Dépannage des rabats de port sur les commutateurs de la gamme Catalyst 9000

Table des matières

Introduction Conditions préalables Exigences Composants utilisés Informations générales Dépannage Installation des modules réseau Vérification du câble et des deux côtés de la connexion Vérification de la compatibilité SFP et SFP+ Identifier les volets des ports Interface Commandes Show Vérification de l'état du câble avec le réflecteur de domaine temporel (TDR) Lignes directrices du RDT Surveillance optique numérique (DOM) Comment activer DOM Messages Syslog de surveillance optique numérique Optique Cisco et correction d'erreurs sans voie de retour (FEC) Commandes de débogage Informations connexes

Introduction

Ce document décrit comment identifier, collecter des journaux utiles et dépanner les problèmes qui peuvent se produire avec les Port Flaps sur les commutateurs Catalyst 9000.

Contribution de Leonardo Pena Davila

Conditions préalables

Exigences

There are no specific requirements for this document.

Composants utilisés

Les informations contenues dans ce document sont basées sur tous les commutateurs de la gamme Catalyst 9000.

The information in this document was created from the devices in a specific lab environment. All of

the devices used in this document started with a cleared (default) configuration. Si votre réseau est en ligne, assurez-vous de bien comprendre l'incidence possible des commandes.

Informations générales

Un port flap, généralement appelé « link flap », est une situation dans laquelle une interface physique du commutateur est continuellement active et inactive. La cause la plus fréquente est généralement liée à un câble défectueux, non pris en charge ou non standard, à un câble SFP (Small Form-Factor Pluggable) ou à d'autres problèmes de synchronisation de liaison. La cause des volets de liaison peut être intermittente ou permanente.

Puisque les battements de liens tendent à être une interférence physique, ce document explique les étapes pour diagnostiquer, collecter des journaux utiles et dépanner les problèmes qui peuvent se produire avec les battements de ports sur les commutateurs Catalyst 9000.

Dépannage

Vous pouvez vérifier plusieurs points. Si vous disposez d'un accès physique au commutateur pour vous assurer que les modules de réseau, les câbles et les modules SFP sont correctement installés :

Installation des modules réseau

Le tableau ci-dessous décrit les meilleures pratiques d'installation d'un module de réseau dans un commutateur de la gamme Catalyst 9000 :

Plateforme	URL
Commutateurs de la gamme Catalyst 9200	<u>Guide d'installation matérielle des commutateurs</u> Catalyst 9200
Commutateurs de la gamme Catalyst 9300	Guide d'installation matérielle des commutateurs Catalyst 9300
Commutateurs de la gamme Catalyst 9400	Guide d'installation matérielle des commutateurs Catalyst 9400
Commutateurs de la gamme Catalyst 9500	Guide d'installation matérielle des commutateurs Catalyst 9500
Commutateurs de la gamme Catalyst 9600	Guide d'installation matérielle des commutateurs Catalyst 9600

Vérification du câble et des deux côtés de la connexion

Ces tableaux décrivent certains des problèmes de câble susceptibles d'entraîner des défauts de liaison.

Motif	Action de récupération
Câble défectueux	Permutez le câble suspect avec un câble fiable connu. Recherchez les broche cassées ou perdues sur les connecteurs
Pertes de connexion	Vérifiez les pertes de connexion. Parfois, un câble semble être correctement positionné, mais ne l'est pas. Débranchez le câble et réinsérez-le
Panneaux de connexions	Supprimez les connexions défectueuses du panneau de connexions. Si possi dérivez le panneau de connexions pour l'exclure

SFP incorrect ou incorrect (spécifique à la fibre)	Remplacez le module SFP suspect par un module SFP en bon état. Vérifier la en charge matérielle et logicielle de ce type de module SFP
Port ou port de module incorrect	Déplacez le câble vers un port fiable connu pour dépanner un port ou un mod suspect
Périphérique de point de terminaison incorrect ou ancien	Remplacez le téléphone, le haut-parleur, un autre terminal par un périphériqu bon état ou un périphérique plus récent
Mode veille du périphérique	Il s'agit d'un « rabat attendu ». Vérifiez l'horodatage du rabat de port pour déterminer s'il se produit rapidement ou de façon intermittente et si un réglage veille en est la cause

Vérification de la compatibilité SFP et SFP+

Le portefeuille Cisco des interfaces enfichables à chaud offre un riche éventail de produits en termes de vitesses, protocoles, portées et médias de transmission supportés.

Vous pouvez utiliser n'importe quelle combinaison de modules SFP ou SFP + émetteursrécepteurs prise en charge par vos commutateurs de la gamme Catalyst 9000. Les seules restrictions sont que chaque port doit correspondre aux spécifications de longueur d'onde à l'autre extrémité du câble et que le câble ne doit pas dépasser la longueur de câble stipulée pour des communications fiables.

Utilisez uniquement des modules émetteurs-récepteurs SFP Cisco sur votre périphérique Cisco. Chaque module émetteur-récepteur SFP ou SFP+ prend en charge la fonctionnalité Cisco Quality Identification (ID) qui permet à un commutateur ou routeur Cisco d'identifier et de valider que le module émetteur-récepteur est certifié et testé par Cisco.

Conseil : reportez-vous à ce lien afin de vérifier la <u>matrice de compatibilité Cisco Optics-to-</u> <u>Device</u>

Identifier les volets des ports

Utilisez show loggingpour identifier un événement de battement de lien. Cet exemple montre un message partiel du journal système du commutateur pour un événement de battement de liaison avec l'interface TenGigabitEthernet1/0/40 :

Switch#show logging | include changed Aug 17 21:06:08.431 UTC: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/40, changed state to down Aug 17 21:06:39.058 UTC: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/40, changed state to down Aug 17 21:06:41.968 UTC: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/40, changed state to up Aug 17 21:06:42.969 UTC: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/40, changed state to up Aug 17 21:07:20.041 UTC: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/40, changed state to down Aug 17 21:07:21.041 UTC: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/40, changed state to down Aug 17 21:07:36.534 UTC: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/40, changed state to up Aug 17 21:08:06.598 UTC: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/40, changed state to up Aug 17 21:08:07.628 UTC: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/40, changed state to down

Aug 17 21:08:08.628 UTC: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/40, changed state to down Aug 17 21:08:10.943 UTC: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/40, changed state to up Aug 17 21:08:11.944 UTC: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/40, changed state to up

Conseil : si vous analysez les journaux de messages système, vous devez faire attention à l'**horodatage** du port flap, car il vous permet de comparer des événements simultanés sur ce port spécifique et de valider si oui ou non la survenue du lien flap est attendue (Par exemple : le réglage de la veille ou autre cause « normale » pas nécessairement un problème).

Interface Commandes Show

La commande **show interface** vous donne beaucoup d'informations qui vous aident à identifier un problème possible de couche 1 qui provoque un événement d'instabilité de liaison :

```
Switch#show interfaces tenGigabitEthernet 1/0/40
TenGigabitEthernet1/0/40 is up, line protocol is up (connected)
Hardware is Ten Gigabit Ethernet, address is 00a5.bf9c.29a8 (bia 00a5.bf9c.29a8)
 MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive not set
 Full-duplex, 10Gb/s, link type is auto, media type is SFP-10GBase-SR <-- SFP plugged into
the port
 input flow-control is on, output flow-control is unsupported
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 00:00:03, output 00:00:00, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
     670 packets input, 78317 bytes, 0 no buffer
    Received 540 broadcasts (540 multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog, 540 multicast, 0 pause input
     0 input packets with dribble condition detected
     1766 packets output, 146082 bytes, 0 underruns
0 Output 0 broadcasts (0 multicasts) 0 output errors, 0 collisions, 0 interface resets 0 unknown
protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause
output 0 output buffer failures, 0 output buffers swapped out
```

Ce tableau répertorie certains des compteurs de la commande show interface :

Compteur Problèmes et causes courantes qui augmentent les compteurs d'erreurs

- Un nombre élevé de CRC est généralement le résultat de collisions, mais peut égalem CRC indiquer un problème physique (câblage, SFP, interface incorrecte ou carte réseau) ou non-correspondance de mode duplex.
- Cela inclut les valeurs des compteurs runts, giants, no buffer, CRC, frame, overrun et ignored. D'autres erreurs d'entrée peuvent également entraîner une augmentation du nombre d'erreurs d'entrée.

Ce problème est dû à la faible taille de la file d'attente de sortie ou en cas de output errors surabonnement. Les pertes de sortie sont généralement le résultat d'une sursouscription d'interface cau par un transfert de plusieurs à un ou d'un transfert de 10 Gbits/s à 1 Gbits/s. Les tampe Total des pertes d'interface constituent une ressource limitée et ne peuvent absorber une rafale que jus un point après leguel les paquets commencent à être abandonnés. Les tampons peuve en sortie être réglés pour donner un certain coussin, mais il ne peut pas garantir un scénario de de sortie nulle. Les abandons de protocoles inconnus sont normalement abandonnés parce que l'inter où ces paquets sont reçus n'est pas configurée pour ce type de protocole, ou il peut s'a Abandons de de tout protocole que le commutateur ne reconnaît pas. Par exemple, si deux commutateur ne reconnaît pas. protocole sont connectés et que vous désactivez le protocole CDP sur une interface de commuta inconnus cela entraîne des abandons de protocole inconnus sur cette interface. Les paquets CD sont plus reconnus et ils sont abandonnés.

La commande **history** permet à une interface de maintenir l'historique d'utilisation dans un format graphique similaire à l'historique du CPU. Cet historique peut être conservé en bits par seconde (bps) ou en paquets par seconde (pps), comme vous pouvez le voir dans cet exemple :

Switch(config-if)#history ?
bps Maintain history in bits/second
pps Maintain history in packets/second

En plus du débit, l'utilisateur peut surveiller divers compteurs d'interface :

Switch(config-if) #history [bps pps] ? all Include all counters babbles Include ethernet output babbles - Babbl crcs Include CRCs - CRCs deferred Include ethernet output deferred - Defer dribbles Include dribbles - Dribl excessive-collisions Include ethernet excessive output collisions -ExCol flushes Include flushes - Flush frame-errors Include frame errors - FrErr giants Include giants - Giant ignored Include ignored - Ignor input-broadcasts Include input broadcasts - iBcst input-drops Include input drops - iDrop input-errors Include input errors - iErr interface-resets Include interface resets - IRset late-collisions Include ethernet late output collisions - LtCol lost-carrier Include ethernet output lost carrier - LstCr multi-collisions Include ethernet multiple output collisions -MlCol multicast Include ethernet input multicast - MlCst no-carrier Include ethernet output no-carrier - NoCarr output-broadcasts Include output broadcasts - oBcst output-buffer-failures Include output buffer failures - oBufF

output-buffers-swapped-out Include output buffers swapped out - oBSwO output-drops Include output drops - oDrop output-errors Include output errors - oErr output-no-buffer Include output no buffer - oNoBf overruns Include overruns - OvrRn pause-input Include ethernet input pause - PsIn pause-output Include ethernet output pause - PsOut runts Include runts - Runts single-collisions Include ethernet single output collisions - SnCol throttles Include throttles - Thrtl underruns Include underruns - UndRn unknown-protocol-drops Include unknown protocol drops - Unkno watchdog Include ethernet output watchdog - Wtchdg <cr> <cr> SW_1(config-if)#

Comme pour l'historique du processeur, il existe des graphiques pour les 60 dernières secondes, les 60 dernières minutes et les 72 dernières heures. Des graphiques distincts sont maintenus pour les histogrammes d'entrée et de sortie :

Switch#sh interfaces gigabitEthernet 1/0/2 history ? 60min Display 60 minute histograms only 60sec Display 60 second histograms only 72hour Display 72 hour histograms only all Display all three histogram intervals both Display both input and output histograms input Display input histograms only output Display output histograms only | Output modifiers

show interfaces tenGigabitEthernet 1/0/9 history 60sec

10
9
8
7
6
5
4
3
2
1
0511223344
0 5 0 5 0 5 0 5 0 5 0
TenGigabitEthernet1/0/9 input rate(mbits/sec) (last 60 seconds)

- 10
- 9 8
- 7
- 6

```
5
4
3
2
1
0...5...1...1...2...2...3....4...4...5....5....6
0 5 0 5 0 5 0 5 0 5 0
TenGigabitEthernet1/0/9 output rate(mbits/sec) (last 60 seconds)
```

Utilisez la commande **show controllers ethernet-controller{interface{numéro-interface}}** pour afficher les statistiques des compteurs de trafic par interface (**transmission** et **réception**) et des compteurs d'erreurs lues à partir du matériel. Utilisez le mot clé **phy** pour afficher les registres internes de l'interface ou le mot clé **port-info** pour afficher des informations sur le port ASIC.

Voici un exemple de sortie de la commande **show controllers ethernet-controller** pour une interface spécifique :

Switch# show c	ontrollers ethernet-control	ler tenGigabi	tEthernet 2/0/1	
Transmit	TenGigabitEthe	ernet2/0/1	Receive	
61572	Total bytes	282909	Total bytes	
0	Unicast frames	600	Unicast frames	
0	Unicast bytes	38400	Unicast bytes	
308	Multicast frames	3163	Multicast frames	
61572	Multicast bytes	244509	Multicast bytes	
0	Broadcast frames	0	Broadcast frames	
0	Broadcast bytes	0	Broadcast bytes	
0	System FCS error frames	0	IpgViolation frames	
0	MacUnderrun frames	0	MacOverrun frames	
0	Pause frames	0	Pause frames	
0	Cos O Pause frames	0	Cos O Pause frames	
0	Cos 1 Pause frames	0	Cos 1 Pause frames	
0	Cos 2 Pause frames	0	Cos 2 Pause frames	
0	Cos 3 Pause frames	0	Cos 3 Pause frames	
0	Cos 4 Pause frames	0	Cos 4 Pause frames	
0	Cos 5 Pause frames	0	Cos 5 Pause frames	
0	Cos 6 Pause frames	0	Cos 6 Pause frames	
0	Cos 7 Pause frames	0	Cos 7 Pause frames	
0	Oam frames	0	OamProcessed frames	
0	Oam frames	0	OamDropped frames	
193	Minimum size frames	3646	Minimum size frames	
0	65 to 127 byte frames	1	65 to 127 byte frames	
0	128 to 255 byte frames	0	128 to 255 byte frames	
115	256 to 511 byte frames	116	256 to 511 byte frames	
0	512 to 1023 byte frames	0	512 to 1023 byte frames	
0	1024 to 1518 byte frames	0	1024 to 1518 byte frame	s
0	1519 to 2047 byte frames	0	1519 to 2047 byte frame	s
0	2048 to 4095 byte frames	0	2048 to 4095 byte frame	s
0	4096 to 8191 byte frames	0	4096 to 8191 byte frame	s
0	8192 to 16383 byte frames	0	8192 to 16383 byte fram	les
0	16384 to 32767 byte frame	0	16384 to 32767 byte fra	me
0	> 32768 byte frames	0	> 32768 byte frames	
0	Late collision frames	0	SymbolErr frames	< Usually
indicates Lay	er 1 issues. Large amounts	of symbol erro	ors can indicate a bad d	evice, cable, or
hardware.				
0	Excess Defer frames	0	Collision fragments	< If this
counter incre	ments, this is an indicatio	on that the pos	rts are configured at ha	lf-duplex.
0	Good (1 coll) frames	0	ValidUnderSize frames	

0	Good (>1 coll) frames	0 InvalidO)verSize frames	
0	Deferred frames	0 ValidOve	erSize frames	
0	Gold frames dropped	0 FcsErr f	rames	< Are the result
of collisions	at half-duplex, a duplex mismatch, h	oad hardware	(NIC, cable, or	port)
0	Gold frames truncated			
0	Gold frames successful			
0	1 collision frames			
0	2 collision frames			
0	3 collision frames			
0	4 collision frames			
0	5 collision frames			
0	6 collision frames			
0	7 collision frames			
0	8 collision frames			
0	9 collision frames			
0	10 collision frames			
0	11 collision frames			
0	12 collision frames			
0	13 collision frames			
0	14 collision frames			
0	15 collision frames			
0	Excess collision frames			
LAST UPDATE 2	2622 msecs AGO			

Conseil : vous pouvez également utiliser la commande show interfaces {interface{interfacenumber}} controller pour afficher les statistiques de transmission et de réception par interface lues à partir du matériel.

Utilisez la commande **show platform pm interface-flaps{interface{***numéro-interface***}**} pour afficher le nombre de fois qu'une interface est tombée en panne :

Ceci est un exemple de sortie de la commande **show platform pm interfaceflaps{interface{numéro-interface}}**pour une interface spécifique :

 Field	AdminFields	OperFields
 Access Mode	Static	Static
Access Vlan Id	1	0
Voice Vlan Id	4096	0
VLAN Unassigned		0
ExAccess Vlan Id	32767	
Native Vlan Id	1	
Port Mode	dynamic	access
Encapsulation	802.1Q	Native
disl	auto	
Media	unknown	
DTP Nonegotiate	0	0
Port Protected	0	0
Unknown Unicast Blocked	0	0
Unknown Multicast Blocked	0	0
Vepa Enabled	0	0
App interface	0	0
Span Destination	0	
Duplar	21140	£.,11

Switch#show	platform	mo	interface-flaps	tenGigabitEthernet	2/0/1
SWILCCIT SHOW	pracrorm	թա	Incertace-riaps	cenergabreschernet	2/0/1

stayed up before the last	flap event	
LastLinkUpDuration(sec):	2277	< Time in seconds the interface
stayed down during the las	st flap event	
LastLinkDownDuration(sec	2) 192	< Time in seconds the interface
Time Stamp Last Link Fla	apped(U) : Aug 19 14:5	8:00.154 < Last time the interface flapped
XgxsResetOnLinkDown(10GE	E):	
flapped		
No.of LinkDownEvents :	12	< Number of times the interface
Sw LinkNeg State : LinkS	StateUp	
Previous Pruned Vlans :	none	
Current Pruned Vlans : r	ione	
Forwarding Vlans : none		
Jumbo Size	1500	
saved_input_defqcount	2000	
saved_holdqueue_out	0	
Jumbo	0	0
Flow Control Send	Off	Off
Flow Control Receive	ON	ON
No Negotiate Capable	1024	1024
No Negotiate	0	0
- Auto Speed Capable	1	1
Speed	auto	1000
Default Duplex	auto	

Utiliser la commande **show idprom{interface{numéro-interface}}** sans mots-clés pour afficher les informations IDPROM de l'interface spécifique. Utilisez avec le mot clé **detail** pour afficher des informations IDPROM hexadécimales détaillées.

Voici un exemple de sortie de la commande **show idprom{interface{numéro-interface}}** pour une interface spécifique. Les valeurs de seuil **High** et **Low Warning|Alarm** indiquées dans la sortie de cette commande sont les paramètres d'émetteur-récepteur optique opérationnels normaux. Ces valeurs peuvent être vérifiées à partir de la feuille de données pour l'optique spécifique. Reportez-vous à la <u>fiche technique Cisco Optics</u>

Switch#show idprom interface Twe1/0/1

IDPROM for transceiver TwentyFiveGigE1/0/1	:
Description	= SFP or SFP+ optics (type 3)
Transceiver Type:	= GE CWDM 1550 (107)
Product Identifier (PID)	= CWDM-SFP-1550 <
Vendor Revision	= A
Serial Number (SN)	= XXXXXXXXXX < Cisco Serial Number
Vendor Name	= CISCO-FINISAR
Vendor OUI (IEEE company ID)	= 00.90.65 (36965)
CLEI code	= CNTRV14FAB
Cisco part number	= 10-1879-03
Device State	= Enabled.
Date code (yy/mm/dd)	= 14/12/22
Connector type	= LC.
Encoding	= 8B10B (1)
Nominal bitrate	= OTU-1 (2700 Mbits/s)
Minimum bit rate as % of nominal bit rate	= not specified
Maximum bit rate as % of nominal bit rate	= not specified
The transceiver type is 107	
Link reach for 9u fiber (km)	= LR-2(80 km) (80)
	LR-3(80km) (80)
	ZX(80km) (80)

```
= IR-2(40km) (255)
Link reach for 9u fiber (m)
                                                      LR-1(40km) (255)
                                                      LR-2(80km) (255)
                                                      LR-3(80km) (255)
                                                      DX(40KM) (255)
                                                      HX(40km) (255)
                                                      ZX(80km) (255)
                                                      VX(100km) (255)
Link reach for 50u fiber (m)
                                                    = SR(2km) (0)
                                                      IR-1(15km) (0)
                                                      IR-2(40km) (0)
                                                      LR-1(40km) (0)
                                                       LR-2(80km) (0)
                                                       LR-3(80km) (0)
                                                       DX(40KM) (0)
                                                       HX(40km) (0)
                                                       ZX(80km) (0)
                                                      VX(100km) (0)
                                                      1 \times FC, 2 \times FC - SM(10 \text{ km}) (0)
                                                      ESCON-SM(20km) (0)
Link reach for 62.5u fiber (m)
                                                    = SR(2km) (0)
                                                      IR-1(15km) (0)
                                                       IR-2(40km) (0)
                                                      LR-1(40km) (0)
                                                      LR-2(80km) (0)
                                                      LR-3(80km) (0)
                                                      DX(40KM) (0)
                                                      HX(40km) (0)
                                                       ZX(80km) (0)
                                                      VX(100km) (0)
                                                      1 \times FC, 2 \times FC - SM(10 \text{ km}) (0)
                                                      ESCON-SM(20km) (0)
Nominal laser wavelength
                                                   = 1550 nm.
DWDM wavelength fraction
                                                   = 1550.0 nm.
                                                    = Tx disable
Supported options
                                                      Tx fault signal
                                                      Loss of signal (standard implementation)
Supported enhanced options
                                                    = Alarms for monitored parameters
Diagnostic monitoring
                                                   = Digital diagnostics supported
                                                     Diagnostics are externally calibrated
                                                     Rx power measured is "Average power"
Transceiver temperature operating range = -5 C to 75 C (commercial)
                                                   = 0 C
Minimum operating temperature
Maximum operating temperature
                                                   = 70 C
Maximum ofHigh temperature alarm thresholdHigh temperature warning thresholdLow temperature warning threshold= +0.000 C= -4.000 C= 3600.0 mVc
                                                  = 3600.0 mVolts

    Soud Wolts
    Soud Wolts

High laser bias current alarm threshold = 84.000 mAmps
High laser bias current warning threshold = 70.000 mAmps
Low laser bias current warning threshold = 4.000 mAmps
Low laser bias current alarm threshold = 2.000 mAmps
                                                  = 7.4 dBm
High transmit power alarm threshold
High transmit power warning threshold= 4.0 \text{ dBm}Low transmit power warning threshold= -1.7 \text{ dBm}Low transmit power alarm threshold= -8.2 \text{ dBm}
Low transmit power alarm threshold
                                                  = -8.2 dBm
                                                   = -3.0 dBm
High receive power alarm threshold
High receive power alarm threshold= -3.0 \text{ dBm}Low receive power alarm threshold= -33.0 \text{ dBm}
High receive power warning threshold= -7.0 dBmLow receive power warning threshold= -28.2 dBm
```

External Calibration: bias current slope = 1.000 External Calibration: bias current offset = 0

Conseil :Assurez-vous que la version matérielle et logicielle du périphérique est compatible avec la <u>matrice de compatibilité</u> SFP/SFP+ installée<u>Cisco Optics-to-Device</u>

Ce tableau répertorie les différentes commandes qui peuvent être utilisées pour résoudre les problèmes de liaison :

Commande	Objectif
show interfaces counters errors	Affiche les compteurs d'erreurs d'interface
show interfaces capabilities	Affiche les fonctionnalités de l'interface spécifique
show interface transceivers (spécifique fibre/SFP)	Affiche des informations sur les émetteurs récepteurs optiques pour lesquels la surveillance optique numérique (DOM) est activée
show interface link	Affiche les informations de niveau liaison
<pre>show interface {interface{interface-number}} platform show controllers ethernet-controller {interface{interface- number}} port-info</pre>	Affiche les informations de plate-forme inte Affiche des informations de port supplémentaires
show controllers ethernet-controller {interface{ <i>interface-</i> <i>number</i> }} link status detail	Affiche l'état du lien
show errdisable flap-values	Affiche le nombre de volets autorisés avar errdisable.
clear counters	Utilisez cette commande pour mettre à zér compteurs de trafic et d'erreurs afin de voi problème n'est que temporaire ou si les compteurs continuent à augmenter.
clear controllers ethernet-controller	Utilisez cette commande pour effacer les compteurs matériels de transmission et de réception.

Vérification de l'état du câble avec le réflecteur de domaine temporel (TDR)

La fonction de réflectomètre temporel (TDR) vous permet de déterminer si un câble est OUVERT ou COURT lorsqu'il est défectueux. Avec TDR, vous pouvez vérifier l'état des câbles en cuivre pour les ports des commutateurs Catalyst 9000. Le TDR détecte un défaut de câble avec un signal envoyé via le câble et lit le signal réfléchi. Tout ou partie du signal peut être réfléchi en raison de défauts dans le câble

Utilisez le test cable-diagnostics tdr {interface-*number*} }pour démarrer le test TDR, puis utilisez la commande **show cable-diagnostics tdr**{*interface-number*}.

Conseil : reportez-vous à la <u>vérification</u> de l'<u>état et de la connectivité des ports</u> pour plus de détails

L'exemple montre un résultat de test TDR pour l'interface Tw2/0/10 :

TDR test last run on: November 05 02:28:43 Interface Speed Local pair Pair length Remote pair Pair status

Tw2/0/10 1000M Pair A 1 +/- 5 meters Pair A Impedance Mismatch Pair B 1 +/- 5 meters Pair B Impedance Mismatch Pair C 1 +/- 5 meters Pair C Open Pair D 3 +/- 5 meters Pair D Open

Conseil : sur les commutateurs de la gamme Catalyst 9300, seuls ces types de défaut de câble sont détectés : **OUVERT**, **COURT** et **NON-CORRESPONDANCE D'IMPÉDANCE**. L'état **Normal** s'affiche si le câble est correctement raccordé et ceci est fait à titre d'exemple.

Lignes directrices du RDT

Les présentes lignes directrices s'appliquent à l'utilisation de TDR :

- Ne modifiez pas la configuration du port pendant l'exécution du test TDR.
- Si vous connectez un port lors d'un test TDR à un port compatible Auto-MDIX, le résultat TDR peut être non valide.
- Si vous connectez un port lors d'un test TDR à un port 100BASE-T tel que celui du périphérique, les paires inutilisées (4-5 et 7-8) sont signalées comme défectueuses car l'extrémité distante ne met pas fin à ces paires.
- En raison des caractéristiques du câble, vous devez exécuter le test TDR plusieurs fois pour obtenir des résultats précis.
- Ne modifiez pas l'état du port (par exemple, retirez le câble à l'extrémité proche ou éloignée) car les résultats peuvent être inexacts.
- TDR fonctionne mieux si le câble de test est déconnecté du port distant. Sinon, il peut être difficile pour vous d'interpréter correctement les résultats.
- Le TDR fonctionne sur quatre fils. Selon les conditions du câble, l'état peut indiquer qu'une paire est OUVERTE ou COURTE, tandis que toutes les autres paires de fils sont considérées comme défectueuses. Cette opération est acceptable car vous pouvez déclarer un câble défectueux à condition qu'une paire de fils soit OUVERTE ou COURTE.
- L'objectif du TDR est de déterminer le fonctionnement d'un câble plutôt que de localiser un câble défectueux.
- Lorsque TDR détecte un câble défectueux, vous pouvez toujours utiliser un outil de diagnostic de câble hors ligne pour mieux diagnostiquer le problème.
- Les résultats TDR peuvent différer d'une série à l'autre sur différents modèles de commutateurs de la gamme Catalyst 9300 en raison de la différence de résolution des implémentations TDR. Dans ce cas, vous devez vous reporter à un outil de diagnostic de câble hors ligne.

Surveillance optique numérique (DOM)

La surveillance optique numérique (DOM, Digital Optical Monitoring) est une norme à l'échelle de l'industrie, destinée à définir une interface numérique permettant d'accéder à des paramètres en temps réel tels que :

- Température
- Tension d'alimentation émetteur-récepteur
- Courant de polarisation laser

- Puissance Tx optique
- Puissance optique Rx

Comment activer DOM

Le tableau répertorie les commandes que vous pouvez utiliser pour activer/désactiver le mode DOM pour tous les types d'émetteurs-récepteurs du système :

Étapes	Commande ou action	Objectif
Étape 1	activer Exemple : switch>enable	Active le mode d'exécution physique Saisissez votre mot de passe si vous y êtes invité
Étape 2	configurer le terminal Exemple : switch#configure terminal	Passe en mode de configuration globale
Étape 3	type d'émetteur-récepteur all Exemple : switch(config)#transceiver tapez all	Passe en mode de configuration Type d'émetteur-récepteur
Étape 4	surveillance Exemple : switch(config)#monitoring	Permet de surveiller tous les émetteurs- récepteurs optiques.

Utilisez la commande **show interfaces** {interface{*interface-number*}} transceiver detail pour afficher les informations de l'émetteur-récepteur :

Switch#show interfaces hundredGigE 1/0/25 transceiver detail ITU Channel not available (Wavelength not available), Transceiver is internally calibrated. mA: milliamperes, dBm: decibels (milliwatts), NA or N/A: not applicable. ++ : high alarm, + : high warning, - : low warning, -- : low alarm. A2D readouts (if they differ), are reported in parentheses. The threshold values are calibrated.

High Alarm High Warn Low Warn Low Alarm Voltage Threshold Threshold Threshold Threshold Port (Volts) (Volts) (Volts) (Volts)

Hu1/0/25 3.28 3.63 3.46 3.13 2.97

 Optical
 High Alarm
 High Warn
 Low Warn
 Low Alarm

 Transmit Power
 Threshold
 Threshold
 Threshold
 Threshold

 Port Lane (dBm)
 (dBm)
 (dBm)
 (dBm)
 (dBm)
 (dBm)

Hu1/0/25 N/A -2.2 1.7 -1.3 -7.3 -11.3

Conseil : pour déterminer si un émetteur-récepteur optique fonctionne aux niveaux de signal appropriés, reportez-vous à la <u>fiche technique Cisco Optics</u>

Messages Syslog de surveillance optique numérique

Cette section décrit les messages syslog de violation de seuil les plus pertinents :

Niveaux de température des optiques SFP

• Explication : ces messages de journal sont générés lorsque la température est basse ou dépasse les valeurs de fonctionnement optique normales :

%SFF8472-3-THRESHOLD_VIOLATION: Te7/3: Temperature high alarm; Operating value: 88.7 C, Threshold value: 74.0 C. %SFF8472-3-THRESHOLD_VIOLATION: Fo1/1/1: Temperature low alarm; Operating value: 0.0 C, Threshold value: 35.0 C.

Niveaux de tension des modules optiques SFP

• Explication : ce message de journal est généré lorsque la tension est faible ou dépasse les valeurs de fonctionnement optique normales :

%SFF8472-3-THRESHOLD_VIOLATION: Gi1/1/3: Voltage high warning; Operating value: 3.50 V, Threshold value: 3.50 V. %SFF8472-5-THRESHOLD_VIOLATION: Gi1/1: Voltage low alarm; Operating value: 2.70 V, Threshold value: 2.97 V.

Niveaux d'éclairage des optiques SFP

• Explication : ce message de journal est généré lorsque la puissance lumineuse est faible ou dépasse les valeurs de fonctionnement optique :

%SFF8472-3-THRESHOLD_VIOLATION: Gi1/0/1: Rx power high warning; Operating value: -2.7 dBm, Threshold value: -3.0 dBm. %SFF8472-5-THRESHOLD_VIOLATION: Te1/1: Rx power low warning; Operating value: -13.8 dBm, Threshold value: -9.9 dBm.

Conseil : pour plus d'informations sur DOM, consultez Surveillance optique numérique

Optique Cisco et correction d'erreurs sans voie de retour (FEC)

FEC est une technique utilisée pour détecter et corriger un certain nombre d'erreurs dans un flux

de bits et pour ajouter des bits redondants et du code de vérification des erreurs au bloc de messages avant la transmission. En tant que fabricant de modules, Cisco veille à ce que nos émetteurs-récepteurs soient conformes aux spécifications. Lorsque l'émetteur-récepteur optique est utilisé sur une plate-forme hôte Cisco, le FEC est activé par défaut en fonction du type de module optique détecté par le logiciel hôte (voir ce <u>tableau téléchargeable</u>). Dans la grande majorité des cas, l'implémentation FEC est dictée par la norme de l'industrie que le type optique prend en charge.

Pour certaines spécifications personnalisées, les implémentations FEC varient. Référez-vous à <u>Comprendre FEC et sa mise en oeuvre dans le</u> document <u>Optiques Cisco</u> pour des informations détaillées.

L'exemple montre comment configurer FEC et certaines des options disponibles :

switch(config-if)#fec? auto Enable FEC Auto-Neg cl108 Enable clause108 with 25G cl74 Enable clause74 with 25G off Turn FEC off Use the **show interface** command to verify FEC configuration: TwentyFiveGigE1/0/13 is up, line protocol is up (connected) Hardware is Twenty Five Gigabit Ethernet, address is 3473.2d93.bc8d (bia 3473.2d93.bc8d) MTU 9170 bytes, BW 25000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 25Gb/s, link type is force-up, media type is SFP-25GBase-SR Fec is auto < -- The configured setting for FEC is displayed here input flow-control is on, output flow-control is off ARP type: ARPA, ARP Timeout 04:00:00 --snip--

Remarque : les deux côtés d'une liaison doivent avoir le même FEC encoding algorithme activé pour que la liaison s'active.

Commandes de débogage

Ce tableau répertorie les différentes commandes qui peuvent être utilisées pour déboguer les Port Flaps

Attention : utilisez les commandes debug avec précaution. Sachez que de nombreuses commandes debug ont un impact sur le réseau actif et qu'il est recommandé de les utiliser dans un environnement de travaux pratiques uniquement lorsque le problème est reproduit.

CommandeObjectifdebug pmDébogage de Port Managerdebug pm portÉvénements liés aux portsdebug platform pmInformations de débogage du gestionnaire de port

	la plate-forme NGWC
debug platform pm I2-control	NGWC L2 Control Infra debug
debug platform pm link-status	Événements de détection de liaison d'interface
debug platform pm pm-vectors	Fonctions vectorielles de Port Manager
debug condition interface <nom interface=""></nom>	Activer sélectivement les débogages pour une interface spécifique
debug interface state	Transitions des états

la alata farma NICINIC

Ceci est un exemple de sortie d'exemple partiel de la commande **d***déboguer* commandes répertoriées dans le tableau :

SW_2#sh debugging PM (platform): L2 Control Infra debugging is on <-- debug platform pm 12-control PM Link Status debugging is on <-- debug platform pm link-status PM Vectors debugging is on <-- debug platform pm pm-vectors Packet Infra debugs: Ip Address Port -----|-----| Port Manager: Port events debugging is on <-- debug pm port Condition 1: interface Te1/0/2 (1 flags triggered) Flags: Te1/0/2 ----- Sample output -----*Aug 25 20:01:05.791: link up/down event : link-down on Te1/0/2 *Aug 25 20:01:05.791: pm_port 1/2: during state access, got event 5(link_down) <-- Link down event (day/time) *Aug 25 20:01:05.791: @@@ pm_port 1/2: access -> pagp *Aug 25 20:01:05.792: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:05.792: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:05.792: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:05.792: IOS-FMAN-PM-DEBUG-PM-VECTORS: Vp Disable: pd=0x7F1E797914B0 dpidx=10 Te1/0/2 *Aug 25 20:01:05.792: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:05.792: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:05.792: Maintains count of VP per Interface:delete, pm_vp_counter[0]: 14, pm_vp_counter[1]: 14 *Aug 25 20:01:05.792: *** port_modechange: 1/2 mode_none(10) *Aug 25 20:01:05.792: @@@ pm_port 1/2: pagp -> dtp *Aug 25 20:01:05.792: stop flap timer : Te1/0/2 pagp *Aug 25 20:01:05.792: *** port_bndl_stop: 1/2 : inform yes *Aug 25 20:01:05.792: @@@ pm_port 1/2: dtp -> present *Aug 25 20:01:05.792: *** port_dtp_stop: 1/2 *Aug 25 20:01:05.792: stop flap timer : Te1/0/2 pagp *Aug 25 20:01:05.792: stop flap timer : Te1/0/2 dtp *Aug 25 20:01:05.792: stop flap timer : Te1/0/2 unknown *Aug 25 20:01:05.792: *** port_linkchange: reason_link_change(3): link_down(0)1/2 <-- State link change *Aug 25 20:01:05.792: pm_port 1/2: idle during state present *Aug 25 20:01:05.792: @@@ pm_port 1/2: present -> link_down <-- State of the link *Aug 25 20:01:06.791: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/2, changed state to down

*Aug 25 20:01:07.792: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/2, changed state to down *Aug 25 20:01:11.098: IOS-FMAN-PM-DEBUG-LINK-STATUS: Received LINKCHANGE in xcvr message, if_id 10 (TenGigabitEthernet1/0/2)

*Aug 25 20:01:11.098: IOS-FMAN-PM-DEBUG-LINK-STATUS: if_id 0xA, if_name Te1/0/2, link up <--Link became up *Aug 25 20:01:11.098: link up/down event: link-up on Te1/0/2 *Aug 25 20:01:11.098: pm_port 1/2: during state link_down, got event 4(link_up) *Aug 25 20:01:11.098: @@@ pm_port 1/2: link_down -> link_up *Aug 25 20:01:11.098: flap count for link type : Te1/0/2 Linkcnt = 0 *Aug 25 20:01:11.099: pm_port 1/2: idle during state link_up *Aug 25 20:01:11.099: @@@ pm_port 1/2: link_up -> link_authentication *Aug 25 20:01:11.099: pm_port 1/2: during state link_authentication, got event 8(authen_disable) *Aug 25 20:01:11.099: @@@ pm_port 1/2: link_authentication -> link_ready *Aug 25 20:01:11.099: *** port_linkchange: reason_link_change(3): link_up(1)1/2 *Aug 25 20:01:11.099: pm_port 1/2: idle during state link_ready *Aug 25 20:01:11.099: @@@ pm_port 1/2: link_ready -> dtp *Aug 25 20:01:11.099: IOS-FMAN-PM-DEBUG-PM-VECTORS: Set pm vp mode attributes for Te1/0/2 vlan 1 *Aug 25 20:01:11.099: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.099: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.099: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.099: pm_port 1/2: during state dtp, got event 13(dtp_complete) *Aug 25 20:01:11.099: @@@ pm_port 1/2: dtp -> dtp *Aug 25 20:01:11.099: IOS-FMAN-PM-DEBUG-PM-VECTORS: Set pm vp mode attributes for Te1/0/2 vlan 1 *Aug 25 20:01:11.099: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.099: DTP flapping: flap count for dtp type: Te1/0/2 Dtpcnt = 0 *Aug 25 20:01:11.099: pm_port 1/2: during state dtp, got event 110(dtp_done) *Aug 25 20:01:11.099: @@@ pm_port 1/2: dtp -> pre_pagp_may_suspend *Aug 25 20:01:11.099: pm_port 1/2: idle during state pre_pagp_may_suspend *Aug 25 20:01:11.099: @@@ pm_port 1/2: pre_pagp_may_suspend -> pagp_may_suspend *Aug 25 20:01:11.099: pm_port 1/2: during state pagp_may_suspend, got event 33(pagp_continue) *Aug 25 20:01:11.099: @@@ pm_port 1/2: pagp_may_suspend -> start_pagp *Aug 25 20:01:11.099: pm_port 1/2: idle during state start_pagp *Aug 25 20:01:11.099: @@@ pm_port 1/2: start_pagp -> pagp *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Set pm vp mode attributes for Te1/0/2 vlan 1 *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: *** port_bndl_start: 1/2 *Aug 25 20:01:11.100: stop flap timer : Te1/0/2 pagp *Aug 25 20:01:11.100: pm_port 1/2: during state pagp, got event 34(dont_bundle) *Aug 25 20:01:11.100: @@@ pm_port 1/2: pagp -> pre_post_pagp *Aug 25 20:01:11.100: pm_port 1/2: idle during state pre_post_pagp *Aug 25 20:01:11.100: @@@ pm_port 1/2: pre_post_pagp -> post_pagp *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: pm_port 1/2: during state post_pagp, got event 14(dtp_access) *Aug 25 20:01:11.100: @@@ pm_port 1/2: post_pagp -> access *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Set pm vp mode attributes for Te1/0/2 vlan 1 *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.100: Maintains count of VP per Interface:add, pm_vp_counter[0]: 15, pm_vp_counter[1]: 15 *Aug 25 20:01:11.100: IOS-FMAN-PM-DEBUG-PM-VECTORS: vlan vp enable for port(Te1/0/2) and vlan:1 *Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: VP ENABLE: vp_pvlan_port_mode:access for Te1/0/2 *Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: VP Enable: vp_pvlan_native_vlanId:1 for Te1/0/2 *Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message *Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message

```
*Aug 25 20:01:11.101: *** port_modechange: 1/2 mode_access(1)
*Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: The operational mode of Te1/0/2 in set all
vlans is 1
*Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message
*Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: vp_pvlan port_mode:access vlan:1 for Te1/0/2
*Aug 25 20:01:11.101: IOS-FMAN-PM-DEBUG-PM-VECTORS: vp_pvlan port_mode:access native_vlan:1 for
Te1/0/2
*Aug 25 20:01:11.102: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message
*Aug 25 20:01:11.102: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message
*Aug 25 20:01:11.002: IOS-FMAN-PM-DEBUG-PM-VECTORS: Success sending PM tdl message
*Aug 25 20:01:11.0098: %LINK-3-UPDOWN: Interface TenGigabitEthernet1/0/2, changed state to up
*Aug 25 20:01:14.098: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet1/0/2, changed state to up
```

Informations connexes

Matrice de compatibilité Cisco Optics-to-Device

Fiche technique des modules SFP Cisco pour applications Gigabit Ethernet

25 GE et 100 GE - Livre blanc sur la protection des investissements pour des débits plus élevés dans les entreprises

Fiche technique de la solution Cisco CWDM SFP

Soutenir l'innovation : comment le TAC de Cisco transforme la documentation et simplifie le libreservice

Technical Support & Documentation - Cisco Systems

ID de débogage Cisco	Description
ID de bogue Cisco	Volets de liaison intermittents sur les commutateurs mGig Cat9300 vers le
<u>CSCvu13029</u>	terminaux compatibles mGig
ID de bogue Cisco	Les problèmes d'interopérabilité mGig du Cat9400 avec d'autres périphérie
<u>CSCvt50788</u>	mGig entraînent des battements de liaison
ID de bogue Cisco	CAT9400 : volets d'interface Mgig avec points d'accès Mgig
<u>CSCvu92432</u>	
ID de bogue Cisco CSCve65787	Prise en charge de l'autoneg pour xcvr Cu 100G/40G/25G

À propos de cette traduction

Cisco a traduit ce document en traduction automatisée vérifiée par une personne dans le cadre d'un service mondial permettant à nos utilisateurs d'obtenir le contenu d'assistance dans leur propre langue.

Il convient cependant de noter que même la meilleure traduction automatisée ne sera pas aussi précise que celle fournie par un traducteur professionnel.