

Interface Name	 IF_ID		Recv 10s	======== Rec∨ 1min	======== Rec∨ 5min	======= Drop 10s	Drop 1min	====== Drop 5min
TenGigabitEthernet1/0/2 TenGigabitEthernet1/0/23	0x0000000 0x0000001)a Lf	5 1	 5 1	 5 1	0 0	0 0	0 0

 Utilizzare "show platform software fed <switch> active punt rates interfaces <IF-ID>" per espandere e visualizzare le singole code dell'interfaccia. Questo comando mostra le statistiche di aggregazione e può essere utilizzato per visualizzare l'attività cronologica della coda di input e se il traffico è stato controllato.

<#root>								
C9300#								
show platform	software fed swit	ch active punt rat	es interfaces	0x1f <	"0x1f"	is the	IF_ID c	f Te1/0/23
Punt Rate on S	ingle Interfaces	Statistics						
Interface : Te	nGigabitEthernet1	/0/23 [if_id: 0x1F	.]					
Received		Dropped						
Total	: 1010652	Total	: 0					

10	sec	average	:	1	10	sec	average
1	min	average	:	1	1	min	average
5	min	average	:	1	5	min	average

Per CPUQ punt stats on the interface (rate averaged over 10s interval)

: 0 : 0 : 0

 Q	 Queue	========== Recv	======================================	======= Drop	======= Drop
no	Name	Total	Rate	Total	Rate
				·======== 0	·======= 0
1		0100	0	0	0
2		176659	0	0	0
2		1/0055	0	0	0
4		447374	0	0	0
5		80693	0	0	0
6		000000	0	0	0
7	CPU O INTER EED TRAFFIC	0	0 0	0	Õ
8	CPU = 0 + 21 VX CONTROL PKT	0 0	0 0	0 0	0 0
9	CPU = 0 EWIC CONTROL	0	0	0	0 0
10		0	0	0	0 0
11	CPU = 0 + 21 VX DATA PKT	0	0	0	0
12	CPU 0 BROADCAST	22680	0	0	0
13	CPU O CONTROLLER PUNT	0	0	0	0
14	CPU O SW FORWARDING	0	0	0	0
15	CPU_0_TOPOLOGY_CONTROL	271014	0	0	0
16	CPU_Q_PROTO_SNOOPING	0	0	0	0
17	CPU_Q_DHCP_SNOOPING	0	0	0	0
18	CPU_Q_TRANSIT_TRAFFIC	0	0	0	0
19	CPU_Q_RPF_FAILED	0	0	0	0
20	CPU_Q_MCAST_END_STATION_SERVICE	2679	0	0	0
21	CPU_Q_LOGGING	444	0	0	0
22	CPU_Q_PUNT_WEBAUTH	0	0	0	0
23	CPU_Q_HIGH_RATE_APP	0	0	0	0
24	CPU_Q_EXCEPTION	0	0	0	0
25	CPU_Q_SYSTEM_CRITICAL	0	0	0	0
26	CPU_Q_NFL_SAMPLED_DATA	0	0	0	0
27	CPU_Q_LOW_LATENCY	0	0	0	0
28	CPU_Q_EGR_EXCEPTION	0	0	0	0
29	CPU_Q_FSS	0	0	0	0
30	CPU_Q_MCAST_DATA	0	0	0	0
31	CPU_Q_GOLD_PKT	0	0	0	0

Ispeziona traffico associato alla CPU

La famiglia di switch Catalyst 9000 offre utility per il monitoraggio e la visualizzazione del traffico basato sulla CPU. Utilizzare questi strumenti per capire quale traffico viene indirizzato attivamente alla CPU.

EPC (Embedded Packet Capture)

L'EPC sul piano di controllo può essere eseguito in entrambe le direzioni (o in entrambe). Per il traffico puntuale, cattura in entrata. EPC sul piano di controllo può essere salvato nel buffer o nel file.

<#root>

```
C9300#
monitor capture CONTROL control-plane in match any buffer circular size 10
C9300#
show monitor capture CONTROL parameter <-- Check to ensure parameters are as expected.
   monitor capture CONTROL control-plane IN
   monitor capture CONTROL match any
   monitor capture CONTROL buffer size 10 circular
C9300#
monitor capture CONTROL start <-- Starts the capture.
Started capture point : CONTROL
C9300#
monitor capture CONTROL stop < -- Stops the capture.
Capture statistics collected at software:
    Capture duration - 5 seconds
    Packets received - 39
    Packets dropped - 0
    Packets oversized - 0
Bytes dropped in asic - 0
Capture buffer will exists till exported or cleared
Stopped capture point : CONTROL
```

I risultati dell'acquisizione possono essere visualizzati in un output breve o dettagliato.

<#root>

C9300#

show monitor capture CONTROL buffer brief

Starting the packet display Press Ctrl + Shift + 6 to exit

```
1
       0.000000 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
       0.030643 00:00:00:00:00:00 -> 00:06:df:f7:20:01 0x0000 30 Ethernet II
    2
       0.200016 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    3
       0.400081 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    4
       0.599962 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    5
       0.800067 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
    6
    7
       0.812456 00:1b:0d:a5:e2:a5 -> 01:80:c2:00:00 STP 60 RST. Root = 0/10/00:1b:53:bb:91:00 Cost
                                             HSRP 92 Hello (state Active)
       0.829809 10.122.163.3 -> 224.0.0.2
    8
       0.981313 10.122.163.2 -> 224.0.0.13
                                             PIMv2 72 Hello
   9
       1.004747 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
  10
  11
       1.200082 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
       1.399987 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
  12
       1.599944 5c:5a:c7:61:4c:5f -> 00:00:04:00:0e:00 ARP 64 192.168.10.1 is at 5c:5a:c7:61:4c:5f
  13
<snip>
```

......

```
Frame 7: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface /tmp/epc_ws/wif_to_ts_p
    Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe)
        Interface name: /tmp/epc_ws/wif_to_ts_pipe
    Encapsulation type: Ethernet (1)
    Arrival Time: May 3, 2023 23:58:11.727432000 UTC
    [Time shift for this packet: 0.000000000 seconds]
    Epoch Time: 1683158291.727432000 seconds
    [Time delta from previous captured frame: 0.012389000 seconds]
    [Time delta from previous displayed frame: 0.012389000 seconds]
    [Time since reference or first frame: 0.812456000 seconds]
    Frame Number: 7
    Frame Length: 60 bytes (480 bits)
    Capture Length: 60 bytes (480 bits)
    [Frame is marked: False]
    [Frame is ignored: False]
    [Protocols in frame: eth:llc:stp]
IEEE 802.3 Ethernet
    Destination: 01:80:c2:00:00:00 (01:80:c2:00:00:00)
        Address: 01:80:c2:00:00:00 (01:80:c2:00:00)
        .... ..0. .... .... = LG bit: Globally unique address (factory default)
        .... = IG bit: Group address (multicast/broadcast)
    Source: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5)
       Address: 00:1b:0d:a5:e2:a5 (00:1b:0d:a5:e2:a5)
        .... ..0. .... .... = LG bit: Globally unique address (factory default)
        .... = IG bit: Individual address (unicast)
    Length: 39
    Padding: 00000000000000
Logical-Link Control
    DSAP: Spanning Tree BPDU (0x42)
        0100 001. = SAP: Spanning Tree BPDU
        .... ...0 = IG Bit: Individual
    SSAP: Spanning Tree BPDU (0x42)
       0100 001. = SAP: Spanning Tree BPDU
        \dots \dots 0 = CR Bit: Command
    Control field: U, func=UI (0x03)
        000. 00.. = Command: Unnumbered Information (0x00)
        \dots \dots \dots \dots \dots \dots \square = Frame type: Unnumbered frame (0x3)
Spanning Tree Protocol
    Protocol Identifier: Spanning Tree Protocol (0x0000)
    Protocol Version Identifier: Rapid Spanning Tree (2)
    BPDU Type: Rapid/Multiple Spanning Tree (0x02)
    BPDU flags: 0x3c, Forwarding, Learning, Port Role: Designated
        0... = Topology Change Acknowledgment: No
        .0.. .... = Agreement: No
        ..1. .... = Forwarding: Yes
        ...1 .... = Learning: Yes
        .... 11.. = Port Role: Designated (3)
        .... ..0. = Proposal: No
        .... 0 = Topology Change: No
    Root Identifier: 0 / 10 / 00:1b:53:bb:91:00
        Root Bridge Priority: 0
        Root Bridge System ID Extension: 10
        Root Bridge System ID: 00:1b:53:bb:91:00 (00:1b:53:bb:91:00)
    Root Path Cost: 19
    Bridge Identifier: 32768 / 10 / 00:1b:0d:a5:e2:80
        Bridge Priority: 32768
        Bridge System ID Extension: 10
        Bridge System ID: 00:1b:0d:a5:e2:80 (00:1b:0d:a5:e2:80)
    Port identifier: 0x8025
    Message Age: 1
    Max Age: 20
```

Hello Time: 2 Forward Delay: 15 Version 1 Length: 0

C9300#

monitor capture CONTROL buffer display-filter "frame.number==9" detailed <-- Most Wireshark display filt Starting the packet display Press Ctrl + Shift + 6 to exit Frame 9: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface /tmp/epc_ws/wif_to_ts_p Interface id: 0 (/tmp/epc_ws/wif_to_ts_pipe) Interface name: /tmp/epc_ws/wif_to_ts_pipe Encapsulation type: Ethernet (1) Arrival Time: May 4, 2023 00:07:44.912567000 UTC [Time shift for this packet: 0.000000000 seconds] Epoch Time: 1683158864.912567000 seconds [Time delta from previous captured frame: 0.123942000 seconds] [Time delta from previous displayed frame: 0.000000000 seconds] [Time since reference or first frame: 1.399996000 seconds] Frame Number: 9 Frame Length: 64 bytes (512 bits) Capture Length: 64 bytes (512 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:ethertype:vlan:ethertype:arp] Ethernet II, Src: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f), Dst: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Destination: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Address: 00:00:04:00:0e:00 (00:00:04:00:0e:00)0. = LG bit: Globally unique address (factory default) = IG bit: Individual address (unicast) Source: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) Address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f)0. = LG bit: Globally unique address (factory default) = IG bit: Individual address (unicast) Type: 802.1Q Virtual LAN (0x8100) 802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 10 000. = Priority: Best Effort (default) (0)0 = DEI: Ineligible \dots 0000 0000 1010 = ID: 10 Type: ARP (0x0806) Trailer: 00000000 Address Resolution Protocol (reply) Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800) Hardware size: 6 Protocol size: 4 Opcode: reply (2) Sender MAC address: 5c:5a:c7:61:4c:5f (5c:5a:c7:61:4c:5f) Sender IP address: 192.168.10.1 Target MAC address: 00:00:04:00:0e:00 (00:00:04:00:0e:00) Target IP address: 192.168.10.25

I risultati dell'acquisizione possono essere scritti direttamente nel file o esportati dal buffer.

C9300#

monitor capture CONTROL export location flash:control.pcap <-- Exports the current buffer to file. Exter

Export Started Successfully

Export completed for capture point CONTROL C9300# C9300#

dir flash: | in control.pcap

475231 -rw- 3972 May 4 2023 00:00:38 +00:00 control.pcap C9300#

Acquisizione pacchetti CPU FED

La famiglia di switch Catalyst 9000 supporta un'utility di debug che consente una maggiore visibilità dei pacchetti da e verso la CPU.

C9300#debug platform software fed switch active punt packet-capture ? buffer Configure packet capture buffer clear-filter Clear punt PCAP filter set-filter Specify wireshark like filter (Punt PCAP) start Start punt packet capturing stop Stop punt packet capturing

C9300#\$re fed switch active punt packet-capture buffer limit 16384 Punt PCAP buffer configure: one-time with buffer size 16384...done

C9300#show platform software fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets

C9300#debug platform software fed switch active punt packet-capture start Punt packet capturing started.

C9300#debug platform software fed switch active punt packet-capture stop Punt packet capturing stopped. Captured 55 packet(s)

Il contenuto del buffer dispone di opzioni di output brevi e dettagliate.

<#root>

C9300#

show platform software fed switch active punt packet-capture brief

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets

----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100

rcpMiscResults

spanDirection

redirectIndex

= 0

= 0

= 0

----- Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 3, Timestamp: 2023/05/04 00:17:42.109 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 4, Timestamp: 2023/05/04 00:17:42.309 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 ----- Punt Packet Number: 5, Timestamp: 2023/05/04 00:17:42.509 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 C9300# show platform software fed switch active punt packet-capture detailed <-- Detailed provides the same inf Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets ----- Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100 Packet Data Hex-Dump (length: 68 bytes) : 000004000E005C5A C7614C5F8100000A 0806000108000604 00025C5AC7614C5F C0A80A0100000400 0E00C0A80A190000 00000000000000 000000000000000 E9F1C9F3 Doppler Frame Descriptor : fdFormat = 0x4= 0xesystemTtl loadBalHash1 = 0x20loadBalHash2 = 0xcspanSessionMap = 0 forwardingMode = 0 destModIndex = 0 skipIdIndex = 0 srcGpn = 0x2qosLabel = 0x83srcCos = 0 ingressTranslatedVlan = 0x7= 0 bpdu = 0 spanHistory = 0 fpeFirstHeaderType = 0sgt srcVlan = 0xarcpServiceId = 0x1wccpSkip = 0 srcPortLeIndex = 0x1cryptoProtocol = 0 debugTagId = 0 = 0 = 0vrfId saIndex pendingAfdLabel = 0 destClient = 0x1= 0 finalStationIndex appId $= 0 \times 74$ decryptSuccess = 0 encryptSuccess = 0

stackedFdPresent

egressRedirect

exceptionLabel

= 0

= 0

= 0

destGpn	= 0	inlineFd	= 0x1		
suppressRefPtrUpdate	= 0	suppressRewriteSideEfects	= 0		
cmi2	= 0	currentRi	= 0x1		
currentDi	= 0x527b	dropIpUnreachable	= 0		
srcZoneId	= 0	srcAsicId	= 0		
originalDi	= 0	originalRi	= 0		
<pre>srcL3IfIndex</pre>	= 0x27	dstL3IfIndex	= 0		
dstVlan	= 0	frameLength	= 0x44		
fdCrc	= 0x97	tunnelSpokeId	= 0		
isPtp	= 0	ieee1588TimeStampValid	= 0		
ieee1588TimeStamp55_48	= 0	lvxSourceRlocIpAddress	= 0		
sgtCachingNeeded	= 0				
Doppler Frame Descriptor Hex-Dump :					

-	opprei frame beser	ipcoi nex bump i		
	0000000044004E04	000B40977B520000	0000000000000100	00000070A00000
	000000001000010	000000074000100	000000027830200	000000000000000000000000000000000000000

Sono disponibili molti filtri di visualizzazione. Sono supportati i filtri di visualizzazione più comuni di Wireshark.

<#root>

C9300#

show platform software fed switch active punt packet-capture display-filter-help

FED Punject specific filters :

1.	fed.cause	FED punt or inject cause
2.	fed.linktype	FED linktype
3.	fed.pal_if_id	FED platform interface ID
4.	fed.phy_if_id	FED physical interface ID
5.	fed.queue	FED Doppler hardware queue
6.	fed.subcause	FED punt or inject sub cause
Generi	ic filters supported :	
7.	arp	Is this an ARP packet
8.	bootp	DHCP packets [Macro]
9.	cdp	Is this a CDP packet
10.	eth	Does the packet have an Ethernet header
11.	eth.addr	Ethernet source or destination MAC address
12.	eth.dst	Ethernet destination MAC address
13.	eth.ig	IG bit of ethernet destination address (broadcast/multicast)
14.	eth.src	Ethernet source MAC address
15.	eth.type	Ethernet type
16.	gre	Is this a GRE packet
17.	icmp	Is this a ICMP packet
18.	icmp.code	ICMP code
19.	icmp.type	ICMP type
20.	icmp∨6	Is this a ICMPv6 packet
21.	icmp∨6.code	ICMPv6 code
22.	icmpv6.type	ICMPv6 type
23.	ip	Does the packet have an IPv4 header
24.	ip.addr	IPv4 source or destination IP address
25.	ip.dst	IPv4 destination IP address
26.	ip.flags.df	IPv4 dont fragment flag
27.	ip.flags.mf	IPv4 more fragments flag
28.	ip.frag_offset	IPv4 fragment offset
29.	ip.proto	Protocol used in datagram
30.	ip.src	IPv4 source IP address

31.	ip.ttl	IPv4 time to live
32.	ipv6	Does the packet have an IPv4 header
33.	ipv6.addr	IPv6 source or destination IP address
34.	ipv6.dst	IPv6 destination IP address
35.	ipv6.hlim	IPv6 hop limit
36.	ipv6.nxt	IPv6 next header
37.	ipv6.plen	IPv6 payload length
38.	ipv6.src	IPv6 source IP address
39.	stp	Is this a STP packet
40.	tcp	Does the packet have a TCP header
41.	tcp.dstport	TCP destination port
42.	tcp.port	TCP source OR destination port
43.	tcp.srcport	TCP source port
44.	udp	Does the packet have a UDP header
45.	udp.dstport	UDP destination port
46.	udp.port	UDP source OR destination port
47.	udp.srcport	UDP source port
48.	vlan.id	Vlan ID (dot1q or qinq only)
49.	vxlan	Is this a VXLAN packet

C9300#

show platform software fed switch active punt packet-capture display-filter arp brief

Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 55 packets. Capture capacity : 16384 packets

------ Punt Packet Number: 1, Timestamp: 2023/05/04 00:17:41.709 -----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id: metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1] ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f ether hdr : vlan: 10, ethertype: 0x8100

----- Punt Packet Number: 2, Timestamp: 2023/05/04 00:17:41.909 ----interface : physical: TenGigabitEthernet1/0/2[if-id: 0x0000000a], pal: TenGigabitEthernet1/0/2 [if-id:
metadata : cause: 109 [snoop packets], sub-cause: 1, q-no: 16, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: 0000.0400.0e00, src mac: 5c5a.c761.4c5f
ether hdr : vlan: 10, ethertype: 0x8100
<snip>

I filtri possono essere applicati anche come filtri di acquisizione.

<#root>

C9300#

show platform software fed switch active punt packet-capture set-filter arp <-- Most common Wireshark fi

Filter setup successful. Captured packets will be cleared

C9300#\$e fed switch active punt packet-capture status Punt packet capturing: disabled. Buffer wrapping: disabled Total captured so far: 0 packets. Capture capacity : 16384 packets Capture filter : "arp"

Scenari comuni

Perdita ICMP (Ping) intermittente su IP locale

Il traffico che viene inoltrato a un IP locale su uno switch viene puntato nella coda Forus (letteralmente "per noi"). L'incremento rilevato nella coda Forus CoPP si riferisce ai pacchetti ignorati destinati allo switch locale. Si tratta di un'operazione relativamente semplice e concettuale.

In alcune condizioni, tuttavia, il traffico destinato localmente potrebbe non essere correttamente correlato alle cadute dei Forus.

Con un sufficiente flusso di traffico basato sulla CPU, il percorso punt diventa sovraccarico oltre la capacità del CoPP di stabilire la priorità del traffico da controllare. Il traffico viene sorvegliato "in modo silenzioso" su base "first-in" e "first-out".

In questo scenario, si vede la prova di policing control-plane in grandi volumi, ma il tipo di traffico di interesse (Forus in questo esempio) non necessariamente aumenta attivamente.

In sintesi, se il volume del traffico basato sulla CPU è eccezionalmente elevato, come dimostrato dal policing CoPP attivo e dimostrato con l'acquisizione di pacchetti o il debug del punt FED, è possibile che si verifichi una perdita non allineata alla coda su cui si sta eseguendo la risoluzione dei problemi. In questo scenario, determinare il motivo per cui è presente una quantità eccessiva di traffico basato sulla CPU e adottare misure per alleggerire il carico sul control plane.

Reindirizzamenti ICMP elevati e funzionamento DHCP lento

Il protocollo CoPP sugli switch Catalyst serie 9000 è organizzato in 32 code hardware. Queste 32 code hardware sono allineate a 20 indici dei singoli policer. Ogni indice del policer è correlato a una o più code hardware.

Dal punto di vista funzionale, questo significa che più classi di traffico condividono un indice di un policer e sono soggette a un valore di policer aggregato comune.

Un problema comune rilevato sugli switch con gli agenti di inoltro DHCP abilitati comporta una risposta DHCP lenta. I client sono in grado di ottenere gli indirizzi IP in modo sporadico, ma sono necessari diversi tentativi per completare l'operazione e alcuni client scadono.

La coda di reindirizzamento ICMP e la coda Broadcast condividono un indice policer, quindi un elevato volume di traffico ricevuto e indirizzato dalla stessa interfaccia virtuale dello switch (SVI) influisce sulle applicazioni che si basano sul traffico broadcast. Ciò è particolarmente evidente quando lo switch funge da agente di inoltro.

Questo documento offre una spiegazione dettagliata del concetto e del modo per mitigare i problemi: Risoluzione dei problemi DHCP sugli agenti di inoltro DHCP Catalyst 9000

Ulteriori risorse

Risoluzione dei problemi relativi a DHCP lenti o intermittenti sugli agenti di inoltro DHCP Catalyst 9000

Configurazione dell'acquisizione di pacchetti CPU FED sugli switch Catalyst 9000

Switch Catalyst 9300: configurazione di Control Plane Policing

<u>Configurazione dell'acquisizione dei pacchetti - Guida alla configurazione della gestione della rete.</u> <u>Cisco IOS XE Bengaluru 17.6.x (switch Catalyst 9300)</u>

Funzionamento e risoluzione dei problemi di snooping DHCP sugli switch Catalyst 9000

Informazioni su questa traduzione

Cisco ha tradotto questo documento utilizzando una combinazione di tecnologie automatiche e umane per offrire ai nostri utenti in tutto il mondo contenuti di supporto nella propria lingua. Si noti che anche la migliore traduzione automatica non sarà mai accurata come quella fornita da un traduttore professionista. Cisco Systems, Inc. non si assume alcuna responsabilità per l'accuratezza di queste traduzioni e consiglia di consultare sempre il documento originale in inglese (disponibile al link fornito).