Configurazione e verifica del routing della sovrimpressione multicast vEdge

Sommario

Introduzione Prerequisiti Requisiti Componenti usati Premesse Configurazione Esempio di rete Configurazioni Verifica Risoluzione dei problemi Conclusioni

Introduzione

Questo documento descrive come configurare il multicast in un ambiente SD-WAN ed è specifico per i router vEdge. Tutte le configurazioni sono basate su PIM (Protocol Independent Multicast) Auto-Rendezvous Point (RP). Mostra uno scenario di rete di esempio, la configurazione e gli output di verifica.

Prerequisiti

Requisiti

Nessun requisito specifico previsto per questo documento. Tuttavia, una conoscenza base del multicast e una conoscenza operativa di SD-WAN possono aiutare.

Componenti usati

Il documento può essere consultato per tutte le versioni software o hardware.

Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.

Premesse

Qui potete trovare un elenco di acronimi utilizzati in questo articolo.

- vEdge (VE)
- FHR (First Hop Router)
- LHR (Last Hop Router)
- Punto di rendering (RP)
- VPN (Virtual Private Network)
- Protocollo OMP (Overlay Management Protocol)
- TLOC (Transport Location)
- Protocollo IGMP (Internet Group Management Protocol)
- Cloud Service Router (CSR)
- PIM (Protocol Independent Multicast)
- Base informazioni routing multicast (MRIB) o tabella di routing multicast
- Reverse Path Forwarding (RPF)
- Durata (TTL)

Per una descrizione dettagliata della terminologia SD-WAN, fare riferimento alla terminologia <u>Cisco SD-WAN</u>

Configurazione

Per una panoramica generale sul multicast Cisco SD-WAN, fare riferimento a <u>Panoramica sul</u> routing della sovrimpressione multicast.

Esempio di rete

Nota: In questa topologia, sia BR1-VE-1 che BR3-VE-1 hanno TLOC GOLD in comune. In scenari reali, i siti possono avere TLOC uguali o diversi.

Configurazioni

BR1-VE-1 presenta una configurazione di base SD-WAN overlay/underlay con un percorso predefinito. Inoltre, il replicatore multicast locale e PIM sono stati configurati sull'interfaccia Ge0/0. Il comando **multicast-replicator local** configura il router VE come replicatore multicast.

```
vpn 10
router
multicast-replicator local
pim
auto-rp
interface ge0/0
exit
!
interface ge0/0
ip address 192.168.1.1/24
no shutdown
```

BR3-VE-1 presenta una configurazione di base SD-WAN overlay/underlay con un percorso predefinito. Inoltre, IGMP e PIM sono configurati sull'interfaccia Ge0/0.

```
vpn 10
router
pim
auto-rp
interface ge0/0
exit
!
igmp
interface ge0/0
exit
!
interface ge0/0
ip address 192.168.3.1/24
no shutdown
```

Il router RP ha anche una configurazione di base dell'underlay con un percorso predefinito.

Nota: è obbligatorio utilizzare un dispositivo non Viptela come RP. Nell'esempio, è stato usato a questo scopo il software CSR con Cisco IOS[®] XE.

ip multicast-routing distributed
!
interface Loopback0 ip address 192.168.101.1 255.255.255.255 ip pim sparse-mode ! ! interface
GigabitEthernet2 ip address 192.168.1.3 255.255.255.0 ip pim sparse-mode ! ! ! ip pim send-rpannounce Loopback0 scope 20 ip pim send-rp-discovery Loopback0 scope 20

Quando si utilizza Auto-RP, si verificano i seguenti eventi:

 L'agente di mapping RP resta in ascolto su un indirizzo di gruppo conosciuto CISCO-RP-ANNUNCE (224.0.1.39), al quale vengono inviati gli annunci RP candidati. Quando si utilizza Auto-RP per distribuire le mappature da gruppo a RP, il comando ip pim send-rp-notice determina l'invio da parte del router di un messaggio di annuncio Auto-RP al gruppo conosciuto CISCO-RP-ANNUNCE (24.0.1.39).

- 2. L'agente di mapping RP invia i mapping da gruppo a RP in un messaggio di individuazione Auto-RP al gruppo conosciuto CISCO-RP-DISCOVERY (24.0.1.40). Il valore TTL limita il numero di hop utilizzabili dal messaggio.
- 3. I router PIM ascoltano questo gruppo e utilizzano gli RP di cui vengono a conoscenza dal messaggio di rilevamento.

Il router di origine è un CSR con software Cisco IOS[®] -XE, che dispone anche di una configurazione di base con un percorso predefinito. Il traffico viene generato usando un comando **ping** sull'indirizzo multicast.

```
ip multicast-routing distributed
!
interface GigabitEthernet5 ip address 192.168.100.2 255.255.255.0 ip pim sparse-mode
```

Il ricevitore è un CSR con software Cisco IOS[®] -XE ed è stato configurato come ricevitore IGMP con l'aiuto del comando **ip igmp join-group**. Dispone inoltre della configurazione di base per l'instradamento e la sovrapposizione.

```
ip multicast-routing distributed
!
interface GigabitEthernet2
ip address 192.168.3.2 255.255.255.0
ip igmp join-group 239.1.2.3
```

Verifica

Per verificare che la configurazione funzioni correttamente, consultare questa sezione.

Passaggio 1. Il destinatario invia un messaggio di join IGMP all'RP. **Eseguire il debug dell'**output **ip igmp 239.1.2.3** dal destinatario.

Passaggio 2. BR3-VE-1 che funge da LHR. Riceve un messaggio di join IGMP e invia queste informazioni a RP. Questi messaggi di join IGMP vengono trasmessi come parte di route multicast negli aggiornamenti OMP.

	V1 IF MEM				V1			
VPN	NAME	GROUP	PRESENT	STATE	UPTIME	EXPIRES	EXPIRES	EVENT
10	ge0/0	239.1.2.3	false	members-present	1:11:00:11	0:00:02:41	-	membership-
repoi	rt							

Passaggio 3	. vSmart riceve	una voce (*	,G) tramite	OMP e in	oltra queste	e informazioni a	al
replicatore.							

vsmart# show omp multicast-routes Code: C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid ADDRESS SOURCE FAMILY TYPE VPN ORIGINATOR DESTINATION GROUP SOURCE FROM PEER RP STATUS _____ ____ ipv4 (*,G) 10 10.33.33.3 10.11.11.1 239.1.2.3 0.0.0.0 10.33.33.3 192.168.101.1 C,R

Passaggio 4. In questa topologia BR1-VE-1 funge da replicatore. BR1-VE-1 inoltra queste informazioni all'RP.

BR1-VE-1# show omp multicast-	routes									
Code:	ioae:									
2 -> chosen										
I -> installed										
Red -> redistributed										
Rej -> rejected										
L -> looped										
R -> resolved										
S -> stale										
Ext -> extranet										
Stg -> staged										
Inv -> invalid										
ADDRESS SOURCE FROM										
FAMILY TYPE VPN ORIGINATOR	DESTINATION	GROUP	SOURCE	PEER	RP	STATUS				
inv4 (* G) 10 10 33 33 3	10 11 11 1	239 1 2 3	0 0 0 0	10 1 1 2 1	92 168 101 1	CTR				
The ('2' TO TO:22:22:2	-v	237.1.2.3	0.0.0.0	IV.I.I.Z I	JZ.100.101.1	ς,1,κ				

Passaggio 5. Viene ora creata una voce (*,G) nell'RP.

```
FHR-RP#show ip mroute
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
       L - Local, P - Pruned, R - RP-bit set, F - Register flag,
       T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
      X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
      U - URD, I - Received Source Specific Host Report,
       Z - Multicast Tunnel, z - MDT-data group sender,
       Y - Joined MDT-data group, y - Sending to MDT-data group,
       G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
      N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
       Q - Received BGP S-A Route, q - Sent BGP S-A Route,
       V - RD & Vector, v - Vector, p - PIM Joins on route,
       x - VxLAN group
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.2.3), 1d12h/00:02:51, RP 192.168.101.1, flags: S
 Incoming interface: Null, RPF nbr 0.0.0.0
 Outgoing interface list:
    GigabitEthernet2, Forward/Sparse, 1d12h/00:02:51
```

Passaggio 6. Ora, è il turno dell'origine per la registrazione con l'RP. Nell'esempio, il traffico multicast viene generato usando il comando **ping** con l'indirizzo multicast come destinazione.

Source#ping 239.1.2.3 repeat 10 Type escape sequence to abort. Sending 10, 100-byte ICMP Echos to 239.1.2.3, timeout is 2 seconds:

<SNIP>

L'origine invia un messaggio di registro all'RP.

```
FHR-RP#show ip mroute
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
       L - Local, P - Pruned, R - RP-bit set, F - Register flag,
       T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
      X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
      U - URD, I - Received Source Specific Host Report,
       Z - Multicast Tunnel, z - MDT-data group sender,
       Y - Joined MDT-data group, y - Sending to MDT-data group,
       G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
       N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
       Q - Received BGP S-A Route, q - Sent BGP S-A Route,
       V - RD & Vector, v - Vector, p - PIM Joins on route,
      x - VxLAN group
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.2.3), 00:00:12/00:03:27, RP 192.168.101.1, flags: S
 Incoming interface: Null, RPF nbr 0.0.0.0
 Outgoing interface list:
    GigabitEthernet2, Forward/Sparse, 00:00:02/00:03:27
(192.168.100.2, 239.1.2.3), 00:00:12/00:02:47, flags: T
  Incoming interface: GigabitEthernet4, RPF nbr 192.168.100.2
```

```
Outgoing interface list:
GigabitEthernet2, Forward/Sparse, 00:00:02/00:03:29
```

<SNIP>

Passaggio 7. BR1-VE-1 inoltra il messaggio di unione PIM (S, G) a vSmart. Analogamente a un join IGMP, i messaggi di join PIM (S, G) vengono trasmessi come parte dei router multicast negli aggiornamenti OMP. vSmart ora ha la voce (S, G) creata nel MRIB. (S, G) le informazioni vengono quindi inoltrate al replicatore e a LHR tramite OMP.

Nota: In uno scenario reale, il replicatore può trovarsi nello stesso sito o in un sito diverso a seconda delle preferenze di progettazione.

vsmart# show omp multicast-routes Code: C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

```
BR1-VE-1# show omp multicast-routes
Code:
C -> chosen
I -> installed
Red -> redistributed
Rej -> rejected
L -> looped
R -> resolved
S -> stale
Ext -> extranet
Stg -> staged
Inv -> invalid
```

Passaggio 8. Nell'ultimo router hop è ora presente la voce (S, G). LHR invia un join (S, G) a un'origine.

Nota: Nell'output potete vedere che per entrambe le voci (*, G) e (S, G) il creatore è indicato come 10.33.33.3 e la destinazione è 10.11.11.1 per il gruppo. Questo perché LHR BR3-VE-1 è responsabile della creazione della voce (*, G) e di (S, G) join per costruire il control plane multicast.

```
BR3-VE-1# show omp multicast-routes
Code:
C -> chosen
I -> installed
Red -> redistributed
Rej -> rejected
L -> looped
R -> resolved
S -> stale
Ext -> extranet
Stg -> staged
Inv -> invalid
ADDRESS SOURCE FROM
FAMILY TYPE VPN ORIGINATOR DESTINATION GROUP SOURCE PEER
                                                           RP
STATUS
_____
_____
ipv4 (*,G) 10 10.33.33.3 10.11.11.1 239.1.2.3 0.0.0.0 0.0.0.0 192.168.101.1
C,Red,R
   (S,G) 10 10.33.33.3 10.11.11.1 239.1.2.3 192.168.100.2 0.0.0.0
C,Red,R
```

Verifica del piano dati:

Il flusso del traffico ideale deve essere (da/a):

- 1. Fonte per FHR-RP
- 2. FHR-RP per VE
- 3. VE sul replicatore
- 4. Replicator per LHR
- 5. LHR al destinatario

Nota: Questo documento non fornisce dettagli sulla commutazione PIM RPT e SPT.

Nell'esempio, il flusso del traffico è il seguente:

- 1. Dall'origine all'FHR-RP
- 2. Da FHR-RP a BR1-VE-1
- 3. Da BR1-VE-1 a BR3-VE-1 tramite data plane tunnel IPSec
- 4. BR3-VE-1 al ricevitore

Nota: Il traffico multicast scorre tra BR1-VE-1 e BR3-VE-1 tramite tunnel IPsec del data

plane. vSmart Controller non partecipa mai all'inoltro del traffico effettivo.

In questa topologia BR1-VE-1 è configurato come replicatore e si trova vicino all'origine. È possibile che i replicatori si trovino in un sito diverso da quello di origine. In ogni caso, assicurarsi che i tunnel del piano dati siano attivi tra un particolare sito e un particolare sito in cui risiede il replicatore.

BR1-VE-1# show multicast topology
Flags:
 S: SPT switchover
OIF-Flags:
 A: Assert winner

				JOIN						UPSTREAM	UPSTREAM
UPSTREAM					0	IF OI	F				
VPN GROUP		SOURC	Е	TYPE	FL	AGS RP	ADDRES	SS	REPLICATOR	NEIGHBOR	STATE
INTERFACE	UP TI 	ME 	EXPIRES	IN]	DEX NA	AME FL 	AGS 03	IF TU	NNEL 		
10 224.0	 .1.39	 192.1	 68.101.1	Auto-l	 RP -					192.168.1.3	joined
ge0/0	0:00:	41:29	0:00:02:	33 51	3 –	-	10	0.33.	33.3		
10 224.0	.1.40	192.1	68.101.1	Auto-I	RP -	-			-	192.168.1.3	joined
ge0/0	0:00:	41:26	0:00:02:	17 51	3 –	-	10	0.33.	33.3		
10 239.1	.2.3	0.0.0	.0	(*,G)	-	19	2.168.3	101.1	-	192.168.1.3	joined
ge0/0	0:00:	03:47	0:00:00:	53 51	3 –	-	10	0.33.	33.3		
10 239.1	.2.3	192.1	68.100.2	(S,G)	-	-			-	192.168.1.3	joined
ge0/0	0:00:	00:10	0:00:00:	52 51	3 –	-	10	0.33.	33.3		
DST PUBLIC SYSTEM IP IP TRANSITION	s 	SITE	ID STATE	DST PI	SOURCI UBLIC COLOR	E TLOC ENCAP	RI DETEC CO MULTII	EMOTE T OLOR PLIER	TLOC TX S INTERVAL(m	OURCE IP NSEC) UPTIME	
 10.33.33.3		30	מנו		aold			old		72.16.1.6	
172.16.1.1	4	00	чĿ	12406	9010	ipsec	7	010	1000	3:21:24:0	2 0
10.33.33.3		30	up		qold	1	11	te	1	72.16.1.6	
172.19.1.6			-	12426	2	ipsec	7		1000	3:21:24:0	2 0
10.33.33.3		30	up		biz-i	nternet	g	old	1	72.17.1.6	
172.16.1.1	4			12406		ipsec	7		1000	3:21:24:5	9 0
10.33.33.3		30	up		biz-i	nternet	11	te	1	72.17.1.6	
172.19.1.6				12426		ipsec	7		1000	3:21:24:5	9 0

BR1-VE-1# show multicast topology vpn 10 239.1.2.3 topology-oil
Flags:
 S: SPT switchover
OIF-Flags:

A: Assert winner

VPN	GROUP	SOURCE	JOIN TYPE	INDEX	OIF NAME	OIF FLAGS	OIF TUNNEL
10	239.1.2.3	0.0.0.0	(*,G)	513	-	-	10.33.33.3
10	239.1.2.3	192.168.100.2	(S,G)	513	-	-	10.33.33.3

BR3-VE-1# show	bfd ses	sions syst	tem-ip	10.11	.11.1						
				SOURCE	E TLOC	F	REMOTE	TLOC			
DST PUBLIC			DST PU	JBLIC		DETEC	CT	TX			
SYSTEM IP	SITE	ID STATE		COLOR		C	COLOR		SOURCE	IP	
IP			PORT		ENCAP	MULTI	PLIER	INTERVAL	(msec)	UPTIME	
TRANSITIONS											
10.11.11.1	10	up		gold		ç	gold		172.16	.1.14	
172.16.1.6			12406		ipsec	7		1000		3:21:25:16	0
10.11.11.1	10	up		gold		k	oiz-int	ernet	172.16	.1.14	
172.17.1.6			12406		ipsec	7		1000		3:21:26:13	0
10.11.11.1	10	up		lte		ç	gold		172.19	.1.6	
172.16.1.6			12406		ipsec	7		1000		3:21:25:16	0
10.11.11.1	10	up		lte		k	oiz-int	ernet	172.19	.1.6	
172.17.1.6			12406		ipsec	7		1000		3:21:26:13	0

Passaggio 9. Il ricevitore sta ricevendo traffico.

Receiver#show ip mroute IP Multicast Routing Table Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, G - Received BGP C-Mroute, g - Sent BGP C-Mroute, N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed, Q - Received BGP S-A Route, q - Sent BGP S-A Route, V - RD & Vector, v - Vector, p - PIM Joins on route, x - VxLAN group Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join Timers: Uptime/Expires Interface state: Interface, Next-Hop or VCD, State/Mode (*, 239.1.2.3), 1d13h/stopped, RP 192.168.101.1, flags: SJPCL Incoming interface: GigabitEthernet2, RPF nbr 192.168.3.1 Outgoing interface list: Null (192.168.100.2, 239.1.2.3), 00:01:08/00:01:51, flags: PLTX Incoming interface: GigabitEthernet2, RPF nbr 192.168.3.1 Outgoing interface list: Null Receiver#show ip mroute count Use "show ip mfib count" to get better response time for a large number of mroutes. IP Multicast Statistics 6 routes using 3668 bytes of memory 3 groups, 1.00 average sources per group Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second Other counts: Total/RPF failed/Other drops(OIF-null, rate-limit etc) Group: 239.1.2.3, Source count: 1, Packets forwarded: 0, Packets received: 16 RP-tree: Forwarding: 0/0/0/0, Other: 7/0/7 Source: 192.168.100.2/32, Forwarding: 0/0/0/0, Other: 9/0/9

```
Source#ping 239.1.2.3 repeat 10
Type escape sequence to abort.
Sending 10, 100-byte ICMP Echos to 239.1.2.3, timeout is 2 seconds:
Reply to request 0 from 192.168.3.2, 221 ms
Reply to request 1 from 192.168.3.2, 238 ms
Reply to request 2 from 192.168.3.2, 135 ms
Reply to request 3 from 192.168.3.2, 229 ms
Reply to request 4 from 192.168.3.2, 327 ms
Reply to request 5 from 192.168.3.2, 530 ms
<SNIP>
```

Risoluzione dei problemi

Le informazioni contenute in questa sezione permettono di risolvere i problemi relativi alla configurazione.

1. Verificare che (*, G) e (S,G) siano presenti nel RP.

2. Assicurarsi di disporre di tunnel del piano dati e che le sessioni BFD siano attive tra VE e il sito in cui il replicatore è configurato con l'aiuto del comando **show bfd session**.

3. Verificare che BR3-VE-1 abbia appreso informazioni sul replicatore su BR1-VE-1.

BR3-VE-1# show multicast replicator

REPLICATOR REPLICATOR LOAD VPN ADDRESS STATUS PERCENT 10 10.11.11.1 UP -

4. Verificare che sia stato stabilito un tunnel multicast con BR3-VE-1.

BR3-VE-1# show multicast tunnel

5. Verificare che il mapping da gruppo a RP sia distribuito e corretto.

BR3-VE-1#show pim rp-mapping

 VPN
 TYPE
 GROUP
 RP ADDRESS

 10
 Auto-RP
 224.0.0.0/4
 192.168.101.1

6. Verificare che le route multicast (*, G) e (S, G) vengano propagate correttamente a vEdge, al router Replicator e a vSmart. Utilizzare i comandi **show multicast topology** e **show omp multicast-route**.

7. Controllare la tabella RPF su LHR.

		RPF	NEXTHOP	TNDEV	RPF NBR	RPF IF		RPF TUNNEL	RPF TUNNEL
VPN 	RPF ADDRESS	STATUS		INDEX	ADDR		RPF TUNNEL		ENCAP
10	192.168.101.1	resolved	2	0 1	10.11.11.1 10.11.11.1	-	10.11.11.1 10.11.11.1	biz-internet gold	ipsec ipsec
10	192.168.100.2	resolved	2	0 1	10.11.11.1 10.11.11.1	-	10.11.11.1 10.11.11.1	biz-internet gold	ipsec ipsec

8. Verificare che LHR abbia appreso tutte le informazioni richieste sui gruppi Auto-RP e multicast di dati con l'aiuto del comando **show ip mfib summary**.

9. Verificare che l'output del comando **show ip mfib oil** sull'LHR contenga un'interfaccia di uscita che punta al router ricevitore.

10. Controllare i flussi di traffico con l'aiuto del comando show ip mfib stats.

Altri comandi utili per il debug:

- debug pim auto-rp level high: abilita il debug auto-rp.
- debug pim events level high vpn <vpn number> Abilita il debug degli eventi PIM.
- debug ftm mcast Abilita il debug della programmazione multicast.

Conclusioni

Questi scenari sono stati testati correttamente in questa topologia.

- L'origine multicast è connessa direttamente all'RP nello stesso sito e il ricevitore si trova nel sito remoto (scenario di test).
- Il ricevitore multicast è collegato direttamente all'RP nello stesso sito, mentre l'origine si trova in un sito remoto.
- La sorgente multicast è collegata direttamente al VE, mentre il ricevitore e l'RP si trovano sul sito remoto.