Dépannage de la charge du processeur du contrôleur LAN sans fil

Table des matières

Introduction
Présentation de l'utilisation du processeur
Notions de base
Plan de contrôle
Plan de données
Équilibrage de charge AP
Comment savoir combien de WNCD sont présents
Surveillance de l'équilibrage AP
Quel est le mécanisme d'équilibrage de charge recommandé pour les points d'accès
AP WNCD Distribution Visualization
Surveillance de l'utilisation CPU du plan de contrôle
Qu'est-ce que chaque processus
Mécanismes de protection CPU élevée
Exclusion du client
Protection du plan de contrôle contre le trafic de données
Contrôle d'admission des appels sans fil
Protections mDNS
<u>J'Ai Besoin De Plus D'Aide</u>

Introduction

Ce document décrit comment surveiller l'utilisation du CPU sur les contrôleurs LAN sans fil Catalyst 9800, et couvre plusieurs recommandations de configuration.

Présentation de l'utilisation du processeur

Avant de vous plonger dans le dépannage de la charge de CPU, vous devez comprendre les bases de la façon dont les CPU sont utilisés dans les contrôleurs LAN sans fil Catalyst 9800, et quelques détails sur l'architecture logicielle.

En général, le <u>document Meilleures pratiques de la gamme Catalyst 9800</u> définit un ensemble de paramètres de configuration appropriés qui peuvent empêcher les problèmes au niveau de l'application. Par exemple, utiliser le filtrage d'emplacement pour mDNS ou s'assurer que l'exclusion du client est toujours activée. Nous vous conseillons d'appliquer ces recommandations avec les sujets exposés ici.

Notions de base

Les contrôleurs Catalyst 9800 ont été conçus comme une plate-forme flexible, ciblant différentes charges réseau et se concentrant sur l'évolutivité horizontale. Le nom de développement interne était eWLC avec le e pour élastique, pour signifier que la même architecture logicielle, serait en mesure de fonctionner à partir d'un petit système intégré de CPU unique à plusieurs dispositifs de CPU / coeur à grande échelle.

Chaque WLC a deux côtés distincts :

- Plan de contrôle : gérer toutes les interactions de gestion telles que CLI, UI, Netconf et tous les processus d'intégration pour les clients et les points d'accès.
- Plan de données : responsable du transfert réel des paquets et de la décapsulation de CAPWAP, de l'application des politiques AVC, entre autres fonctionnalités.

Plan de contrôle

- La plupart des processus Cisco IOS XE s'exécutent sous BinOS (noyau Linux), avec son propre planificateur spécialisé et ses propres commandes de surveillance.
- Il existe un ensemble de processus clés, appelés WNCD (Wireless Network Control Daemon), chacun disposant d'une base de données locale en mémoire, qui gèrent la majeure partie de l'activité sans fil. Chaque processeur possède un WNCD, pour répartir la charge sur tous les coeurs de processeur disponibles sur chaque système
- La répartition de la charge sur les WNCD est effectuée pendant la jonction AP. Quand un AP effectue une jonction CAPWAP au contrôleur, un équilibreur de charge interne distribue l'AP en utilisant un ensemble de règles possibles, pour assurer une utilisation correcte de toutes les ressources CPU disponibles.
- Le code Cisco IOS® s'exécute sur son propre processus appelé IOSd et dispose de son planificateur de CPU. Cela permet de prendre en charge des fonctionnalités spécifiques, par exemple, CLI, SNMP, multidiffusion et routage.

Dans une vue simplifiée, l'unité de commande possède des mécanismes de communication entre le plan de commande et le plan de données, punt, envoie le trafic du réseau au plan de commande, et l'injection, pousse les trames du plan de commande dans le réseau.

Dans le cadre d'une enquête de dépannage de CPU élevée possible, vous devez surveiller le mécanisme punt, pour évaluer quel trafic atteint le plan de contrôle et pourrait conduire à une charge élevée.

Plan de données

Pour le contrôleur Catalyst 9800, il s'exécute dans le cadre du processeur de paquets Cisco (CPP), qui est une structure logicielle pour développer des moteurs de transfert de paquets, utilisés sur plusieurs produits et technologies.

L'architecture permet un ensemble de fonctionnalités communes, sur différentes mises en oeuvre

matérielles ou logicielles. Par exemple, en autorisant des fonctionnalités similaires pour le 9800CL par rapport au 9800-40, à différentes échelles de débit.

Équilibrage de charge AP

Le WLC effectue l'équilibrage de charge sur les CPU pendant le processus de jonction de point d'accès CAPWAP, avec le différenciateur clé étant le nom de balise de site AP. L'idée est que chaque AP représente une charge CPU spécifique ajoutée, provenant de son activité client, et l'AP lui-même. Il existe plusieurs mécanismes pour effectuer cet équilibrage :

- Si l'AP utilise default-tag, il serait équilibré de manière circulaire sur tous les CPU/WNCD, avec chaque nouvelle jointure d'AP allant au WNCD suivant. C'est la méthode la plus simple, mais elle a peu d'implications :
 - C'est le scénario sous-optimal, car les points d'accès dans le même domaine d'itinérance RF effectueraient une itinérance Inter-WNCD fréquente, impliquant une communication inter-processus supplémentaire. L'itinérance entre les instances est plus lente d'un petit pourcentage.
 - Aucune distribution de clé PMK n'est disponible pour la balise de site FlexConnect (distant). Cela signifie que vous ne pouvez pas effectuer d'itinérance rapide pour le mode Flex, ce qui a un impact sur les modes d'itinérance OKC/FT.

En général, la balise par défaut peut être utilisée sur des scénarios de charge inférieure (par exemple, moins de 40 % de la charge du point d'accès et du client de la plate-forme 9800), et pour le déploiement FlexConnect uniquement lorsque l'itinérance rapide n'est pas requise.

- Si l'AP a une balise de site personnalisée, la première fois qu'un AP appartenant au nom de la balise de site rejoint le contrôleur, la balise de site est assignée à une instance WNCD spécifique. Toutes les jointures supplémentaires suivantes d'AP avec la même balise sont attribuées au même WNCD. Cela garantit l'itinérance entre les AP dans la même étiquette de site, qui se produit dans le contexte WCND unique, qui fournit un flux plus optimal, avec une utilisation CPU inférieure. L'itinérance sur les WNCD est prise en charge, mais elle n'est pas aussi optimale que l'itinérance intra-WNCD.
- Décision d'équilibrage de charge par défaut : Lorsqu'une balise est attribuée à un WNCD, l'équilibreur de charge sélectionne l'instance ayant le plus petit nombre de balises de site à ce moment-là. Comme la charge totale que peut avoir cette balise de site n'est pas connue, elle peut conduire à des scénarios d'équilibrage sous-optimaux. Cela dépend de l'ordre des jointures AP, combien de balises de site ont été définies, et si le nombre d'AP est asymétrique à travers eux
- Équilibrage de charge statique : Pour éviter l'affectation de balise de site non équilibrée à WNCD, la commande site load a été introduite dans la version 17.9.3 et ultérieure, pour permettre aux administrateurs de prédéfinir la charge attendue de chaque balise de site. Ceci est particulièrement utile lors de la gestion de scénarios de campus, ou de plusieurs filiales, chacune mappée à différents nombres d'AP, pour garantir que la charge est

distribuée uniformément sur WNCD.

Par exemple, si vous avez un 9800-40, gérant un bureau principal, plus 5 filiales, avec des nombres d'AP différents, la configuration pourrait ressembler à ceci :

```
wireless tag site office-main
load 120
wireless tag site branch-1
load 10
wireless tag site branch-2
load 12
wireless tag site branch-3
load 45
wireless tag site branch-4
load 80
wireless tag site branch-5
load 5
```

Dans ce scénario, vous ne voulez pas que la balise du bureau central soit sur le même WNCD que Branch-3 et Branch-4, il y a au total 6 balises de site, et la plate-forme a 5 WNCD, donc il pourrait y avoir une chance que les balises de site les plus chargées atterrissent sur le même CPU. En utilisant la commande load, vous pouvez créer une topologie prévisible d'équilibrage de charge AP.

La commande load est une taille attendue. Elle ne doit pas correspondre exactement au nombre d'AP, mais elle est normalement définie sur les AP attendus qui peuvent se joindre.

- Dans les scénarios où de grands bâtiments sont gérés par un seul contrôleur, il est plus facile et plus simple de créer autant de balises de site que de WNCD pour cette plate-forme spécifique (par exemple, C9800-40 en a cinq, C9800-80 en a 8). Attribuez les points d'accès de la même zone ou du même domaine d'itinérance aux mêmes balises de site afin de réduire la communication entre les WNCD.
- Équilibrage de charge RF : Cela équilibre les AP entre les instances WNCD, en utilisant la relation de voisinage RF de RRM, et crée des sous-groupes en fonction de la proximité des AP les uns par rapport aux autres. Cela doit être fait après que les AP ont été en service pendant un certain temps et supprimer le besoin de configurer des paramètres d'équilibrage de charge statique. Disponible à partir de la version 17.12 et ultérieure.

Comment savoir combien de WNCD sont présents

Pour les plates-formes matérielles, le nombre de WNCD est fixe : 9800-40 a 5, 9800-80 a 8. Pour 9800CL (virtuel), le nombre de WNCD dépend du modèle de machine virtuelle utilisé lors du déploiement initial.

En règle générale, si vous voulez savoir combien de WNCD sont en cours d'exécution dans le système, vous pouvez utiliser cette commande sur tous les types de contrôleurs :

<#root>

```
9800-40#show processes cpu platform sorted | count wncd
Number of lines which match regexp =
5
```

Dans le cas du 9800-CL en particulier, vous pouvez utiliser la commande show platform software system all pour collecter des détails sur la plate-forme virtuelle :

<#root>

WNCD instances: I

Surveillance de l'équilibrage AP

L'affectation AP à WNCD est appliquée pendant le processus de jonction AP CAPWAP, de sorte qu'il n'est pas prévu qu'elle change pendant les opérations, quelle que soit la méthode d'équilibrage, à moins qu'il y ait un événement de réinitialisation CAPWAP à l'échelle du réseau où tous les AP se déconnectent et se rejoignent à nouveau.

La commande CLI_{show wireless loadbalance tag affinity}peut fournir un moyen facile de voir l'état actuel de l'équilibrage de charge AP sur toutes les instances WNCD :

98001#show wireless lo Tag	adbalance tag affinity Tag type	No of AP's Joined	Load Config	Wncd Instance
Branch-tag	SITE TAG	10	0	0
Main-tag	SITE TAG	200	0	1
default-site-tag	SITE TAG	1	NA	2

si vous voulez corréler la distribution AP, avec le nombre de clients et la charge CPU, la façon la plus facile est d'utiliser l'outil de support <u>WCAE</u> et de charger une_{show tech wireless}prise pendant les périodes occupées. L'outil récapitule le nombre de clients WNCD, pris à partir de chaque point

d'accès qui lui est associé.

Exemple d'un contrôleur correctement équilibré, lors d'une faible utilisation et du nombre de clients :

• • •					Wireless Co	onfig Analyzer Exp		
UCAE Well	come to	WCAE	Fil	File: WLC3 Main(10.130.240.13)20-46-18.log				
 ♠ Summary ▶ ✓ Checks ▶ ♀ Access Points 	WNC	D Load Dist	ribution					
▼	WNC) Details: Summary	*					
RF Group	ID	Tags Count	Tags Assigned	AP Count	Client Count	CPU load		
RRM Settings	0	1	Summary	55	24	1		
Resources	1	1	Summary	62	5	0		
AAA Server Details	2	1	Summary	50	13	0		
Logs	3	1	Summary	87	264	2		
Certificates	4	1	Summary	74	128	2		
💠 Site Tags	5	1	Summary	76	61	1		
WLANs Summary	6	1	Summary	58	45	1		
AP RF View	7	1	Summary	43	29	0		

Un autre exemple, pour un contrôleur plus chargé, montrant l'utilisation normale du CPU :

• • •						Wireless C	onfig Analyzer B
cisco	WCAE GUE 0.7, Engine:0.22	Welcome to	WCAE	Fil	le: customer	wic_tech_wirel	ess_17.12.3.log
n ি Summ ► ✓ Chec ► হি Acce ∓ হি Conta	nary ks se Pointa roller	WNG	CD Load Dist	tribution			
interfac Mobility	ses y Group	WND) Detaile: Summery	Ŧ			
RF Grou	up	ID.	Tags Count	Tags Assigned	AP Count	Client Count	CPU load
RHOM SH	ettinga 	0	9	Summary	609	2103	25
WNCD	ues Losd Distribution	1	8	Summary	351	1520	18
AAA Sa	ever Details	2	9	Summary	171	600	8
Logs		3	8	Summary	300	1322	14
Certific	ates	4	9	Summary	651	1784	20
💠 Site 1	Tags	5	9	Summary	483	1541	17
👘 📲 WLAI	Ns Summary	6	0	Summers	217	815	ß
🕨 💪 AP R	FView	-		5		10.45	
🕨 🕘 RF Pr	ofiles	7	8	summary	627	1642	18

Quel est le mécanisme d'équilibrage de charge recommandé pour les points d'accès

En bref, vous pouvez résumer les différentes options dans :

- Petit réseau, pas besoin d'itinérance rapide, moins de 40 % de la charge du contrôleur : Balise par défaut.
- Si l'itinérance rapide est nécessaire (OKC, FT, CCKM) ou si le nombre de clients est important :
 - Bâtiment unique : Créez autant de balises de site que de processeurs (dépendant de la plate-forme).
 - Avant 17.12, ou moins de 500 points d'accès : Plusieurs bâtiments, succursales ou grands campus : Créez une étiquette de site par emplacement RF physique et configurez la commande load par site.
 - 17.12 et supérieur avec plus de 500 points d'accès : utiliser l'équilibrage de charge RF.

Ce seuil de 500 points d'accès, est pour marquer quand il est efficace d'appliquer le mécanisme d'équilibrage de charge, comme il groupe des points d'accès dans des blocs de 100 unités par défaut.

AP WNCD Distribution Visualization

Il existe des scénarios où vous voulez faire un équilibrage AP plus avancé, et il est souhaitable d'avoir un contrôle granulaire sur la façon dont les AP sont répartis sur les CPU. Par exemple, les scénarios de très haute densité dans lesquels la métrique de charge principale est le nombre de clients plutôt que de se concentrer uniquement sur le nombre de points d'accès présents dans le système.

Les grands événements sont un bon exemple de cette situation : un bâtiment peut héberger des milliers de clients, plus de plusieurs centaines d'AP, et vous devez répartir la charge sur autant de CPU que possible, mais optimiser l'itinérance en même temps. Ainsi, vous ne parcourez pas WNCD à moins qu'il ne soit nécessaire. Vous voulez éviter les situations salées et poivrées où plusieurs points d'accès dans différents WNCD/balises de site sont mélangés dans le même emplacement physique.

Pour vous aider à affiner et fournir une visualisation de la distribution, vous pouvez utiliser l'outil WCAE et tirer parti de la fonctionnalité AP RF View :

Cela vous permet de voir la distribution AP/WNCD, simplement définie surview TypeWNCD. Ici, chaque couleur représente un WNCD/CPU. Vous pouvez également définir le filtre RSSI sur -85, pour éviter les connexions à faible signal, qui sont également filtrées par l'algorithme RRM dans le contrôleur.

Dans l'exemple précédent, correspondant à CiscoLive EMEA 24, vous pouvez voir que la plupart des points d'accès adjacents sont regroupés en grappe dans le même WNCD, avec un chevauchement croisé très limité.

Les balises de site allouées au même WNCD, obtiennent la même couleur.

Surveillance de l'utilisation CPU du plan de contrôle

Il est important de se rappeler le concept d'architecture Cisco IOS XE et de garder à l'esprit qu'il existe deux vues principales de l'utilisation du processeur. L'un provient de l'historique de la prise en charge de Cisco IOS, et le principal, avec une vue holistique du CPU sur tous les processus et coeurs.

En général, vous pouvez utiliser la commande_{show processes cpu platform sorted}pour collecter des informations détaillées sur tous les processus de Cisco IOS XE :

9800cl-1#show processes cpu platform sorted

CPU utilization for five seconds: 8%, one minute: 14%, five minutes: 11% Core 0: CPU utilization for five seconds: 6%, one minute: 11%, five minutes: 5% Core 1: CPU utilization for five seconds: 2%, one minute: 8%, five minutes: 5% Core 2: CPU utilization for five seconds: 4%, one minute: 12%, five minutes: 12% Core 3: CPU utilization for five seconds: 19%, one minute: 23%, five minutes: 24%

Pid	PPid	5Sec	1Min	5Min	Status	Size	Name
19953	19514	44%	44%	44%	S	190880	ucode_pkt_PPE0
28947	8857	3%	10%	4%	S	1268696	linux_iosd-imag
19503	19034	3%	3%	3%	S	247332	fman_fp_image
30839	2	0%	0%	0%	I	0	kworker/0:0
30330	30319	0%	0%	0%	S	5660	nginx
30329	30319	0%	1%	0%	S	20136	nginx
30319	30224	0%	0%	0%	S	12480	nginx
30263	1	0%	0%	0%	S	4024	rotee
30224	8413	0%	0%	0%	S	4600	pman
30106	2	0%	0%	0%	I	0	kworker/u11:0
30002	2	0%	0%	0%	S	0	SarIosdMond
29918	29917	0%	0%	0%	S	1648	inet_gethost

Il y a plusieurs points importants à souligner ici :

- Le processus ucode_pkt_PPE0 gère le plan de données sur les plates-formes 9800L et 9800CL, et on s'attend à une utilisation élevée tout le temps, même supérieure à 100 %. Cela fait partie de la mise en oeuvre, et cela ne constitue pas un problème.
- Il est important de différencier l'utilisation maximale d'une charge soutenue et d'isoler ce qui est attendu dans un scénario donné. Par exemple, la collecte d'une sortie CLI très volumineuse, commeshow tech wirelesspeut générer une charge maximale sur les processus IOSd, smand et pubd, alors qu'une sortie de texte très volumineuse est collectée, avec des centaines de commandes CLI exécutées. Ce n'est pas un problème, et la charge s'arrête une fois le résultat terminé.

Pid	PPid	5Sec	1Min	5Min	Status	Size	Name
19371	19355	62%	83%	20%	R	128120	smand
27624	27617	53%	59%	59%	S	1120656	pubd
4192	4123	11%	5%	4%	S	1485604	linux_iosd-imag

• L'utilisation maximale des coeurs WNCD est prévue, pendant les périodes d'activité client élevée. Il est possible de voir des pics de 80 %, sans aucun impact fonctionnel, et ils ne constituent normalement pas un problème.

Name	Size	Status	5Min	1Min	5Sec	PPid	Pid
 wncd_0	978116	S	25%	25%	25%	21086	21094
wncd_4	1146384	R	20%	20%	21%	21743	21757
wncd_7	1152496	S	18%	18%	18%	22465	22480
wncd_5	840720	S	17%	17%	18%	21998	22015
wncd_1	779292	S	18%	18%	16%	21201	21209
wncd_3	926528	S	14%	15%	14%	21520	21528

- Une utilisation élevée et durable du CPU sur un processus, supérieure à 90 %, pendant plus de 15 minutes, doit être étudiée.
- Vous pouvez surveiller l'utilisation du processeur IOSd à l'aide de la commandeshow processes cpu sorted. Cela correspond à l'activité dans la partie processus linux_iosd-image de la liste Cisco IOS XE.

CPU	utilization	for five seconds:	2%/0%;	one n	ninute:	3%; five	min	nutes: 3%
PID	Runtime(ms)	Invoked	uSecs	5Sec	: 1Mir	n 5Min	TTY	Process
215	81	88	920	1.51%	6 0.12%	6 0.02%	1	SSH Process
673	164441	7262624	22	0.07%	6 0.00%	6 0.00%	0	SBC main process
137	2264141	225095413	10	0.07%	6 0.04%	6 0.05%	0	L2 LISP Punt Pro
133	534184	21515771	24	0.07%	6 0.04%	6 0.04%	0	IOSXE-RP Punt Se
474	1184139	56733445	20	0.07%	6 0.03%	6 0.00%	0	MMA DB TIMER
5	0	1	0	0.00%	6 0.00%	6 0.00%	0	CTS SGACL db cor
6	0	1	0	0.00%	6 0.00%	6 0.00%	0	Retransmission o
2	198433	726367	273	0.00%	6 0.00%	6 0.00%	0	Load Meter
7	0	1	0	0.00%	6 0.00%	6 0.00%	0	IPC ISSU Dispatc
10	3254791	586076	5553	0.00%	6 0.11%	6 0.07%	0	Check heaps
4	57	15	3800	0.00%	6 0.00%	6 0.00%	0	RF Slave Main Th
8	0	1	0	0.00%	6 0.00%	6 0.00%	0	EDDRI_MAIN

9800cl-1#show processes cpu sorted

 Vous pouvez utiliser l'interface utilisateur graphique du 9800 pour afficher rapidement la charge de l'IOSd, l'utilisation par coeur et la charge du plan de données :

IOS Daemon CPU Usage(Top 5 Pr	ocess)	@ 105	D CPU Dump	Datapath Utilization		Datapath Utilization Dump
Process	5Sec	1Min	5Min	Data Plane	Core 2	Core 3
HTTP CORE	12.87%	11.30%	2.65%	PP (%)	1.22	0.00
SEP_webui_wsma_h	1.51%	0.90%	0.20%	RX (%)	0.00	0.03
SIS Punt Process	0.07%	0.06%	0.07%	TM (%)	0.00	2.42
Check heaps	0.00%	0.09%	0.06%	IDLE (%)	98.78	97.55
L2 LISP Punt Pro	0.07%	0.04%	0.05%			

Cette option est disponible dans l'Monitoring/System/CPU UtilizationOnglet.

Qu'est-ce que chaque processus

La liste exacte des processus varie en fonction du modèle de contrôleur et de la version de Cisco IOS XE. Il s'agit d'une liste de certains des processus clés, et il n'est pas destiné à couvrir toutes les entrées possibles.

Nom du processus	Que fait-il ?	Évaluation
wncd_x	Gère la plupart des opérations sans fil. Selon le modèle 9800, vous pouvez avoir entre 1 et 8 instances.	Vous pouvez observer des pics d'utilisation pendant les heures de pointe. Indiquez si l'utilisation est bloquée pendant 95 % ou plus pendant plusieurs minutes.
linux_iosd-image	processus IOS	Prévu pour une utilisation élevée en cas de collecte de résultats CLI importants (show tech). Des opérations SNMP importantes ou trop fréquentes peuvent entraîner une utilisation élevée du processeur.
nginx	serveur Web	Ce processus peut afficher des pics et ne peut être signalé que sur une charge élevée soutenue.
ucode_pkt_PPE0	Plan de données 9800CL/9800L	Utilisez la commande show platform hardware chassis active qfp datapath utilization pour surveiller ce composant.
ezman	Gestionnaire de chipsets pour interfaces	Un processeur élevé et soutenu peut indiquer un problème matériel ou un problème logiciel du noyau. Il peut être signalé.
dbm	Gestionnaire de bases de données	Un CPU élevé et soutenu peut être signalé ici.
odm_X	Operation Data Manager gère la base de données consolidée sur l'ensemble des processus.	CPU élevé attendu sur les systèmes chargés.

rugueux	Gère les fonctionnalités indésirables	Un CPU élevé et soutenu peut être signalé ici.
feu	Shell Manager se charge de l'analyse CLI et de l'interaction entre les différents processus.	CPU élevé attendu lors de la gestion de grandes sorties CLI. Un CPU élevé soutenu en l'absence de charge peut être signalé.
emd	Gestionnaire de shell. Prend en charge l'analyse CLI et l'interaction entre les différents processus.	CPU élevé attendu lors de la gestion de grandes sorties CLI. Un CPU élevé soutenu sur l'absence de charge peut être signalé.
pub	Partie du traitement de télémétrie	CPU élevé attendu pour les abonnements télémétriques volumineux. Un CPU élevé soutenu sur l'absence de charge peut être signalé.

Mécanismes de protection CPU élevée

Les contrôleurs LAN sans fil du Catalyst 9800 disposent de mécanismes de protection étendus pour les activités du réseau ou du client sans fil, afin d'empêcher une utilisation CPU élevée en raison de scénarios accidentels ou intentionnels. Il existe plusieurs fonctionnalités clés conçues pour vous aider à contenir les périphériques problématiques :

Exclusion du client

Cette option est activée par défaut et fait partie des stratégies de protection sans fil. Elle peut être activée ou désactivée par profil de stratégie. Cela permet de détecter plusieurs problèmes de comportement, de supprimer le client du réseau et de le placer dans une liste d'exclusion temporaire. Lorsque le client est dans cet état exclu, les AP ne leur parlent pas, ce qui empêche toute autre action.

Une fois le délai d'exclusion écoulé (60 secondes par défaut), le client est autorisé à s'associer à nouveau.

Il existe plusieurs déclencheurs d'exclusion de client :

- Échecs d'association répétés
- 3 erreurs d'authentification webauth, PSK ou 802.1x ou plus
- Expirations répétées des délais d'authentification (aucune réponse du client)

- Tentative de réutilisation d'une adresse IP déjà enregistrée sur un autre client
- · Génération d'une inondation ARP

L'exclusion des clients protège votre contrôleur, votre point d'accès et votre infrastructure AAA (Radius) contre plusieurs types de haute activité qui pourraient entraîner une CPU élevée. En général, il n'est pas conseillé de désactiver l'une des méthodes d'exclusion, sauf si cela est nécessaire pour un exercice de dépannage ou une exigence de compatibilité.

Les paramètres par défaut fonctionnent pour presque tous les cas, et seulement sur certains scénarios exceptionnels, est nécessaire pour augmenter le temps d'exclusion, ou désactiver un déclencheur spécifique. Par exemple, certains clients existants ou spécialisés (IOT/Medical) doivent avoir le déclencheur d'échec d'association désactivé, en raison de défauts côté client qui ne peuvent pas être facilement corrigés

Vous pouvez personnaliser les déclencheurs dans l'interface utilisateur : Configuration/Protection sans fil/Stratégies d'exclusion des clients :

Le déclencheur d'exclusion ARP a été conçu pour être activé de manière permanente au niveau global, mais il peut être personnalisé sur chaque profil de stratégie. Vous pouvez vérifier l'état à l'aide de la commandesh wireless profile policy allook for this specific output :

ARP Activity Limit		
Exclusion	:	ENABLED
PPS	:	100
Burst Interval	:	5

Protection du plan de contrôle contre le trafic de données

Il s'agit d'un mécanisme avancé dans le plan de données, destiné à garantir que le trafic envoyé au plan de contrôle ne dépasse pas un ensemble prédéfini de seuils. La fonction est appelée Punt Policers et dans presque tous les scénarios, il n'est pas nécessaire de les toucher, et même dans ce cas, il suffit de travailler avec l'assistance Cisco.

L'avantage de cette protection est qu'elle fournit un aperçu très détaillé de ce qui se passe sur le réseau, et si une activité spécifique présente un débit accru, ou des paquets par seconde étonnamment élevés.

Cette fonctionnalité n'est disponible que via l'interface de ligne de commande, car elle fait généralement partie de fonctionnalités avancées rarement modifiées.

Pour obtenir une vue de toutes les politiques de punt :

9800-1#show platform software punt-policer

Per Punt-Cause Policer Configuration and Packet Counters

Punt		Config Rate(pps)		Conform Packets		Dropped Pack	
Cause	Description	Normal	High	Normal	High	Normal	
2	IPv4 Options	874	655	0	0	0	
3	Layer2 control and legacy	8738	2185	33	0	0	
4	PPP Control	437	1000	0	0	0	
5	CLNS IS-IS Control	8738	2185	0	0	0	
6	HDLC keepalives	437	1000	0	0	0	
7	ARP request or response	437	1000	0	330176	0	
8	Reverse ARP request or repso	437	1000	0	24	0	
9	Frame-relay LMI Control	437	1000	0	0	0	
10	Incomplete adjacency	437	1000	0	0	0	
11	For-us data	40000	5000	442919246	203771	0	
12	Mcast Directly Connected Sou	437	1000	0	0	0	

Il peut s'agir d'une longue liste de plus de 160 entrées, selon la version du logiciel.

Dans la sortie de la table, vous voulez vérifier la colonne de paquets abandonnés avec toute entrée qui a une valeur non nulle sur le nombre d'abandons élevé.

Pour simplifier la collecte des données, vous pouvez utiliser la commande_{show platform software punt-}policer drop-only, pour filtrer uniquement les entrées de l'analyseur avec des abandons.

Cette fonctionnalité peut être utile pour identifier s'il y a des tempêtes ARP ou des inondations de sonde 802.11 (elles utilisent la file d'attente 802.11 Packets to LFTS). LFTS signifie Linux Forwarding Transport Service).

Contrôle d'admission des appels sans fil

Dans toutes les versions de maintenance récentes, le contrôleur dispose d'un moniteur d'activité, pour réagir dynamiquement à une CPU élevée, et s'assurer que les tunnels AP CAPWAP restent actifs, face à une pression insoutenable. La fonctionnalité vérifie la charge WNCD et commence à

limiter la nouvelle activité du client, pour s'assurer que suffisamment de ressources restent pour gérer les connexions existantes et protéger la stabilité CAPWAP. Ceci est activé par défaut, et il n'a pas d'options de configuration.

Trois niveaux de protection sont définis, L1 à 80 % de charge, L2 à 85 % de charge et L3 à 89 %, chacun déclenchant des abandons de protocole entrants différents en tant que mécanismes de protection. La protection est automatiquement supprimée, dès que la charge diminue.

Dans un réseau sain, vous ne pouvez pas voir les événements de chargement de couche 2 ou 3 et, s'ils se produisent fréquemment, ils peuvent être examinés.

Pour surveiller, utilisez la commandewireless stats caccomme illustré dans l'image.

9800-1# show wireless stats cac WIRESLESS CAC STATISTICS L1 CPU Threshold: 80 L2 CPU Threshold: 85 L3 CPU Threshold: 89 Total Number of CAC throttle due to IP Learn: 0 Total Number of CAC throttle due to AAA: 0 Total Number of CAC throttle due to Mobility Discovery: 0 Total Number of CAC throttle due to IPC: 0 CPU Throttle Stats L1-Assoc-Drop: 0 L2-Assoc-Drop: 0 L3-Assoc-Drop: 0 L1-Reassoc-Drop: 0 L2-Reassoc-Drop: 0 L3-Reassoc-Drop: 0 L1-Probe-Drop: 12231 L2-Probe-Drop: 11608 L3-Probe-Drop: 93240 L1-RFID-Drop: 0 L2-RFID-Drop: 0 L3-RFID-Drop: 0 L1-MDNS-Drop: 0 L2-MDNS-Drop: 0 L3-MDNS-Drop: 0

Protections mDNS

Le mDNS en tant que protocole permet une approche sans intervention pour détecter les services sur les périphériques, mais en même temps, il peut être très actif et entraîner une charge importante, s'il n'est pas configuré correctement.

mDNS, sans aucun filtrage, peut facilement augmenter l'utilisation du CPU WNCD, en raison de plusieurs facteurs :

- Stratégies mDNS avec apprentissage illimité, le contrôleur obtient tous les services offerts par tous les périphériques. Cela peut conduire à de très grandes listes de services, avec des centaines d'entrées.
- 2. Stratégies définies sans filtrage : cela amène le contrôleur à transmettre ces grandes listes de services, à chaque client qui demande qui fournit un service donné.
- 3. Certains services spécifiques à mDNS sont fournis par tous les clients sans fil, ce qui augmente le nombre de services et l'activité, avec des variations par version du système d'exploitation.

Vous pouvez vérifier la taille de la liste mDNS par service avec cette commande :

9800-1# show mdns-sd service statistics Service Name	Service Count
_ipptcp.local	84
_ippstcp.local	52
_raoptcp.local	950
_airplaytcp.local	988
_printertcp.local	13
_googlerpctcp.local	12
_googlecasttcp.local	70
_googlezonetcp.local	37
_home-sharingtcp.local	7
_cupssubipptcp.local	26

Cela peut donner une idée de la taille que peut avoir une requête donnée. Il ne désigne pas un problème en lui-même, juste un moyen de surveiller ce qui est suivi.

Voici quelques recommandations importantes concernant la configuration de mDNS :

• Définissez le transport mDNS sur un protocole unique :

```
9800-1(config)# mdns-sd gateway
9800-1(config-mdns-sd)# transport ipv4
```

Par défaut, il utilise le transport IPv4. Pour des raisons de performances, il est conseillé d'utiliser IPv6 ou IPv4, mais pas les deux.

 Définissez toujours un filtre d'emplacement dans la stratégie de service mDNS, pour éviter les requêtes/réponses indépendantes. En général, il est recommandé d'utiliser la balise de site, mais d'autres options peuvent fonctionner, selon vos besoins.

J'Ai Besoin De Plus D'Aide

Si vous constatez une charge CPU élevée et qu'aucune des étapes précédentes ne vous aide, veuillez contacter CX via un dossier et ajouter ces données comme point de départ :

• Les données de base, telles que la configuration du point d'accès/contrôleur et les valeurs opérationnelles du réseau et des radiofréquences :

show tech-support wireless

• Archivage de toutes les traces de contrôleur. Il s'agit d'un fichier volumineux, similaire à un concept de boîte noire, qui peut être collecté avec la commande :

request platform software trace archive last <days> to-file bootflash:<archive file>

À propos de cette traduction

Cisco a traduit ce document en traduction automatisée vérifiée par une personne dans le cadre d'un service mondial permettant à nos utilisateurs d'obtenir le contenu d'assistance dans leur propre langue.

Il convient cependant de noter que même la meilleure traduction automatisée ne sera pas aussi précise que celle fournie par un traducteur professionnel.