# Manuale di verifica dello stato di CPAR

## Sommario

Introduzione Premesse Impatto sulla rete Allarmi Controllo dello stato

## Introduzione

Questo documento descrive come controllare lo stato di Cisco Prime Access Registrar (CPAR) prima e dopo l'esecuzione di una finestra di manutenzione.

Questa procedura è valida per un ambiente Openstack che utilizza la versione NEWTON in cui ESC non gestisce CPAR e viene installato direttamente sulla VM distribuita in Openstack.

### Premesse

Ultra-M è una soluzione di base di pacchetti mobili preconfezionata e convalidata, progettata per semplificare l'installazione di VNF. OpenStack è Virtualized Infrastructure Manager (VIM) per Ultra-M ed è costituito dai seguenti tipi di nodi:

- Calcola
- Disco Object Storage Compute (OSD Compute)
- Controller
- Piattaforma OpenStack Director (OSPD)

L'architettura di alto livello di Ultra-M e i componenti coinvolti sono mostrati in questa immagine:



Questo documento è destinato al personale Cisco che ha familiarità con la piattaforma Cisco Ultra-M e descrive in dettaglio i passaggi richiesti da eseguire in OpenStack e Redhat OS.

**Nota:** Per definire le procedure descritte in questo documento, viene presa in considerazione la release di Ultra M 5.1.x.

#### Impatto sulla rete

Non vi sono interruzioni o interferenze con la rete o i servizi CPAR.

### Allarmi

Questa procedura non attiva alcun allarme.

### Controllo dello stato

Connettersi al server tramite Secure Shell (SSH).

Eseguire tutti questi passaggi prima e dopo l'attività.

Passaggio 1. Eseguire il comando /opt/CSCOar/bin/arstatus a livello di sistema operativo.

| [root@aaa04        | ~]# /opt/CSCOar/bin/arstatus |          |        |  |  |  |  |
|--------------------|------------------------------|----------|--------|--|--|--|--|
| Cisco Prime        | AR RADIUS server running     | (pid:    | 24834) |  |  |  |  |
| Cisco Prime        | AR Server Agent running      | (pid:    | 24821) |  |  |  |  |
| Cisco Prime        | AR MCD lock manager running  | (pid:    | 24824) |  |  |  |  |
| Cisco Prime        | AR MCD server running        | (pid:    | 24833) |  |  |  |  |
| Cisco Prime        | AR GUI running               | (pid:    | 24836) |  |  |  |  |
| SNMP Master        | Agent running                | (pid: 24 | 4835)  |  |  |  |  |
| [root@wscaaa04 ~]# |                              |          |        |  |  |  |  |

Passaggio 2. Eseguire il comando **/opt/CSCOar/bin/aregcmd** a livello di sistema operativo e immettere le credenziali dell'amministratore. Verificare che CPAr Health sia 10 su 10 e che esista dalla CLI di CPAR.

```
[root@aaa02 logs]# /opt/CSCOar/bin/aregcmd
Cisco Prime Access Registrar 7.3.0.1 Configuration Utility
Copyright (C) 1995-2017 by Cisco Systems, Inc. All rights reserved.
Cluster:
User: admin
Passphrase:
Logging in to localhost
[ //localhost ]
LicenseInfo = PAR-NG-TPS 7.2(100TPS:)
PAR-ADD-TPS 7.2(2000TPS:)
PAR-RDDR-TRX 7.2()
PAR-HSS 7.2()
Radius/
Administrators/
Server 'Radius' is Running, its health is 10 out of 10
```

--> exit

Passaggio 3. Eseguire il comando **netstat | diametro grep** e verificare che tutte le connessioni DRA siano stabilite.

L'output riportato di seguito è relativo a un ambiente in cui sono previsti collegamenti con diametro. Se vengono visualizzati meno collegamenti, si tratta di una disconnessione da DRA che deve essere analizzata.

| [root@aa02 | logs]# | netstat | grep   | diameter  |    |                                  |
|------------|--------|---------|--------|-----------|----|----------------------------------|
| tcp        | 0      | 0       | aaa02. | aaa.epc.: | 77 | mp1.dra01.d:diameter ESTABLISHED |
| tcp        | 0      | 0       | aaa02. | aaa.epc.: | 36 | tsa6.dra01:diameter ESTABLISHED  |
| tcp        | 0      | 0       | aaa02. | aaa.epc.: | 47 | mp2.dra01.d:diameter ESTABLISHED |
| tcp        | 0      | 0       | aaa02. | aaa.epc.: | 07 | tsa5.dra01:diameter ESTABLISHED  |
| tcp        | 0      | 0       | aaa02. | aaa.epc.: | 08 | np2.dra01.d:diameter ESTABLISHED |

Passaggio 4. Verificare che nel registro TPS siano visualizzate le richieste elaborate da CPAR. I valori evidenziati in grassetto rappresentano i TPS e quelli a cui dobbiamo prestare attenzione.

Il valore di TPS non deve superare 1500.

```
[root@aaa04 ~]# tail -f /opt/CSCOar/logs/tps-11-21-2017.csv
11-21-2017,23:57:35,263,0
11-21-2017,23:57:50,237,0
11-21-2017,23:58:05,237,0
```

11-21-2017,23:58:20,257,0 11-21-2017,23:58:35,254,0 11-21-2017,23:58:50,248,0 11-21-2017,23:59:05,272,0 11-21-2017,23:59:20,243,0 11-21-2017,23:59:35,244,0 11-21-2017,23:59:50,233,0

Passaggio 5. Cercare eventuali messaggi di errore o di allarme in name\_radius\_1\_log.

[root@aaa02 logs]# grep -E "error|alarm" name\_radius\_1\_log Passaggio 6. Questo comando consente di verificare la quantità di memoria utilizzata dal processo CPAR.

top | grep radius

[root@aaa02 ~]# top | grep radius 27008 root 20 0 20.228g 2.413g 11408 s 128.3 7.7 1165:41 radius Il valore evidenziato deve essere inferiore a: 7 Gb, il massimo consentito a livello di applicazione.

Passaggio 7. Questo è il comando per verificare l'utilizzo del disco:

df -h

[root@aaa02 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg\_arucsvm51-lv\_root 26G 21G 4.1G 84% /
tmpfs 1.9G 268K 1.9G 1% /dev/shm
/dev/sda1 485M 37M 424M 8% /boot
/dev/mapper/vg\_arucsvm51-lv\_home 23G 4.3G 17G 21% /home

Questo valore complessivo deve essere inferiore a: L'80%, se supera l'80%, identifica i file non necessari e li pulisce.

Passaggio 8. Verificare che non sia stato generato alcun file di base.

Il file di base viene generato in caso di arresto anomalo dell'applicazione quando CPAR non è in grado di gestire un'eccezione e viene generato in queste due posizioni.

[root@aaa02 ~]# cd /cisco-ar/ [root@aaa02 ~]# cd /cisco-ar/bin

Non dovrebbero esserci file di base nel percorso sopra indicato, se trovati, per individuare la causa principale di tale eccezione e allegare i file di base per il debug, sollevare una richiesta TAC di Cisco.