Comprensione e risoluzione dei problemi di CEF sui router Cisco IOS XE

Sommario

Introduzione Comportamento CEF sulla piattaforma Cisco IOS XE Verifica adiacenza CEF Fenomeno comune osservato Conclusioni

Introduzione

Questo documento descrive la funzionalità Cisco Express Forwarding (CEF) sui dispositivi basati su Cisco IOS[®] XE. A differenza di altri router Cisco, i router basati su Cisco IOS XE sono modulari non solo in termini di hardware, ma anche di software. Per questo motivo, anche il comportamento della maggior parte delle funzionalità e dei protocolli è leggermente diverso. Vedrai anche come vengono gestite le tabelle CEF sui dispositivi basati su Cisco IOS XE e come vengono gestite le tabelle CEF sui dispositivi basati su Cisco IOS XE e come vengono gestite le tabelle Border Gateway Protocol (BGP) in termini di aggiornamenti CEF sulle piattaforme Cisco IOS XE.

Comportamento CEF sulla piattaforma Cisco IOS XE

Aggiorname

nto tabella CEF nella piattaforma XE

Sui dispositivi Cisco IOS XE come ASR1000, il control plane è separato dal piano di inoltro. Ogni aggiornamento che deve essere passato dal piano di controllo al piano dati deve passare attraverso il flusso di dati mostrato nel diagramma di flusso. Ad esempio, nel caso del CEF, quando si apprende un prefisso sul piano di controllo, questo aggiornamento passa dal piano di controllo (IOSd) al gestore di inoltro del piano di controllo (FMAN-RP). Il gestore di inoltro sul control plane utilizza utility del kernel come Ismpi, collegamenti Hyper-Transport (HT) e così via per passare l'aggiornamento al gestore di inoltro del piano di inoltro (ESP) (FMAN-FP). Il manager di inoltro invia l'aggiornamento al Quantum Flow Processor (QFP) che programma il microcodice QFP in modo da programmare finalmente il sottosistema QFP che esegue l'inoltro effettivo dei pacchetti nei dispositivi Cisco Aggregation Services Router (ASR).

Per controllare l'aggiornamento CEF su ciascuno di questi moduli software, è possibile utilizzare vari comandi. Questo è il processo passo passo.

Per controllare il CEF sul piano di comando:

Router#**show ip cef**

Prefix	Next Hop	Interface
0.0.0/0	no route	
0.0.0/8	drop	
0.0.0/32	receive	
1.1.1/32	10.10.10.1	GigabitEthernet0/0/0
2.2.2/32	receive	Loopback1
10.10.10.0/24	attached	GigabitEthernet0/0/0
10.10.10.0/32	receive	GigabitEthernet0/0/0

Router#show platform software ip rp active cef summary

Forwarding Table Summary

Name	VRF id	Table id	Protocol	Prefixes	State
Default	0	0	IPv4	20	OM handle: 0x404a4df8

Router#**show platform software ip rp active cef detail** Forwarding Table

0.0.0.0/0 -> OBJ_ADJ_NOROUTE (0), urpf: 5 Prefix Flags: Default, Default route handler OM handle: 0x404a91e8

0.0.0.0/8 -> OBJ_ADJ_DROP (0), urpf: 13
Prefix Flags: unknown
OM handle: 0x404bd5e8

0.0.0/32 -> OBJ_ADJ_RECEIVE (0), urpf: 12
Prefix Flags: Receive
OM handle: 0x404bd298

1.1.1.1/32 -> OBJ_ADJACENCY (16), urpf: 20
Prefix Flags: unknown
OM handle: 0x404fec70

Per controllare i dettagli CEF nel piano di inoltro (ESP):

Router#**show platform software ip fp active cef detail** Forwarding Table

0.0.0.0/0 -> OBJ_ADJ_NOROUTE (0), urpf: 5 Prefix Flags: Default, Default route handler aom id: 73, HW handle: 0x4310df8 (created)

0.0.0.0/8 -> OBJ_ADJ_DROP (0), urpf: 13
Prefix Flags: unknown
aom id: 90, HW handle: 0x4362cd8 (created)

0.0.0/32 -> OBJ_ADJ_RECEIVE (0), urpf: 12
Prefix Flags: Receive

```
aom id: 86, HW handle: 0x4333568 (created)
127.0.0.0/8 -> OBJ_ADJ_DROP (0), urpf: 13
Prefix Flags: unknown
aom id: 91, HW handle: 0x4387048 (created)
224.0.0.0/4 -> OBJ_ADJ_DROP (0), urpf: 13
Prefix Flags: unknown
aom id: 92, HW handle: 0x43870d8 (created)
Router#show platform software ip fp active cef summary
Forwarding Table Summary
                VRF id Table id Protocol
```

_____ 0 20 hw: 0x43010a8 (created) Default 0 IPv4 Questi comandi possono essere utilizzati anche guando si verificano problemi CEF sul dispositivo. Ad esempio, sebbene le route vengano apprese, i prefissi non sono raggiungibili. È possibile esaminare tutti i moduli per verificare se tutte le tabelle CEF sono aggiornate correttamente o meno.

Prefixes

State

Verifica adiacenza CEF

Name

Analogamente, potete controllare ulteriormente la tabella adiacente CEF per tutte le informazioni sul layer 2 relative ai prefissi adiacenti.

Per controllare l'adiacenza CEF sul piano di comando:

```
Router#show adjacency gigabitEthernet 0/0/0 detail
Protocol Interface
                                 Address
     GigabitEthernet0/0/0
                                  10.10.10.1(11)
IΡ
                                   72772 packets, 4622727 bytes
                                   epoch 0
                                   sourced in sev-epoch 0
                                   Encap length 14
                                   0062EC6B89000062EC6BEC000800
                                   L2 destination address byte offset 0
                                   L2 destination address byte length 6
                                   Link-type after encap: ip
                                   ARP
Router#show platform software adjacency rp active
Number of adjacency objects: 4
Adjacency id: 0x10 (16)
 Interface: GigabitEthernet0/0/0, IF index: 8, Link Type: MCP_LINK_IP
 Encap: 0:62:ec:6b:89:0:0:62:ec:6b:ec:0:8:0
 Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500
 Flags: no-13-inject
 Incomplete behavior type: None
 Fixup: unknown
 Fixup_Flags_2: unknown
 Nexthop addr: 10.10.10.1
 IP FRR MCP ADJ IPFRR NONE 0
 OM handle: 0x404ea1d8
```

Ènecessario annotare l'ID adiacenza per controllare i dettagli relativi a questa particolare

adiacenza nel piano di inoltro. In questo caso, l'ID adiacente è 16.

Per controllare l'adiacenza CEF sul piano di inoltro:

```
Router#show platform software adjacency fp active index 16

Number of adjacency objects: 4

Adjacency id: 0x10 (16)

Interface: GigabitEthernet0/0/0, IF index: 8, Link Type: MCP_LINK_IP

Encap: 0:62:ec:6b:89:0:0:62:ec:6b:ec:0:8:0

Encap Length: 14, Encap Type: MCP_ET_ARPA, MTU: 1500

Flags: no-13-inject

Incomplete behavior type: None

Fixup: unknown

Fixup_Flags_2: unknown

Nexthop addr: 10.10.10.1

IP FRR MCP_ADJ_IPFRR_NONE 0

aom id: 114, HW handle: 0x43ae148 (created)
```

Qui, si vede che le informazioni di adiacenza CEF è popolato in Gestione inoltro (FMAN) su FP. FMAN FP invia queste informazioni al driver del client QFP che programma la tabella di inoltro QFP che sarà utilizzata per l'inoltro alla fine. Dal comando precedente, copiare l'handle dell'hardware per controllare le informazioni di inoltro su QFP.

Router**#show pla hard qfp act feature cef-mpls adjacency handle 0x43ae148** Adj Type: : IPV4 Adjacency Encap Len: : 14 L3 MTU: : 1500 Adj Flags: : 0 Fixup Flags: : 0 Output UIDB: : Interface Name: GigabitEthernet0/0/0 Encap: : 00 62 ec 6b 89 00 00 62 ec 6b ec 00 08 00 Next Hop Address: : 10.10.10.1 Lisp Fixup HW Ptr: : 0x767b28f0 Next HW OCE Ptr: : 0000000 CM HW Ptr:: 946947588 Fixup_Falgs_2: : 0

In questo caso, tutte le tabelle adiacenti vengono aggiornate correttamente e il router è pronto per l'inoltro. Tuttavia, l'intero processo di isolamento richiede molti comandi e la conoscenza dell'architettura modulare ad un certo livello. Per semplificare questa operazione, è stato introdotto di recente un comando che fornisce informazioni consolidate da tutti i moduli.

Nota: Per i dispositivi con una tabella di routing lunga, l'esecuzione di questo comando potrebbe richiedere alcuni minuti.

Il comando è show ip cef platform detail.

Fenomeno comune osservato

Per tutti i dispositivi modulari Cisco IOX XE nelle situazioni in cui viene appreso un numero elevato di prefissi sul router, normalmente è necessario del tempo per programmare tutti i prefissi

in tutti i moduli di inoltro. Questa condizione può essere rilevata molto frequentemente sui router posizionati nella tabella di routing BGP completa di provider edge learning dell'ISP.

Nel Technical Assistance Center sono stati ricevuti pochi casi in cui è stato rilevato che dopo l'accensione della sessione BGP e l'aggiornamento della route BGP nella tabella di routing, i prefissi non sono raggiungibili per un determinato periodo di tempo. In genere, sono necessari 20-30 secondi e dipende dalla piattaforma del router su cui eseguire il ping di tali prefissi. Di seguito è riportato un esempio di scenario di test:

ASR1002-HX

Pagent running on Cisco 3900

Pagent è uno strumento per la generazione del traffico che viene usato per inviare un milione di route BGP al router ASR1002HX.

Anche se le route BGP vengono apprese sul dispositivo e la tabella CEF del control plane viene aggiornata, la rete interna non è in grado di eseguire il ping dei prefissi appresi per alcuni secondi. Sulla base della discussione sul CEF, è chiaro che è necessario aggiornare le voci del CEF su ciascun modulo software. È possibile osservare una conseguenza di questo comportamento in questo particolare scenario in cui i prefissi non sono raggiungibili a causa del fatto che non sono stati aggiornati nella tabella di inoltro ESP. Di seguito vengono riportati alcuni output di ASR1002HX come riferimento.

Le tabelle BGP vengono aggiornate con tutte le route da un milione.

Router# show i	p bgp sum	mary								
BGP router id	lentifier	1.1.1.1,	local AS nu	umber 1	00					
BGP table ver	sion is 1	., main ro	uting table	e versi	on 1					
1000002 netwo	ork entrie	es using 2	48000496 by	tes of	memory					
1000002 path	entries u	sing 1280	00256 bytes	s of men	nory					
100002/0 BGP	path/best	path attr	ibute entri	les usin	ng 264005	28 byt	es of	memory		
100000 BGP AS	-PATH ent	ries usin	g 5402100 k	oytes of	E memory					
0 BGP route-m	ap cache	entries u	sing 0 byte	es of me	emory					
0 BGP filter-	list cach	ne entries	using 0 by	tes of	memory					
BGP using 407	'803380 to	tal bytes	of memory							
BGP activity	8355774/7	355772 pr	efixes, 943	38985/8	438983 pa	ths, s	scan in	nterval 6	0 secs	
Neighbor	v	AS	MsgRcvd Ms	sgSent	TblVer	InQ (DutQ			
Up/Down			St	tate/Pf:	xRcd					
10.10.10.2	4	100	5	2		1	0		0	
00:00:58					1					
20.20.20.2	4	100	100002	3		1	0		0 00:0)1:02
			1000000							

Sebbene la tabella BGP contenga un milione di prefissi, la tabella CEF del gestore di inoltro ha ancora appreso solo **48613** prefissi.

Se si attendono 20-30 secondi, viene visualizzata la tabella CEF FP completamente aggiornata con un milione di prefissi.

Router#show platform software ip fp active cef summary						
Forwarding Table	Summary					
Name	VRF id	Table id	Protocol	Prefixes	State	
Default	0	0	IPv4	48613	hw: 0x2edce98 (created)	

Conclusioni

Quando si utilizzano dispositivi ad architettura modulare basati su Cisco IOS XE per l'inoltro di problemi correlati, è necessario verificare le informazioni relative alla tabella di inoltro da tutti i moduli software. Lo scenario BGP illustrato può essere considerato come un comportamento previsto con questa piattaforma in quanto il dispositivo impiega alcuni secondi per aggiornare i prefissi in tutti i moduli software.