Risoluzione dei problemi hardware per Cisco serie 12000 Internet Router Line Card guasti

Sommario

Introduzione **Prerequisiti** Requisiti Componenti usati Compatibilità hardware-software e requisiti di memoria Convenzioni Identificazione del problema Arresto anomalo scheda di linea Ping fabric non riuscito Messaggi di errore di parità Messaggi di errore Verifica della scheda di linea per errori hardware Software Cisco IOS release successive alla 12.0(22)S Software Cisco IOS con versioni precedenti alla 12.0(22)S Informazioni da raccogliere se si apre una richiesta di servizio TAC Informazioni correlate

Introduzione

Spesso si sprecano tempo e risorse per sostituire l'hardware che funziona correttamente. Questo documento aiuta a risolvere i problemi più comuni dell'hardware con Cisco serie 12000 Internet Router e fornisce i puntatori per identificare se il guasto si è verificato nell'hardware.

Nota: nel presente documento non vengono descritti gli errori relativi al software, ad eccezione di quelli che vengono spesso erroneamente considerati problemi hardware.

Prerequisiti

Requisiti

Questo documento è utile per conoscere i seguenti argomenti:

- <u>Risoluzione dei problemi hardware per Cisco serie 12000 Internet Router</u>
- Risoluzione dei problemi di arresto anomalo delle schede di linea su Cisco serie 12000
 Internet Router

Se si ritiene che il problema sia relativo a un guasto hardware, questo documento può aiutare a

identificare la causa del problema.

Componenti usati

Le informazioni fornite in questo documento si basano sulle seguenti versioni software e hardware:

- Tutti i Cisco serie 12000 Internet Router, inclusi i router 12008, 12012, 12016, 12404, 12406, 12410 e 12416.
- Tutte le versioni software Cisco IOS[®] che supportano Cisco serie 12000 Internet Router.

Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.

Compatibilità hardware-software e requisiti di memoria

Quando si installa una nuova scheda di linea, un nuovo modulo o una nuova immagine software Cisco IOS, è importante verificare che il router abbia memoria sufficiente e che l'hardware e il software siano compatibili con le funzionalità che si desidera utilizzare.

Completare la procedura consigliata seguente per verificare la compatibilità hardware-software e i requisiti di memoria:

- Utilizzare lo strumento <u>Software Advisor</u> (solo utenti <u>registrati</u>) per scegliere il software per il dispositivo di rete. <u>Suggerimento:</u>La sezione <u>Supporto software per le funzionalità</u> (solo utenti <u>registrati</u>) aiuta a determinare l'immagine software Cisco IOS richiesta scegliendo i tipi di funzionalità che si desidera implementare.
- 2. Utilizzare l'area <u>Download Software</u> (solo utenti <u>registrati</u>) per verificare la quantità minima di memoria (RAM e flash) richiesta dal software Cisco IOS e/o scaricare l'immagine del software Cisco IOS. Per determinare la quantità di memoria (RAM e flash) installata sul router, vedere <u>Come scegliere una versione del software Cisco IOS Requisiti di memoria</u>. Suggerimenti:Se si desidera mantenere le stesse funzionalità della versione attualmente in esecuzione sul router, ma non si conosce il set di funzionalità utilizzato, immettere il comando show version sul dispositivo Cisco e incollare il relativo output nello strumento Output Interpreter. È possibile utilizzare <u>Output Interpreter</u> (solo utenti <u>registrati</u>) per visualizzare i potenziali errori e correggerli. Per utilizzare <u>Output Interpreter</u> (solo clienti <u>registrati</u>), è necessario essere un cliente <u>registrato</u>, aver eseguito l'accesso e avere JavaScript abilitato. È importante verificare il supporto delle funzionalità, soprattutto se si prevede di utilizzare funzionalità software recenti.Per ulteriori informazioni sull'aggiornamento dell'immagine software Cisco IOS a una nuova versione o a un nuovo set di funzionalità, consultare il documento sulla <u>scelta della versione software di Cisco IOS</u>.
- Se si ritiene necessario un aggiornamento del software Cisco IOS, seguire la procedura di installazione e aggiornamento del software per i router Cisco serie 12000.Suggerimento: per informazioni su come ripristinare un router Cisco serie 12000 bloccato in ROMmon (prompt rommon # >), vedere Procedura di ripristino ROMmon per Cisco 12000.

Convenzioni

Per ulteriori informazioni sulle convenzioni usate, consultare il documento <u>Cisco sulle convenzioni</u> nei suggerimenti tecnici.

Identificazione del problema

Grazie alle informazioni contenute in questa sezione, sarà possibile determinare se i problemi riscontrati con la scheda di linea sono correlati all'hardware.

La prima cosa da fare è identificare la causa dell'arresto anomalo della scheda di linea o degli errori della console. Per individuare la scheda che potrebbe essere guasta, è essenziale raccogliere l'output dai seguenti comandi:

- mostra riepilogo contesto
- show logging (visualizza registri)
- mostra riepilogo registrazione
- show diag <*slot*>
- show context slot <*slot*>

Oltre ai seguenti comandi show specifici, è necessario raccogliere le seguenti informazioni:

- Registri console e/o informazioni syslog: Questi possono essere cruciali per determinare il problema originario se si verificano sintomi multipli. Se il router è configurato per l'invio di registri a un server syslog, è possibile che vengano visualizzate alcune informazioni sull'evento. Per i log della console, è preferibile essere collegati direttamente al router sulla porta della console tramite Log messaggi di sistema.
- show technical-support: Il comando show technical-support è una raccolta di molti comandi diversi e include show version, show running-config e show stack. Quando un router incontra un problema, il tecnico del Cisco Technical Assistance Center (TAC) in genere chiede queste informazioni. È importante raccogliere l'output del comando show technical-support prima di ricaricare o spegnere e riaccendere il dispositivo, in quanto queste azioni possono causare la perdita di tutte le informazioni sul problema.

Di seguito sono riportati alcuni esempi di output che è possibile prevedere se si è verificato un arresto anomalo del Gigabit Route Processor (GRP) o della scheda di linea:

```
Router#show context summary
CRASH INFO SUMMARY
Slot 0 : 0 crashes
Slot 1 : 1 crashes
1 - crash at 10:36:20 UTC Wed Dec 19 2001
Slot 2 : 0 crashes
Slot 3 : 0 crashes
Slot 4 : 0 crashes
Slot 5 : 0 crashes
Slot 5 : 0 crashes
```

Slot 7 : 0 crashes Slot 8 : 0 crashes Slot 9 : 0 crashes Slot 10: 0 crashes Slot 11: 0 crashes Slot 12: 0 crashes Slot 13: 0 crashes Slot 14: 0 crashes Slot 15: 0 crashes

Router#show logging

Syslog logging: enabled (2 messages dropped, 0 messages rate-limited, 0 flushes,

0 overruns)

Console logging: level debugging, 24112 messages logged Monitor logging: level debugging, 0 messages logged Buffer logging: level debugging, 24411 messages logged Logging Exception size (4096 bytes)

Trap logging: level informational, 24452 message lines logged

5d16h: %LCINFO-3-CRASH: Line card in slot 1 crashed

5d16h: %GRP-4-RSTSLOT: Resetting the card in the slot: 1, Event: 38

5d16h: %IPCGRP-3-CMDOP: IPC command 3

5d16h: %CLNS-5-ADJCHANGE: ISIS: Adjacency to malachim2 (GigabitEthernet1/0) Up,

n8 (slot1/0): linecard is disabled

-Traceback=602ABCA8 602AD8B8 602B350C 602B3998 6034312C 60342290 601A2BC4 601A2BB0

5dl6h: %LINK-5-CHANGED: Interface GigabitEthernet1/0, changed state to

administratively down

5d16h: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/0,

changed state to down

5d16h: %GRP-3-CARVE_INFO: Setting mtu above 8192 may reduce available buffers on Slot: 1.

SLOT 1:00:00:09: %SYS-5-RESTART: System restarted --

Cisco Internetwork Operating System Software

IOS (tmew adjacency) GS Software (GLC1-LC-M), Version 12.0(17)ST3,

EARLY DEPLOYMENT RELEASE SOFTWARE (fc1) TAC Support: http://www.cisco.com/tac Copyright (c) 1986-2001 by cisco Systems, Inc. Compiled Thu 08-Nov-01 20:21 by dchih 5dl6h: %GRPGE-6-AUTONEG_STATE: Interface GigabitEthernet1/0: Link OK autonegotiation complete 5d16h: %LINK-3-UPDOWN: Interface GigabitEthernet1/0, changed state to up 5d16h: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/0, changed state to up Router#show diag 1 SLOT 1 (RP/LC 1): 3 Port Gigabit Ethernet MAIN: type 68, 800-6376-01 rev E0 dev 0 HW config: 0x00 SW key: 00-00-00 PCA: 73-4775-02 rev E0 ver 2 HW version 2.0 S/N CAB0450G8FX MBUS: Embedded Agent Test hist: 0x00 RMA#: 00-00-00 RMA hist: 0x00 DIAG: Test count: 0x00000001 Test results: 0x00000000 FRU: Linecard/Module: 3GE-GBIC-SC= Route Memory: MEM-GRP/LC-64= Packet Memory: MEM-LC1-PKT-256= L3 Engine: 2 - Backbone OC48 (2.5 Gbps) MBUS Agent Software version 01.46 (RAM) (ROM version is 02.10) Using CAN Bus A ROM Monitor version 10.06 Fabric Downloader version used 05.01 (ROM version is 05.01) Primary clock is CSC 0 Board is analyzed Board State is Line Card Enabled (IOS RUN) Insertion time: 00:00:10 (5d16h ago) DRAM size: 67108864 bytes FrFab SDRAM size: 134217728 bytes, SDRAM pagesize: 8192 bytes ToFab SDRAM size: 134217728 bytes, SDRAM pagesize: 8192 bytes

1 crash since restart

Router#show context slot 1

CRASH INFO: Slot 1, Index 1, Crash at 10:36:20 UTC Wed DEC 19 2001 VERSION: GS Software (GLC1-LC-M), Version 12.0(17)ST3, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1) TAC Support: http://www.cisco.com/tac Compiled Thu 08-Nov-01 20:21 by dchih Card Type: 3 Port Gigabit Ethernet, S/N System exception: sig=10, code=0x10, context=0x41036514 System restarted by a Bus Error exception STACK TRACE: -Traceback= 406914C8 4004EEAC 4005BCE4 400A33F4 400A33E0 CONTEXT: \$0 : 00000000, AT : 41030000, v0 : 00000000, v1 : 41036290 a0 : 00000030, a1 : 412C6CA0, a2 : 00000000, a3 : 00000000 t0 : 00008100, t1 : 34008101, t2 : 400C5590, t3 : FFFF00FF t4 : 400C5560, t5 : 00040000, t6 : 00000000, t7 : 413D1D78 s0 : FF012345, s1 : 00000031, s2 : 41032B10, s3 : 41BB8F00 s4 : 00000000, s5 : 00000001, s6 : 4101D620, s7 : 00000000 t8 : 418EA1C8, t9 : 00000000, k0 : 4142C7A0, k1 : 400C7538 gp : 40F57DC0, sp : 41BB8EE8, s8 : 41023740, ra : 406914C8 EPC : 0x406914C8, SREG : 0x34008103, Cause : 0x00000010 ErrorEPC : 0x400B3A5C -Process Traceback= No Extra Traceback SLOT 1:00:00:09: %SYS-5-RESTART: System restarted --Cisco Internetwork Operating System Software IOS (tm) GS Software (GLC1-LC-M), Version 12.0(17)ST3, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1) TAC Support: http://www.cisco.com/tac Copyright (c) 1986-2001 by cisco Systems, Inc. Compiled Thu 08-Nov-01 20:21 by dchih SLOT 1:20:18:09: %LCGE-6-GBIC_OIR: 3 Port Gigabit Ethernet GBIC removed from port 2

SLOT 1:20:18:29: %LCGE-6-GBIC_OIR: 3 Port Gigabit Ethernet GBIC inserted in port 2 SLOT 1:3d20h: %LCGE-6-GBIC_OIR: 3 Port Gigabit Ethernet GBIC removed from port 2 SLOT 1:3d20h: %LCGE-6-GBIC_OIR: 3 Port Gigabit Ethernet GBIC inserted in port 2 SLOT 1:00:00:09: %SYS-5-RESTART: System restarted --Cisco Internetwork Operating System Software IOS (TM) GS Software (GLC1-LC-M), Version 12.0(17)ST3, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1) TAC Support: http://www.cisco.com/tac Copyright (c) 1986-2001 by cisco Systems, Inc. Compiled Thu 08-Nov-01 20:21 by dchi

Arresto anomalo scheda di linea

Se una scheda di linea si è bloccata e si è identificata la scheda di linea che si è bloccata, è necessario determinare la causa dell'errore. L'output del comando **show context** <*slot*>consente di eseguire questa operazione. Di seguito è riportato un esempio:

Router#show context slot 2 CRASH INFO: Slot 2, Index 1, Crash at 12:24:22 MET Wed Nov 28 2001 VERSION: GS Software (GLC1-LC-M), Version 12.0(18)S1, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1) TAC Support: http://www.cisco.com/tac Compiled Fri 07-Sep-01 20:13 by nmasa Card Type: 3 Port Gigabit Ethernet, S/N System exception: SIG=23, code=0x24, context=0x4103FE84 System restarted by a Software forced crash STACK TRACE: -Traceback= 400BEB08 40599554 4004FB64 4005B814 400A1694 400A1680 CONTEXT: \$0 : 0000000, AT : 4104000, v0 : 0000032, v1 : 4103FC00 a0 : 4005B0A4, a1 : 41400A20, a2 : 00000000, a3 : 00000000 t0 : 41D75220, t1 : 8000D510, t2 : 00000001, t3 : FFFF00FF t4 : 400C2670, t5 : 00040000, t6 : 00000000, t7 : 4150A398 s0 : 0000003C, s1 : 00000036, s2 : 4103C4D0, s3 : 41D7EC60 s4 : 00000000, s5 : 00000001, s6 : 41027040, s7 : 00000000 t8 : 41A767B8, t9 : 00000000, k0 : 415ACE20, k1 : 400C4260 GP : 40F0DD00, SP : 41D7EC48, s8 : 4102D120, ra : 40599554 EPC : 0x400BEB08, SREG : 0x3400BF03, Cause : 0x00000024 ErrorEPC : 0x400C6698, BadVaddr : 0xFFBFFFFB -Process Traceback= No Extra Traceback SLOT 2:00:00:09: %SYS-5-RESTART: System restarted --Cisco Internetwork Operating System Software IOS (TM) GS Software (GLC1-LC-M), Version 12.0(18)S1, EARLY DEPLOYMENT RELEASE SOFTWARE (fc1) TAC Support: http://www.cisco.com/tac Copyright (c) 1986-2001 by cisco Systems, Inc. Compiled Fri 07-Sep-01 20:13 by nmae

Èpossibile identificare il tipo di arresto anomalo (crash) che si è verificato dal valore "SIG=" nell'output del comando **show context slot**<*slot*>. Per ulteriori informazioni, vedere la <u>tabella dei</u> <u>codici SIG</u>.

Di seguito sono riportati alcuni collegamenti che forniscono ulteriori informazioni sui tre tipi più comuni di arresti anomali della scheda di linea e spiegano come risolverli:

- <u>Arresto forzato del software (SIG=23)</u>
- Errore bus (SIG=10)
- Eccezione parità cache (SIG=20)

Nell'esempio precedente, la scheda di linea si è bloccata a causa di un "arresto anomalo forzato dal software" e, come suggerisce il nome, un'eccezione software ha causato il ricaricamento. Dopo aver determinato la causa e raccolto l'output necessario, è possibile verificare la presenza di un bug nella versione software Cisco IOS in uso utilizzando <u>Bug Toolkit</u> (solo utenti <u>registrati</u>).

Controllare lo stato corrente della scheda di linea

Dopo aver determinato se i problemi sono errori di sistema nel registro o un arresto anomalo effettivo, è necessario controllare lo stato corrente della scheda di linea per verificare se è stata ripristinata dall'errore che si è verificato. Per identificare lo stato delle singole schede di linea, è possibile esaminare i LED (Light Emitting Diodes) sulla parte anteriore della scheda o usare il comando **show led**. Di seguito è riportato un esempio di output:

SLOT 1 : RUN IOS SLOT 6 : DNLD FABL SLOT 7 : RP ACTV SLOT 10 : RUN IOS SLOT 11 : RUN IOS SLOT 13 : RUN IOS SLOT 14 : RUN IOS

La tabella 1 e la tabella 2 descrivono i tipi di output più comuni restituiti da questo comando e il relativo significato.

Nota: è possibile invertire il valore del LED. Ad esempio, **IOS RUN** può essere visualizzato come **RUN IOS**.

Stato LED RP	Significato dello stato dei LED
RP SU	RP esegue il software Cisco IOS e funziona correttamente
MSTR RP	RP agisce come GRP primario
SLAV RP	RP agisce come Slave GRP
RP ACTV	RP agisce come GRP primario
SEC RP	RP agisce come Slave GRP
INIZIALIZZAZIONE MEM	RP sta tentando di ridimensionare la memoria

Tabella 1 - Stato e significato dei LED RP

Tabella 2 - Stato e significato dei LED LC

Stato LED LC	Significato dello stato dei LED
DIAG DNLD	La scheda di linea sta scaricando il software di diagnostica sul campo
ERRORE DIAG	Test diagnostico campo della scheda di linea non riuscito
PASSATA DIAG	La scheda di linea ha superato il test di diagnostica del campo
TEST DIAG	La scheda di linea sta eseguendo il software di diagnostica sul campo
FABL DNLD	La scheda di linea sta lanciando "Fabric Downloader"
ATTESA FABL	La scheda di linea è in attesa di caricare "Fabric Downloader"
IN RESET	Reimpostazione scheda di linea in corso
IOS DNLD	La scheda di linea sta scaricando il software Cisco IOS tramite il fabric dello switch

IOS RUN	La scheda di linea è ora abilitata
IOS ATTIVO	La scheda di linea ha completato il caricamento ed esegue ora il software Cisco IOS
DNLD MBUS	La scheda di linea sta scaricando l'agente MBUS (Maintenance Bus)
INIZIALIZZAZIO NE MEM	La scheda di linea sta tentando di ridimensionare la memoria
PWR DISATTIVATO	La scheda di linea è spenta

Se lo stato della scheda di linea è diverso da "IOS RUN", o il GRP non è né il dispositivo master/primario attivo né lo slave/secondario, si è verificato un problema e la scheda non è stata caricata completamente. Prima di sostituire la scheda, Cisco consiglia di provare la seguente procedura per risolvere il problema:

- 1. Ricaricare il microcodice con il comando di configurazione globale microcode reload <*slot*>.
- Ricaricare la scheda con il comando hw-module slot <*slot*>reload. In questo modo, la scheda di linea viene reimpostata e scaricata nuovamente dai moduli software Maintenance Bus (MBUS) e Fabric Downloader prima di tentare di scaricare nuovamente il software Cisco IOS per la scheda di linea.
- Reimpostare la scheda di linea manualmente. In questo modo è possibile escludere eventuali problemi causati da una connessione non valida all'MBUS o all'infrastruttura di switching.

Nota: per ulteriori informazioni su come risolvere i problemi relativi alle schede di linea bloccate in uno stato diverso da RUN IOS, vedere <u>Informazioni sul processo di avvio sui router Internet Cisco</u> <u>serie 12000</u>.

Ping fabric non riuscito

Gli errori di ping dell'infrastruttura si verificano quando una scheda di linea o il GRP secondario non risponde a una richiesta ping dell'infrastruttura dal GRP primario sull'infrastruttura dello switch. Tali errori sono un sintomo problematico che è necessario esaminare. Sono indicati dai seguenti messaggi di errore:

%GRP-3-FABRIC_UNI: Unicast send timed out (1) %GRP-3-COREDUMP: Core dump incident on slot 1, error: Fabric ping failure %LCINFO-3-CRASH: Line card in slot 1 crashed

Per ulteriori informazioni su questo problema, consultare il documento sulla <u>risoluzione dei</u> problemi di timeout e di errori del ping dell'infrastruttura sul Cisco serie 12000 Internet Router.

Messaggi di errore di parità

Il documento <u>Cisco serie 12000 Internet Router Parity Error Tree</u> spiega i passaggi per risolvere i problemi e isolare una parte o un componente di Cisco serie 12000 Internet Router che ha esito

negativo, dopo aver incontrato una serie di messaggi di errore di parità.

Messaggi di errore

In caso di messaggi di errore relativi a una scheda di linea, è possibile utilizzare il <u>decodificatore</u> <u>dei messaggi di errore Cisco</u> (solo utenti <u>registrati</u>) per ottenere informazioni sul significato del messaggio di errore. Alcuni di essi fanno riferimento a un problema hardware della scheda di linea, mentre altri indicano un bug del software Cisco IOS o un problema hardware su un'altra parte del router. Questo documento non copre tutti questi messaggi.

Alcuni messaggi relativi a Cisco Express Forwarding (CEF) e Inter Process-Communication (IPC) sono spiegati in <u>Risoluzione dei problemi relativi ai messaggi di errore CEF</u>.

Verifica della scheda di linea per errori hardware

Il software line card Field Diagnostic è progettato per identificare eventuali schede di linea difettose all'interno di un router Cisco 12000 (tutte le serie 12xxx). Prima della versione 12.0(22)S del software Cisco IOS, il software di diagnostica sul campo era integrato nel software Cisco IOS. A partire dal software Cisco IOS versione 12.0(22)S, questo software è stato disaggregato e può essere scaricato da CCO tramite l'area Download Software (solo utenti registrati) (selezionare FIELD DIAGS sotto piattaforma 120XX). Viene comunque eseguito da un comando avviato durante l'esecuzione del software Cisco IOS, ma è necessario specificare l'origine (server di avvio TFTP (Trivial File Transfer Protocol) o memoria flash PCMCIA) sulla riga di comando. Tutti i comandi di diagnostica sul campo vengono eseguiti al livello di abilitazione del software Cisco IOS.

Software Cisco IOS release successive alla 12.0(22)S

A partire dal software Cisco IOS versione 12.0(22)S, Cisco Systems ha separato l'immagine della scheda di linea Cisco 12000 Field Diagnostic dall'immagine del software Cisco IOS. Nelle versioni precedenti, la diagnostica può essere avviata dalla riga di comando e l'immagine di diagnostica incorporata viene avviata. Per soddisfare le esigenze dei clienti che dispongono di schede di memoria flash da 20 MB, il software di diagnostica sul campo è ora archiviato e gestito come immagine separata: c12k-fdiagsbflc-mz.xxx-xx.S.bin (dove x è il numero di versione). Questo significa che per avviare la diagnostica sul campo, l'immagine deve essere disponibile su una scheda flash separata o su un server di avvio TFTP. L'ultima versione è sempre disponibile su Cisco.com. Per le schede Performance Route Processor (PRP), le schede Gigabit Switch Route Processor (GRP) e i test fabric, questi test rimangono integrati nell'immagine software Cisco IOS. Le funzionalità della riga di comando sono state modificate di conseguenza.

Mentre è in corso il test diagnostico, la scheda di linea non funziona normalmente e non è in grado di superare traffico per la durata del test (5-20 minuti, a seconda della complessità della scheda di linea). Senza la parola chiave **verbose**, il comando restituisce un output troncato che mostra un valore Pass o Fail per la scheda. Quando si comunica con il TAC, la modalità **dettagliata** è la più utile per identificare problemi specifici. L'output del test diagnostico senza il comando **verbose** è il seguente:

```
Running Diags will halt ALL activity on the requested slot. [confirm]
Router#
Launching a Field Diagnostic for slot 7
Downloading diagnostic tests to slot 7 via fabric (timeout set to 300 sec.)
5d20h: %GRP-4-RSTSLOT: Resetting the card in the slot: 7, Event:
  EV_ADMIN_FDIAGLoading muckier/award/c12k-fdiagsbflc-mz from 223.255.254.254
  (via Ethernet0):
                     5d20h: Downloading diags from tftp file tftp://223.255.254.254/muckier/award/
   c12k-fdiagsbflc-mz
   [OK - 13976524 bytes]
FD 7> GSR Field Diagnostics V6.05
FD 7> Compiled by award on Tue Jul 30 13:00:41 PDT 2002
FD 7> view: award-conn_isp.FieldDiagRelease
Executing all diagnostic tests in slot 7
(total/indiv. timeout set to 2000/600 sec.)
FD 7> BFR_CARD_TYPE_OC12_4P_POS testing...
FD 7> Available test types 2
FD 7> 1
FD 7> Completed f_diags_board_discovery() (0x1)
FD 7> Test list selection received: Test ID 1, Device 0
FD 7> running in slot 7 (30 tests from test list ID 1)
FD 7> Skipping MBUS_FDIAG command from slot 2
FD 7> Just into idle state
Field Diagnostic ****PASSED**** for slot 7
Shutting down diags in slot 7
Board will reload
5d20h: %GRP-4-RSTSLOT: Resetting the card in the slot: 7, Event:
  EV_ADMIN_FDIAG
5d20h: %GRP-4-RSTSLOT: Resetting the card in the slot: 7, Event:
  EV_FAB_DOWNLOADER_DOWNLOAD_FAILURE
SLOT 7:00:00:09: %SYS-5-RESTART: System restarted --
Cisco Internetwork Operating System Software
IOS (tm) GS Software (GLC1-LC-M), Experimental Version 12.0(20020509:045149)
 [award-conn_isp.f_diag_new 337]
Copyright (c) 1986-2002 by cisco Systems, Inc.
Compiled Tue 25-Jun-02 15:51 by award
```

La scheda di linea si ricarica automaticamente solo dopo aver superato il test.

Di seguito è riportato un esempio in cui la versione software Cisco IOS precedente alla 12.0(22)S, la scheda di linea non ha superato il test e quindi non è stata ricaricata automaticamente. È possibile ricaricare manualmente la scheda di linea con il comando **hw-module slot** <*slot*>reload.

Quando si utilizza la parola chiave **verbose**, l'output include ogni singolo test eseguito. Se il test ha esito positivo, verrà avviato il test successivo. Un output di esempio è simile al seguente:

Router# diag 7 verbose tftp tftp://223.255.254.254/ muckier/award/c12k-fdiagsbflc-mz Running DIAG config check Fabric Download for Field Diags chosen: If timeout occurs, try 'mbus' option. Verbose mode: Test progress and errors will be displayed Runnning Diags will halt ALL activity on the requested slot. [confirm] Router# Launching a Field Diagnostic for slot 7 Downloading diagnostic tests to slot 7 via fabric (timeout set to 300 sec.) 00:07:41: %GRP-4-RSTSLOT: Resetting the card in the slot: 7, Event: EV_ADMIN_FDIAG Loading muckier/award/c12k-fdiagsbflc-mz from 223.255.254.254 (via Ethernet0): !!!!!! (...) 00:08:24: Downloading diags from tftp file tftp://223.255.254.254/muckier/ award/c12k-fdiagsbflc-mz 11111111111111111 [OK - 13976524 bytes] FD 7> GSR Field Diagnostics V6.05 FD 7> Compiled by award on Tue Jul 30 13:00:41 PDT 2002 FD 7> view: award-conn_isp.FieldDiagRelease Executing all diagnostic tests in slot 7 (total/indiv. timeout set to 2000/600 sec.) FD 7> BFR_CARD_TYPE_OC12_4P_POS testing... FD 7> Available test types 2 FD 7> 1 FD 7> Completed f_diags_board_discovery() (0x1) FD 7> Verbosity now (0x00000011) TESTSDISP FATL FD 7> Test list selection received: Test ID 1, Device 0 FD 7> running in slot 7 (30 tests from test list ID 1) FD 7> Just into idle state FDIAG_STAT_IN_PROGRESS(7): test #1 Dram Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #2 Dram Datapins FDIAG_STAT_IN_PROGRESS(7): test #3 Dram Busfloat FDIAG_STAT_IN_PROGRESS(7): test #4 RBM SDRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #5 RBM SDRAM Datapins FDIAG_STAT_IN_PROGRESS(7): test #6 RBM SSRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #7 RBM SSRAM Datapins Memory

FDIAG STAT IN PROGRESS(7): test #8 TBM SDRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #9 TBM SDRAM Datapins FDIAG_STAT_IN_PROGRESS(7): test #10 TBM SSRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #11 TBM SSRAM Datapins Memory FDIAG_STAT_IN_PROGRESS(7): test #12 PSA TLU SDRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #13 PSA TLU SDRAM Datapins FDIAG_STAT_IN_PROGRESS(7): test #14 PSA PLU SDRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #15 PSA PLU SDRAM Datapins FDIAG_STAT_IN_PROGRESS(7): test #16 PSA SRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(7): test #17 PSA SRAM Datapins FDIAG_STAT_IN_PROGRESS(7): test #18 To Fabric SOP FIFO SRAM Memory FDIAG_STAT_IN_PROGRESS(7): test #19 From Fabric SOP FIFO SRAM Memory FDIAG_STAT_IN_PROGRESS(7): test #20 RBM to SALSA Packet FDIAG_STAT_IN_PROGRESS(7): test #21 TBM to SALSA Packet FDIAG_STAT_IN_PROGRESS(7): test #22 RBM to TBM SLI Packet Loopback FDIAG_STAT_IN_PROGRESS(7): test #23 TBM to PSA Packet -Framer Loopback FDIAG_STAT_IN_PROGRESS(7): test #24 TBM to TX SOP Packet FDIAG_STAT_IN_PROGRESS(7): test #25 TBM to RX SOP Packet -4302 Terminal Loopback FDIAG STAT IN PROGRESS(7): test #26 TBM to RX SOP Packet -Framer System Bus Loop FDIAG_STAT_IN_PROGRESS(7): test #27 RBM to TBM Fabric Packet Loopback FDIAG_STAT_IN_PROGRESS(7): test #28 TBM to RBM Packet, RBM page crossing FDIAG_STAT_IN_PROGRESS(7): test #29 TBM to TX SOP Packet Simultaneous FDIAG_STAT_IN_PROGRESS(7): test #30 TBM to PSA Multicast Packets -Framer Loopback FDIAG_STAT_DONE(7) FD 7> Changed current_status to FDIAG_STAT_IDLE

Field Diagnostic ****PASSED**** for slot 7

Field Diag eeprom values: run 62 fail mode 0 (PASS) slot 7

last test failed was 0, error code 0

Shutting down diags in slot 7

Board will reload

Questi risultati vengono quindi memorizzati in una EEPROM (Electrically Erasable Programmable Read-Only Memory) sulla scheda di linea. Per visualizzare i risultati dell'ultima diagnostica eseguita sulla scheda di linea, usare il comando **diag** <*slot*> precedente. Di seguito è riportato un esempio di output:

```
Router#diag 3 previous
```

Field Diag eeprom values: run 0 fail mode 0 (PASS) slot 3
 last test failed was 0, error code 0

Se non è stata eseguita alcuna precedente diagnostica di campo sulla scheda, l'output sarà simile al seguente:

```
Router#diag 3 previous
```

Field Diags have not been run on this board previously -

EE prom results uninitialized.

Field Diag eeprom values: run 16777215 fail mode 0 (PASS) slot 9 last test failed was 65535, error code 65535

In passato sono stati rilevati alcuni bug che hanno impedito il completamento dei test diagnostici anche se la scheda non è difettosa. Pertanto, per precauzione, se la scheda di linea non funziona

ed è già stata sostituita in precedenza, sarebbe utile verificare questo risultato con il Technical Assistance Center (TAC).

Software Cisco IOS con versioni precedenti alla 12.0(22)S

Il software di diagnostica sul campo con scheda di linea è fornito con il software Cisco IOS principale per consentire di verificare se la scheda di linea sospetta è difettosa o meno. Per utilizzare questa funzionalità, è necessario essere in modalità di abilitazione con privilegi ed eseguire il comando **diag** *<slot> <verbose>*.

Mentre è in corso il test diagnostico, la scheda di linea non funziona normalmente e non è in grado di superare traffico per la durata del test (5-15 minuti, a seconda della complessità della scheda di linea). Senza la parola chiave **verbose**, il comando restituisce un output troncato che mostra un valore Pass o Fail per la scheda. L'output del test diagnostico senza il comando **verbose** è il seguente:

Router#diag 3 Running DIAG config check Running Diags will halt ALL activity on the requested slot [confirm] Router# Launching a Field Diagnostic for slot 3 Downloading diagnostic tests to slot 3 (timeout set to 600 sec.) *Nov 18 22:20:40.237: %LINK-5-CHANGED: Interface GigabitEthernet3/0, changed state to administratively down Field Diag download COMPLETE for slot 3 FD 3> GSR Field Diagnostics V4.0 FD 3> Compiled by award on Thu May 18 13:43:04 PDT 2000 FD 3> view: award-conn_isp.FieldDiagRelease FD 3> BFR_CARD_TYPE_1P_GE testing... FD 3> running in slot 3 (83 tests) Executing all diagnostic tests in slot 3 (total/indiv. timeout set to 600/200 sec.) Field Diagnostic: ****TEST FAILURE**** slot 3: last test run 51, Fabric Packet Loopback, error 3 Shutting down diags in slot 3 slot 3 done, will not reload automatically

La scheda di linea si ricarica automaticamente solo dopo aver superato il test. Nell'esempio precedente, la scheda di linea non ha superato il test e quindi non è stata ricaricata automaticamente. È possibile ricaricare manualmente la scheda di linea con il comando hw-module slot <*slot*>reload.

Quando si utilizza la parola chiave **verbose**, l'output include ogni singolo test eseguito e indica se ogni test è stato superato o meno. Di seguito è riportato un esempio di output:

Router#diag 3 verbose Running DIAG config check Running Diags will halt ALL activity on the requested slot. [confirm] Router# Launching a Field Diagnostic for slot 3 Downloading diagnostic tests to slot 3 (timeout set to 600 sec.) Field Diag download COMPLETE for slot 3 FD 3> GSR Field Diagnostics V4.0 FD 3> Compiled by award on Thu May 18 13:43:04 PDT 2000 FD 3> view: award-conn_isp.FieldDiagRelease FD 3> BFR_CARD_TYPE_1P_GE testing... FD 3> running in slot 3 (83 tests) Executing all diagnostic tests in slot 3 (total/indiv. timeout set to 600/200 sec.) FD 3> Verbosity now (0x0000001) TESTSDISP FDIAG_STAT_IN_PROGRESS(3): test #1 R5K Internal Cache FDIAG_STAT_IN_PROGRESS(3): test #2 Burst Operations FDIAG_STAT_IN_PROGRESS(3): test #3 Subblock Ordering FDIAG_STAT_IN_PROGRESS(3): test #4 P4/EEPROM Clock Speed Matching FDIAG_STAT_IN_PROGRESS(3): test #5 Dram Marching Pattern FDIAG_STAT_IN_PROGRESS(3): test #6 Dram Datapins FDIAG_STAT_IN_PROGRESS(3): test #7 Dram Busfloat FDIAG_STAT_IN_PROGRESS(3): test #8 To Fabric (RX) BMA SDRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(3): test #9 To Fabric (RX) BMA SDRAM Datapins FDIAG_STAT_IN_PROGRESS(3): test #10 To Fabric (RX) BMA Q Manager SRAM Busfloat FDIAG_STAT_IN_PROGRESS(3): test #11 To Fabric (RX) BMA Q Manager SRAM Datapins FDIAG STAT_IN_PROGRESS(3): test #12 To Fabric (RX) BMA Q Manager SRAM Marching Pa FDIAG_STAT_IN_PROGRESS(3): test #13 From Fabric (TX) BMA SDRAM Marching Pattern FDIAG_STAT_IN_PROGRESS(3): test #14 From Fabric (TX) BMA SDRAM Datapins FDIAG_STAT_IN_PROGRESS(3): test #15 From Fabric (TX) BMA Q Manager SRAM Busfloat FDIAG_STAT_IN_PROGRESS(3): test #16 From Fabric (TX) BMA Q Manager SRAM Datapins FDIAG_STAT_IN_PROGRESS(3): test #17 From Fabric (TX) BMA Q Manager SRAM Marching FDIAG_STAT_IN_PROGRESS(3): test #18 To Fabric SOP FIFO SRAM Memory FDIAG_STAT_IN_PROGRESS(3): test #19 From Fabric SOP FIFO SRAM Memory FDIAG_STAT_IN_PROGRESS(3): test #20 SALSA Asic Registers FDIAG_STAT_IN_PROGRESS(3): test #21 Salsa Dram Access FDIAG_STAT_IN_PROGRESS(3): test #22 Salsa P4 Timeout FDIAG_STAT_IN_PROGRESS(3): test #23 Salsa Asic General Purpose Counter FDIAG_STAT_IN_PROGRESS(3): test #24 Salsa Asic Real Time Interrupt FDIAG_STAT_IN_PROGRESS(3): test #25 Salsa Errors FDIAG_STAT_IN_PROGRESS(3): test #26 Salsa DRAM Burst Operations Error FDIAG_STAT_IN_PROGRESS(3): test #27 Salsa Dram Read Around Write FDIAG_STAT_IN_PROGRESS(3): test #28 Salsa Dram Write Parity Error test FDIAG_STAT_IN_PROGRESS(3): test #29 Salsa Prefetch/Write Buffers FDIAG_STAT_IN PROGRESS(3): test #30 Salsa FrFab BMA SDram Read Around Write FDIAG_STAT_IN_PROGRESS(3): test #31 Salsa ToFab BMA SDram Read Around Write FDIAG_STAT_IN_PROGRESS(3): test #32 Salsa FrFab Network Interrupt Disable Timer FDIAG_STAT_IN_PROGRESS(3): test #33 Salsa ToFab Network Interrupt Disable Timer FDIAG_STAT_IN_PROGRESS(3): test #34 Salsa ToFab Network Interrupt Mask FDIAG_STAT_IN_PROGRESS(3): test #35 Salsa FrFab Network Interrupt Mask FDIAG_STAT_IN_PROGRESS(3): test #36 Salsa ToFab BMA Interrupt Mask FDIAG_STAT_IN_PROGRESS(3): test #37 Salsa FrFab BMA Interrupt Mask FDIAG_STAT_IN_PROGRESS(3): test #38 Salsa - To Fabric BMA Packet - Early Clear FDIAG_STAT_IN_PROGRESS(3): test #39 Salsa - From Fabric BMA Packet - Early Clear FDIAG_STAT_IN_PROGRESS(3): test #40 Salsa To Fabric SOP Interrupt Mask FDIAG_STAT_IN_PROGRESS(3): test #41 Salsa From Fabric SOP Interrupt Mask FDIAG_STAT_IN_PROGRESS(3): test #42 SALSA ECC Generation FDIAG_STAT_IN_PROGRESS(3): test #43 SALSA ECC Correction

```
FDIAG_STAT_IN_PROGRESS(3): test #44 To Fabric FIA48 ASIC Registers
FDIAG_STAT_IN_PROGRESS(3): test #45 To Fabric FIA48 Packet
FDIAG_STAT_IN_PROGRESS(3): test #46 To Fabric FIA48 Asic BMA Bus Parity Error
FDIAG_STAT_IN_PROGRESS(3): test #47 To Fabric FIA48 Asic CiscoCell Fifo Parity Er
FDIAG_STAT_IN_PROGRESS(3): test #48 From Fabric FIA48 ASIC Registers
FDIAG_STAT_IN_PROGRESS(3): test #50 SLI Packet Loopback
FDIAG_STAT_IN_PROGRESS(3): test #51 Fabric Packet Loopback
FD 3> INT_CAUSE_REG = 0 \times 00000620
FD 3> Unexpected L3FE Interrupt occurred.
FD 3> ERROR: TX FIA48 Asic Interrupt Occurred
FD 3> *** 0-INT: External Interrupt ***
FD 3> Dumping out TX FIA Status Registers, Disabling
FD 3> TX FIA Interrupt, resetting Asics, continuing...
FDIAG_STAT_DONE_FAIL(3) test_num 51, error_code 3
Field Diagnostic: ****TEST FAILURE**** slot 3: last test run 51,
Fabric Packet Loopback, error 3
Field Diag eeprom values: run 3 fail mode 1 (TEST FAILURE) slot 3
  last test failed was 51, error code 3
Shutting down diags in slot 3
slot 3 done, will not reload automatically
Router#
Questi risultati vengono quindi memorizzati in una EEPROM (Electrically Erasable Programmable
```

Read-Only Memory) sulla scheda di linea. Per visualizzare i risultati dell'ultima diagnostica eseguita sulla scheda di linea, usare il comando **diag** <*slot*> **precedente**. Di seguito è riportato un esempio di output:

Router#diag 3 previous

Field Diag eeprom values: run 0 fail mode 0 (PASS) slot 3 last test failed was 0, error code 0

Se non è stata eseguita alcuna precedente diagnostica di campo sulla scheda, l'output sarà simile al seguente:

Router#diag 3 previous

Field Diags have not been run on this board previously -

EE prom results uninitialized.

Field Diag eeprom values: run 16777215 fail mode 0 (PASS) slot 9 last test failed was 65535, error code 65535

In passato sono stati rilevati alcuni bug che hanno impedito il completamento dei test diagnostici anche se la scheda non è difettosa. Pertanto, per precauzione, se la scheda di linea non funziona ed è già stata sostituita in precedenza, sarebbe utile verificare questo risultato con il Technical Assistance Center (TAC).

Informazioni da raccogliere se si apre una richiesta di servizio

TAC

Se è stato identificato un componente da sostituire, contattare il partner o il rivenditore Cisco per richiedere una sostituzione del componente hardware che causa il problema. Se si dispone di un contratto di assistenza direttamente con Cisco, utilizzare lo <u>strumento</u> TAC <u>Service Request</u> (solo utenti <u>registrati</u>) per aprire una richiesta TAC Service per la sostituzione dell'hardware. Accertarsi di allegare le seguenti informazioni:

- Acquisizioni della console con i messaggi di errore
- La console acquisisce mostrando le operazioni di risoluzione dei problemi effettuate e la sequenza di avvio durante ciascuna operazione
- Il componente hardware guasto e il numero di serie per lo chassis
- Log di risoluzione dei problemi
- Output del comando show technical-support

Informazioni correlate

- Risoluzione dei problemi di arresto anomalo delle schede di linea su Cisco serie 12000
 Internet Router
- <u>Risoluzione dei problemi di blocco del router</u>
- <u>Risoluzione dei problemi di timeout e di errori del ping dell'infrastruttura su Cisco serie 12000</u>
 <u>Internet Router</u>
- <u>Configurazione di una memoria di massa su una scheda di linea GSR</u>
- Aggiornamento del firmware della scheda di linea su un Cisco serie 12000 Internet Router
- Risoluzione dei messaggi di errore relativi al CEF
- Documentazione e supporto tecnico Cisco Systems