Fonctionnement et dépannage de la surveillance DHCP sur les commutateurs Catalyst 9000

Table des matières

Introduction
Conditions préalables
Exigences
Composants utilisés
Informations générales
Surveillance DHCP
Fonctionnement de la surveillance DHCP
Topologie
Configurer
Vérifier
<u>Dépannage</u>
Dépannage des logiciels
Dépannage du trafic point/chemin (CPU)
Dépannage du matériel
Capture des paquets du chemin du processeur
Traces utiles
Syslogs et explications
Avertissements de surveillance DHCP
Surveillance DHCP en limite SDA
Informations connexes

Introduction

Ce document décrit comment utiliser et dépanner la surveillance DHCP sur les commutateurs de la gamme Catalyst 9000

Conditions préalables

Exigences

Cisco vous recommande de prendre connaissance des rubriques suivantes :

- Architecture des commutateurs Catalyst 9000
- Architecture du logiciel Cisco IOS® XE

Composants utilisés

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

- C9200
- C9300
- C9400
- C9500
- C9600

Cisco IOS® XE 16.12.X

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Si votre réseau est en ligne, assurez-vous de bien comprendre l'incidence possible des commandes.

Remarque : consultez le guide de configuration approprié pour connaître les commandes utilisées pour activer ces fonctions sur d'autres plates-formes Cisco.

Informations générales

Surveillance DHCP

La surveillance DHCP (Dynamic Host Configuration Protocol) est une fonctionnalité de sécurité utilisée pour vérifier le trafic DHCP afin de bloquer tout paquet DHCP malveillant. Il agit comme un pare-feu entre les ports utilisateur non approuvés et les ports du serveur DHCP sur le réseau pour empêcher les serveurs DHCP malveillants sur le réseau, car cela peut entraîner un déni de service.

Fonctionnement de la surveillance DHCP

La surveillance DHCP fonctionne avec le concept d'interfaces sécurisées et non sécurisées. Par le chemin du trafic DHCP, le commutateur vérifie les paquets DHCP reçus sur les interfaces et garde une trace des paquets de serveur DHCP attendus (OFFER & ACK) sur les interfaces approuvées. En d'autres termes, les interfaces non approuvées bloquent les paquets du serveur DHCP.

Les paquets DHCP sont bloqués sur les interfaces non approuvées.

- Un paquet provenant d'un serveur DHCP, comme un paquet DHCPOFFER, DHCPACK, DHCPNAK ou DHCPLEASEQUERY, provient de l'extérieur du réseau ou du pare-feu. Cela empêche un serveur DHCP non autorisé d'attaquer le réseau sur des ports non approuvés.
- Un paquet reçu sur une interface non approuvée, et l'adresse MAC source et l'adresse matérielle du client DHCP ne correspondent pas. Cela empêche l'usurpation de paquets DHCP d'un client non autorisé qui pourrait créer une attaque par déni de service sur un serveur DHCP.
- Message de diffusion DHCPRELEASE ou DHCPDECLINE dont l'adresse MAC figure dans la base de données de liaison de surveillance DHCP, mais dont les informations d'interface

ne correspondent pas à l'interface sur laquelle le message a été reçu. Cela empêche les attaques par déni de service sur les clients.

 Paquet DHCP transféré par un agent de relais DHCP qui inclut une adresse IP d'agent de relais qui n'est pas 0.0.0.0, ou l'agent de relais transfère un paquet qui inclut des informations d'option 82 à un port non approuvé. Cela empêche l'usurpation des informations de l'agent de relais sur le réseau.

Le commutateur sur lequel vous configurez la surveillance DHCP crée une table de surveillance DHCP ou une base de données de liaison DHCP. Cette table permet de conserver une trace des adresses IP attribuées à partir d'un serveur DHCP légitime. La base de données de liaison est également utilisée par d'autres fonctions de sécurité IOS telles que l'inspection ARP dynamique et la protection de source IP.

Remarque : pour permettre à la surveillance DHCP de fonctionner correctement, assurezvous que tous les ports de liaison ascendante sont fiables pour atteindre le serveur DHCP et que les ports d'utilisateur final ne sont pas fiables.

Topologie

Configurer

Configuration globale

<#root>

 Enable DHCP snooping globally on the switch switch(config)#

ip dhcp snooping

- Designate ports that forward traffic toward the DHCP server as trusted switch(config-if)#
- ip dhcp snooping trust

(Additional verification)

- List uplink ports according to the topology, ensure all the uplink ports toward the DHCP server a

trusted

- List the port where the Legitimate DHCP Server is connected (include any Secondary DHCP Server)
- Ensure that no other port is configured as trusted
- 3. Configure DHCP rate limiting on each untrusted port (Optional) switch(config-if)#
- ip dhcp snooping limit rate 10 << ---- 10 packets per second (pps)
- Enable DHCP snooping in specific VLAN switch(config)#
- ip dhcp snooping vlan 10

<< ---- Allow the switch to snoop the traffic for that specific VLAN

5. Enable the insertion and removal of option-82 information DHCP packets switch(config)#

ip dhcp snooping information option

<-- Enable insertion of option 82

switch(config)#

no ip dhcp snooping information option

<-- Disable insertion of option 82

Legitimate DHCP Server Interface and Secondary DHCP Server, if available

Server Interface

interface FortyGigabitEthernet1/0/5
switchport mode access
switchport mode access vlan 11

ip dhcp snooping trust

end

Uplink interface

interface FortyGigabitEthernet1/0/10
switchport mode trunk

ip dhcp snooping trust

end

User Interface

<< ---- All interfaces are UNTRUSTED by default

```
interface FortyGigabitEthernet1/0/2
switchport access vlan 10
switchport mode access
```

ip dhcp snooping limit rate 10

<< ---- Optional

end

Remarque : pour autoriser les paquets de l'option 82, vous devez activer l'option d'information de surveillance ip dhcp allow-untrusted.

Vérifier

Vérifiez si la surveillance DHCP est activée sur le VLAN souhaité et assurez-vous que les interfaces approuvées et non approuvées sont bien répertoriées. Si un débit est configuré, assurez-vous qu'il figure également dans la liste.

<#root>

switch#show ip dhcp snooping

Switch DHCP snooping is

enabled

Switch DHCP gleaning is disabled DHCP snooping is configured on following VLANs:

10-11

DHCP

snooping is operational on following VLANs

:

<<---- Configured and operational on Vlan 10 & 11

10-11

DHCP snooping is configured on the following L3 Interfaces:

Insertion of option 82 is disabled

<<---- Option 82 can not be added to DHCP packet

circuit-id default format: vlan-mod-port remote-id: 00a3.d144.1a80 (MAC) Option 82 on untrusted port is not allowed Verification of hwaddr field is enabled Verification of giaddr field is enabled DHCP snooping trust/rate is configured on the following Interfaces:

Interface

```
Trusted
```

Allow option Rate limit (pps)

FortyGigabitEthernet1/0/2

no

no

10

<<--- Trust is NOT set on this interface

Custom circuit-ids: FortyGigabitEthernet1/0/10

yes

yes unlimited

<<--- Trust is set on this interface

Custom circuit-ids:

Une fois que les utilisateurs reçoivent une adresse IP par DHCP, ils sont répertoriés dans ce résultat.

- La surveillance DHCP supprime l'entrée dans la base de données lorsque le bail de l'adresse IP expire ou lorsque le commutateur reçoit un message DHCPRELEASE de l'hôte.
- Assurez-vous que les informations répertoriées pour l'adresse MAC de l'utilisateur final sont correctes.

```
<#root>
```

c9500#show ip dhcp snooping binding

MacAddress IpAddress Lease(sec) Type VLAN Interface O0:A3:D1:44:20:46 10.0.0.3 85556 dhcp-snooping 10 FortyGigabitEthernet1/0/2 Total number of bindings: 1

Ce tableau répertorie les différentes commandes qui peuvent être utilisées pour surveiller les informations de surveillance DHCP.

Commande	Objectif			
show ip dhcp snooping binding show ip dhcp snooping binding [adresse IP] [adresse MAC] [interface port/emplacement Ethernet] [id_vlan]	Affiche uniquement les liaisons configurées dynamiquement dans la base de données de liaison de surveillance DHCP, également appelée table de liaison. - Adresse IP de l'entrée de liaison - Adresse MAC de l'entrée de liaison - Interface d'entrée de liaison - VLAN d'entrée de liaison			
show ip dhcp snooping database	Affiche l'état et les statistiques de la base de données de liaison de surveillance DHCP.			
show ip dhcp snooping statistics	Affiche les statistiques de surveillance DHCP sous forme			

	récapitulative ou détaillée.
show ip source binding	Affichez les liaisons configurées de manière dynamique et statique.
	Le paquet DHCP est envoyé à l'agent de relais configuré dans le vlan client via l'interface SVI du vlan client. Si la file d'attente d'entrée indique une limite d'abandon ou d'atteinte maximale, il est probable que le paquet DHCP du client a été abandonné et n'a pas pu atteindre l'agent de relais configuré. Remarque : assurez-vous que les abandons ne sont
	pas visibles dans la file d'attente d'entrée.
	switch#show int vlan 670 Charge pendant cinq secondes : 13 %/0 % ; une minute : 10 % ; cinq minutes : 10 % La source horaire est NTP, 18:39:52.476 UTC Thu Sep 10 2020
show interface vlan xyz	Vlan670 est actif, le protocole de ligne est actif , état
show buffer input-interface Vlan xyz dump	Le matériel est l'interface SVI Ethernet, l'adresse est 00fd.227a.5920 (bia 00fd.227a.5920) Description : ion media client
	L'adresse Internet est 10.27.49.254/23
	MTU 1500 octets, BW 1000000 Kbit/s, DLY 10 usec, fiabilité 255/255, txload 1/255, rxload 1/255
	Encapsulation ARPA, bouclage non défini Keepaliye non pris en charge
	Type ARP : ARPA, ARP Timeout 04:00:00
	Dernière entrée 03:01:29, sortie 00:00:02, sortie ne se
	Dernière suppression des compteurs « show interface »
	jamais File d'attente d'entrée : 375/375/4020251/0
	(size/max/drops/flushes) ; Total des pertes en sortie : 0 < 375 paquets en entrée dans la file d'attente / 4020251 ont été abandonnés

Dépannage des logiciels

Vérifiez ce que le commutateur reçoit. Ces paquets sont traités au niveau du plan de contrôle du processeur, donc assurez-vous de voir tous les paquets dans la direction d'injection et de pointage, et vérifiez si les informations sont correctes.

Attention : utilisez les commandes debug avec précaution. Sachez que de nombreuses commandes debug ont un impact sur le réseau actif et que leur utilisation est recommandée dans un environnement de travaux pratiques uniquement lorsque le problème est reproduit.

La fonctionnalité Débogage conditionnel vous permet d'activer de manière sélective des débogages et des journaux pour des fonctionnalités spécifiques en fonction d'un ensemble de conditions que vous définissez. Cela est utile pour contenir des informations de débogage uniquement pour des hôtes ou un trafic spécifiques.

Une condition fait référence à une fonctionnalité ou une identité, où l'identité peut être une interface, une adresse IP ou une adresse MAC, etc..

Comment activer le débogage conditionnel pour les débogages de paquets et d'événements afin de dépanner la surveillance DHCP.

Commande	Objectif
debug condition mac <adresse-mac> Exemple : switch#debug condition mac bc16.6509.3314</adresse-mac>	Configure le débogage conditionnel pour l'adresse MAC spécifiée.
debug condition vlan <id vlan=""> Exemple : switch#debug condition vlan 10</id>	Configure le débogage conditionnel pour le VLAN spécifié.
debug condition interface <interface> Exemple : switch#debug condition interface vingtFiveGigE 1/0/8</interface>	Configure le débogage conditionnel pour l'interface spécifiée.

Pour déboguer la surveillance DHCP, utilisez les commandes indiquées dans le tableau.

Commande	Objectif
debug dhcp [detail opératrice redondance]	Détail du contenu des paquets DHCP Opérateur DHCP interne OPER Redondance Prise en charge de la redondance client DHCP
debug ip dhcp server packet detail	Décoder en détail les réceptions et les transmissions de messages
debug ip dhcp server events	Signaler les affectations d'adresses, l'expiration du bail, etc.
debug ip dhcp snooping agent	Debug dhcp snooping database read and write
debug ip dhcp snooping event	Événement de débogage entre chaque composant
debug ip dhcp snooping packet	Déboguer le paquet DHCP dans le module de surveillance DHCP

Ceci est un exemple de sortie partiel de la commande debug ip dhcp snooping.

<#root>

Apr 14 16:16:46.835: DHCP_SNOOPING: process new DHCP packet,

message type: DHCPDISCOVER, input interface: Fo1/0/2

, MAC da: ffff.ffff, MAC

sa: 00a3.d144.2046,

IP da: 255.255.255.255, IP sa: 0.0.0.0, DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 0.0.0.0, DHCP siaddr: 0.0.0 Apr 14 16:16:46.835: DHCP_SNOOPING: bridge packet get invalid mat entry: FFFF.FFFF.FFFF, packet is floo

Apr 14 16:16:48.837: DHCP_SNOOPING:

received new DHCP packet from input interface (FortyGigabitEthernet1/0/10)

Apr 14 16:16:48.837: DHCP_SNOOPING:

process new DHCP packet, message type: DHCPOFFER, input interface: Fo1/0/10,

MAC da: ffff.ffff, MAC

sa: 701f.539a.fe46,

IP da: 255.255.255.255, IP sa: 10.0.0.1, DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 10.0.0.5, DHCP siaddr: 0.0 Apr 14 16:16:48.837: platform lookup dest vlan for input_if: FortyGigabitEthernet1/0/10, is NOT tunnel, Apr 14 16:16:48.837: DHCP_SNOOPING: direct forward dhcp replyto output port: FortyGigabitEthernet1/0/2. Apr 14 16:16:48.838: DHCP_SNOOPING: received new DHCP packet from input interface (FortyGigabitEthernet Apr 14 16:16:48.838: Performing rate limit check

Apr 14 16:16:48.838: DHCP_SNOOPING: process new DHCP packet,

message type: DHCPREQUEST, input interface: Fo1/0/2,

MAC da: ffff.ffff.ffff, MAC

sa: 00a3.d144.2046,

IP da: 255.255.255.255, IP sa: 0.0.0.0, DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 0.0.0.0, DHCP siaddr: 0.0.0 Apr 14 16:16:48.838: DHCP_SNOOPING: bridge packet get invalid mat entry: FFFF.FFFF.FFFF, packet is floo Apr 14 16:16:48.839: DHCP_SNOOPING: received new DHCP packet from input interface (FortyGigabitEthernet

Apr 14 16:16:48.840: DHCP_SNOOPING: process new DHCP packet,

message type: DHCPACK, input interface: Fo1/0/10,

MAC da: ffff.ffff.ffff, MAC

sa: 701f.539a.fe46,

IP da: 255.255.255.255, IP

sa: 10.0.0.1,

DHCP ciaddr: 0.0.0.0, DHCP yiaddr: 10.0.0.5, DHCP siaddr: 0.0.0.0, DHCP giaddr: 0.0.0.0, DHCP chaddr: 0 Apr 14 16:16:48.840: DHCP_SNOOPING: add binding on port FortyGigabitEthernet1/0/2 ckt_id 0 FortyGigabit Apr 14 16:16:48.840: DHCP_SNOOPING: added entry to table (index 331)

Apr 14 16:16:48.840:

DHCP_SNOOPING: dump binding entry: Mac=00:A3:D1:44:20:46 Ip=10.0.0.5

Lease=86400 Type=dhcp-snooping

Vlan=10 If=FortyGigabitEthernet1/0/2

Apr 14 16:16:48.840: No entry found for mac(00a3.d144.2046) vlan(10) FortyGigabitEthernet1/0/2 Apr 14 16:16:48.840: host tracking not found for update add dynamic (10.0.0.5, 0.0.0.0, 00a3.d144.2046) Apr 14 16:16:48.840: platform lookup dest vlan for input_if: FortyGigabitEthernet1/0/10, is NOT tunnel, Apr 14 16:16:48.840: DHCP_SNOOPING: direct forward dhcp replyto output port: FortyGigabitEthernet1/0/2.

Pour déboguer les événements de surveillance DHCP, procédez comme suit :

Attention : utilisez les commandes debug avec précaution. Notez que de nombreuses commandes de débogage ont un impact sur le réseau actif et qu'il est recommandé de les utiliser dans un environnement de travaux pratiques uniquement lorsque le problème est reproduit.

Étapes récapitulatives

- 1. activer
- 2. debug platform condition mac {mac-address }
- 3. debug platform condition start
- 4. show platform condition OU show debug

- 5. debug platform condition stop
- 6. show platform software trace message ios R0 reverse | inclure DHCP
- 7. clear platform condition all

Étapes détaillées

	Commande ou action	Objectif
Étape 1	activer Exemple : switch#enable	Active le mode privilégié. • Saisissez votre mot de passe si vous y êtes invité.
Étape 2	debug platform condition mac {mac-address} Exemple : switch#debug platform condition mac 0001.6509.3314	Configure le débogage conditionnel pour l'adresse MAC spécifiée.
Étape 3	debug platform condition start Exemple : switch#debug platform condition start	Démarre le débogage conditionnel (cela peut démarrer le traçage radioactif s'il y a une correspondance sur l'une des conditions).
Étape 4	show platform condition OU show debug Exemple : switch#show platform condition switch#show debug	Affiche les conditions actuelles définies.
Étape 5	debug platform condition stop Exemple : switch#debug platform condition stop	Arrête le débogage conditionnel (cela peut arrêter le traçage radioactif).
Étape 6	show platform software trace message ios R0 reverse inclure DHCP	Affiche les journaux HP fusionnés à partir du dernier fichier de trace.

	Commande ou action	Objectif
	Exemple : switch#show platform software trace message ios R0 reverse inclure DHCP	
Étape 7	clear platform condition all Exemple : switch# clear platform condition all	Efface toutes les conditions.

Ceci est un exemple de sortie d'exemple partiel de la commande dplateforme de débogage dhcpsnoop all, commande.

<#root>

debug platform dhcp-snoop all

DHCP Server UDP port

(67)

DHCP Client UDP port

(68)

RELEASE

```
Apr 14 16:44:18.629: pak->vlan_id = 10
Apr 14 16:44:18.629: dhcp packet src_ip(10.0.0.6) dest_ip(10.0.0.1) src_udp(68) dest_udp(67) src_mac(00
Apr 14 16:44:18.629: ngwc_dhcpsn_process_pak(305): Packet handedover to SISF on vlan 10
Apr 14 16:44:18.629: dhcp pkt processing routine is called for pak with SMAC = 00a3.d144.2046{mac} and
```

DISCOVER

Apr 14 16:44:24.637: dhcp packet src_ip(0.0.0.0) dest_ip(255.255.255.255) src_udp(68) dest_udp(67) src_ Apr 14 16:44:24.637: ngwc_dhcpsn_process_pak(305): Packet handedover to SISF on vlan 10 Apr 14 16:44:24.637: dhcp pkt processing routine is called for pak with SMAC = 00a3.d144.2046{mac} and Apr 14 16:44:24.637: sending dhcp packet out after processing with SMAC = 00a3.d144.2046{mac} and SRC_A Apr 14 16:44:24.638: pak->vlan_id = 10

OFFER

Apr 14 16:44:24.638: dhcp packet src_ip(10.0.0.1) dest_ip(255.255.255.255) src_udp(67) dest_udp(68) src_

Apr 14 16:44:24.638: ngwc_dhcpsn_process_pak(305): Packet handedover to SISF on vlan 10 Apr 14 16:44:24.638: dhcp pkt processing routine is called for pak with SMAC = 701f.539a.fe46{mac} and

REQUEST

Apr 14 16:44:24.638: ngwc_dhcpsn_process_pak(284): Packet handedover to SISF on vlan 10 c9500#dhcp pkt processing routine is called for pak with SMAC = 0a3.d144.2046{mac} and SRC_ADDR = 0.0.0

ACK

Apr 14 16:44:24.640: dhcp paket src_ip(10.10.10.1) dest_ip(255.255.255.255) src_udp(67) dest_udp(68) s Apr 14 16:44:24.640: ngwc_dhcpsn_process_pak(284): Packet handedover to SISF on vlan 10dhcp pkt process

Ce tableau répertorie les différentes commandes qui peuvent être utilisées pour déboguer la surveillance DHCP dans la plate-forme.

Attention : utilisez les commandes debug avec précaution. Sachez que de nombreuses commandes debug ont un impact sur le réseau actif et que leur utilisation est recommandée dans un environnement de travaux pratiques uniquement lorsque le problème est reproduit.

Commande	Objectif		
switch#debug platform dhcp-snoop [all paquet pd-shim]	Toutes les fonctions de surveillance DHCP NGWC Informations de débogage de paquet de surveillance DHCP NGWC pd-shim NGWC DHCP Snooping IOS Shim Debug Info		
switch#debug platform infrastructure logicielle punt dhcp-snoop	Paquets reçus sur le FP et dirigés vers le plan de contrôle)		
switch#debug platform software infrastructure injection	Paquets injectés dans le FP à partir du plan de contrôle		

Dépannage du trafic point/chemin (CPU)

Vérifiez du point de vue FED quel trafic est reçu dans chaque file d'attente CPU (la surveillance DHCP est un type de trafic qui est traité par le plan de contrôle).

- Lorsque le trafic arrive dans le commutateur, il est envoyé au CPU dans la direction PUNT et est envoyé à la file d'attente de surveillance dhcp.
- Une fois que le trafic est traité par le commutateur, il part par la direction INJECT. Les paquets DHCP OFFER et ACK entrent dans la file d'attente de contrôle L2/héritée.

<#roc	ot>			
c9500;	#show platform software fed	switch activ	punt cause summary	
Stati	stics for all causes			
Cause	Cause Info	Rcvd	Dropped	
21	RP<->QFP keepalive	8533	0	
79	dhcp snoop	71	0 << If drop cou	nter increases, there can be
96 109	Layer2 control protocols snoop packets	45662 100	0 0	
c9500	#show platform software fed	sw active ir	ect cause summary	
Stati	stics for all causes			
Cause	Cause Info	Rcvd	Dropped	
1	L2 control/legacy			
	128354 0 <<-	dropped	ounter must NOT increase	
2	QFP destination lookup	18	0	
5	QFP <->RP keepalive	8585	0	
12 25	AKP request or response	68 81	U Q	
2D	Layer2 Trame to BD	0T	U	

Vous pouvez utiliser cette commande pour confirmer le trafic envoyé au processeur et vérifier si la surveillance DHCP abandonne le trafic.

Q no		Queue Name	Rx 10s	Rx 1min	Rx 5min	Drop 10s	Drop 1min	Drop 5min
== 0	== Cl	 ?U_Q_DOT1X_AUTH	 0	0	 0	0	 0	 0
1	CI	2U_Q_L2_CONTROL	0	0	0	0	0	0
2	CI	2U_Q_FORUS_TRAFFIC	0	0	0	0	0	0
3	CI	PU_Q_ICMP_GEN	0	0	0	0	0	0
4	CI	2U_Q_ROUTING_CONTROL	0	0	0	0	0	0
5	CI	2U_Q_FORUS_ADDR_RESOLUTION	0	0	0	0	0	0
6	CI	2U_Q_ICMP_REDIRECT	0	0	0	0	0	0
7	CI	2U_Q_INTER_FED_TRAFFIC	0	0	0	0	0	0
8	CI	20_Q_L2LVX_CONTROL_PKT	0	0	0	0	0	0
9	CI	20_Q_EWLC_CONTROL	0	0	0	0	0	0
10	(CPU_Q_EWLC_DATA	0	0	0	0	0	0
11	(CPU_Q_L2LVX_DATA_PKT	0	0	0	0	0	0
12	(CPU_Q_BROADCAST	0	0	0	0	0	0
13	(CPU_Q_LEARNING_CACHE_OVFL	0	0	0	0	0	0
14	(CPU_Q_SW_FORWARDING	0	0	0	0	0	0
15	(CPU_Q_TOPOLOGY_CONTROL	2	2	2	0	0	0
16	(CPU_Q_PROTO_SNOOPING	0	0	0	0	0	0
17	C	CPU_Q_DHCP_SNOOPING						
0		0 0 0 0						
		0 << drop counter mus	t NOT	increase				
18	(CPU_Q_TRANSIT_TRAFFIC	0	0	0	0	0	0
19	(CPU_Q_RPF_FAILED	0	0	0	0	0	0
20	(<pre>CPU_Q_MCAST_END_STATION_SERVICE</pre>	0	0	0	0	0	0
21	(CPU_Q_LOGGING	0	0	0	0	0	0
22	(CPU_Q_PUNT_WEBAUTH	0	0	0	0	0	0
23	(CPU_Q_HIGH_RATE_APP	0	0	0	0	0	0
24	(CPU_Q_EXCEPTION	0	0	0	0	0	0
25	(CPU_Q_SYSTEM_CRITICAL	8	8	8	0	0	0
26	(CPU_Q_NFL_SAMPLED_DATA	0	0	0	0	0	0
27	(CPU_Q_LOW_LATENCY	0	0	0	0	0	0
28 CPU_Q_EGR_EXCEPTION			0	0	0	0	0	0
29 CPU_Q_FSS			0	0	0	0	0	0
30	(CPU_Q_MCAST_DATA	0	0	0	0	0	0
31	(CPU_Q_GOLD_PKT	0	0	0	0	0	0

Dépannage du matériel

Pilote de moteur de transfert (FED)

FED est le pilote qui programme l'ASIC. Les commandes FED sont utilisées pour vérifier que les états du matériel et du logiciel correspondent.

Obtenir la valeur DI_Handle

• L'identificateur d'ID fait référence à l'index de destination d'un port spécifique.

```
c9500#show platform software fed switch active security-fed dhcp-snoop vlan vlan-id 10
Platform Security DHCP Snooping Vlan Information
Value of Snooping DI handle
is::
0x7F7FAC23E438 <<---- If DHCP Snooping is not enabled the hardware handle can not be present
Port Trust Mode
FortyGigabitEthernet1/0/10
trust <<---- Ensure TRUSTED ports are listed
```

Vérifiez le mappage ifm pour déterminer les ports Asic et Core.

• IFM est un index d'interface interne mappé à un port/coeur/base spécifique.

```
<#root>
c9500#show platform software fed switch active ifm mappings
Interface IF_ID Inst Asic Core Port SubPort Mac Cntx LPN GPN Type Active
FortyGigabitEthernet1/0/10
0xa
3
1 1
1 0 4 4 2 2 NIF Y
```

Utilisez DI_Handle pour obtenir l'index matériel.

<#root>

```
c9500#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7F7FAC23E438
```

Handle:0x7f7fac23e438 Res-Type:ASIC_RSC_DI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_DHCPSNOOPI priv_ri/priv_si Handle: (nil)Hardware Indices/Handles:

index0:0x5f03

```
mtu_index/l3u_ri_index0:0x0 index1:0x5f03 mtu_index/l3u_ri_index1:0x0 index2:0x5f03 mtu_index/l3u_ri_i
<SNIP>
```

<-- Index is 0x5f03

Convertissez la valeur d'index 0x5f03 hexadécimale en valeur décimale.

0x5f03 = 24323

Utilisez cette valeur d'index en notation décimale et les valeurs ASIC et Core de cette commande pour voir quels indicateurs sont définis pour le port.

<#root> c9500#show platform hardware fed switch 1 fwd-asic regi read register-name SifDestinationIndexTable-2432 asic 1 core 1 For asic 1 core 1 Module 0 - SifDestinationIndexTable[0][24323 ٦ <-- the decimal hardware index matches 0x5f03 = 24323 copySegment0 : 0x1 <<---- If you find this as 0x0, means that the traffic is not forwarded out of this port. (refer to CSCvi39202)copySegment1 : 0x1 dpuSegment0 : 0x0 dpuSegment1 : 0x0 ecUnicast : 0x0 etherChannel0 : 0x0 etherChannel1 : 0x0 hashPtr1 : 0x0 stripSegment : 0x0 Assurez-vous que la surveillance DHCP est activée pour le VLAN spécifique. <#root>

c9500#show platform software fed switch 1 vlan 10

VLAN Fed Information

Vlan Id IF Id	LE Handle	STP Handle	L3 IF Handle	SVI IF
---------------	-----------	------------	--------------	--------

10 0x00000000420011

0x00007f7fac235fa8

0x00007f7fac236798 0x0000000000000 0x0000000000000 15

c9500#

show platform hardware fed switch active fwd-asic abstraction print-resource-handle

0x00007f7fac235fa8 1 <<---- Last number might be 1 or 0, 1 means detailed, 0 means brief output

Detailed Resource Information (ASIC_INSTANCE# 0)

LEAD_VLAN_IGMP_MLD_SNOOPING_ENABLED_IPV4 value 1 Pass <<---- Verify the highlighted values, if any are

LEAD_VLAN_IGMP_MLD_SNOOPING_ENABLED_IPV6 value 0 Pass

LEAD_VLAN_ARP_OR_ND_SNOOPING_ENABLED_IPV4 value 1 Pass

LEAD_VLAN_ARP_OR_ND_SNOOPING_ENABLED_IPV6 value 1 Pass LEAD_VLAN_BLOCK_L2_LEARN value 0 Pass LEAD_VLAN_CONTENT_MATCHING_ENABLED value 0 Pass LEAD_VLAN_DEST_MOD_INDEX_TVLAN_LE value 0 Pass

LEAD_VLAN_DHCP_SNOOPING_ENABLED_IPV4 value 1 Pass

LEAD_VLAN_DHCP_SNOOPING_ENABLED_IPV6 value 1 Pass LEAD_VLAN_ENABLE_SECURE_VLAN_LEARNING_IPV4 value 0 Pass LEAD_VLAN_ENABLE_SECURE_VLAN_LEARNING_IPV6 value 0 Pass LEAD_VLAN_EPOCH value 0 Pass LEAD_VLAN_L2_PROCESSING_STP_TCN value 0 Pass LEAD_VLAN_L2FORWARD_IPV4_MULTICAST_PKT value 0 Pass LEAD_VLAN_L2FORWARD_IPV6_MULTICAST_PKT value 0 Pass LEAD_VLAN_L3_IF_LE_INDEX_PRIO value 0 Pass LEAD_VLAN_L3IF_LE_INDEX value 0 Pass LEAD_VLAN_LOOKUP_VLAN value 15 Pass LEAD_VLAN_MCAST_LOOKUP_VLAN value 15 Pass LEAD_VLAN_RIET_OFFSET value 4095 Pass LEAD_VLAN_SNOOPING_FLOODING_ENABLED_IGMP_OR_MLD_IPV4 value 1 Pass LEAD_VLAN_SNOOPING_FLOODING_ENABLED_IGMP_OR_MLD_IPV6 value 1 Pass LEAD_VLAN_SNOOPING_PROCESSING_STP_TCN_IGMP_OR_MLD_IPV4 value 0 Pass LEAD_VLAN_SNOOPING_PROCESSING_STP_TCN_IGMP_OR_MLD_IPV6 value 0 Pass LEAD_VLAN_VLAN_CLIENT_LABEL value 0 Pass LEAD_VLAN_VLAN_CONFIG value 0 Pass LEAD_VLAN_VLAN_FLOOD_ENABLED value 0 Pass LEAD_VLAN_VLAN_ID_VALID value 1 Pass LEAD_VLAN_VLAN_LOAD_BALANCE_GROUP value 15 Pass LEAD_VLAN_VLAN_ROLE value 2 Pass LEAD_VLAN_VLAN_FLOOD_MODE_BITS value 3 Pass

LEAD_VLAN_LVX_VLAN value 0 Pass LEAD_VLAN_EGRESS_DEJAVU_CANON value 0 Pass LEAD_VLAN_EGRESS_INGRESS_VLAN_MODE value 0 Pass LEAD_VLAN_EGRESS_LOOKUP_VLAN value 0 Pass LEAD_VLAN_EGRESS_LVX_VLAN value 0 Pass LEAD_VLAN_EGRESS_SGACL_DISABLED value 3 Pass LEAD_VLAN_EGRESS_VLAN_CLIENT_LABEL value 0 Pass LEAD_VLAN_EGRESS_VLAN_ID_VALID value 1 Pass LEAD_VLAN_EGRESS_VLAN_LOAD_BALANCE_GROUP value 15 Pass LEAD_VLAN_EGRESS_INTRA_POD_BCAST value 0 Pass

 $\texttt{LEAD_VLAN_EGRESS_DHCP_SNOOPING_ENABLED_IPV4 value 1 Pass}$

LEAD_VLAN_EGRESS_DHCP_SNOOPING_ENABLED_IPV6 value 1 Pass LEAD_VLAN_EGRESS_VXLAN_FLOOD_MODE value 0 Pass LEAD_VLAN_MAX value 0 Pass <SNIP>

Ce tableau répertorie les différentes commandes Punject show/debug courantes qui peuvent être utilisées pour suivre le chemin d'un paquet DHCP sur un réseau actif.

Commandes communes Punt / Inject show & debug debug plat soft fed switch acti injection add-filter cause 255 sub_cause 0 src_mac 0 0 0 dst_mac 0 0 src_ipv4 192.168.12.1 dst_ipv4 0.0.0.0 if_id 0xf set platform software trace fed [switch<num|active|standby>] inject verbose — > use filter cpmand illustré pour étendre les traces à cet hôte spécifique set platform software trace fed [switch<num|active|standby>] inject debug boot — > pour rechargement set platform software trace fed [switch<num|active|standby>] punt noise show platform software fed [switch<num|active|standby>] injecter le résumé des causes show platform software fed [switch<num|active|standby>] résumé des causes du problème show platform software fed [switch<num|active|standby>] inject cpug 0 show platform software fed [switch<num|active|standby>] punt cpuq 17 (file dhcp) show platform software fed [switch<num|active|standby>] active inject packet-capture det show platform software infrastructure injection show platform software infrastructure punt show platform software infrastructure pilote Ismpi

debug platform software infra punt dhcp

debug platform software infra inject

Ces commandes sont utiles pour vérifier si un paquet DHCP est reçu pour un client particulier.

- Cette fonctionnalité vous permet de capturer toutes les communications de surveillance DHCP associées à une adresse MAC client donnée qui sont traitées par le processeur via le logiciel IOS-DHCP.
- Cette fonctionnalité est prise en charge pour le trafic IPv4 et IPv6.
- Cette fonction est activée automatiquement.

Main Important : ces commandes sont disponibles sur Cisco IOS XE Gibraltar 16.12.X.

switch#show platform dhcpsnooping client stats {mac-address}

switch#show platform dhcpv6snooping ipv6 client stats {mac-address}

<#root>

C9300#

show platform dhcpsnooping client stats 0000.1AC2.C148

DHCPSN: DHC	CP snoopin	g server				
DHCPD: DHC	CP protoco	1 daemen				
L2FWD: Tra	ansmit Pac	ket to driver in	L2 format			
FWD: Tra	ansmit Pac	ket to driver				
Packet Trac	ce for cli	ent MAC 0000.1AC2	.C148:			
Timestamp		Destination MAC	Destination Ip	VLAN	Message	Handler:Action
06-27-2019	20:48:28	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPDISCOVER	PUNT:RECEIVED
06-27-2019	20:48:28	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPDISCOVER	PUNT:TO_DHCPSN
06-27-2019	20:48:28	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPDISCOVER	BRIDGE:RECEIVED
06-27-2019	20:48:28	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPDISCOVER	BRIDGE:TO_DHCPD
06-27-2019	20:48:28	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPDISCOVER	BRIDGE:TO_INJECT
06-27-2019	20:48:28	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPDISCOVER	L2INJECT:TO_FWD
06-27-2019	20:48:28	0000.0000.0000	192.168.1.1	0	DHCPDISCOVER	INJECT:RECEIVED
06-27-2019	20:48:28	0000.0000.0000	192.168.1.1	0	DHCPDISCOVER	INJECT:TO_L2FWD
06-27-2019	20:48:30	0000.0000.0000	10.1.1.3	0	DHCPOFFER	INJECT:RECEIVED
06-27-2019	20:48:30	0000.1AC2.C148	10.1.1.3	0	DHCPOFFER	INTERCEPT:RECEIVED
06-27-2019	20:48:30	0000.1AC2.C148	10.1.1.3	88	DHCPOFFER	INTERCEPT: TO_DHCPSN
06-27-2019	20:48:30	0000.1AC2.C148	10.1.1.3	88	DHCPOFFER	INJECT: CONSUMED
06-27-2019	20:48:30	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPREQUEST	PUNT:RECEIVED
06-27-2019	20:48:30	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPREQUEST	PUNT:TO_DHCPSN
06-27-2019	20:48:30	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPREQUEST	BRIDGE:RECEIVED
06-27-2019	20:48:30	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPREQUEST	BRIDGE:TO_DHCPD
06-27-2019	20:48:30	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPREQUEST	BRIDGE:TO_INJECT
06-27-2019	20:48:30	FFFF.FFFF.FFFF	255.255.255.255	88	DHCPREQUEST	L2INJECT:TO_FWD
06-27-2019	20:48:30	0000.0000.0000	192.168.1.1	0	DHCPREQUEST	INJECT:RECEIVED
06-27-2019	20:48:30	0000.0000.0000	192.168.1.1	0	DHCPREQUEST	INJECT:TO_L2FWD
06-27-2019	20:48:30	0000.0000.0000	10.1.1.3	0	DHCPACK	INJECT:RECEIVED

Utilisez ces commandes pour effacer la trace.

switch#clear platform dhcpsnooping pkt-trace ipv4

switch#clear platform dhcpsnooping pkt-trace ipv6

Capture des paquets du chemin du processeur

Vérifiez si les paquets de surveillance DHCP arrivent et quittent correctement le plan de contrôle.

Remarque : pour obtenir des références supplémentaires sur l'utilisation de l'outil de capture CPU du pilote du moteur de transfert, reportez-vous à la section Lectures supplémentaires.

```
<#root>
```

```
debug platform software fed
```

[switch<num|active|standby>]

punt/inject

packet-capture start

debug platform software fed

```
[switch<num|active|standby>]
```

punt/inject

packet-capture stop

```
show platform software fed
```

[switch<num|active|standby>]

punt/inject

packet-capture brief

PUNT

```
DISCOVER
```

```
----- Punt Packet Number: 16, Timestamp: 2021/04/14 19:10:09.924 ----- interface :
```

```
physical: FortyGigabitEthernet1/0/2
[if-id: 0x0000000a], pal: FortyGigabitEthernet1/0/2 [if-id: 0x0000000a]
metadata : cause: 79
[dhcp snoop],
sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 00a3.d144.2046
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0
ipv4 hdr : packet len: 347, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
67
, src port:
68
OFFER
----- Punt Packet Number: 23, Timestamp: 2021/04/14 19:10:11.926 -----
interface :
physical: FortyGigabitEthernet1/0/10
[if-id: 0x00000012], pal: FortyGigabitEthernet1/0/10 [if-id: 0x00000012]
metadata : cause: 79
[dhcp snoop]
, sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.ffff.ffff,
src mac: 701f.539a.fe46
ether hdr : vlan: 10, ethertype: 0x8100
ipv4 hdr : dest ip: 255.255.255.255,
src ip: 10.0.0.1
ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
68
, src port:
67
```

REQUEST

```
----- Punt Packet Number: 24, Timestamp: 2021/04/14 19:10:11.927 -----
interface :
physical: FortyGigabitEthernet1/0/2
[if-id: 0x0000000a], pal: FortyGigabitEthernet1/0/2 [if-id: 0x0000000a]
metadata : cause: 79
[dhcp snoop]
, sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 00a3.d144.2046
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0
ipv4 hdr : packet len: 365, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
67
, src port:
68
ACK
----- Punt Packet Number: 25, Timestamp: 2021/04/14 19:10:11.929 -----
interface :
physical: FortyGigabitEthernet1/0/10
[if-id: 0x00000012], pal: FortyGigabitEthernet1/0/10 [if-id: 0x00000012]
metadata : cause: 79
[dhcp snoop]
, sub-cause: 11, q-no: 17, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 701f.539a.fe46
ether hdr : vlan: 10, ethertype: 0x8100
ipv4 hdr : dest ip: 255.255.255.255,
src ip: 10.0.0.1
ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
68
, src port:
67
```

DISCOVER

----- Inject Packet Number: 33, Timestamp: 2021/04/14 19:53:01.273 ----- interface : pal:

FortyGigabitEthernet1/0/2

[if-id: 0x0000000a]
metadata : cause: 25 [Layer2 frame to BD], sub-cause: 1, q-no: 0, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.ffff.ffff,

src mac: 00a3.d144.2046

ether hdr : ethertype: 0x0800 (IPv4) ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0 ipv4 hdr : packet len: 347, ttl: 255, protocol: 17 (UDP) udp hdr : dest port:

67

```
, src port:
```

68

OFFER

----- Inject Packet Number: 51, Timestamp: 2021/04/14 19:53:03.275 ----- interface : pal:

FortyGigabitEthernet1/0/2

```
[if-id: 0x0000000a]
metadata : cause: 1 [L2 control/legacy], sub-cause: 0, q-no: 0, linktype: MCP_LINK_TYPE_LAYER2 [10]
ether hdr : dest mac: ffff.ffff.ffff,
```

src mac: 701f.539a.fe46

ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255,

src ip: 10.0.0.1

ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:

68,

src port:

67

```
----- Inject Packet Number: 52, Timestamp: 2021/04/14 19:53:03.276 -----
interface : pal:
FortyGigabitEthernet1/0/2
[if-id: 0x000000a]
metadata : cause: 25 [Layer2 frame to BD], sub-cause: 1, q-no: 0, linktype: MCP_LINK_TYPE_IP [1]
ether hdr : dest mac: ffff.fff.fff,
src mac: 00a3.d144.2046
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255, src ip: 0.0.0.0
ipv4 hdr : packet len: 365, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
67
, src port:
68
ACK
----- Inject Packet Number: 53, Timestamp: 2021/04/14 19:53:03.278 -----
interface : pal:
FortyGigabitEthernet1/0/2
 [if-id: 0x000000a]
metadata : cause: 1 [L2 control/legacy], sub-cause: 0, q-no: 0, linktype: MCP_LINK_TYPE_LAYER2 [10]
ether hdr : dest mac: ffff.ffff.ffff,
src mac: 701f.539a.fe46
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 255.255.255.255,
src ip: 10.0.0.1
ipv4 hdr : packet len: 330, ttl: 255, protocol: 17 (UDP)
udp hdr : dest port:
68
, src port:
67
```

Traces utiles

Il s'agit de suivis binaires qui affichent les événements par processus ou composant. Dans cet exemple, les suivis affichent des informations sur le composant dhcpsn.

 Les traces peuvent être pivotées manuellement, ce qui signifie que vous pouvez créer un nouveau fichier avant de commencer le dépannage afin qu'il contienne des informations plus propres.

<#root>

9500#

request platform software trace rotate all

9500#

set platform software trace fed [switch

] dhcpsn verbose

c9500#show logging proc fed internal | inc dhcp

<<---- DI_Handle must match with the output which retrieves the DI handle

2021/04/14 19:24:19.159536 {fed_F0-0}{1}: [dhcpsn] [17035]: (info):

VLAN event on vlan 10, enabled 1

2021/04/14 19:24:19.159975 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): Program trust ports for this vlan 2021/04/14 19:24:19.159978 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug):

GPN (10) if_id (0x00000000000012) <<---- if_id must match with the TRUSTED port

2021/04/14 19:24:19.160029 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): trusted_if_q size=1 for vlan=10 2021/04/14 19:24:19.160041 {fed_F0-0}{1}: [dhcpsn] [17035]: (ERR): update ri has failed vlanid[10] 2021/04/14 19:24:19.160042 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): vlan mode changed to enable 2021/04/14 19:24:27.507358 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): get di for vlan_id 10 2021/04/14 19:24:27.507365 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): Allocated rep_ri for vlan_id 10 2021/04/14 19:24:27.507366 {fed_F0-0}{1}: [inject] [23451]: (verbose): Changing di_handle from 0x7f7fac

0x7f7fac23e438

by dhcp snooping 2021/04/14 19:24:27.507394 {fed_F0-0}{1}: [inject] [23451]: (debug): TX: getting REP RI from dhcpsn fai 2021/04/14 19:24:29.511774 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): get di for vlan_id 10 2021/04/14 19:24:29.511780 {fed_F0-0}{1}: [dhcpsn] [23451]: (debug): Allocated rep_ri for vlan_id 10 2021/04/14 19:24:29.511780 {fed_F0-0}{1}: [inject] [23451]: (verbose): Changing di_handle from 0x7f7fac

```
by dhcp snooping
2021/04/14 19:24:29.511802 {fed_F0-0}{1}: [inject] [23451]: (debug): TX: getting REP RI from dhcpsn fai
```

c9500#set platform software trace fed [switch

] asic_app verbose

c9500#show logging proc fed internal | inc dhcp

2021/04/14 20:13:56.742637 {fed_F0-0}{1}: [dhcpsn] [17035]: (info):

VLAN event on vlan 10

, enabled 0
2021/04/14 20:13:56.742783 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): vlan mode changed to disable
2021/04/14 20:14:13.948214 {fed_F0-0}{1}: [dhcpsn] [17035]: (info): VLAN event on vlan 10, enabled 1
2021/04/14 20:14:13.948686 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug):

Program trust ports for this vlan

2021/04/14 20:14:13.948688 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): GPN (10) if_id (0x0000000000012) <<---- if_id must match with the TRUSTED port

2021/04/14 20:14:13.948740 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): trusted_if_q size=1 for vlan=10 2021/04/14 20:14:13.948753 {fed_F0-0}{1}: [dhcpsn] [17035]: (ERR): update ri has failed vlanid[10] 2021/04/14 20:14:13.948754 {fed_F0-0}{1}: [dhcpsn] [17035]: (debug): vlan mode changed to enable

Suggested Traces

set platform software trace fed [switch<num|active|standby>] pm_tdl verbose set platform software trace fed [switch<num|active|standby>] pm_vec verbose set platform software trace fed [switch<num|active|standby>] pm_vlan verbose

INJECT

```
set platform software trace fed [switch<num|active|standby>] dhcpsn verbose
set platform software trace fed [switch<num|active|standby>] asic_app verbose
set platform software trace fed [switch<num|active|standby>] inject verbose
```

```
set platform software trace fed [switch<num|active|standby>] dhcpsn verbose
set platform software trace fed [switch<num|active|standby>] asic_app verbse
set platform software trace fed [switch<num|active|standby>] punt ver
```

Syslogs et explications

Violations des limites de débit DHCP.

Explication : La surveillance DHCP a détecté une violation de limite de débit de paquets DHCP sur l'interface spécifiée.

```
%DHCP_SNOOPING-4-DHCP_SNOOPING_ERRDISABLE_WARNING: DHCP Snooping received 300 DHCP packets on interface %DHCP_SNOOPING-4-DHCP_SNOOPING_RATE_LIMIT_EXCEEDED: The interface Fa0/2 is receiving more than the thre
```

Usurpation du serveur DHCP sur un port non approuvé.

Explication : La fonctionnalité de surveillance DHCP a détecté certains types de messages DHCP non autorisés sur l'interface non approuvée, ce qui indique que certains hôtes tentent d'agir en tant que serveur DHCP.

%DHCP_SNOOPING-5-DHCP_SNOOPING_UNTRUSTED_PORT: DHCP_SNOOPING drop message on untrusted port, message ty

L'adresse MAC de couche 2 ne correspond pas à l'adresse MAC dans la requête DHCP.

Explication : la fonctionnalité de surveillance DHCP a tenté de valider l'adresse MAC et la vérification a échoué. L'adresse MAC source dans l'en-tête Ethernet ne correspond pas à l'adresse dans le champ chaddr du message de requête DHCP. Il peut y avoir un hôte malveillant qui tente d'effectuer une attaque par déni de service sur le serveur DHCP.

```
%DHCP_SNOOPING-5-DHCP_SNOOPING_MATCH_MAC_FAIL: DHCP_SNOOPING drop message because the chaddr doesn't ma
```

Problème d'insertion de l'option 82.

Explication : La fonctionnalité de surveillance DHCP a détecté un paquet DHCP avec des valeurs d'option non autorisées sur le port non approuvé, ce qui indique que certains hôtes tentent d'agir

en tant que relais ou serveur DHCP.

%DHCP_SNOOPING-5-DHCP_SNOOPING_NONZERO_GIADDR: DHCP_SNOOPING drop message with non-zero giaddr or optio

Adresse MAC de couche 2 reçue sur un port incorrect.

Explication : La fonctionnalité de surveillance DHCP a détecté un hôte tentant d'effectuer une attaque par déni de service sur un autre hôte du réseau.

%DHCP_SNOOPING-5-DHCP_SNOOPING_FAKE_INTERFACE: DHCP_SNNOPING drop message with mismatched source interface.

Messages DHCP reçus sur l'interface non approuvée.

Explication : La fonctionnalité de surveillance DHCP a détecté certains types de messages DHCP non autorisés sur l'interface non approuvée, ce qui indique que certains hôtes tentent d'agir en tant que serveur DHCP.

%DHCP_SNOOPING-5-DHCP_SNOOPING_UNTRUSTED_PORT: DHCP_SNOOPING drop message on untrusted port: GigabitEth

Échec du transfert de surveillance DHCP. Impossible d'accéder à l'URL.

Explication : le transfert de liaison de surveillance DHCP a échoué.

%DHCP_SNOOPING-4-AGENT_OPERATION_FAILED: DHCP snooping binding transfer failed. Unable to access URL

Avertissements de surveillance DHCP

ID de bogue Cisco	Description				
<u>CSCvi39202</u>	DHCP échoue lorsque la confiance de surveillance DHCP est activée sur l'etherchannel de liaison ascendante.				
<u>CSCvp49518</u>	La base de données de surveillance DHCP n'est pas actualisée après le				

	rechargement.
<u>CSCvk16813</u>	Le trafic client DHCP a été abandonné avec la surveillance DHCP et les liaisons ascendantes port-channel ou inter-pile.
<u>CSCvd51480</u>	Désassociation de la surveillance ip dhcp et du suivi de périphérique.
<u>CSCvm55401</u>	La surveillance DHCP peut abandonner l'option dhcp 82 paquets avec l'option ip dhcp snooping information option allow-untrusted.
<u>CSCvx25841</u>	L'état d'approbation de la surveillance DHCP est rompu en cas de modification du segment REP.
<u>CSCvs15759</u>	Le serveur DHCP envoie un paquet NAK pendant le processus de renouvellement DHCP.
<u>CSCvk34927</u>	Table de surveillance DHCP non mise à jour à partir du fichier de base de données de surveillance DHCP lors du rechargement.

Surveillance DHCP en limite SDA

CLI des statistiques de surveillance DHCP.

Une nouvelle interface de ligne de commande est disponible pour SDA afin de vérifier les statistiques de surveillance DHCP.

Remarque : pour obtenir des références supplémentaires sur le processus DHCP/flux de paquets et le décodage de la périphérie du fabric Cisco SD-Access, reportez-vous au guide de la section Informations connexes.

switch#show platform fabric border dhcp snooping ipv4 statistics

switch#show platform fabric border dhcp snooping ipv6 statistics

<#root>

SDA-9300-BORDER#

show platform fabric border dhcp snooping ipv4 statistics

Source IP	Destination IP	Source Remote Locator	Lisp Instance ID	VLAN	PROCESS
10.30.30.1	10.40.40.1	192.168.0.1	8189	88	10
10.30.30.1	10.40.40.1	192.168.0.1	8189	88	11
	Source IP 10.30.30.1 10.30.30.1	Source IP Destination IP 10.30.30.1 10.40.40.1 10.30.30.1 10.40.40.1	Source IP Destination IP Source Remote Locator 10.30.30.1 10.40.40.1 192.168.0.1 10.30.30.1 10.40.40.1 192.168.0.1	Source IP Destination IP Source Remote Locator Lisp Instance ID 10.30.30.1 10.40.40.1 192.168.0.1 8189 10.30.30.1 10.40.40.1 192.168.0.1 8189	Source IP Destination IP Source Remote Locator Lisp Instance ID VLAN 10.30.30.1 10.40.40.1 192.168.0.1 8189 88 10.30.30.1 10.40.40.1 192.168.0.1 8189 88

SDA-9300-BORDER#

show platform fabric border dhcp snooping ipv6 statistics

Timestamp	Source IP	Destination IP	Source Remote Locator	Lisp Instanc
08-05-2019 00:41:46	11:11:11:11:11:11:11:1	22:22:22:22:22:22:22:1	192.168.0.3	8089
08-05-2019 00:41:47	11:11:11:11:11:11:11:1	22:22:22:22:22:22:1	192.168.0.3	8089

Informations connexes

<u>Guide de configuration des services d'adressage IP, Cisco IOS XE Amsterdam 17.3.x</u> (commutateurs Catalyst 9200)

<u>Guide de configuration des services d'adressage IP, Cisco IOS XE Amsterdam 17.3.x</u> (commutateurs Catalyst 9300)

<u>Guide de configuration des services d'adressage IP, Cisco IOS XE Amsterdam 17.3.x</u> (commutateurs Catalyst 9400)

<u>Guide de configuration des services d'adressage IP, Cisco IOS XE Amsterdam 17.3.x</u> (commutateurs Catalyst 9500)

<u>Guide de configuration des services d'adressage IP, Cisco IOS XE Amsterdam 17.3.x</u> (commutateurs Catalyst 9600)

Processus/flux de paquets DHCP de périphérie de fabric Cisco SD-Access et décodage

Configuration de la capture de paquets CPU FED sur les commutateurs Catalyst 9000

Assistance et documentation techniques - Cisco Systems

À propos de cette traduction

Cisco a traduit ce document en traduction automatisée vérifiée par une personne dans le cadre d'un service mondial permettant à nos utilisateurs d'obtenir le contenu d'assistance dans leur propre langue.

Il convient cependant de noter que même la meilleure traduction automatisée ne sera pas aussi précise que celle fournie par un traducteur professionnel.