Configurazione di OMPROUTE per l'esecuzione su mainframe

Sommario

Introduzione Prerequisiti Requisiti Componenti usati Convenzioni Configurazione mainframe - File OMPROUTE Configurazione mainframe - Stack TCP/IP Configurazione mainframe - Definizioni VTAM e avvio di TCP/IP Configurazione router Display sul router Display su mainframe Display su mainframe Display VTAM su console di sistema Informazioni di routing visualizzate nel TSO dal comando netstat Informazioni correlate

Introduzione

In questo documento vengono descritte alcune configurazioni di host e router di esempio per eseguire la procedura OMPROUTE sul mainframe e scambiare gli aggiornamenti del routing con il resto della rete TCP/IP. OMPROUTE viene spesso utilizzato, come in questo esempio, insieme a un indirizzo IP virtuale (VIPA), che consente all'indirizzo IP del mainframe configurato nei client di essere indipendente da qualsiasi interfaccia a un canale. Ciò fornisce ridondanza per il canale. In origine, l'implementazione TCP/IP mainframe di IBM supportava solo il protocollo RIP (Routing Information Protocol) come protocollo di routing, con l'uso della procedura OROUTED. La versione più recente di OMPROUTE supporta RIP V1 o V2 e Open Shortest Path First (OSPF). IBM consiglia di utilizzare OMPROUTE invece di OROUTED e alla fine IBM rimuoverà il supporto per OROUTED.

Prerequisiti

Requisiti

Nessun requisito specifico previsto per questo documento.

Componenti usati

La versione software Cisco IOS® utilizzata per questa configurazione è la 12.1(3a)T2 con microcodice xCPA 27-9, la più recente al momento del test. Se si utilizza CLAW, tuttavia, questa procedura dovrebbe essere compatibile con qualsiasi versione del software Cisco IOS. L'uso di CMPC+ richiede almeno la versione 12.1T del software Cisco IOS.

Il router era un Cisco 7206 con un adattatore di porta xCPA. In alternativa, è possibile usare un router Cisco 7500 con una scheda CIP con modifiche minori alla configurazione, come indicato più avanti in questo documento.

Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.

Convenzioni

Per ulteriori informazioni sulle convenzioni usate, consultare il documento <u>Cisco sulle convenzioni</u> <u>nei suggerimenti tecnici</u>.

Configurazioni

Configurazione mainframe - File OMPROUTE

La configurazione di OMPROUTE sul mainframe è molto simile a quella di OROUTED. OMPROUTE utilizza anche almeno due file di configurazione. È necessario puntare alla posizione di questi file di configurazione, nello spazio degli indirizzi di OMVS, con queste due variabili di ambiente:

• export resolver_conf=/etc/resolv.conf

• export moproute_file=/etc/omproute.conf

Questo è un esempio del contenuto di resolver_conf:

TCPJobName TCPIP DomainOrigin cisco.com domain cisco.com Datasetprefix TCPIP HostName P390 Messagecase mixed

Il valore di omproute_file dipenderà dal fatto che RIP o OSPF sia in uso. Questa è una configurazione di esempio per RIP:

; Originate_RIP_Default Condition=Always Cost=1 ; RIP_Interface IP_Address=10.64.3.34 Name=LDIPTG Subnet_Mask=255.255.255.240 Receive_Dynamic_Nets=YES Receive_Dynamic_Subnets=YES MTU=1470 Destination_Addr=10.64.3.33 ; RIP_Interface IP_Address=10.64.3.17
Name=VIPALINK
Subnet_Mask=255.255.255.240
MTU=1470
;

Per OSPF sono disponibili più opzioni di configurazione, tra cui la possibilità di fare in modo che il mainframe agisca come un'area di stub. In questo modo è possibile ridurre in modo significativo gli aggiornamenti del routing di carico che vengono inseriti nel canale quando molte partizioni logiche (LPAR) si connettono sullo stesso canale. Questo è un esempio:

```
Area Area_Number=0.0.0.0 Authentication_Type=None Stub_Area=NO
;
Comparison=Type2
;
AS_Boundary_Routing Import_Subnet_Routes=YES
Import_Direct_Routes=YES
;
OSPF_Interface IP_Address=10.64.3.34
Name=LDIPTG
Subnet_Mask=255.255.255.240
Attaches_To_Area=0.0.0.0
MTU=1470
Destination_Addr=10.64.3.33
Hello Interval=30
Dead_Router_Interval=120
OSPF_Interface IP_Address=10.64.3.17
Name=VIPALINK
Subnet_Mask=255.255.255.240
```

Configurazione mainframe - Stack TCP/IP

Il set di dati del profilo TCP/IP non richiede alcuna configurazione speciale per OMPROUTE, a parte il fatto che è necessario impostare come commento tutta la configurazione della route statica e predefinita e la sezione BSDROUTINGPARMS (utilizzata solo da ROUTED). In questo estratto vengono mostrati solo gli elementi che devono essere commentati e i parametri a cui fanno riferimento i file di configurazione OMPROUTE:

```
TCPIP Profile dataset
_____
 _____
; Hardware definitions:
_____
; NOTE: To use these device and link statements, update the statements
; to reflect your installation configuration and remove the semicolon
DEVICE DIPTG MPCPTP
LINK LDIPTG MPCPTP DIPTG
DEVICE VIPADEV VIRTUAL 0
LINK VIPALINK VIRTUAL 0 VIPADEV
;
   _____
;
;
; HOME Internet (IP) addresses of each link in the host.
;
; NOTE: To use this home statement, update the ipaddress and linknames
; to reflect your installation configuration and remove the semicolon
;
```

```
10.64.3.17 VIPALINK
10.64.3.34 LDIPTG
; _____
                                      _____
; IP routing information for the host.All static IP routes should
; be added here.
; NOTE: To use this GATEWAY statement, update the addresses and links
; to reflect your installation configuration and remove the semicolon
; GATEWAY
;
; Direct Routes - Routes that are directly connected to my interfaces.
; Network First Hop Link Name Packet Size Subnet Mask Subnet Value
                 CIS1 1500 0.255.255.0 0.101.1
; 10
           =
; 10
           =
                  LDIPTG 1500
                                    0.255.255.240 0.64.3.32
                                    0.255.255.0 0.117.56.0
; 9
           =
                  LIS1 1500
; 130.50
           =
                  TR1
                          2000
                                    0.0.255.0 0.0.10.0
; 193.5.2
           =
                  ETH1
                          1500
                                    0
                  FDDI1
                          4000
                                    0.255.255.0 0.67.43.0
; 9
            =
; 193.7.2.2 =
                 SNA1
                          2000
                                    HOST
; Indirect Routes - Routes that are reachable through routers on my
    network.
;
          First Hop Link Name Packet Size Subnet Mask Subnet Value
; Network
; DEFAULTNET 10.64.3.33 LDIPTG DEFAULTSIZE 0
; 193.12.2 130.50.10.1 TR1
                              2000
                                         0
                             1500
; 10.5.6.4 193.5.2.10 ETH1
                                        HOST
; Default Route - All packets to an unknown destination are routed
; through this route.
          First Hop Link Name Packet Size Subnet Mask Subnet Value
; Network
; DEFAULTNET 9.67.43.1 FDDI1 DEFAULTSIZE
                                         0
 _____
:
; orouted Routing Information
;
; if you are using orouted, comment out the GATEWAY statement and
; update the BSDROUTINGPARMS statement to reflect your installation
; configuration and remove the semicolon
;
    Link
          Maxmtu Metric Subnet Mask
                                       Dest Addr
;
; BSDROUTINGPARMS false
; LDIPTG 1500 0
                         255.255.255.240 10.64.3.33
; VIPALINK
           1500
                    0
                         255.255.255.240 0
    TR1
            2000
                     0
                          255.255.255.0
                                       0
;
         2000
1500
                         255.255.255.0
                     0
    ETH1
                                        0
;
    FDDI1 DEFAULTSIZE 0
;
                         255.255.255.0
                                       0
; ENDBSDROUTINGPARMS
!--- Note that all of the last two sections have been commented out.
```

HOME

Configurazione mainframe - Definizioni VTAM e avvio di TCP/IP

Gli aggiornamenti del routing possono essere scambiati tramite connessioni CLAW o CMPC+. Se si utilizza CLAW, non è necessaria alcuna configurazione aggiuntiva sul mainframe. In questo esempio viene utilizzato CMPC, che richiede una voce TRL (Transport Resource List) VTAM. Membro VTAM:

```
DIPTGTRL VBUILD TYPE=TRL
*
*
DIPTG TRLE LNCTL=MPC,MAXBFRU=16,READ=(E24),WRITE=(E25)
*
```

Ènecessario attivare TRL prima di avviare l'attività TCPIP. Ad esempio:

V NET,ACT,ID=DIPTRL1,UPDATE=ALL IST097I VARY ACCEPTED ISTTRL ACTIVE

Quindi, attivare l'operazione TCP/IP avviata con il comando **S TCPIP** MVS console. Una volta avviata l'operazione TCP/IP, è possibile avviare la procedura OMPROUTE utilizzando il linguaggio JCL (Job Control Language) come operazione avviata o dallo spazio degli indirizzi di OMVS. Per iniziare all'interno di OMVS, utilizzare i seguenti comandi:

cd /usr/lpp/tcpip/sbin

omproute &

Per verificare che OMPROUTE sia in esecuzione, usare questo comando della console, dove **p390** è l'ID utente con cui è stato avviato il demo OMPROUTE:

d omvs,u=p390

Configurazione router

Sia CLAW che CMPC devono essere configurati in modo specifico per l'invio di trasmissioni sul canale, con la parola chiave **broadcast**. Ad esempio, per CLAW:

claw 0100 20 10.101.1.10 P390D C7000D TCPIP TCPIP broadcast

Nell'esempio, il protocollo CMPC+ è in uso, quindi queste sono le parti rilevanti della configurazione del router:

```
!
interface Channel2/0
ip address 10.64.3.33 255.255.255.240
ip ospf network point-to-multipoint
no keepalive
cmpc 0100 24 DIPTG READ
cmpc 0100 25 DIPTG WRITE
tg DIPTG ip 10.64.3.34 10.64.3.33 broadcast
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
!
```

Se questo fosse stato un router Cisco 7500 con una scheda CIP anziché un router 7200 con una scheda di porta xCPA, l'istruzione tg sarebbe stata configurata nell'interfaccia virtuale /2. Notare

il comando **ip ospf network point-to-multipoint**, necessario per il corretto funzionamento di OSPF. L'interfaccia del canale è considerata un'interfaccia multipunto come Frame Relay. Se non si desidera eseguire OSPF in tutta la rete, è possibile eseguirlo solo sull'interfaccia del canale e utilizzare la ridistribuzione tra altri protocolli di routing. Ad esempio:

```
!
router eigrp 1
redistribute ospf 1
passive-interface Channel2/0
network 10.0.0
no eigrp log-neighbor-changes
!
router ospf 1
log-adjacency-changes
redistribute eigrp 1
network 10.64.3.33 0.0.0.0 area 0
!
```

Display sul router

diplodocus# show extended channel 2/0 status

Path:	0100	ES	STABLISHED)					
	Comm	and	Selectiv	re System	m I	Device	CU		
Dev	Dev Connects		Retries	Cance	ls F	Reset	Reset	Errors	Busy
24	4 30		21	1		0	0	0	0
25	2	9	0	1		0	0	0	0
Blocks Bytes				Droppe	d Blk	1	Memd		
Dev-Lr	ık	Read	Write	Read	Write	Read	Write	wait	Con
24-00		29	б	3484	789	0	0	0	Y
25-00		9	29	801	3920	0	0	0	Y
Path C	0100								
Total:	:	38	35	4285	4709	0	0	0	
Last s	statis	tics () seconds	old, next	in 10	seconds			

diplodocus# show extended channel 2/0 cmpc

Path	Dv	TGName	Dir	Bfrs		Status
CMPC	0100	24	DIPTG	READ	16	Active+
CMPC	0100	25	DIPTG	WRITE	16	Active+

diplodocus# show ip ospf i

Channel2/0 is up, line protocol is up Internet Address 10.64.3.33/28, Area 0 Process ID 1, Router ID 200.100.100.9, Network Type POINT_TO_MULTIPOINT, Cost: 4 Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT, Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5 Hello due in 00:00:10 Index 1/1, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.64.3.17 Suppress hello for 0 neighbor(s)

diplodocus# show ip ospf neighbor

Neighbor ID	Pri	State		Dead Time	Address	Interface
10.64.3.17	1	FULL/	-	00:01:35		
Neighbor is u	p for 00	:04:01		10.64.3.34	Channel2/0	

diplodocus# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route Gateway of last resort is 10.64.3.1 to network 0.0.0.0 1.0.0/27 is subnetted, 1 subnets C1.1.1.0 is directly connected, Loopback1 200.100.100.0/29 is subnetted, 1 subnets C200.100.100.8 is directly connected, Loopback0 10.0.0/8 is variably subnetted, 9 subnets, 3 masks D10.0.0.0/8 is a summary, 00:06:40, NullO C10.64.3.0/28 is directly connected, Ethernet6/0 O E210.64.3.17/32 [110/1] via 10.64.3.34, 00:03:57, Channel2/0 010.64.3.16/28 [110/5] via 10.64.3.34, 00:03:57, Channel2/0 C10.64.3.32/28 is directly connected, Channel2/0 S10.64.3.34/32 [1/0] via 10.64.3.34, Channel2/0 S10.64.3.37/32 [1/0] via 10.64.3.37, Channel2/0 C10.64.3.48/28 is directly connected, Serial1/3.1 C10.64.3.128/28 is directly connected, Serial1/3.2 S* 0.0.0.0/0 [1/0] via 10.64.3.1

Display su mainframe

Display VTAM su console di sistema

D NET, TRL

IST097I DISPLAY ACCEPTED ST350I DISPLAY TYPE = TRL 042 IST1314I TRLE = DIPTG STATUS = ACTIV CONTROL = MPC IST1454I 1 TRLE(S) DISPLAYED IST314I END

D NET, TRL, TRLE=DIPTG

IST097I DISPLAY ACCEPTED IST077I DISPLAY ACCEPTED IST075I NAME = DIPTG, TYPE = TRLE 045 IST486I STATUS= ACTIV, DESIRED STATE= ACTIV IST087I TYPE = LEASED , CONTROL = MPC , HPDT = YES IST1715I MPCLEVEL = HPDT MPCUSAGE = SHARE IST1577I HEADER SIZE = 4092 DATA SIZE = 60 STORAGE = ***NA*** IST1221I WRITE DEV = 0E25 STATUS = ACTIVE STATE = ONLINE IST1577I HEADER SIZE = 4092 DATA SIZE = 60 STORAGE = DATASPACE IST1221I READ DEV = 0E24 STATUS = ACTIVE STATE = ONLINE IST121I READ DEV = 0E24 STATUS = ACTIVE STATE = ONLINE IST314I END

Informazioni di routing visualizzate nel TSO dal comando netstat

netstat route visualizza la tabella di routing. Ad esempio:

EZZ2350I	MVS TCP/IP NETSTAT	CS V2R7	TCPIP	NAME: TO	CPIP	15:56:33
EZZ2755I	Destination	Gateway	Flags	Refcnt	Interface	
EZZ2756I						
EZZ2757I	10.0.0.0	10.64.3.33	UG	000000	LDIPTG	
EZZ2757I	10.64.3.32	0.0.0.0	U	000000	LDIPTG	
EZZ2757I	10.64.3.33	0.0.0.0	UH	000000	LDIPTG	

dispositivo netstat visualizza lo stato e così via di tutti i dispositivi o collegamenti collegati. Ad esempio:

===> netstat device

EZZ2350I	MVS TCP/IP NETSTAT CS V2R7 TCPIP NAME: TCPIP 15:58:04
EZZ2760I	DevName: LOOPBACK DevType: LOOPBACK DevNum: 0000
EZZ2761I	LnkName: LOOPBACK LnkType: LOOPBACK Status: Ready
EZZ2762I	NetNum: 0 QueSize: 0 ByteIn: 0000004278 ByteOut: 0000004278
EZZ2768I	BSD Routing Parameters:
EZZ2769I	MTU Size: 00000 Metric: 00
EZZ2770I	DestAddr: 0.0.0.0 SubnetMask: 0.0.0.0
EZZ2810I	Multicast Specific:
EZZ2811I	Multicast Capability: No
EZZ2760I	DevName: DIPTG DevType: MPC DevNum: 0000
EZZ2761I	LnkName: LDIPTG LnkType: MPC Status: Ready
EZZ2762I	NetNum: 0 QueSize: 0 ByteIn: 0000001848 ByteOut: 0000001936
EZZ2768I	BSD Routing Parameters:
EZZ2769I	MTU Size: 01470 Metric: 01
EZZ2770I	DestAddr: 0.0.0.0 SubnetMask: 255.255.255.240
EZZ2810I	Multicast Specific:
EZZ2811I	Multicast Capability: Yes
EZZ2812I	Group RefCnt
EZZ2813I	
EZZ2814I	224.0.0.5 000000001
EZZ2814I	224.0.0.1 000000001
EZZ2760I	DevName: VIPADEV DevType: VIPA DevNum: 0000
EZZ2761I	LnkName: VIPALINK LnkType: VIPA Status: Ready
EZZ2762I	NetNum: 0 QueSize: 0 ByteIn: 000000000 ByteOut: 000000000
EZZ2768I	BSD Routing Parameters:
EZZ2769I	MTU Size: 01470 Metric: 01
EZZ2770I	DestAddr: 0.0.0.0 SubnetMask: 255.255.255.240
EZZ2810I	Multicast Specific:
EZZ2811I	Multicast Capability: No

netstat offre molte altre opzioni. Puoi usare il netstat? per visualizzarli tutti.

Informazioni correlate

- <u>Supporto tecnologico IBM</u>
- Documentazione e supporto tecnico Cisco Systems