Cisco Aironet 802.11a/b/g Wireless LAN Client Adapters (CB21AG and PI21AG) Installation and Configuration Guide
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

- Turn the television or radio antenna until the interference stops.
- Move the equipment to one side or the other of the television or radio.
- Move the equipment farther away from the television or radio.
- Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCSP, the Cisco Square Bridge logo, Cisco Unity, Follow Me Browsing, FormShare, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and iQuick Study are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream, Linkskey, MeetingPlace, MGX, the Networks logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, Registrar, ScriptShare, SlideCast, SMARTnet, StrataView Plus, SwitchProbe, TeleRouter, The Fastest Way to Increase Your Internet Quotient, TransPath, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0406R)

Cisco Aironet 802.11a/b/g Wireless LAN Client Adapters (CB21AG and PI21AG) Installation and Configuration Guide
Copyright © 2004 Cisco Systems, Inc.
All rights reserved.
CONTENTS

Preface ix
 Audience x
 Purpose x
 Organization x
 Conventions xi
 Related Publications xiii
 Obtaining Documentation xiii
 Cisco.com xiii
 Documentation CD-ROM xiii
 Ordering Documentation xiv
 Documentation Feedback xiv
 Obtaining Technical Assistance xiv
 Cisco TAC Website xiv
 Opening a TAC Case xv
 TAC Case Priority Definitions xv
 Obtaining Additional Publications and Information xv

CHAPTER 1

Product Overview 1-1
 Introduction to the Client Adapters 1-2
 Terminology 1-2
 Hardware Components 1-3
 Radio 1-3
 Radio Antenna 1-3
 LEDs 1-3
 Software Components 1-4
 Driver 1-4
 Client Utilities 1-4
 Network Configurations Using Client Adapters 1-5
 Ad Hoc Wireless LAN 1-5
 Wireless Infrastructure with Workstations Accessing a Wired LAN 1-6

CHAPTER 2

Preparing for Installation 2-1
 Safety information 2-2
FCC Safety Compliance Statement 2-2
Safety Guidelines 2-2
Warnings 2-2
Unpacking the Client Adapter 2-3
Package Contents 2-3
System Requirements 2-4
Site Requirements 2-5
For Infrastructure Devices 2-5
For Client Devices 2-5

CHAPTER 3
Installing the Client Adapter 3-1
Installing the Client Adapter Software 3-2
Inserting a Client Adapter 3-13
Inserting a PC-Cardbus Card 3-13
Inserting a PCI Card 3-14
Changing the Bracket 3-14
Inserting the Card 3-15
Assembling the Antenna 3-16
Mounting the Antenna 3-17

CHAPTER 4
Using the Profile Manager 4-1
Overview of Profile Manager 4-2
Opening Profile Manager 4-2
Creating a New Profile 4-4
Including a Profile in Auto Profile Selection 4-7
Selecting the Active Profile 4-8
Modifying a Profile 4-9
Editing a Profile 4-9
Deleting a Profile 4-10
Importing and Exporting Profiles 4-10
Importing a Profile 4-10
Exporting a Profile 4-11

CHAPTER 5
Configuring the Client Adapter 5-1
Overview 5-2
Setting General Parameters 5-3
Setting Advanced Parameters 5-5
Setting Security Parameters 5-12
 Setting the Allow Association to Mixed Cells Parameter 5-13
Overview of Security Features 5-14
 Static WEP Keys 5-14
 EAP (with Dynamic WEP Keys) 5-15
 Wi-Fi Protected Access (WPA) 5-16
 Fast Roaming (CCKM) 5-17
 Reporting Access Points that Fail LEAP Authentication 5-17
Additional WEP Key Security Features 5-18
Synchronizing Security Features 5-19
Enabling Static WEP 5-22
Enabling WPA Passphrase 5-23
Enabling LEAP 5-24
Enabling EAP-TLS or PEAP 5-27
 Enabling EAP-TLS 5-27
 Enabling PEAP (EAP-GTC) 5-29
 Enabling PEAP (EAP-M SCHAP V2) 5-31
Disabling Static WEP, WPA Passphrase, or EAP 5-34
Setting Roaming Parameters in the Windows Control Panel 5-34

CHAPTER 6

Using EAP Authentication 6-1
 Overview 6-2
 Using LEAP 6-2
 Using LEAP with the Windows Username and Password 6-3
 After Profile Selection or Card Insertion 6-3
 After a Reboot or Logon 6-4
 Using LEAP with a Manually Prompted Login 6-4
 After Profile Selection 6-4
 After a Reboot, Logon, or Card Insertion 6-6
 Using LEAP with a Saved Username and Password 6-7
 After Profile Selection or Card Insertion 6-7
 After a Reboot or Logon 6-7
 Using EAP-TLS 6-8
 Using PEAP (EAP-GTC) 6-8
 Windows NT or 2000 Domain Databases or LDAP Databases Only 6-8
 OTP Databases Only 6-8
 Using PEAP (EAP-M SCHAP V2) 6-9
CHAPTER 7

Viewing Status and Statistics 7-1
 Overview of ADU Status and Statistics Tools 7-2
 Setting Parameters that Affect ADU Status and Statistics Tools 7-2
 Viewing the Current Status of Your Client Adapter 7-4
 Viewing Statistics for Your Client Adapter 7-11

CHAPTER 8

Using the Aironet System Tray Utility (ASTU) 8-1
 Overview of ASTU 8-2
 The ASTU Icon 8-2
 Tool Tip Window 8-3
 Pop-Up Menu 8-5
 Help 8-5
 Exit 8-6
 Open Aironet Desktop Utility 8-6
 Troubleshooting 8-6
 Preferences 8-6
 Enable/Disable Radio 8-7
 Manual LEAP Login 8-8
 Reauthenticate 8-8
 Select Profile 8-8
 Show Connection Status 8-9

CHAPTER 9

Routine Procedures 9-1
 Removing a Client Adapter 9-2
 Removing a PC-Cardbus Card 9-2
 Removing a PCI Card 9-2
 Client Adapter Software Procedures 9-3
 Upgrading the Client Adapter Software 9-3
 Uninstalling the Client Adapter Software 9-6
 ADU Procedures 9-7
 Opening ADU 9-7
 Exiting ADU 9-7
 Finding the Version of ADU 9-8
 Viewing Client Adapter Information 9-8
 Accessing Online Help 9-9
 ASTU Procedures 9-9
 Enabling or Disabling Your Client Adapter's Radio 9-9
Troubleshooting

Accessing the Latest Troubleshooting Information

Interpreting the Indicator LEDs

Troubleshooting the Client Adapter

Using the Troubleshooting Utility

Diagnosing Your Client Adapter's Operation

Saving the Detailed Report to a Text File

Disabling the Microsoft Wireless Configuration Manager (Windows XP Only)

Disabling the Microsoft 802.1X Supplicant

Client Adapter Recognition Problems

Resolving Resource Conflicts

Resolving Resource Conflicts in Windows 2000

Resolving Resource Conflicts in Windows XP

Problems Associating to an Access Point

Problems Authenticating to an Access Point

Problems Connecting to the Network

Prioritizing Network Connections

Parameters Missing from Profile Management Windows

Windows Wireless Network Connection Icon Shows Unavailable Connection (Windows XP Only)

Error Messages

Technical Specifications

Translated Safety Warnings

Explosive Device Proximity Warning

Antenna Installation Warning

Warning for Laptop Users

Declarations of Conformity and Regulatory Information

Manufacturer's Federal Communication Commission Declaration of Conformity Statement

Department of Communications – Canada

Canadian Compliance Statement

European Community, Switzerland, Norway, Iceland, and Liechtenstein

Declaration of Conformity with Regard to the R&TTE Directive 1999/5/EC

Declaration of Conformity Statement

Cisco Aironet CB21AG Wireless LAN Client Adapter

Cisco Aironet PI21AG Wireless LAN Client Adapter
Preface

The preface provides an overview of the *Cisco Aironet 802.11a/b/g Wireless LAN Client Adapters (CB21AG and PI21AG) Installation and Configuration Guide*, references related publications, and explains how to obtain other documentation and technical assistance, if necessary.

The following topics are covered in this section:

- **Audience**, page x
- **Purpose**, page x
- **Organization**, page x
- **Conventions**, page xi
- **Related Publications**, page xiii
- **Obtaining Documentation**, page xiii
- **Obtaining Technical Assistance**, page xiv
- **Obtaining Additional Publications and Information**, page xv
Preface

Audience

This publication is for the person responsible for installing, configuring, and maintaining a Cisco Aironet IEEE 802.11a/b/g Wireless LAN Client Adapter (CB21AG or PI21AG) on a computer running the Microsoft Windows 2000 or XP operating system. This person should be familiar with computing devices and with network terms and concepts.

Note

Windows 2000 and XP are the only supported operating systems.

Purpose

This publication describes the Cisco Aironet CB21AG and PI21AG client adapters and explains how to install, configure, and troubleshoot them.

Caution

This manual pertains specifically to Cisco Aironet CB21AG and PI21AG client adapters, whose software is incompatible with that of other Cisco Aironet client adapters. Refer to the Cisco Aironet 340, 350, and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows if you are installing or using 340, 350, or CB20A cards.

Organization

This publication contains the following chapters:

- Chapter 1, “Product Overview,” describes the client adapters and their hardware and software components and illustrates two common network configurations.
- Chapter 2, “Preparing for Installation,” provides information that you need to know before installing a client adapter, such as safety information and system requirements.
- Chapter 3, “Installing the Client Adapter,” provides instructions for installing the client adapter.
- Chapter 4, “Using the Profile Manager,” explains how to use the Aironet Desktop Utility (ADU) profile manager feature to create and manage profiles for your client adapter.
- Chapter 5, “Configuring the Client Adapter,” explains how to change the configuration parameters for a specific profile.
- Chapter 6, “Using EAP Authentication,” explains the sequence of events that occurs and the actions you must take when a profile that is set for EAP authentication is selected for use.
- Chapter 7, “Viewing Status and Statistics,” explains how to use ADU to view the client adapter’s status and its transmit and receive statistics.
- Chapter 8, “Using the Aironet System Tray Utility (ASTU),” explains how to use ASTU to view status information about your client adapter and perform basic tasks.
- Chapter 9, “Routine Procedures,” provides procedures for common tasks related to the client adapters, such as uninstalling client adapter software and opening ADU.
- Chapter 10, “Troubleshooting,” provides information for diagnosing and correcting common problems that may be encountered when installing or operating a client adapter.
• **Appendix A, “Technical Specifications,”** lists the physical, radio, power, and regulatory specifications for the client adapters.

• **Appendix B, “Translated Safety Warnings,”** provides translations of client adapter safety warnings in nine languages.

• **Appendix C, “Declarations of Conformity and Regulatory Information,”** provides declarations of conformity and regulatory information for the client adapters.

• **Appendix D, “Channels, Power Levels, and Antenna Gains,”** lists the IEEE 802.11a, b, and g channels supported by the world’s regulatory domains as well as the maximum power levels and antenna gains allowed per domain.

• **Appendix E, “Configuring the Client Adapter through the Windows XP Operating System,”** explains how to configure and use your client adapter with the Microsoft Wireless Configuration Manager.

Conventions

This publication uses the following conventions to convey instructions and information:

• Commands are in **boldface**.

• Variables are in *italics*.

• Configuration parameters are capitalized.

• Notes, cautions, and warnings use the following conventions and symbols:

 Note

 Means *reader take note*. Notes contain helpful suggestions or references to materials not contained in this manual.

 Caution

 Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

 Warning

 This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. (To see translations of the warnings that appear in this publication, refer to the appendix “Translated Safety Warnings.”)

 Waarschuwing

 Dit waarschuwingssymbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij elektrische schakelingen betrokken risico’s en dient u op de hoogte te zijn van standaard maatregelen om ongelukken te voorkomen. (Voor vertalingen van de waarschuwingen die in deze publicatie verschijnen, kunt u het aanhangsel “Translated Safety Warnings” (Vertalingen van veiligheidsvoorschriften) raadplegen.)
Preface

Conventions

Varoitus Tämä varoitusmerkki merkitsee vaaraa. Olet tilanteessa, joka voi johtaa ruumiinvammaan. Ennen kuin työskentelet minkään laitteiston parissa, ota selvää sähkökytkentöihin liittyvistä vaaroista ja tavanomaisista onnettomuuksien ehkäisykeinoista. (Tässä julkaisussa esiintyvien varoitusten käännöskset löytyvät liitteestä "Translated Safety Warnings" (käännötyt turvallisuutta koskevat varoitukset).)

Warnung Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu einer Körperverletzung führen könnte. Bevor Sie mit der Arbeit an irgendeinem Gerät beginnen, seien Sie sich der mit elektrischen Stromkreisen verbundenen Gefahren und der Standardpraktiken zur Vermeidung von Unfällen bewußt. (Übersetzungen der in dieser Veröffentlichung enthaltenen Warnhinweise finden Sie im Anhang mit dem Titel “Translated Safety Warnings” (Übersetzung der Warnhinweise).)

Avvertenza Questo simbolo di avvertenza indica un pericolo. Si è in una situazione che può causare infortuni. Prima di lavorare su qualsiasi apparecchiatura, occorre conoscere i pericoli relativi ai circuiti elettrici ed essere al corrente delle pratiche standard per la prevenzione di incidenti. La traduzione delle avvertenze riportate in questa pubblicazione si trova nell’appendice, “Translated Safety Warnings” (Traduzione delle avvertenze di sicurezza).

Advarsel Dette varselsymbolet betyr fare. Du befinner deg i en situasjon som kan føre til personskade. Før du utfører arbeid på utstyr, må du være oppmerksom på de faremomentene som elektriske kretser innebærer, samt gjøre deg kjent med vanlig praksis når det gjelder å unngå ulykker. (Hvis du vil se oversettelser av de avsvarlene som finnes i denne publikasjonen, kan du se i vedlegget "Translated Safety Warnings" [Oversatte sikkerhetsadvarsler].)

Aviso Este símbolo de aviso indica perigo. Encontra-se numa situação que lhe poderá causar danos físicos. Antes de começar a trabalhar com qualquer equipamento, familiarize-se com os perigos relacionados com circuitos elétricos, e com quaisquer práticas comuns que possam prevenir possíveis acidentes. (Para ver as traduções dos avisos que constam desta publicação, consulte o apêndice “Translated Safety Warnings” - “Traduções dos Avisos de Segurança”).

¡Advertencia! Este símbolo de aviso significa peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considerar los riesgos que entraña la corriente eléctrica y familiarizarse con los procedimientos estándar de prevención de accidentes. (Para ver traducciones de las advertencias que aparecen en esta publicación, consultar el apéndice titulado “Translated Safety Warnings”.)

Warning! Denna varningsymbol signalerar fara. Du befinner dig i en situation som kan leda till personskada. Innan du utför arbete på någon utrustning måste du vara medveten om farorna med elkretsar och känna till vanligt förfarande för att förebygga skador. (Se förklaringar av de varningar som förekommer i denna publicatio i appendik "Translated Safety Warnings” [Översatta säkerhetsvarningar].)
Related Publications

For more information about Cisco Aironet CB21AG and PI21AG Wireless LAN Client Adapters for Windows, refer to the following publication:

- *Release Notes for Cisco Aironet 802.11a/b/g Client Adapters (CB21AG and PI21AG) Install Wizard*

For more information about related Cisco Aironet products, refer to the publications for your infrastructure device. You can find Cisco Aironet technical documentation at this URL:

Obtaining Documentation

Cisco provides several ways to obtain documentation, technical assistance, and other technical resources. These sections explain how to obtain technical information from Cisco Systems.

Cisco.com

You can access the most current Cisco documentation on the World Wide Web at this URL:

http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:

http://www.cisco.com

International Cisco websites can be accessed from this URL:

Documentation CD-ROM

Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM package, which may have shipped with your product. The Documentation CD-ROM is updated regularly and may be more current than printed documentation. The CD-ROM package is available as a single unit or through an annual or quarterly subscription.

Registered Cisco.com users can order a single Documentation CD-ROM (product number DOC-CONDCCD=) through the Cisco Ordering tool:

All users can order annual or quarterly subscriptions through the online Subscription Store:

http://www.cisco.com/go/subscription

Click Subscriptions & Promotional Materials in the left navigation bar.
Ordering Documentation

You can find instructions for ordering documentation at this URL:

You can order Cisco documentation in these ways:

- Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from the Networking Products MarketPlace:
- Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco Systems Corporate Headquarters (California, USA) at 408 526-7208 or, elsewhere in North America, by calling 800 553-NETS (6387).

Documentation Feedback

You can submit e-mail comments about technical documentation to bug-doc@cisco.com.
You can submit comments by using the response card (if present) behind the front cover of your document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

For all customers, partners, resellers, and distributors who hold valid Cisco service contracts, the Cisco Technical Assistance Center (TAC) provides 24-hour-a-day, award-winning technical support services, online and over the phone. Cisco.com features the Cisco TAC website as an online starting point for technical assistance. If you do not hold a valid Cisco service contract, please contact your reseller.

Cisco TAC Website

The Cisco TAC website provides online documents and tools for troubleshooting and resolving technical issues with Cisco products and technologies. The Cisco TAC website is available 24 hours a day, 365 days a year. The Cisco TAC website is located at this URL:
http://www.cisco.com/tac

Accessing all the tools on the Cisco TAC website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a login ID or password, register at this URL:
Opening a TAC Case

Using the online TAC Case Open Tool is the fastest way to open P3 and P4 cases. (P3 and P4 cases are those in which your network is minimally impaired or for which you require product information.) After you describe your situation, the TAC Case Open Tool automatically recommends resources for an immediate solution. If your issue is not resolved using the recommended resources, your case will be assigned to a Cisco TAC engineer. The online TAC Case Open Tool is located at this URL:

http://www.cisco.com/tac/caseopen

For P1 or P2 cases (P1 and P2 cases are those in which your production network is down or severely degraded) or if you do not have Internet access, contact Cisco TAC by telephone. Cisco TAC engineers are assigned immediately to P1 and P2 cases to help keep your business operations running smoothly.

To open a case by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553-2447

For a complete listing of Cisco TAC contacts, go to this URL:

TAC Case Priority Definitions

To ensure that all cases are reported in a standard format, Cisco has established case priority definitions.

Priority 1 (P1)—Your network is “down” or there is a critical impact to your business operations. You and Cisco will commit all necessary resources around the clock to resolve the situation.

Priority 2 (P2)—Operation of an existing network is severely degraded, or significant aspects of your business operation are negatively affected by inadequate performance of Cisco products. You and Cisco will commit full-time resources during normal business hours to resolve the situation.

Priority 3 (P3)—Operational performance of your network is impaired, but most business operations remain functional. You and Cisco will commit resources during normal business hours to restore service to satisfactory levels.

Priority 4 (P4)—You require information or assistance with Cisco product capabilities, installation, or configuration. There is little or no effect on your business operations.

Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

- The Cisco Product Catalog describes the networking products offered by Cisco Systems, as well as ordering and customer support services. Access the Cisco Product Catalog at this URL:

- Cisco Press publishes a wide range of general networking, training and certification titles. Both new and experienced users will benefit from these publications. For current Cisco Press titles and other information, go to Cisco Press online at this URL:
 http://www.ciscopress.com
Obtaining Additional Publications and Information

- Packet magazine is the Cisco quarterly publication that provides the latest networking trends, technology breakthroughs, and Cisco products and solutions to help industry professionals get the most from their networking investment. Included are networking deployment and troubleshooting tips, configuration examples, customer case studies, tutorials and training, certification information, and links to numerous in-depth online resources. You can access Packet magazine at this URL:
 http://www.cisco.com/packet

- iQ Magazine is the Cisco bimonthly publication that delivers the latest information about Internet business strategies for executives. You can access iQ Magazine at this URL:
 http://www.cisco.com/go/iqmagazine

- Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering professionals involved in designing, developing, and operating public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

- Training—Cisco offers world-class networking training. Current offerings in network training are listed at this URL:
Product Overview

This chapter describes the Cisco Aironet CB21AG and PI21AG client adapters and illustrates their role in a wireless network.

The following topics are covered in this chapter:

- Introduction to the Client Adapters, page 1-2
- Hardware Components, page 1-3
- Software Components, page 1-4
- Network Configurations Using Client Adapters, page 1-5
Introduction to the Client Adapters

The Cisco Aironet IEEE 802.11a/b/g Wireless LAN Client Adapters (CB21AG and PI21AG) are radio modules that provide transparent wireless data communications between fixed, portable, or mobile devices and other wireless devices or a wired network infrastructure. The client adapters are fully compatible when used in devices supporting “plug-and-play” (PnP) technology.

The primary function of the client adapters is to transfer data packets transparently through the wireless infrastructure by communicating with access points that are connected to a wired LAN. The adapters operate similarly to a standard network product except that the cable is replaced with a radio connection and an access point is required to make the connection to the wire. No special wireless networking functions are required, and all existing applications that operate over a network can operate using the adapters.

This document covers the two client adapters described in Table 1-1.

Table 1-1 Client Adapter Types

<table>
<thead>
<tr>
<th>Client Adapter</th>
<th>Model Number</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-Cardbus card</td>
<td>AIR-CB21AG</td>
<td>An IEEE 802.11a/b/g-compliant 2.4- and 5-GHz 54-Mbps client adapter card radio module with a Cardbus interface that can be inserted into any device equipped with an external 32-bit Cardbus slot. Host devices can include laptops and notebook computers.</td>
<td></td>
</tr>
<tr>
<td>PCI card</td>
<td>AIR-PI21AG</td>
<td>An IEEE 802.11a/b/g-compliant 2.4- and 5-GHz 54-Mbps client adapter card radio module that can be inserted into any device equipped with an empty PCI expansion slot, such as a desktop personal computer.</td>
<td></td>
</tr>
</tbody>
</table>

Terminology

The following terms are used throughout this document:

- **client adapter**—Refers to both types of adapters.
- **PC-Cardbus card** or **PCI card**—Refers to a specific adapter.
- **workstation** (or **station**)—Refers to a computing device with an installed client adapter.
- **infrastructure device**—Refers to a device that connects client adapters to a wired LAN, such as an access point, bridge, or base station. Throughout this document, *access point* is used to represent infrastructure devices in general.
Hardware Components

The client adapters have three major hardware components: a radio, a radio antenna, and two LEDs.

Radio

The client adapters contain a dual-band radio that is both IEEE 802.11a and 802.11b/g compliant. The radio uses both direct-sequence spread spectrum (DSSS) technology and orthogonal frequency division multiplexing (OFDM) technology for client applications in the 2.4-GHz Industrial Scientific Medical (ISM) frequency band and OFDM technology in the 5-GHz Unlicensed National Information Infrastructure (UNII) frequency bands. The client adapters operate with other IEEE 802.11a or 802.11b/g-compliant client devices in ad hoc mode or with Cisco Aironet 340, 350, 1100, and 1200 Series Access Points and other IEEE 802.11a or 802.11b/g-compliant infrastructure devices in infrastructure mode.

Radio Antenna

The type of antenna used depends on your client adapter:

- PC-Cardbus cards have an integrated, permanently attached 0-dBi gain, dual-band 2.4/5-GHz diversity antenna. The benefit of the diversity antenna system is improved coverage. The system works by enabling the card to sample and switch between its two antenna ports in order to select the optimum port for receiving data packets. As a result, the card has a better chance of maintaining the radio frequency (RF) connection in areas of interference. The antenna is housed within the section of the card that hangs out of the Cardbus slot when the card is installed.

- PCI cards have a 1-dBi gain, dual-band 2.4/5-GHz antenna that is permanently attached by a 6.6-foot (2-meter) cable. A base is provided with the antenna to enable it to be mounted to a wall or to sit upright on a desk or other horizontal surface.

LEDs

The client adapters have two LEDs that glow or blink to indicate the status of the adapter or to convey error messages. Refer to Chapter 10 for an interpretation of the LED codes.
Software Components

The client adapters have two major software components: a driver and client utilities. These components are installed together by running a single executable Install Wizard file that is available from Cisco.com. This file can be run on Windows 2000 or XP and can be used only with CB21AG and PI21AG client adapters.

Note Chapter 3 provides instructions on using the Install Wizard to install these software components.

Driver

The driver provides an interface between a computer’s operating system and the client adapter, thereby enabling the operating system and the applications it runs to communicate with the adapter. The driver must be installed before the adapter can be used.

Client Utilities

Two client utilities are available for use with the client adapters: Aironet Desktop Utility (ADU) and Aironet System Tray Utility (ASTU). These utilities are optional applications that interact with the client adapter’s radio to adjust settings and display information.

ADU enables you to create configuration profiles for your client adapter and perform user-level diagnostics. Because ADU performs a variety of functions, it is documented by function throughout this manual.

ASTU, which is accessible from an icon in the Windows system tray, provides a small subset of the features available through ADU. Specifically, it enables you to view status information about your client adapter and perform basic tasks. Chapter 8 provides detailed information and instructions on using ASTU.

Note If your computer is running Windows XP, you can configure your client adapter through the Microsoft Wireless Configuration Manager instead of through ADU. Refer to Appendix E for information. However, ADU is recommended for configuring the client adapter.
Network Configurations Using Client Adapters

Client adapters can be used in a variety of network configurations. In some configurations, access points provide connections to your network or act as repeaters to increase wireless communication range. The maximum communication range is based on how you configure your wireless network.

This section describes and illustrates the two most common network configurations:

- Ad hoc wireless local area network (LAN)
- Wireless infrastructure with workstations accessing a wired LAN

For examples of more complex network configurations involving client adapters and access points, refer to the documentation for your access point.

Note: Refer to Chapter 5 for information on setting the client adapter's network type.

Ad Hoc Wireless LAN

An ad hoc (or peer-to-peer) wireless LAN (see Figure 1-1) is the simplest wireless LAN configuration. In a wireless LAN using an ad hoc network configuration, all devices equipped with a client adapter can be linked together and communicate directly with each other. The use of an infrastructure device, such as an access point, is not required.

Figure 1-1 Ad Hoc Wireless LAN
Wireless Infrastructure with Workstations Accessing a Wired LAN

A microcellular network can be created by placing two or more access points on a LAN. Figure 1-2 shows a microcellular network with workstations accessing a wired LAN through several access points. This configuration is useful with portable or mobile stations because it enables them to be directly connected to the wired network even while moving from one microcell domain to another. This process is transparent, and the connection to the file server or host is maintained without disruption. The mobile station stays connected to an access point as long as it can. However, when the transfer of data packets needs to be retried or beacons are missed, the station automatically searches for and associates to another access point. This process is referred to as seamless roaming.

Figure 1-2 Wireless Infrastructure with Workstations Accessing a Wired LAN
Preparing for Installation

This chapter provides information that you need to know before installing a client adapter. The following topics are covered in this chapter:

- Safety information, page 2-2
- Unpacking the Client Adapter, page 2-3
- System Requirements, page 2-4
- Site Requirements, page 2-5
Safety information

Follow the guidelines in this section to ensure proper operation and safe use of the client adapter.

FCC Safety Compliance Statement

The FCC, with its action in ET Docket 96-8, has adopted a safety standard for human exposure to RF electromagnetic energy emitted by FCC-certified equipment. When used with approved Cisco Aironet antennas, Cisco Aironet products meet the uncontrolled environmental limits found in OET-65 and ANSI C95.1, 1991. Proper operation of this radio device according to the instructions in this publication will result in user exposure substantially below the FCC recommended limits.

Safety Guidelines

- Do not touch or move the antenna while the unit is transmitting or receiving.
- Do not hold any component containing a radio such that the antenna is very close to or touching any exposed parts of the body, especially the face or eyes, while transmitting.
- Do not operate the radio or attempt to transmit data unless the antenna is connected; otherwise, the radio may be damaged.
- Use in specific environments:
 - The use of wireless devices in hazardous locations is limited to the constraints posed by the safety directors of such environments.
 - The use of wireless devices on airplanes is governed by the Federal Aviation Administration (FAA).
 - The use of wireless devices in hospitals is restricted to the limits set forth by each hospital.

Warnings

Observe the following warnings when operating the client adapter. The second warning pertains to the PI21AG client adapter, and the third warning pertains to the CB21AG client adapter.

⚠️ Warning
Do not operate your wireless network device near unshielded blasting caps or in an explosive environment unless the device has been modified to be especially qualified for such use.

⚠️ Warning
In order to comply with FCC radio frequency (RF) exposure limits, dipole antennas should be located at a minimum of 7.9 inches (20 cm) or more from the body of all persons.
Warning

This device has been tested and complies with FCC RF Exposure (SAR) limits in typical laptop computer configurations and this device can be used in desktop or laptop computers with side mounted PC Card slots that can provide at least 0.394 in (1 cm) separation distance from the antenna to the body of the user or a nearby person. Thin laptop computers may need special attention to maintain antenna spacing while operating. This device cannot be used with handheld PDAs (personal digital assistants). Use in other configurations may not ensure compliance with FCC RF exposure guidelines. This device and its antenna must not be co-located or operated in conjunction with any other antenna or transmitter.

Translated versions of these safety warnings are provided in Appendix B.

Unpacking the Client Adapter

Follow these steps to unpack the client adapter:

Step 1 Open the shipping container and carefully remove the contents.
Step 2 Return all packing materials to the shipping container and save it.
Step 3 Ensure that all items listed in the “Package Contents” section below are included in the shipment. Check each item for damage.

Note If any item is damaged or missing, notify your authorized Cisco sales representative.

Package Contents

Each client adapter is shipped with the following items:

- 1-dBi gain antenna permanently attached by a 6.6-ft (2-m) cable, antenna base, low-profile bracket, two mounting screws, and two plastic wall anchors (PCI cards only)
- Quick Start Guide: Cisco Aironet 802.11a/b/g Wireless LAN Client Adapters (CB21AG and PI21AG)
- Cisco Aironet 802.11a/b/g Wireless Adapters (CB21AG and PI21AG) CD
System Requirements

In addition to the items shipped with the client adapter, you also need the following items in order to install and use the adapter:

- One of the following computing devices running Windows 2000 or XP:
 - Laptop or notebook computer equipped with a 32-bit Cardbus slot
 - Desktop personal computer equipped with an empty PCI expansion slot

 Note
 Cisco recommends a 300-MHz (or greater) processor.

- Either Service Pack 1 or Service Pack 2 for Windows XP
- 20 MB of free hard disk space (minimum)
- 128 MB of RAM or greater (recommended)
- The appropriate tools for removing your computer’s cover and expansion slot dust cover and for mounting the antenna base (for PCI cards)
- If your wireless network uses EAP-TLS or PEAP authentication, Certificate Authority (CA) and user certificates for EAP-TLS authentication or CA certificate for PEAP authentication
- If your wireless network uses PEAP (EAP-GTC) authentication with a One-Time Password (OTP) user database:
 - A hardware token device from OTP vendors or the Secure Computing SofToken program (version 2.1 or later)
 - Your hardware or software token password
- The following information from your system administrator:
 - The logical name for your workstation (also referred to as *client name*)
 - The protocols necessary to bind to the client adapter, such as TCP/IP
 - The case-sensitive service set identifier (SSID) for your RF network
 - If your network setup does not include a DHCP server, the IP address, subnet mask, and default gateway address of your computer
 - The wired equivalent privacy (WEP) keys of the access points with which your client adapter will communicate, if your wireless network uses static WEP for security
 - The username and password for your network account
Site Requirements

This section discusses the site requirements for both infrastructure and client devices.

For Infrastructure Devices

Because of differences in component configuration, placement, and physical environment, every network application is a unique installation. Therefore, before you install any wireless infrastructure devices (such as access points, bridges, and base stations, which connect your client adapters to a wired LAN), a site survey must be performed to determine the optimum placement of these devices to maximize range, coverage, and network performance.

Note

Infrastructure devices are installed and initially configured prior to client devices.

For Client Devices

Because the client adapter is a radio device, it is susceptible to RF obstructions and common sources of interference that can reduce throughput and range. Follow these guidelines to ensure the best possible performance:

- Install the client adapter in an area where large steel structures such as shelving units, bookcases, and filing cabinets will not obstruct radio signals to and from the client adapter.
- Install the client adapter away from microwave ovens. Microwave ovens operate on the same frequency as the client adapter and can cause signal interference.
Installing the Client Adapter

This chapter provides instructions for installing the client adapter. The following topics are covered in this chapter:

- Installing the Client Adapter Software, page 3-2
- Inserting a Client Adapter, page 3-13
Installing the Client Adapter Software

This section describes how to install Cisco Aironet CB21AG or PI21AG client adapter drivers and utilities from a single executable file named Win-Client-802.11a-b-g-Ins-Wizard-vx.exe, where x represents the release number. Follow these steps to install these client adapter software components on a computer running Windows 2000 or XP.

Caution
Cisco Aironet CB21AG and PI21AG client adapter software is incompatible with other Cisco Aironet client adapter software. The Aironet Desktop Utility (ADU) must be used with CB21AG and PI21AG cards, and the Aironet Client Utility (ACU) must be used with all other Cisco Aironet client adapters.

Caution
Do not eject your client adapter at any time during the installation process, including during the reboot.

Note
This procedure is meant to be used the first time the Cisco Aironet CB21AG or PI21AG client adapter software is installed on your computer. If this software is already installed on your computer, follow the instructions in Chapter 9 to upgrade the client adapter software.

Note
The Install Wizard disables the Microsoft 802.1X supplicant, if installed, to prevent any potential conflicts between ADU and the supplicant.

Note
Only one wireless client adapter can be installed and used at a time. The software does not support the use of multiple cards.

Step 1
Make sure the client adapter is not inserted in your computer. You will be instructed when to insert it.

Step 2
Use your computer’s web browser to access the following URL:

Step 3
Click **Option #2: Aironet Wireless Software Display Tables**.

Note
If you prefer to use an automated tool, you can download software from the Software Selector tool instead of the display tables. To do so, click **Option #1: Aironet Wireless Software Selector**, follow the instructions on the screen, and go to **Step 7**.

Step 4
Click **Cisco Aironet Wireless LAN Client Adapters**.

Step 5
Under Aironet Client Adapter Installation Wizard (For Windows), click **802.11a/b/g (CB21AG, PI21AG)**.

Step 6
Click the Install Wizard file with the greatest release number.

Step 7
Complete the encryption authorization form; then read and accept the terms and conditions of the Software License Agreement.

Step 8
Click the file again to download it.

Step 9
Save the file to your computer’s hard drive.
Step 10 Use Windows Explorer to find the file.

Step 11 Double-click the file. The “Starting InstallShield Wizard” message appears followed by the Preparing Setup window (see Figure 3-1) and the Cisco Aironet Installation Program window (see Figure 3-2).

Figure 3-1 Preparing Setup Window

![Preparing Setup Window](image-url)
Step 12 Click **Next**. The Setup Type window appears (see Figure 3-3).
Figure 3-3 Setup Type Window

![Setup Type Window](image)

Step 13 Choose one of the following options:

Note To ensure compatibility among software components, Cisco recommends that you install the client utilities and driver.

- **Install Client Utilities and Driver (recommended)**—Installs the client adapter driver and client utilities.
- **Install Driver Only**—Installs only the client adapter driver. If you choose this option, click **Next** and go to **Step 25**.
- **Make Driver Installation Diskette(s)**—Enables you to create driver installation diskettes that can be used to install drivers using the Windows Device Manager.

Step 14 Click **Next**.

Step 15 If a message appears indicating that you are required to restart your computer at the end of the installation process, click **Yes**.

Note If you click **No**, you are asked to confirm your decision. If you proceed, the installation process terminates.

The Choose Destination Location window appears (see **Figure 3-4**).
Figure 3-4 Choose Destination Location Window

![Choose Destination Location Window](image)

Step 16 Perform one of the following:

- If you chose the first option in Step 13, click **Next** to install the client utility files in the C:\Program Files\Cisco Aironet directory.

 Note If you want to install the client utilities in a different directory, click **Browse**, choose a different directory, click **OK**, and click **Next**.

- If you chose the Make Driver Installation Diskette(s) option in Step 13, insert a floppy disk into your computer and click **Next** to copy the driver to the diskette. Go to **Step 25**.

 Note If you want to copy the driver to a different drive or directory, click **Browse**, choose a new location, click **OK**, and click **Next**.

Step 17 The Select Program Folder window appears (see Figure 3-5).
Step 18 Click **Next** to add program icons to the Cisco Aironet program folder.

Note If you want to specify a different program folder, choose a folder from the Existing Folders list or type a new folder name in the Program Folder field and click **Next**.

Step 19 If your computer is running Windows 2000, go to **Step 25**. If your computer is running Windows XP, the **IMPORTANT: Please Read!** window appears (see **Figure 3-6**).
Figure 3-6 IMPORTANT: Please Read! Window

On Windows XP, you can configure your Cisco Aironet Wireless LAN Client Adapter through the Cisco Aironet Desktop Utility (ADU) or the Microsoft Wireless Configuration Manager. Because the Microsoft tool does not provide all of the functionality available in ADU, Cisco recommends that you use ADU. (Please note that a patch from Microsoft might be required to use the Microsoft tool with WPA security.)

On the next screen, select whether you want to use ADU or the Microsoft Wireless Configuration Manager to configure your client adapter.

NOTE: If you select the Microsoft Wireless Configuration Manager, some of the ADU features will not be available. To activate those features, you must install ADU.

Step 20 Read the information displayed and click Next. The Choose Configuration Tool window appears (see Figure 3-7).
Figure 3-7 Choose Configuration Tool Window

Step 21 Choose one of the following options. Table 3-1 compares the Windows XP and ADU client adapter features.

- **Cisco Aironet Desktop Utility (ADU)**—Enables you to configure your client adapter using ADU.
- **Microsoft Wireless Configuration Manager**—Enables you to configure your client adapter using the Microsoft Wireless Configuration Manager in Windows XP.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Windows XP</th>
<th>ADU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration parameters</td>
<td>Limited</td>
<td>Extensive</td>
</tr>
<tr>
<td>Capabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create profiles</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Enable/disable radio</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static WEP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LEAP authentication with dynamic WEP</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EAP-TLS or PEAP authentication</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3-1 Comparison of Windows XP and ADU Client Adapter Features (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Windows XP</th>
<th>ADU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status and statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status window</td>
<td>Limited</td>
<td>Extensive</td>
</tr>
<tr>
<td>Statistics window (transmit & receive)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note
If you choose Cisco Aironet Desktop Utility (ADU) above, the Microsoft Wireless Configuration Manager is disabled. If you ever manually enable it, you are prompted to disable it whenever ADU is activated.

Step 22 Click *Next*.

Step 23 If you chose Cisco Aironet Desktop Utility (ADU) in Step 21, go to Step 25. If you chose Microsoft Wireless Configuration Manager, the Enable Tray Icon window appears (see Figure 3-8).

Figure 3-8 Enable Tray Icon Window

![Enable Tray Icon Window](image)

Step 24 Check the **Enable Cisco Aironet System Tray Utility (ASTU)** check box if you want to be able to use ASTU even though you have chosen to configure your client adapter through Windows XP instead of ADU and click *Next*.
Step 25 When prompted to insert your client adapter, perform one of the following:

- If you are using a PC-Cardbus card, insert the card into your computer’s Cardbus slot; then click OK. If the Windows Found New Hardware Wizard appears, click Cancel.

 Note Refer to the “Inserting a PC-Cardbus Card” section on page 3-13 for instructions on inserting a PC-Cardbus card into your computer.

- If you are using a PCI card, click OK. You will insert the card into your computer after you have finished installing the Install Wizard.

The Setup Status window appears (see Figure 3-9).

Figure 3-9 Setup Status Window

The installation process begins, and you are notified as each software component is installed.

Step 26 When a message appears indicating that your computer needs to be rebooted, click OK and allow your computer to restart.

Step 27 If you are using a PCI card, insert the card into your computer’s PCI slot.

Note Refer to the “Inserting a PCI Card” section on page 3-14 for instructions on inserting a PCI card into your computer.
Step 28 If the Windows Found New Hardware Wizard appears after your computer reboots, click **Next**, allow the wizard to install the software for the client adapter, and click **Finish**.

Step 29 If your network setup does not include a DHCP server and you plan to use TCP/IP, follow these steps for your operating system.

- **Windows 2000**
 a. Double-click **My Computer,** **Control Panel,** and **Network and Dial-up Connections**.
 b. Right-click **Local Area Connection** \(x\) (where \(x\) represents the number of the connection).
 c. Click **Properties**.
 d. In the Components Checked Are Used by This Connection field, click **Internet Protocol (TCP/IP)** and **Properties**.
 e. Choose **Use the following IP address** and enter the IP address, subnet mask, and default gateway address of your computer (which can be obtained from your system administrator).
 f. Click **OK** to close each open window.

- **Windows XP**
 a. Double-click **My Computer,** **Control Panel,** and **Network Connections**.
 b. Right-click **Wireless Network Connection** \(x\) (where \(x\) represents the number of the connection).
 c. Click **Properties**.
 d. In the This Connection Uses the Following Items field, click **Internet Protocol (TCP/IP)** and **Properties**.
 e. Choose **Use the following IP address** and enter the IP address, subnet mask, and default gateway address of your computer (which can be obtained from your system administrator).
 f. Click **OK** to close each open window.

Step 30 If you are prompted to restart your computer, click **Yes**.

Step 31 Now that your client adapter is properly installed, it is ready to be configured.

- If you are planning to configure your client adapter through ADU, go to **Chapter 4** to create configuration profiles.
- If you are planning to configure your client adapter through the Windows XP Wireless Configuration Manager, go to **Appendix E**.

Note

If you experienced problems during or after installation, refer to **Chapter 10** for troubleshooting information.
Chapter 3 Installing the Client Adapter

Inserting a Client Adapter

This section provides instructions for inserting a PC-Cardbus card or PCI card into your computer.

⚠️ Caution
These procedures and the physical connections they describe apply generally to conventional Cardbus slots and PCI expansion slots. In cases of custom or nonconventional equipment, be alert to possible differences in Cardbus slot and PCI expansion slot configurations.

Inserting a PC-Cardbus Card

Step 1
Before you begin, examine the card. One end has a dual-row, 68-pin connector. The card is keyed so it can be inserted only one way into the Cardbus slot.

Note
The Cardbus slot is on the left or right side of the computer, depending on the model.

Step 2
Hold the card with the Cisco label facing up and insert it into the Cardbus slot, applying just enough pressure to make sure it is fully seated (see Figure 3-10). The green LED lights when the card is inserted properly.

⚠️ Caution
Do not force the card into your computer’s Cardbus slot. Forcing it will damage both the card and the slot. If the card does not insert easily, remove the card and reinsert it.

Figure 3-10 Inserting a PC-Cardbus Card into a Computer

Note
The configuration profiles for PC-Cardbus cards are tied to the slot in which the card is inserted. Therefore, you must always insert your PC-Cardbus card into the same slot or create profiles for both slots. See Chapter 4 for information on creating profiles for your client adapter.

Step 3
If the Found New Hardware Wizard window appears, click Cancel.

Step 4
Return to Step 25 of the “Installing the Client Adapter Software” section if you are in the process of installing the client adapter software.
Inserting a Client Adapter

You must perform the following procedures in the order listed below to insert a PCI card:

- Change the bracket (if required), see below
- Insert the card, page 3-15
- Assemble the antenna, page 3-16
- Mount the antenna, page 3-17

Changing the Bracket

The PCI card is shipped with a full-profile bracket attached. If the PC into which you are inserting the PCI card requires the card to use a low-profile bracket, follow these steps to change brackets.

Step 1
Remove the two screws that attach the bracket to the card. See Figure 3-11.

Figure 3-11 Changing the PCI Card Bracket

![Figure 3-11 Changing the PCI Card Bracket](image)

<table>
<thead>
<tr>
<th></th>
<th>Bracket screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Step 2
Slide the bracket away from the card; then tilt the bracket to free the antenna cable.

Caution
Do not pull on the antenna cable or detach it from the PCI card. The antenna is meant to be permanently attached to the card.

Step 3
Hold the low-profile bracket to the card so that the LEDs slip through their corresponding holes on the bracket.

Step 4
Insert the screws that you removed in Step 1 into the holes on the populated side of the card near the bracket (see Figure 3-11) and tighten.
Inserting the Card

Follow the steps below to insert a PCI card into your PC.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turn off the PC and all its components.</td>
</tr>
<tr>
<td>2</td>
<td>Remove the computer cover.</td>
</tr>
</tbody>
</table>

Note On most Pentium PCs, PCI expansion slots are white. Refer to your PC documentation for slot identification.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Remove the screw from the top of the CPU back panel above an empty PCI expansion slot. This screw holds the metal bracket on the back panel.</td>
</tr>
</tbody>
</table>

Caution Static electricity can damage your PCI card. Before removing the card from the anti-static packaging, discharge static by touching a metal part of a grounded PC.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Locate an empty PCI expansion slot inside your computer.</td>
</tr>
<tr>
<td>5</td>
<td>Slip your card’s antenna through the opening near the empty expansion slot so that it is located outside of the computer. See Figure 3-12.</td>
</tr>
</tbody>
</table>

Figure 3-12 Inserting a PCI Card into a PC

1. Antenna cable
2. LEDs
3. Card edge connector

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Tilt the card to enable the LEDs to slip through the opening in the CPU back panel. See the enlarged view in Figure 3-12.</td>
</tr>
</tbody>
</table>
Inserting a Client Adapter

Step 7 Press the card into the empty slot until its connector is firmly seated.

Caution Do not force the card into the expansion slot; this could damage both the card and the slot. If the card does not insert easily, remove it and reinsert it.

Step 8 Reinstall the screw on the CPU back panel and replace the computer cover.

Assembling the Antenna

Follow the steps below to assemble the PCI card’s antenna.

Step 1 Slide the antenna through the opening in the bottom of the antenna base.

Step 2 Position the antenna so its notches are facing the Cisco label on the front of the base. See Figure 3-13.

Figure 3-13 Inserting the Antenna into Its Base

1 Antenna
2 Notch
3 Antenna base
Step 3 Press the antenna cable into the receptacle on the top of the base as shown in Figure 3-13.

Step 4 Press the antenna straight down into the receptacle until it clicks into place.

Mounting the Antenna

Because the PCI card is a radio device, it is susceptible to RF obstructions and common sources of interference that can reduce throughput and range. Follow these guidelines to ensure the best possible performance:

- Place the PCI card’s antenna in an area where large steel structures such as shelving units, bookcases, and filing cabinets will not obstruct radio signals being transmitted or received.
- Place the antenna away from microwave ovens and 2.4- and 5.8-GHz cordless phones. These products can cause signal interference because they operate in the same frequency range as the PCI card.

Follow the steps below to position the PCI card’s antenna on a flat horizontal surface or to mount it to a wall.

Step 1 Perform one of the following:

- If you want to use the antenna on a flat horizontal surface, position the antenna so it is pointing straight up. Then go to Step 7.
- If you want to mount the antenna to a wall, go to Step 2.

Step 2 Drill two holes in the wall that are 1.09 in. (2.8 cm) apart. Figure 3-14 shows the distance between the mounting holes on the bottom of the antenna base.

Figure 3-14 Bottom of Antenna Base
Step 3 Tap the two supplied wall anchors into the holes.

Step 4 Drive the two supplied screws into the wall anchors, leaving a small gap between the screw head and the anchor.

Step 5 Position the mounting holes on the bottom of the antenna base over the screws (see Figure 3-15) and pull down to lock in place.

Figure 3-15 Mounting the Antenna

Step 6 The antenna rotates 90 degrees from its base. For optimal reception, position the antenna so it is pointing straight up (see Figure 3-16).

Figure 3-16 Rotating the Antenna
Step 7 Boot up your PC. The green LED lights when the card is inserted properly.

Step 8 Go to Step 28 of the “Installing the Client Adapter Software” section if you are in the process of installing the client adapter software.
Using the Profile Manager

This chapter explains how to use the ADU profile manager feature to create and manage profiles for your client adapter.

The following topics are covered in this chapter:

- Overview of Profile Manager, page 4-2
- Opening Profile Manager, page 4-2
- Creating a New Profile, page 4-4
- Including a Profile in Auto Profile Selection, page 4-7
- Selecting the Active Profile, page 4-8
- Modifying a Profile, page 4-9
- Importing and Exporting Profiles, page 4-10
Overview of Profile Manager

The ADU profile manager feature enables you to create and manage up to 16 profiles (or saved configurations) for your client adapter. These profiles enable you to use your client adapter in different locations, each of which requires different configuration settings. For example, you may want to set up profiles for using your client adapter at the office, at home, and in public areas such as airports. After the profiles are created, you can easily switch between them without having to reconfigure your client adapter each time you enter a new location.

Profiles are stored in the registry and are lost if you uninstall the client adapter’s software. To prevent your profiles from becoming lost, Cisco recommends that you back up your profiles using the profile manager’s import/export feature. See the “Importing and Exporting Profiles” section on page 4-10 for details.

Opening Profile Manager

Step 1 To open the ADU profile manager, double-click the Aironet Desktop Utility icon on your desktop.

Step 2 Click the Profile Management tab. The Cisco Aironet Desktop Utility (Profile Management) window appears (see Figure 4-1).

Figure 4-1 Cisco Aironet Desktop Utility (Profile Management) Window

Note The profile manager feature provides you with a default profile that is configured to use default values. This profile is named Default and appears in the profiles list on the Cisco Aironet Desktop Utility (Profile Management) window. You can use this profile as is by double-clicking it or modify it by following the instructions in the “Modifying a Profile” section on page 4-9.
Table 4-1 provides a description of the status fields on the Cisco Aironet Desktop Utility (Profile Management) window.

Table 4-1 Description of Status Fields on Profile Management Window

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>The type of network that is configured for the selected profile.</td>
</tr>
<tr>
<td></td>
<td>Value: Infrastructure or Ad Hoc</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the Network Type parameter in Table 5-3 for instructions on setting the network type.</td>
</tr>
<tr>
<td>Security Mode</td>
<td>The type of security that is configured for the selected profile.</td>
</tr>
<tr>
<td></td>
<td>Value: None, Pre-Shared Key, WPA Passphrase, LEAP, EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2)</td>
</tr>
<tr>
<td>Network Name 1 (SSID1)</td>
<td>The service set identifier (SSID) is the wireless network that is configured for the selected profile.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the SSID1 parameter in Table 5-2 for instructions on setting SSID1.</td>
</tr>
<tr>
<td>Network Name 2 (SSID2)</td>
<td>An optional SSID that is configured for the selected profile. It identifies a second distinct network and enables the client adapter to connect and/or roam to that network without having to be reconfigured.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the SSID2 parameter in Table 5-2 for instructions on setting SSID2.</td>
</tr>
<tr>
<td>Network Name 3 (SSID3)</td>
<td>An optional SSID that is configured for the selected profile. It identifies a third distinct network and enables the client adapter to connect and/or roam to that network without having to be reconfigured.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the SSID3 parameter in Table 5-2 for instructions on setting SSID3.</td>
</tr>
</tbody>
</table>

Profile manager enables you to perform the following tasks related to the management of profiles:

- Create a new profile, page 4-4
- Include a profile in auto profile selection, page 4-7
- Select the active profile, page 4-8
- Edit a profile, page 4-9
- Delete a profile, page 4-10
- Import a profile, page 4-10
- Export a profile, page 4-11

Follow the instructions on the page indicated for the task you want to perform.

Note If your system administrator used an administrative tool to deactivate certain parameters, these parameters are disabled and cannot be selected.
Creating a New Profile

Follow the steps below to create a new profile.

Step 1
Perform one of the following:

- If you want to create a new profile from scratch, click **New** on the Cisco Aironet Desktop Utility (Profile Management) window. Then go to **Step 4**.
- If you want to find an available network and create a profile based on it, click **Scan** on the Cisco Aironet Desktop Utility (Profile Management) window. The Available Infrastructure and Ad Hoc Networks window appears (see **Figure 4-2**).

Figure 4-2 Available Infrastructure and Ad Hoc Networks Window

This window displays a list of all available networks. Click the **Refresh** button when you want to refresh the window and update the list of available networks.

Note
The Allow Broadcast SSID to Associate option on the access point must be enabled for the SSID to appear in the list of available networks.

Table 4-2 provides a description of the fields on the Available Infrastructure and Ad Hoc Networks window.
Table 4-2 Description of Available Infrastructure and Ad Hoc Networks Window

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Name (SSID)</td>
<td>The service set identifier (SSID) indicates the name of an available wireless network. The icons to the left of the SSIDs provide information on network type and link status.</td>
</tr>
<tr>
<td>Icon</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>An available infrastructure network.</td>
</tr>
<tr>
<td></td>
<td>The infrastructure network to which your client adapter is currently associated.</td>
</tr>
<tr>
<td></td>
<td>An available ad hoc network.</td>
</tr>
<tr>
<td></td>
<td>The ad hoc network to which your client adapter is currently associated.</td>
</tr>
<tr>
<td>Key icon</td>
<td>SSIDs that are designated with a key icon are being advertised as secure networks.</td>
</tr>
<tr>
<td>Signal Strength</td>
<td>The signal strength of all received packets. The higher the value, the stronger the signal.</td>
</tr>
<tr>
<td></td>
<td>Note The color of this parameter’s icon provides a visual interpretation of the signal strength: Excellent or Good (green), Fair (yellow), Poor (red).</td>
</tr>
<tr>
<td></td>
<td>Note The signal strength is displayed either in decibels (dB) or as a percentage (%), depending on the value selected for the Signal Strength Display Units parameter on the Display Settings window. See the “Setting Parameters that Affect ADU Status and Statistics Tools” section on page 7-2 for more information.</td>
</tr>
<tr>
<td>Channel</td>
<td>The channel that the access point (in infrastructure mode) or the other client (in ad hoc mode) is using for communications.</td>
</tr>
<tr>
<td>Wireless Mode</td>
<td>The frequency and rate at which the access point (in infrastructure mode) or the other client (in ad hoc mode) is configured to transmit and receive packets.</td>
</tr>
</tbody>
</table>

Step 2 Scroll down to see the full list of available networks.

Step 3 Click the SSID of the network to which you want your client adapter to associate and click **Activate**.

Note If the SSID is blank, you cannot activate the network.
Creating a New Profile

Step 4 When the Profile Management (General) window appears (see Figure 4-3), enter a name for your new profile (such as Office, Home, etc.) in the Profile Name field.

Figure 4-3 Profile Management (General) Window

Note If you are creating a profile after scanning for an available network, the SSID of the network appears in the SSID1 field.

Step 5 Perform one of the following:
- If you want this profile to use the default values, click OK. The profile is added to the profiles list on the Cisco Aironet Desktop Utility (Profile Management) window.
- If you want to change any of the configuration parameter settings, follow the instructions in Chapter 5. The profile is added to the profiles list on the Cisco Aironet Desktop Utility (Profile Management) window.

Note The profiles for PC-Cardbus cards are tied to the slot in which the card is inserted. Therefore, you must always insert your PC-Cardbus card into the same slot, create profiles for both slots, or export the profiles from one slot and import them for the other slot.

Step 6 Go to the “Including a Profile in Auto Profile Selection” section on page 4-7 to enable the profile to be selected automatically or go to the “Selecting the Active Profile” section on page 4-8 to activate the profile.
Including a Profile in Auto Profile Selection

After you have created profiles for your client adapter, you can choose to include them in the profile manager’s auto profile selection feature. Then when auto profile selection is enabled, the client adapter automatically selects a profile from the list of profiles that were included in auto profile selection and uses it to establish a connection to the network.

Follow these steps to include any of your profiles in auto profile selection and to establish the order in which the profiles will be selected for use.

Step 1 Open ADU and click the Profile Management tab.

Step 2 Click Order Profiles. The Auto Profile Selection Management window appears (see Figure 4-4).

Figure 4-4 Auto Profile Selection Management Window

![Auto Profile Selection Management Window](image)

Step 3 The profiles that you created are listed in the Available Profiles box. Highlight each one that you want to include in auto profile selection and click the Add button. The profiles appear in the Auto Selected Profiles box.

The following rules apply to auto profile selection:

- You must include at least two profiles in the Auto Selected Profiles box.
- The profiles must specify an SSID; otherwise, they do not appear in the Available Profiles box.
Profiles cannot specify multiple SSIDs; otherwise, they do not appear in the Available Profiles box.

Each profile that is included in auto profile selection must have a unique SSID. For example, if Profile A and Profile B both have “ABCD” as their SSID, only Profile A or Profile B (whichever was created first) appears in the Available Profiles box and can be included in auto profile selection.

Note: To remove a profile from auto profile selection, select the profile in the Auto Selected Profiles box and click Remove. The profile is removed from the Auto Selected Profiles box.

Step 4: The first profile in the Auto Selected Profiles box has the highest priority while the last profile has the lowest priority. To change the order (and priority) of your auto-selectable profiles, select the profile that you want to move and click Move up or Move down to move the profile up or down, respectively.

Step 5: Click OK to save your changes.

When auto profile selection is enabled (see the “Selecting the Active Profile” section below for instructions), the client adapter scans for an available network. The profile with the highest priority and the same SSID as one of the found networks is the one that is used to connect to the network. If the connection fails, the client adapter tries the next highest priority profile that matches the SSID and so on.

Note: When you enable auto profile selection, the client adapter scans all wireless modes (5 GHz, 54 Mbps; 2.4 GHz, 11 Mbps; and 2.4 GHz, 54 Mbps) for an available network. The client ignores the selected profile’s wireless mode setting, which was configured on the ADU Profile Management (Advanced) window. Using this method, the client does not need to drop the current connection nor change the current profile while looking for networks in other profiles.

Step 6: Go to the “Selecting the Active Profile” section below to enable auto profile selection.

Selecting the Active Profile

Follow the steps below to specify the profile that the client adapter is to use.

Note: You can use ASTU instead of the ADU Profile Manager to select the active profile. Refer to Chapter 8 for instructions.

Step 1: Open ADU and click the Profile Management tab. The Cisco Aironet Desktop Utility (Profile Management) window appears (see Figure 4-1).

Step 2: Perform one of the following:

- Select one profile for the client adapter to use either by double-clicking that profile in the profiles list or by clicking that profile in the profiles list and then clicking Activate.

 If the client adapter cannot associate (or establish a connection) to an access point (in infrastructure mode) or another client (in ad hoc mode) or loses association while using the selected profile, the adapter does not attempt to associate using another profile. To associate, you must select a different profile or enable auto profile selection.
Enable auto profile selection by checking the **Auto Select Profiles** check box.

This option causes the client adapter’s driver to automatically select a profile from the list of profiles that were set up to be included in auto profile selection.

If the client adapter loses association for more than 10 seconds (or for more than the time specified by the LEAP authentication timeout value on the LEAP Settings window if LEAP is enabled), the driver switches automatically to another profile that is included in auto profile selection. The adapter does not switch profiles as long as it remains associated or reassociates within 10 seconds (or within the time specified by the LEAP authentication timeout value). To force the client adapter to associate to a different access point (in infrastructure mode) or another client (in ad hoc mode), you must uncheck the **Auto Select Profiles** check box and select a new profile from the profiles list.

Note

This option is available only if two or more profiles are included in auto profile selection.

Note

If you LEAP authenticate and achieve full network connectivity before or at the same time as you log into the computer, login scripts will run. However, if you LEAP authenticate and achieve full network connectivity after you log into the computer, login scripts will not run.

Click **Scan**. The Available Infrastructure and Ad Hoc Networks window appears (see Figure 4-2). Double-click the SSID of a network that is used by one of your profiles and click **OK**.

The client adapter starts using a profile based on the option selected above. The active profile is designated by the following icon in the profiles list:

Modifying a Profile

Follow the steps in the appropriate section below to edit or delete an existing profile.

Editing a Profile

Step 1

Open ADU and click the **Profile Management** tab. The Cisco Aironet Desktop Utility (Profile Management) window appears (see Figure 4-1).

Step 2

In the profiles list, select the profile that you want to edit.

Step 3

Click **Modify**.

Step 4

Follow the instructions in **Chapter 5** to change any of the configuration parameters for this profile.
Deleting a Profile

Step 1 Open ADU and click the **Profile Management** tab. The Cisco Aironet Desktop Utility (Profile Management) window appears (see Figure 4-1).

Step 2 In the profiles list, select the profile that you want to delete.

Note You cannot delete the active profile.

Step 3 Click **Remove**. The profile is deleted.

Importing and Exporting Profiles

This section provides instructions for importing and exporting profiles. You may want to use the import/export feature for the following reasons:

- To back up profiles before uninstalling client adapter software
- To export profiles for a PC-Cardbus card in one Cardbus slot and import them for use with a second Cardbus slot
- To set up your computer with a profile from another computer
- To export one of your profiles and use it to set up additional computers

Follow the steps in the corresponding section below to import or export profiles.

Importing a Profile

Step 1 If the profile that you want to import is on a floppy disk, insert the disk into your computer’s floppy drive.

Step 2 Open ADU and click the **Profile Management** tab. The Cisco Aironet Desktop Utility (Profile Management) window appears (see Figure 4-1).

Step 3 Click **Import**. The Import Profile window appears (see Figure 4-5).
Figure 4-5 Import Profile Window

![Import Profile Window]

Step 4 In the Look in drop-down box, find the directory containing the profile.

Step 5 Select the profile that you want to import so it appears in the File name box at the bottom of the window.

Step 6 Click **Open**. The imported profile appears in the profiles list on the Cisco Aironet Desktop Utility (Profile Management) window.

Exporting a Profile

Step 1 Insert a blank floppy disk into your computer’s floppy drive, if you wish to export a profile to a floppy disk.

Step 2 Open ADU and click the **Profile Management** tab. The Cisco Aironet Desktop Utility (Profile Management) window appears (see **Figure 4-1**).

Step 3 In the profiles list, select the profile that you want to export.

Step 4 Click **Export**. The Export Profile window appears (see **Figure 4-6**).
Figure 4-6 Export Profile Window

![Export Profile Window](image)

The profile name appears in the File name box.

Step 5 Choose a directory (such as your computer’s floppy disk drive or a location on the network) from the Save in drop-down box.

Note The default location is the directory where ADU is installed (such as C:\Program Files\Cisco Aironet).

Step 6 Click **Save**. The profile is exported to the specified location.

Step 7 Follow the instructions in the “Importing a Profile” section to import the profile on another computer.
Configuring the Client Adapter

This chapter explains how to set the configuration parameters for a specific profile. The following topics are covered in this chapter:

- **Overview**, page 5-2
- **Setting General Parameters**, page 5-3
- **Setting Advanced Parameters**, page 5-5
- **Setting Security Parameters**, page 5-12
- **Setting Roaming Parameters in the Windows Control Panel**, page 5-34
Overview

When you choose to create a new profile or modify an existing profile on the Cisco Aironet Desktop Utility (Profile Management) window, the Profile Management windows appear. These windows enable you to set the configuration parameters for that profile.

If you do not change any of the configuration parameters for a newly created profile, the default values are used.

If you are planning to set parameters on more than one of the Profile Management windows, wait until you are finished with all of the windows before clicking OK. When you click OK, you are returned to the Cisco Aironet Desktop Utility (Profile Management) window.

Each of the Profile Management windows (listed below) contains parameters that affect a specific aspect of the client adapter:

- **General**—Prepares the client adapter for use in a wireless network
- **Advanced**—Controls how the client adapter operates within an infrastructure or ad hoc network
- **Security**—Controls how a client adapter associates to an access point, authenticates to the wireless network, and encrypts and decrypts data

Table 5-1 enables you to quickly locate instructions for setting each Profile Management window’s parameters.

<table>
<thead>
<tr>
<th>Parameter Category</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>5-3</td>
</tr>
<tr>
<td>Advanced</td>
<td>5-5</td>
</tr>
<tr>
<td>Security</td>
<td>5-12</td>
</tr>
</tbody>
</table>

You can also set two roaming parameters for your client adapter outside of ADU using the Windows Control Panel. Refer to the “Setting Roaming Parameters in the Windows Control Panel” section on page 5-34 for details.
Setting General Parameters

The Profile Management (General) window (see Figure 5-1) enables you to set parameters that prepare the client adapter for use in a wireless network. This window appears after you click New or Modify on the Cisco Aironet Desktop Utility (Profile Management) window.

![Figure 5-1 Profile Management (General) Window](image)

Table 5-2 lists and describes the client adapter’s general parameters. Follow the instructions in the table to change any parameters.

Table 5-2 Profile Management General Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Name</td>
<td>The name assigned to the configuration profile.</td>
</tr>
<tr>
<td></td>
<td>Range: You can key in up to 32 ASCII characters.</td>
</tr>
<tr>
<td>Client Name</td>
<td>A logical name for your workstation. It enables an administrator to</td>
</tr>
<tr>
<td></td>
<td>ascertain which devices are connected to the access point without</td>
</tr>
<tr>
<td></td>
<td>having to memorize every MAC address. This name is included in the</td>
</tr>
<tr>
<td></td>
<td>access point’s list of connected devices. The client name is filled in</td>
</tr>
<tr>
<td></td>
<td>automatically but can be changed.</td>
</tr>
<tr>
<td></td>
<td>Range: You can key in up to 16 ASCII characters.</td>
</tr>
<tr>
<td></td>
<td>Default: The name of your computer</td>
</tr>
<tr>
<td></td>
<td>Note: Each computer on the network should have a unique client</td>
</tr>
<tr>
<td></td>
<td>name.</td>
</tr>
</tbody>
</table>
Setting General Parameters

Chapter 5 Configuring the Client Adapter

Table 5-2 Profile Management General Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID1</td>
<td>The service set identifier (SSID) identifies the specific wireless network that you want the client adapter to access. Range: You can key in up to 32 ASCII characters (case sensitive). Default: A blank field Note If you leave this parameter blank, your client adapter can associate to any access point on the network that is configured to allow broadcast SSIDs. If the access point with which the client adapter is to communicate is not configured to allow broadcast SSIDs, the value of this parameter must match the SSID of the access point. Otherwise, the client adapter is unable to access the network. Note You must enter an SSID if this profile is configured for use in an ad hoc network.</td>
</tr>
<tr>
<td>SSID2</td>
<td>An optional SSID that identifies a second distinct network and enables the client adapter to roam to that network without having to be reconfigured. Range: You can key in up to 32 ASCII characters (case sensitive). Default: A blank field Note If a profile specifies more than one SSID, it cannot be included in auto profile selection. Note This field is unavailable for any profiles that are included in auto profile selection or configured for use in an ad hoc network.</td>
</tr>
<tr>
<td>SSID3</td>
<td>An optional SSID that identifies a third distinct network and enables the client adapter to roam to that network without having to be reconfigured. Range: You can key in up to 32 ASCII characters (case sensitive). Default: A blank field Note If a profile specifies more than one SSID, it cannot be included in auto profile selection. Note This field is unavailable for any profiles that are included in auto profile selection or configured for use in an ad hoc network.</td>
</tr>
</tbody>
</table>

Go to the next section to set additional parameters, or click OK to save your changes and return to the Cisco Aironet Desktop Utility (Profile Management) window.
Setting Advanced Parameters

The Profile Management (Advanced) window (see Figure 5-2) enables you to set parameters that control how the client adapter operates within an infrastructure or ad hoc network. To open this window, click the Advanced tab from any Profile Management window.

Figure 5-2 Profile Management (Advanced) Window

Table 5-3 lists and describes the client adapter’s advanced parameters. Follow the instructions in the table to change any parameters.

Table 5-3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Power Level</td>
<td></td>
</tr>
<tr>
<td>802.11b/g</td>
<td>100 mW</td>
</tr>
<tr>
<td>802.11a</td>
<td>40 mW</td>
</tr>
<tr>
<td>Power Save Mode</td>
<td>CAM (Constantly Awake Mode)</td>
</tr>
<tr>
<td>Network Type</td>
<td>Infrastructure</td>
</tr>
<tr>
<td>802.11b F preamble</td>
<td>Short & Long, Long Only</td>
</tr>
<tr>
<td>Wireless Mode</td>
<td>5 GHz 54 Mbps, 2.4 GHz 11 Mbps, 2.4 GHz 54 Mbps</td>
</tr>
<tr>
<td>Wireless Mode When starting Ad Hoc Network</td>
<td>5 GHz 54 Mbps, 2.4 GHz 54/11 Mbps</td>
</tr>
<tr>
<td>802.11 Authentication Mode</td>
<td>Auto, Open, Shared</td>
</tr>
<tr>
<td>Preferred APs</td>
<td></td>
</tr>
</tbody>
</table>

OK, Cancel
Table 5-3 Profile Management Advanced Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Transmit Power Level | Specifies the preferred power level at which your client adapter transmits. Although the adapter supports up to 100 mW, the transmit power level that is actually used is limited to the maximum value allowed by your country’s regulatory agency (FCC in the U.S., DOC in Canada, ETSI in Europe, TELEC in Japan, etc.).
Options: Dependent on the radio band used and the power table programmed into the client adapter; see the table below.
Default: The maximum power level programmed into the client adapter and allowed by your country’s regulatory agency. |

<table>
<thead>
<tr>
<th>Radio Band</th>
<th>Transmit Power Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b/g</td>
<td>10, 20, 30, 50, 63, or 100 mW</td>
</tr>
<tr>
<td>802.11a</td>
<td>10, 13, 20, 25, or 40 mW</td>
</tr>
</tbody>
</table>

Note The client adapter’s maximum transmit power level may be lower when operating in 802.11g mode than when operating in 802.11b mode due to 802.11g-specific regulatory limitations in some countries.

Note Reducing the transmit power level conserves battery power but decreases radio range.
Chapter 5 Configuring the Client Adapter

Setting Advanced Parameters

Power Save Mode

Sets your client adapter to its optimum power consumption setting.

Options: CAM (Constantly Awake Mode), Fast PSP (Power Save Mode), or Max PSP (Max Power Saving)

Default: CAM (Constantly Awake Mode)

Power Save Mode Description

CAM (Constantly Awake Mode)

- *Keeps the client adapter powered up continuously so there is little lag in message response time.*
- *Consumes the most power but offers the highest throughput. Is recommended for desktop computers and devices that use AC power.*

Fast PSP (Power Save Mode)

- *Switches between PSP mode and CAM mode, depending on network traffic. This mode switches to CAM when retrieving a large number of packets and switches back to PSP after the packets have been retrieved.*
- *Is recommended when power consumption is a concern but you need greater throughput than that allowed by Max PSP.*

Max PSP (Max Power Saving)

- *Causes the access point to buffer incoming messages for the client adapter, which wakes up periodically and polls the access point to see if any buffered messages are waiting for it. The adapter can request each message and then go back to sleep.*
- *Conserves the most power but offers the lowest throughput. Is recommended for devices for which power consumption is the ultimate concern (such as small battery-powered devices).*

Note

If this profile is configured for use in an ad hoc network, CAM mode is used automatically.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Save Mode</td>
<td>CAM (Constantly Awake Mode) keeps the client adapter powered up continuously so there is little lag in message response time. Consumes the most power but offers the highest throughput. Is recommended for desktop computers and devices that use AC power.</td>
</tr>
<tr>
<td>Power Save Mode</td>
<td>Fast PSP (Power Save Mode) switches between PSP mode and CAM mode, depending on network traffic. This mode switches to CAM when retrieving a large number of packets and switches back to PSP after the packets have been retrieved. Is recommended when power consumption is a concern but you need greater throughput than that allowed by Max PSP.</td>
</tr>
<tr>
<td>Power Save Mode</td>
<td>Max PSP (Max Power Saving) causes the access point to buffer incoming messages for the client adapter, which wakes up periodically and polls the access point to see if any buffered messages are waiting for it. The adapter can request each message and then go back to sleep. Conserves the most power but offers the lowest throughput. Is recommended for devices for which power consumption is the ultimate concern (such as small battery-powered devices).</td>
</tr>
</tbody>
</table>

Table 5-3 Profile Management Advanced Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>If this profile is configured for use in an ad hoc network, CAM mode is used automatically.</td>
</tr>
</tbody>
</table>
Table 5-3 Profile Management Advanced Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Network Type | Specifies the type of network in which your client adapter is installed.
Options: Infrastructure or Ad Hoc
Default: Infrastructure |
| **Network Type** | **Description** |
| Ad Hoc | Often referred to as *peer to peer*. Indicates that your wireless network consists of a few wireless devices that are not connected to a wired Ethernet network through an access point. For example, an ad hoc network could be set up between computers in a conference room so that users can share information in a meeting. |
| Infrastructure | Indicates that your wireless network is connected to a wired Ethernet network through an access point. |
| 802.11b Preamble | Determines whether your client adapter uses both short and long radio headers or only long radio headers. The adapter can use short radio headers only if the access point is also configured to support them and is using them. If any clients associated to an access point are using long headers, then *all* clients in that cell must use long headers, even if both this client and the access point have short radio headers enabled.
Short radio headers improve throughput performance; long radio headers ensure compatibility with clients and access points that do not support short radio headers.
Options: Short & Long or Long Only
Default: Short & Long
Note
This parameter is disabled if the Wireless Mode parameter is set to 5 GHz 54 Mbps only. |
Wireless Mode

Specifies the frequency and rate at which your client adapter should transmit packets to or receive packets from access points.

Options: 5 GHz 54 Mbps, 2.4 GHz 11 Mbps, and 2.4 GHz 54 Mbps

Default: All options selected

Note
When more than one option is selected, the client adapter attempts to use the wireless modes in this order: 5 GHz 54 Mbps, 2.4 GHz 54 Mbps, 2.4 GHz 11 Mbps.

Note
If you choose 2.4 GHz 11 Mbps, the client adapter can associate to access points containing an 802.11b or 802.11g radio at 802.11b data rates. If you choose 2.4 GHz 54 Mbps, the client adapter can associate to access points containing an 802.11b radio at 802.11b data rates or to access points containing an 802.11g radio at 802.11b or 802.11g data rates.

Note
When you enable auto profile selection, the client adapter ignores the selected profile’s wireless mode setting and scans all wireless modes for an available network. Using this method, the client does not need to drop the current connection nor change the current profile while looking for networks in other profiles.

Note
Your client adapter’s wireless mode must match that of the access points with which it is to communicate. Otherwise, your client adapter may not be able to associate to them.

Wireless Mode When Starting Ad Hoc Network

Specifies the frequency and rate at which your client adapter should transmit packets to or receive packets from other clients (in ad hoc mode).

Options: 5 GHz 54 Mbps or 2.4 GHz 54/11 Mbps

Default: 5 GHz 54 Mbps

Note
The client scans the band(s) specified by the Wireless Mode parameter before creating a new ad hoc cell based on the band specified by the Wireless Mode When Starting Ad Hoc Network parameter.

Note
Your client adapter’s wireless mode must match that of the other clients with which it is to communicate. Otherwise, your client adapter may not be able to associate to them.
Setting Advanced Parameters

Chapter 5 Configuring the Client Adapter

Table 5-3 Profile Management Advanced Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Channel | Specifies the channel that your client adapter uses for communications in a 2.4-GHz ad hoc network. The available channels conform to the IEEE 802.11 Standard for your regulatory domain. The channel of the client adapter must be set to match the channel used by the other clients in the wireless network. If the client adapter does not find any other ad hoc clients, this parameter specifies the channel with which the adapter will start its cell.
 Range: Dependent on regulatory domain
 Example: 1 to 11 (2412 to 2462 MHz) in North America
 Default: Auto (the client automatically determines the channel on which to start communications)
 Note
 This parameter is available only when 2.4 GHz 54/11 Mbps is selected for the Wireless Mode When Starting Ad Hoc Network parameter. When 5 GHz 54 Mbps is selected, the Channel parameter is set to Auto automatically.
 Note
 Refer to Appendix D for a list of channel identifiers, channel center frequencies, and regulatory domains for each channel. |
Chapter 5 Configuring the Client Adapter

Setting Advanced Parameters

Table 5-3 Profile Management Advanced Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11 Authentication Mode</td>
<td>Specifies how your client adapter attempts to authenticate to an access point. Open and shared authentication do not rely on a RADIUS server on your network. Options: Auto, Open, or Shared Default: Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>802.11 Authentication Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Causes the client adapter to attempt to authenticate using shared authentication. If it fails, the client adapter then attempts to authenticate using open authentication.</td>
</tr>
<tr>
<td>Open</td>
<td>Enables your client adapter, regardless of its WEP settings, to authenticate and attempt to communicate with an access point. However, communication can occur only if the adapter’s WEP key matches that of the access point.</td>
</tr>
<tr>
<td>Shared</td>
<td>Enables your client adapter to authenticate and communicate only with access points that have the same WEP key. During shared key authentication, the access point sends an unencrypted challenge packet to the client adapter, which encrypts the packet and sends it back to the access point. The access point attempts to decrypt the encrypted packet and sends an authentication response packet indicating the success or failure of the decryption back to the client adapter. If the packet is successfully encrypted/decrypted, the user is considered to be authenticated.</td>
</tr>
</tbody>
</table>

Note
Cisco recommends that Auto and Shared not be used because they present a security risk.

Note
Your client adapter’s 802.11 authentication mode setting must match that of the access points with which it is to communicate. Otherwise, your client adapter may not be able to authenticate to them.

Note
If this profile is configured for use in an ad hoc network or is not configured to use static WEP, this parameter is unavailable, and Open authentication is used.
If this profile is configured for use in an infrastructure network and you want to specify up to four access points to which the client adapter should attempt to associate, click **Preferred APs**. The Preferred Access Points window appears (see Figure 5-3).

Figure 5-3 Preferred Access Points Window

Leave the Access Point 1 through Access Point 4 fields blank or enter the MAC addresses of up to four preferred access points to which the client adapter can associate; then click **OK**. (The MAC address should consist of 12 hexadecimal characters.) If the specified access points are not found or the client adapter roams out of range, the adapter may associate to another access point.

Go to the next section to set additional parameters or click **OK** to save your changes and return to the Cisco Aironet Desktop Utility (Profile Management) window.

Setting Security Parameters

The Profile Management (Security) window (see Figure 5-4) enables you to set parameters that control how the client adapter associates to an access point, authenticates to the wireless network, and encrypts and decrypts data. To access this window, click the **Security** tab from any Profile Management window.
This window is different from the other Profile Management windows in that it includes many security features, each of which involves a number of steps. In addition, the security features themselves are complex and need to be understood before they are implemented. Therefore, this section provides an overview of the security features as well as procedures for using them.

However, before you determine the appropriate security settings for your client adapter, you must decide how to set the Allow Association to Mixed Cells parameter, which appears at the bottom of the Profile Management (Security) window and is not associated to any of the security features. See the “Setting the Allow Association to Mixed Cells Parameter” section below.

Setting the Allow Association to Mixed Cells Parameter

The Allow Association to Mixed Cells parameter indicates whether the client adapter can associate to an access point that allows both WEP and non-WEP associations. Follow these steps to set this parameter.

> **Note**

This parameter is unavailable if the WPA or WPA Passphrase security option is selected.
Chapter 5 Configuring the Client Adapter

Setting Security Parameters

Step 1
Perform one of the following:

- Check the **Allow Association to Mixed Cells** check box if the access point to which the client adapter is to associate (or the VLAN to which the client will be assigned) has WEP set to Optional and static WEP is enabled on the client adapter. Otherwise, the client is unable to establish a connection with the access point.

- Uncheck the **Allow Association to Mixed Cells** check box if the access point to which the client adapter is to associate (or the VLAN to which the client will be assigned) does not have WEP set to Optional. This is the default setting.

Note
For security reasons, Cisco recommends that WEP-enabled and WEP-disabled clients not be allowed in the same cell because broadcast packets are sent unencrypted, even to clients running WEP. However, you can enable VLANs on the access point to separate WEP-enabled and WEP-disabled clients.

Step 2
Perform one of the following:

- If you do not want to change any other parameters on the Profile Management (Security) window, click **OK** to save your changes and return to the Cisco Aironet Desktop Utility (Profile Management) window.

- If you want to change some of the other parameters on the Profile Management (Security) window, go to the next section.

Overview of Security Features

You can protect your data as it is transmitted through your wireless network by encrypting it through the use of wired equivalent privacy (WEP) encryption keys. With WEP encryption, the transmitting device encrypts each packet with a WEP key, and the receiving device uses that same key to decrypt each packet.

The WEP keys used to encrypt and decrypt transmitted data can be statically associated with your adapter or dynamically created as part of the EAP authentication process. The information in the “**Static WEP Keys**” and “**EAP (with Dynamic WEP Keys)**” sections below can help you to decide which type of WEP keys you want to use. Dynamic WEP keys with EAP offer a higher degree of security than static WEP keys.

WEP keys, whether static or dynamic, are either 40 or 128 bits in length. 128-bit WEP keys offer a greater level of security than 40-bit WEP keys.

Note
Refer to the “**Additional WEP Key Security Features**” section on page 5-18 for information on three security features that can make your WEP keys even more secure.

Static WEP Keys

Each device (or profile) within your wireless network can be assigned up to four static WEP keys. If a device receives a packet that is not encrypted with the appropriate key (as the WEP keys of all devices that are to communicate with each other must match), the device discards the packet and never delivers it to the intended receiver.
You do not need to re-enter static WEP keys each time the client adapter is inserted or the Windows device is rebooted because the keys are stored (in an encrypted format for security reasons) in the registry of the Windows device. When the driver loads and reads the client adapter’s registry parameters, it also finds the static WEP keys, unencrypts them, and stores them in volatile memory on the adapter.

The Define Pre-Shared Keys window enables you to view the WEP key settings for a particular profile and to assign new WEP keys or overwrite existing WEP keys. Refer to the “Enabling Static WEP” section on page 5-22 for instructions.

EAP (with Dynamic WEP Keys)

The standard for wireless LAN security, as defined by IEEE, is called 802.1X for 802.11, or simply 802.1X. An access point that supports 802.1X and its protocol, Extensible Authentication Protocol (EAP), acts as the interface between a wireless client and an authentication server, such as a RADIUS server, to which the access point communicates over the wired network.

Four 802.1X authentication types are available in ADU for use with Windows 2000 or XP:

- **EAP-Cisco Wireless** (or LEAP)—This authentication type leverages Cisco Key Integrity Protocol (CKIP) and MMH message integrity check (MIC) for data protection. ADU offers a variety of LEAP configuration options, including how a username and password are entered to begin the authentication process.

 The username and password are used by the client adapter to perform mutual authentication with the RADIUS server through the access point. The username and password need to be re-entered each time the client adapter is inserted or the Windows device is rebooted unless you configure your adapter to use saved LEAP credentials.

 RADIUS servers that support LEAP include Cisco Secure ACS release 2.6 or later, Cisco Access Registrar release 1.7 or later, Funk Software’s Steel-Belted RADIUS release 4.1 or later, and Meetinghouse Data Communications’ AEGIS release 1.1 or later.

- **EAP-TLS**—This authentication type uses a dynamic session-based WEP key derived from the client adapter and RADIUS server to encrypt data. It uses a client certificate for authentication.

 RADIUS servers that support EAP-TLS include Cisco Secure ACS release 3.0 or later and Cisco Access Registrar release 1.8 or later.

- **PEAP (EAP-GTC)**—This PEAP authentication type is designed to support One-Time Password (OTP), Windows NT or 2000 domain, and LDAP user databases over a wireless LAN. It is based on EAP-TLS authentication but uses a password instead of a client certificate for authentication. PEAP (EAP-GTC) uses a dynamic session-based WEP key derived from the client adapter and RADIUS server to encrypt data. If your network uses an OTP user database, PEAP (EAP-GTC) requires you to enter a hardware or software token password to start the EAP authentication process and gain access to the network. If your network uses a Windows NT or 2000 domain user database or an LDAP user database (such as NDS), PEAP (EAP-GTC) requires you to enter your username, password, and domain name in order to start the authentication process.

 RADIUS servers that support PEAP (EAP-GTC) authentication include Cisco Secure ACS release 3.1 or later.

- **PEAP (EAP-MSCHAP V2)**—This PEAP authentication type is based on EAP-TLS authentication but uses a password instead of a client certificate for authentication. PEAP (EAP-MSCHAP V2) uses a dynamic session-based WEP key derived from the client adapter and RADIUS server to encrypt data.

 RADIUS servers that support PEAP (EAP-MSCHAP V2) authentication include Cisco Secure ACS release 3.2 or later.
When you enable EAP on your access point and configure your client adapter for LEAP, EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2), authentication to the network occurs in the following sequence:

1. The client associates to an access point and begins the authentication process.

 Note The client does not gain full access to the network until authentication between the client and the RADIUS server is successful.

2. Communicating through the access point, the client and RADIUS server complete the authentication process, with the password (LEAP and PEAP) or certificate (EAP-TLS) being the shared secret for authentication. The password is never transmitted during the process.

3. If authentication is successful, the client and RADIUS server derive a dynamic, session-based WEP key that is unique to the client.

4. For the length of a session, or time period, the access point and the client use this key to encrypt or decrypt all unicast packets (and broadcast packets if the access point is set up to do so) that travel between them.

Refer to the “Enabling LEAP” section on page 5-24 for instructions on enabling LEAP or to the “Enabling EAP-TLS or PEAP” section on page 5-27 for instructions on enabling EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2).

Wi-Fi Protected Access (WPA)

Wi-Fi Protected Access (WPA) is a standards-based, interoperable security enhancement that provides data protection and access control for existing and future wireless LAN systems. It is derived from and is forward-compatible with the upcoming IEEE 802.11i standard. WPA leverages Temporal Key Integrity Protocol (TKIP) and Michael message integrity check (MIC) for data protection and 802.1X for authenticated key management.

WPA supports two mutually exclusive key management types: WPA and WPA passphrase (also known as WPA Pre-Shared Key or WPA-PSK). Using WPA, clients and the authentication server authenticate to each other using an EAP authentication method, and the client and server generate a pairwise master key (PMK). The server generates the PMK dynamically and passes it to the access point. Using WPA passphrase, however, you configure a passphrase (or pre-shared key) on both the client and the access point, and that passphrase is used as the PMK.

Refer to the “Enabling WPA Passphrase” section on page 5-23 for instructions on using a WPA passphrase, the “Enabling LEAP” section on page 5-24 for instructions on enabling LEAP with WPA, or the “Enabling EAP-TLS or PEAP” section on page 5-27 for instructions on enabling EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2) with WPA.

Note WPA must also be enabled on the access point. Access points must use Cisco IOS Release 12.2(11)JA or later to enable WPA. Refer to the documentation for your access point for instructions on enabling this feature.
Fast Roaming (CCKM)

Some applications that run on a client device may require fast roaming between access points. Voice applications, for example, require fast roaming to prevent delays and gaps in conversation. Fast roaming is enabled automatically for LEAP-enabled CB21AG and PI21AG clients using WPA but must be enabled on the access point.

During normal operation, LEAP-enabled clients mutually authenticate with a new access point by performing a complete LEAP authentication, including communication with the main RADIUS server. However, when you configure your wireless LAN for fast roaming, LEAP-enabled clients securely roam from one access point to another without the need to reauthenticate with the RADIUS server. Using Cisco Centralized Key Management (CCKM), an access point that is configured for wireless domain services (WDS) uses a fast rekeying technique that enables client devices to roam from one access point to another typically in under 150 milliseconds (ms). Fast roaming ensures that there is no perceptible delay in time-sensitive applications such as wireless Voice over IP (VoIP), enterprise resource planning (ERP), or Citrix-based solutions.

Note
Access points must use Cisco IOS Release 12.2(11)JA or later to enable fast roaming. Refer to the documentation for your access point for instructions on enabling this feature.

Note
The Microsoft Wireless Configuration Manager and the Microsoft 802.1X supplicant, if installed, must be disabled in order for fast roaming to operate correctly. If your computer is running Windows XP and you chose to configure your client adapter using ADU during installation, these features should already be disabled. Similarly, if your computer is running Windows 2000, the Microsoft 802.1X supplicant, if installed, should already be disabled. Refer to Chapter 10 if you need additional information.

Reporting Access Points that Fail LEAP Authentication

The CB21AG and PI21AG client adapters and the following access point firmware versions support a feature that is designed to detect access points that fail LEAP authentication:

- 12.00T or later (access points running VxWorks)
- Cisco IOS Release 12.2(4)JA or later (1100 series access points)
- Cisco IOS Release 12.2(8)JA or later (1200 series access points)
- Cisco IOS Release 12.2(13)JA or later (350 series access points)

An access point running one of these firmware versions records a message in the system log when the client discovers and reports another access point in the wireless network that has failed LEAP authentication.

The process takes place as follows:

1. A client with a LEAP profile attempts to associate to access point A.
2. Access point A does not handle LEAP authentication successfully, perhaps because the access point does not understand LEAP or cannot communicate to a trusted LEAP authentication server.
3. The client records the MAC address for access point A and the reason why the association failed.
4. The client associates successfully to access point B.
5. The client sends the MAC address of access point A and the reason code for the failure to access point B.

6. Access point B logs the failure in the system log.

Note This feature does not need to be enabled on the client adapter or access point; it is supported automatically by both devices. However, the access points must use the specified firmware versions or later.

Additional WEP Key Security Features

The three security features discussed in this section (MIC, TKIP, and broadcast key rotation) are designed to prevent sophisticated attacks on your wireless network’s WEP keys. These features do not need to be enabled on the client adapter; they are supported automatically in the client adapter software. However, they must be enabled on the access point.

Note Refer to the documentation for your access point for instructions on enabling these security features.

Message Integrity Check (MIC)

MIC prevents bit-flip attacks on encrypted packets. During a bit-flip attack, an intruder intercepts an encrypted message, alters it slightly, and retransmits it, and the receiver accepts the retransmitted message as legitimate. The MIC adds a few bytes to each packet to make the packets tamper-proof. The Advanced Status window indicates if MIC is being used, and the Advanced Statistics window provides MIC statistics.

Temporal Key Integrity Protocol (TKIP)

This feature, also referred to as **WEP key hashing**, defends against an attack on WEP in which the intruder uses the initialization vector (IV) in encrypted packets to calculate the WEP key. TKIP removes the predictability that an intruder relies on to determine the WEP key by exploiting IVs. It protects both unicast and broadcast WEP keys.

Note TKIP is enabled automatically when WPA is enabled, and it is disabled when WPA is disabled.

Broadcast Key Rotation

When you enable broadcast WEP key rotation, the access point provides a dynamic broadcast WEP key and changes it at the interval you select.
Synchronizing Security Features

In order to use any of the security features discussed in this section, both your client adapter and the access point to which it will associate must be set appropriately. Table 5-4 indicates the client and access point settings required for each security feature. This chapter provides specific instructions for enabling the security features on your client adapter. Refer to the documentation for your access point for instructions on enabling any of these features on the access point.

Table 5-4 Client and Access Point Security Settings

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static WEP with open authentication</td>
<td>Choose Open authentication and Pre-Shared Key (Static WEP) and create a WEP key</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID</td>
</tr>
<tr>
<td>Static WEP with shared key authentication</td>
<td>Choose Shared authentication and Pre-Shared Key (Static WEP) and create a WEP key</td>
<td>Set up and enable WEP and enable Shared Key Authentication for the SSID</td>
</tr>
<tr>
<td>WPA passphrase (or WPA Pre-Shared Key)</td>
<td>Choose WPA Passphrase and enter the passphrase</td>
<td>Choose a cipher suite, enable Open Authentication and WPA for the SSID, and enter a WPA Pre-Shared Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note - To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td>LEAP authentication</td>
<td>Choose 802.1x and LEAP; then set LEAP settings</td>
<td>Set up and enable WEP and enable Network-EAP for the SSID</td>
</tr>
<tr>
<td>LEAP authentication with WPA</td>
<td>Choose WPA and LEAP; then set LEAP settings</td>
<td>Choose a cipher suite that includes TKIP and enable Network-EAP and WPA for the SSID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note - To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td>EAP-TLS authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If using ADU to configure card</td>
<td>Choose 802.1x and EAP-TLS; then set EAP-TLS settings</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>If using Windows XP to configure card</td>
<td>Choose Enable network access control using IEEE 802.1X and Smart Card or other Certificate as the EAP Type</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
</tbody>
</table>
Table 5-4 Client and Access Point Security Settings (continued)

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP-TLS authentication with WPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If using ADU to configure card</td>
<td>Choose WPA and EAP-TLS; then set EAP-TLS settings</td>
<td>Choose a cipher suite that includes TKIP; then enable WPA and Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>Note</td>
<td>To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
<td></td>
</tr>
<tr>
<td>If using Windows XP to configure card</td>
<td>Enable WPA and choose Enable network access control using IEEE 802.1X and Smart Card or other Certificate as the EAP Type</td>
<td>Choose a cipher suite that includes TKIP; then enable WPA and Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>Note</td>
<td>To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
<td></td>
</tr>
</tbody>
</table>

PEAP authentication

| If using ADU to configure card | Choose 802.1x and PEAP (EAP-GTC) or PEAP (EAP-MSCHAP V2); then set PEAP settings | Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP |

| If using Windows XP to configure card | Choose Enable network access control using IEEE 802.1X and PEAP as the EAP Type | Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP |

PEAP authentication with WPA

If using ADU to configure card	Choose WPA and PEAP (EAP-GTC) or PEAP (EAP-MSCHAP V2); then set PEAP settings	Choose a cipher suite that includes TKIP; then enable WPA and Open Authentication for the SSID and specify the use of EAP
Note	To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.	
If using Windows XP to configure card	Enable WPA and choose Enable network access control using IEEE 802.1X and PEAP as the EAP Type	Choose a cipher suite that includes TKIP; then enable WPA and Open Authentication for the SSID and specify the use of EAP
Note	To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.	
Table 5-4 Client and Access Point Security Settings (continued)

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast roaming (CCKM)</td>
<td>Choose WPA and LEAP; then set LEAP settings</td>
<td>Use Cisco IOS Release 12.2(11)JA or later, choose a cipher suite that is compatible with CCKM, and enable Network-EAP and CCKM for the SSID. Note To allow both 802.1X clients and non-802.1X clients to use the SSID, enable optional CCKM.</td>
</tr>
<tr>
<td>Reporting access points that fail LEAP authentication</td>
<td>No settings required; automatically enabled</td>
<td>No settings required; automatically enabled in the firmware versions listed on page 5-17.</td>
</tr>
<tr>
<td>MIC</td>
<td>No settings required; automatically enabled</td>
<td>Set up and enable WEP with full encryption, set MIC to MMH or check the Enable MIC check box, and set Use Aironet Extensions to Yes</td>
</tr>
<tr>
<td>TKIP</td>
<td>No settings required; automatically enabled</td>
<td>Set up and enable WEP, set TKIP to Cisco or check the Enable Per Packet Keying check box, and set Use Aironet Extensions to Yes</td>
</tr>
<tr>
<td>Broadcast key rotation</td>
<td>Enable LEAP, EAP-TLS, or PEAP</td>
<td>Set up and enable WEP and set Broadcast WEP Key Rotation Interval to any value other than zero (0)</td>
</tr>
</tbody>
</table>
Enabling Static WEP

Follow the steps below to enable static WEP for this profile.

Step 1 Choose **Pre-Shared Key (Static WEP)** on the Profile Management (Security) window.

Step 2 Click **Configure**. The Define Pre-Shared Keys window appears (see **Figure 5-5**).

![Define Pre-Shared Keys Window](image)

Step 3 Choose one of the following WEP key entry methods:

- **Hexadecimal (0-9, A-F)**—Specifies that the WEP key will be entered in hexadecimal characters, which include 0-9, A-F, and a-f.
- **ASCII Text (all keyboard characters)**—Specifies that the WEP key will be entered in ASCII text, which includes alpha characters, numbers, and punctuation marks.

Note ASCII text WEP keys are not supported on the Cisco Aironet 1200 Series Access Points, so you must choose the Hexadecimal (0-9, A-F) option if you are planning to use your client adapter with these access points.

Step 4 For the static WEP key that you are entering (1, 2, 3, or 4), choose a WEP key size of 40 or 128 on the right side of the window. 128-bit client adapters can use 40- or 128-bit keys, but 40-bit adapters can use only 40-bit keys. If 128 bit is not supported by the client adapter, this option is unavailable.
Step 5 Obtain the static WEP key from your system administrator and enter it in the blank field for the key you are creating. Follow the guidelines below to enter a new static WEP key:

- WEP keys must contain the following number of characters:
 - 10 hexadecimal characters or 5 ASCII text characters for 40-bit keys

 Example: 5A5A313859 (hexadecimal) or ZZ18Y (ASCII)
 - 26 hexadecimal characters or 13 ASCII text characters for 128-bit keys

 Example: 5A58313533554595549333534 (hexadecimal) or ZX1535TYUI354 (ASCII)

Note You must enter hexadecimal characters if your client adapter will be used with Cisco Aironet 1200 Series Access Points.

- Your client adapter’s WEP key must match the WEP key used by the access point (in infrastructure mode) or clients (in ad hoc mode) with which you are planning to communicate.
- When setting more than one WEP key, the keys must be assigned to the same WEP key numbers for all devices. For example, WEP key 2 must be WEP key number 2 on all devices. When multiple WEP keys are set, they must be in the same order on all devices.

Note All existing static WEP keys are displayed as bullets for security reasons. If you need to modify a WEP key, simply click in the WEP key field, delete the bullets, and enter a new key.

Step 6 Click the Transmit Key button to the left of the key you want to use to transmit packets. Only one WEP key can be selected as the transmit key.

Step 7 Click OK in each window to save your changes and to return to the Cisco Aironet Desktop Utility (Profile Management) window.

Enabling WPA Passphrase

Follow the steps below to enable WPA passphrase (also known as WPA Pre-Shared Key) for this profile.

Step 1 Choose WPA Passphrase on the Profile Management (Security) window.

Step 2 Click Configure. The Define WPA Pre-Shared Key window appears (see Figure 5-6).
Step 3 Obtain the WPA passphrase for the access point (in an infrastructure network) or other clients (in an ad hoc network) from your system administrator and enter it in the WPA passphrase field. Follow the guidelines below to enter a WPA passphrase:

- WPA passphrases must contain 8 to 63 ASCII text characters or 64 hexadecimal characters.
- Your client adapter’s WPA passphrase must match the passphrase used by the access point with which you are planning to communicate.

Step 4 Click OK in each window to save your changes and to return to the Cisco Aironet Desktop Utility (Profile Management) window.

Enabling LEAP

Before you can enable LEAP authentication, your network devices must meet the following requirements:

- Access points to which your client adapter may attempt to authenticate must use the following firmware versions or later: 11.23T (access points running VxWorks), Cisco IOS Release 12.2(4)JA (1100 series access points), Cisco IOS Release 12.2(8)JA (1200 series access points), or Cisco IOS Release 12.2(13)JA (350 series access points).

Note To use WPA or fast roaming, access points must use Cisco IOS Release 12.2(11)JA or later. To use the Reporting Access Points That Fail LEAP Authentication feature, access points must use the firmware versions listed on page 5-19.

- All necessary infrastructure devices (such as access points, servers, etc.) must be properly configured for LEAP authentication.
Follow the steps below to enable LEAP authentication for this profile.

Step 1 Perform one of the following on the Profile Management (Security) window:

- If you want to enable LEAP without WPA, choose **802.1x** under Set Security Options and **LEAP** in the 802.1x EAP Type drop-down box.
- If you want to enable LEAP with WPA, choose **WPA** under Set Security Options and **LEAP** in the WPA EAP Type drop-down box.

Note Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-16 for additional information on WPA.

Step 2 Click **Configure**. The LEAP Settings window appears (see **Figure 5-7**).

Figure 5-7 LEAP Settings Window

LEAP Settings window with options for LEAP username and password settings.
Setting Security Parameters

Step 3 Choose one of the following LEAP username and password setting options:

- **Use Temporary User Name and Password**—Requires you to enter the LEAP username and password each time the computer reboots in order to authenticate and gain access to the network.

- **Use Saved User Name and Password**—Does not require you to enter a LEAP username and password each time the computer reboots. Authentication occurs automatically as needed using a saved username and password (which are registered with the RADIUS server).

Step 4 Perform one of the following:

- If you chose Use Temporary User Name and Password in Step 3, choose one of the following options:
 - **Use Windows User Name and Password**—Causes your Windows username and password to also serve as your LEAP username and password, giving you only one set of credentials to remember. After you log in, the LEAP authentication process begins automatically. This option is the default setting.
 - **Manually Prompt for LEAP User Name and Password**—Requires you to manually invoke the LEAP authentication process as needed using the Manual LEAP Login option in the Action drop-down menu or ASTU. You are not prompted to enter a LEAP username and password during the Windows login. This option might be used to support a software token one-time password system or other systems that require additional software that is not available at login.

- If you chose Use Saved User Name and Password in Step 3, follow these steps:
 a. Enter a username and password in the appropriate fields.
 b. Re-enter the password in the Confirm Password field.
 c. If you wish to specify a domain name that will be passed to the RADIUS server along with your username, enter it in the Domain field.

Step 5 If you work in an environment with multiple domains and therefore want your Windows login domain to be passed to the RADIUS server along with your username, check the **Include Windows Logon Domain with User Name** check box. The default setting is checked.

Note If you chose to use a saved username and password but do not check the Include Windows Logon Domain with User Name check box, the saved domain name is not passed to the RADIUS server.

Step 6 If you want to force the client adapter to disassociate after you log off so that another user cannot gain access to the wireless network using your credentials, check the **No Network Connection Unless User Is Logged In** check box. The default setting is checked.

Step 7 In the LEAP Authentication Timeout Value field, choose the amount of time (in seconds) before a LEAP authentication is considered to be failed and an error message appears.

Range: 30 to 500 seconds

Default: 90 seconds

Step 8 Click **OK** in each window to save your changes and to return to the Cisco Aironet Desktop Utility (Profile Management) window.

Step 9 Refer to **Chapter 6** for instructions on authenticating using LEAP.
Enabling EAP-TLS or PEAP

Before you can enable EAP-TLS or PEAP authentication, your network devices must meet the following requirements:

- You must have a valid Windows username and password, and the password cannot be blank.
- The appropriate certificates must be installed on your computer. EAP-TLS requires both a Certificate Authority (CA) certificate and a user certificate while PEAP requires only a CA certificate.

Note Contact your system administrator if you need help obtaining and importing the necessary certificates.

- Access points to which your client adapter may attempt to authenticate must use the following firmware versions or later: 12.00T (access points running VxWorks), Cisco IOS Release 12.2(4)JA (1100 series access points), Cisco IOS Release 12.2(8)JA (1200 series access points), or Cisco IOS Release 12.2(13)JA (350 series access points).

Note To use WPA or fast roaming, access points must use Cisco IOS Release 12.2(11)JA or later.

- All necessary infrastructure devices (such as access points, servers, gateways, user databases, etc.) must be properly configured for the authentication type you plan to enable on the client.

Follow the instructions in one of the sections below to enable EAP-TLS or PEAP authentication for this profile:

- Enabling EAP-TLS, 5-27
- Enabling PEAP (EAP-GTC), 5-29
- Enabling PEAP (EAP-MSCHAP V2), 5-31

Enabling EAP-TLS

Follow the steps below to enable EAP-TLS authentication for this profile.

Step 1 Perform one of the following on the Profile Management (Security) window:

- If you want to enable EAP-TLS without WPA, choose 802.1x under Set Security Options and EAP-TLS in the 802.1x EAP Type drop-down box.
- If you want to enable EAP-TLS with WPA, choose WPA under Set Security Options and EAP-TLS in the WPA EAP Type drop-down box.

Note Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-16 for additional information on WPA.

Step 2 Click **Configure**. The Define Certificate window appears (see Figure 5-8).
Step 3 Choose your server certificate in the Select a Certificate drop-down list.

Step 4 Choose the certificate authority from which the server certificate was downloaded in the Server Properties drop-down list.

Step 5 Leave the Server/Domain Name field blank to allow the client to accept a certificate from any server that supplies a certificate signed by the certificate authority listed in the Server Properties drop-down list.

Step 6 If the Login Name field is not filled in automatically, enter your username in this format: username@domain (for example, jsmith@acs-test.cisco.com).

Step 7 Click OK in each window to save your changes and to return to the Cisco Aironet Desktop Utility (Profile Management) window.

Step 8 Refer to Chapter 6 for instructions on authenticating using EAP-TLS.
Enabling PEAP (EAP-GTC)

Follow the steps below to enable PEAP (EAP-GTC) for this profile.

Step 1 Perform one of the following:
- If you want to enable PEAP (EAP-GTC) without WPA, choose **802.1x** under Set Security Options and **PEAP (EAP-GTC)** in the 802.1x EAP Type drop-down box.
- If you want to enable PEAP (EAP-GTC) with WPA, choose **WPA** under Set Security Options and **PEAP (EAP-GTC)** in the WPA EAP Type drop-down box.

Note Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-16 for additional information on WPA.

Step 2 Click **Configure**. The Define PEAP (EAP-GTC) Configuration window appears (see Figure 5-9).

![Figure 5-9 Define PEAP (EAP-GTC) Configuration Window](image)
Step 3 Check the **Use Machine Information For Domain Logon** check box if you want the client to attempt to log into a domain using a machine certificate (before you log on using your username and password). Doing so enables you to get login scripts, map profiles, implement domain security policies, and so on. The default setting is checked.

Note If you do not check the Use Machine Information For Domain Logon check box, machine authentication is not performed. Authentication does not occur until you log on.

Step 4 Choose the certificate authority from which the server certificate was downloaded in the Network Certificate Authority drop-down list.

Step 5 Choose either **Token** or **Static Password**, depending on your user database.

Note If you choose Token, you must use a hardware token device or the Secure Computing SofToken program (release 2.1 or later) to obtain the one-time password and enter the password when prompted during the authentication process. Secure Computing PremierAccess release 3.1.1 or later is the only supported token server.

Step 6 Perform one of the following to specify the username that will be used for inner PEAP tunnel authentication:

- If you want your Windows username to also serve as your PEAP username, check the **Use Windows User Name** check box. This option gives you only one username to remember.

Note If you chose the Static Password option in Step 5, the check box reads **Use Windows User Name and Password**.

- If you want to enter a separate PEAP username (which is registered with the RADIUS server) in addition to your regular Windows username in order to start the PEAP authentication process, enter your PEAP username in the User Name field.

Note Your Windows username is filled in automatically. Simply delete your Windows username and enter your separate PEAP username.

Step 7 If you chose the Static Password option in Step 5, enter your PEAP authentication password (which is registered with the RADIUS server) in both the Password and Confirm Password fields.

Step 8 Perform one of the following:

- If you are finished configuring PEAP (EAP-GTC) for this profile, go to Step 9.
- If you want to implement added security by further refining the network certificate that will be accepted and controlling the string used to set up the outer PEAP tunnel, follow these steps:
 a. Click **Advanced**. The Advanced Configuration window appears (see Figure 5-10).
Step 9 Click **OK** in each window to save your settings and to return to the Cisco Aironet Desktop Utility (Profile Management) window.

Step 10 Refer to Chapter 6 for instructions on authenticating using PEAP (EAP-GTC).

Enabling PEAP (EAP-MSCHAP V2)

Follow the steps below to enable PEAP (EAP-MSCHAP V2) for this profile.

Step 1 Perform one of the following:

- If you want to enable PEAP (EAP-MSCHAP V2) without WPA, choose **802.1x** under Set Security Options and **PEAP (EAP-MSCHAP V2)** in the 802.1x EAP Type drop-down box.
- If you want to enable PEAP (EAP-MSCHAP V2) with WPA, choose **WPA** under Set Security Options and **PEAP (EAP-MSCHAP V2)** in the WPA EAP Type drop-down box.

Note Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-16 for additional information on WPA.

Step 2 Click **Configure**. The Define PEAP (EAP-MSCHAP V2) Configuration window appears (see Figure 5-11).
Step 3 Check the **Use Machine Information For Domain Logon** check box if you want the client to attempt to log into a domain using information from the machine store (before you log on using your username and password). Doing so enables you to get user and Novell-based login scripts, map network drives, and implement user-based domain security policies. The default setting is checked.

Note If you do not check the **Use Machine Information For Domain Logon** check box, machine information is not used. Authentication does not occur until you log on.

Step 4 Choose the certificate authority from which the server certificate was downloaded in the **Server** drop-down list.

Step 5 Perform one of the following to specify the username and password that will be used for inner PEAP tunnel authentication:

- If you want your Windows username and password to also serve as your PEAP username and password, check the **Use Windows User Name and Password** check box.

- If you want to use a distinct username and password (which are registered with the RADIUS server) to start the PEAP authentication process, follow these steps:

 a. Enter your PEAP username and password in the corresponding fields.

 Note Your Windows username is filled in automatically. Simply delete your Windows username and enter your separate PEAP username.

 b. Re-enter your password in the **Confirm Password** field.
Step 6 Perform one of the following:

- If you are finished configuring PEAP (EAP-MSCHAP V2) for this profile, go to Step 7.
- If you want to implement added security by further refining the network certificate that will be accepted and controlling the string used to set up the outer PEAP tunnel, follow these steps:
 a. Click Advanced. The Advanced Configuration window appears (see Figure 5-12).

Figure 5-12 Advanced Configuration Window

![Advanced Configuration Window]

b. Leave the Specific Server or Domain field blank to allow the client to accept a certificate from any server that supplies a certificate signed by the certificate authority listed in the Server drop-down list on the Define PEAP (EAP-MSCHAP V2) Configuration window.

c. If the Login Name field is not filled in automatically, enter your username with nothing after it (for example, jsmith).

Note Some RADIUS servers require that the same name be entered for both the inner and outer PEAP tunnels. That is, the same name may need to be entered in both the Login Name field and the User Name field on the Define PEAP (EAP-MSCHAP V2) Configuration window. Contact your system administrator for information. If the Use Windows User Name and Password check box is checked on the Define PEAP (EAP-MSCHAP V2) Configuration window, the Login Name may need to match the Windows username of the person who is logging in.

d. Click OK to save your settings.

Step 7 Click OK in each window to save your changes and to return to the Cisco Aironet Desktop Utility (Profile Management) window.

Step 8 Refer to Chapter 6 for instructions on authenticating using PEAP (EAP-MSCHAP V2).
Disabling Static WEP, WPA Passphrase, or EAP

To disable static WEP, WPA passphrase, or EAP authentication [LEAP, EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2)] for a particular profile, choose None on the Profile Management (Security) window and click OK.

Note
Choosing any security option other than Pre-Shared Key (Static WEP) on the Profile Management (Security) window disables static WEP automatically.

Note
Choosing Pre-Shared Key (Static WEP) or WPA Passphrase on the Profile Management (Security) window disables EAP automatically.

Setting Roaming Parameters in the Windows Control Panel

The Cisco Aironet 802.11a/b/g Wireless Adapter Properties window (see Figure 5-13) in the Windows Control Panel enables you to set two parameters that regulate the client adapter’s roaming capabilities.

Figure 5-13 Cisco Aironet 802.11a/b/g Wireless Adapter Properties Window
Follow these steps to access the roaming parameters.

Step 1 Double-click **My Computer**, **Control Panel**, and **System**.

Step 2 Click the **Hardware** tab and **Device Manager**.

Step 3 Double-click **Network Adapters**.

Step 4 Right-click **Cisco Aironet 802.11a/b/g Wireless Adapter**.

Step 5 Click **Properties** and the **Advanced** tab. The roaming parameters appear in the Property list. Table 5-5 lists and describes the client adapter’s roaming parameters. Follow the instructions in the table to change the parameters.

Table 5-5 Roaming Parameters (in the Windows Control Panel)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSS Aging Interval</td>
<td>The amount of time (in seconds) that the client keeps an access point in its roaming scanlist after it can no longer communicate to that device. The higher the value, the greater the number of access points to which the client may roam.</td>
</tr>
<tr>
<td>Range:</td>
<td>20 to 300 seconds (in 10-second increments)</td>
</tr>
<tr>
<td>Default:</td>
<td>120 seconds</td>
</tr>
<tr>
<td>Note</td>
<td>Cisco recommends that you set the BSS Aging Interval to twice the value of the Scan Valid Interval. For example, if the Scan Valid Interval is 50, the BSS Aging Interval would be 100.</td>
</tr>
<tr>
<td>Scan Valid Interval</td>
<td>The amount of time (in seconds) before the client starts scanning for a better access point after reaching the roaming threshold or missing beacons. (See the threshold criteria in the table below.) The higher the value, the less time the client spends scanning for a better access point and the more time it has to send data.</td>
</tr>
<tr>
<td>Range:</td>
<td>20 to 120 seconds (in 5-second increments)</td>
</tr>
<tr>
<td>Default:</td>
<td>60 seconds</td>
</tr>
<tr>
<td>Note</td>
<td>The client does not scan for a new access point as long as it has a good connection and is passing data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wireless Mode</th>
<th>Signal Strength Threshold (dBm)</th>
<th>Transmit Rate Threshold (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 GHz, 54 Mbps or 2.4 GHz, 54 Mbps</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2.4 GHz, 11 Mbps (other modes enabled)</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>2.4 GHz, 11 Mbps (only mode enabled)</td>
<td>24</td>
<td>5</td>
</tr>
</tbody>
</table>
Chapter 5 Configuring the Client Adapter

Setting Roaming Parameters in the Windows Control Panel
Using EAP Authentication

This chapter explains the sequence of events that occurs and the actions you must take when a profile that is set for EAP authentication is selected for use.

The following topics are covered in this chapter:

- Overview, page 6-2
- Using LEAP, page 6-2
- Using LEAP with the Windows Username and Password, page 6-3
- Using LEAP with a Manually Prompted Login, page 6-4
- Using LEAP with a Saved Username and Password, page 6-7
- Using EAP-TLS, page 6-8
- Using PEAP (EAP-GTC), page 6-8
- Using PEAP (EAP-MSCHAP V2), page 6-9
Overview

This chapter explains the sequence of events that occurs after you (or auto profile selection) select a profile that uses EAP authentication or you eject and reinsert the client adapter, reboot the computer, or log on while this profile is selected. The chapter contains six sections based on the profile’s authentication type and its username and password settings:

- LEAP with the Windows username and password, page 6-3
- LEAP with a manually prompted login, page 6-4
- LEAP with a saved username and password, page 6-7
- EAP-TLS, page 6-8
- PEAP (EAP-GTC), page 6-8
- PEAP (EAP-MSCHAP V2), page 6-9

Also provided are an overview of LEAP authentication and instructions for restarting the LEAP authentication process when necessary (see the “Using LEAP” section below).

Follow the instructions for your profile’s authentication type and credential settings to successfully authenticate.

Note

If any error messages appear during authentication, refer to Chapter 10 for explanations and recommended actions.

Using LEAP

When LEAP authentication begins, the LEAP Authentication Status window appears (see Figure 6-1).

Figure 6-1 LEAP Authentication Status Window
This window provides information about the status of LEAP authentication. Table 6-1 lists and explains the stages of LEAP authentication. As each stage is completed, a status message (such as Success) appears in the Status field. If any error messages appear, refer to the “Error Messages” section on page 10-12 for an explanation and the recommended action to take.

Table 6-1 Stages of LEAP Authentication

<table>
<thead>
<tr>
<th>Stage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting LEAP Authentication</td>
<td>The client adapter associates to an access point, and the LEAP authentication process begins.</td>
</tr>
<tr>
<td>Checking Link Status</td>
<td>The client adapter is LEAP authenticated, and the network connection is verified.</td>
</tr>
<tr>
<td>Renewing IP Address</td>
<td>If DHCP is enabled, the IP address is released and renewed.</td>
</tr>
<tr>
<td>Detecting IPX Frame Type</td>
<td>The IPX frame type is reset if AutoDetect is enabled.</td>
</tr>
<tr>
<td>Finding Domain Controller</td>
<td>If you are logging into a domain and the active profile specifies that the domain name be included, an attempt is made to find the domain controller to make sure subsequent access to the domain is successful.</td>
</tr>
</tbody>
</table>

To force your client adapter to try to reauthenticate using the username and password of the current profile, choose Reauthenticate from the ASTU pop-up menu or the ADU Action drop-down menu. When you choose this option, the LEAP Authentication Status window appears, and the authentication process begins.

If your client adapter is unable to authenticate using the specified username and password, you are prompted to re-enter them. If you click Cancel, a message appears indicating that the current profile will be disabled until you choose the Reauthenticate option, reboot your computer, or eject and reinsert the client adapter.

Using LEAP with the Windows Username and Password

After Profile Selection or Card Insertion

After you (or auto profile selection) select a profile that uses your Windows username and password for LEAP authentication or you eject and reinsert the client adapter while this profile is selected, the following events occur:

1. The LEAP Authentication Status window appears.

2. If your client adapter authenticates, the window shows that each stage was successful and then disappears. ASTU and the Link Status field on the ADU Current Status window show Authenticated.

If the authentication attempt fails, ASTU and ADU show Authentication Failed, and an error message appears after the LEAP timeout period has expired. Refer to the “Error Messages” section on page 10-12 for the necessary action to take.
After a Reboot or Logon

After your computer reboots or you log on, follow these steps to LEAP authenticate.

Step 1
When the Windows login window appears, enter your Windows username and password and click **OK**. The domain name is optional.

Note If your computer has Novell Client 32 software installed, a separate LEAP login window appears before the Novell login window. If this occurs, enter your Windows and Novell username and password in the login windows and click **OK**.

The LEAP Authentication Status window appears.

Step 2
If your client adapter authenticates, the window shows that each stage was successful and then disappears. ASTU and the Link Status field on the ADU Current Status window show **Authenticated**.

If the authentication attempt fails, ASTU and ADU show **Authentication Failed**, and an error message appears after the LEAP timeout period has expired. Refer to the “**Error Messages**” section on page 10-12 for the necessary action to take.

Step 3
Windows continues to log you onto the system.

Using LEAP with a Manually Prompted Login

After Profile Selection

After you (or auto profile selection) select a profile that uses LEAP authentication with a manually prompted login, follow these steps to LEAP authenticate.

Note This procedure is applicable the first time a manual LEAP profile is selected. After you follow these steps to enter your LEAP credentials, you can switch profiles without having to re-enter your credentials until you reboot your computer, eject and reinsert your client adapter, or change the profile in any way (including its priority in auto profile selection).

Step 1
Perform one of the following:

- If you activate a manual LEAP profile, the Enter Wireless Network Password window appears (see Figure 6-2).
Enter your LEAP username and password and click OK. The domain name can be entered in the Log On To field; it is optional.

- If auto profile selection selects a manual LEAP profile, you must choose the Manual LEAP Login option from ASTU or the ADU Action drop-down menu (see Figure 6-3).
When the Enter Wireless Network Password window appears (see Figure 6-2), enter your LEAP username and password and click OK. The domain name is optional.

Step 2

The LEAP Authentication Status window appears. If your client adapter authenticates, the window shows that each stage was successful and then disappears. ASTU and the Link Status field on the ADU Current Status window show Authenticated.

If the authentication attempt fails, ASTU and ADU show Authentication Failed, and an error message appears after the LEAP timeout period has expired. Refer to the “Error Messages” section on page 10-12 for the necessary action to take.

After a Reboot, Logon, or Card Insertion

After your computer reboots, you log on, or you eject and reinsert the client adapter, the adapter does not automatically attempt to authenticate. You must manually invoke the authentication process. To do so, follow these steps.

Step 1
If you rebooted your computer or logged on, complete your standard Windows login.

Step 2
Open ASTU or ADU.

Step 3
Choose the Manual LEAP Login option from the ASTU pop-up menu or the ADU Action drop-down menu.

Step 4
When the Enter Wireless Network Password window appears (see Figure 6-4), enter your LEAP username and password and click OK. The domain name can be entered in the Log On To field; it is optional.

Figure 6-4 Enter Wireless Network Password Window

![Enter Wireless Network Password Window](image)
Using LEAP with a Saved Username and Password

After Profile Selection or Card Insertion

After you (or auto profile selection) select a profile that uses LEAP authentication with a saved LEAP username and password or you eject and reinser the client adapter while this profile is selected, the following events occur:

1. The LEAP Authentication Status window appears.
2. If your client adapter authenticates, the window shows that each stage was successful and then disappears. ASTU and the Link Status field on the ADU Current Status window show `Authenticated`.

 If the authentication attempt fails, ASTU and ADU show `Authentication Failed`, and an error message appears after the LEAP timeout period has expired. Refer to the “Error Messages” section on page 10-12 for the necessary action to take.

After a Reboot or Logon

After your computer reboots or you log on, the following events occur:

1. After you enter your Windows username and password, the LEAP authentication process begins automatically using your saved LEAP username and password.

 Note If you unchecked the `No Network Connection Unless User Is Logged In` check box on the LEAP Settings window, the LEAP authentication process begins before the Windows login window appears.

2. If your client adapter authenticates, the LEAP Authentication Status window shows that each stage was successful and then disappears. ASTU and the Link Status field on the ADU Current Status window show `Authenticated`.

 If the authentication attempt fails, ASTU and ADU show `Authentication Failed`, and an error message appears after the LEAP timeout period has expired. Refer to the “Error Messages” section on page 10-12 for the necessary action to take.

3. Windows continues to log you onto the system.
Using EAP-TLS

After you (or auto profile selection) select a profile that uses EAP-TLS authentication or you eject and reinset the client adapter, reboot the computer, or log on while this profile is selected, the EAP authentication process begins automatically, and the client adapter should EAP authenticate.

If your client adapter authenticates, ASTU and the Link Status field on the ADU Current Status window show Authenticated. If the authentication attempt fails, ASTU and ADU show Authentication Failed.

Using PEAP (EAP-GTC)

After you (or auto profile selection) select a profile that uses PEAP (EAP-GTC) authentication or you eject and reinset the client adapter, reboot the computer, or log on while this profile is selected, follow the steps in one of the sections below to EAP authenticate. Choose the section appropriate for your user database.

Windows NT or 2000 Domain Databases or LDAP Databases Only

The EAP authentication process begins automatically. The client adapter should EAP authenticate using either your Windows credentials or the username and password entered in the Define PEAP (EAP-GTC) Configuration window. If your client adapter authenticates, ASTU and the Link Status field on the ADU Current Status window show Authenticated. If the authentication attempt fails, ASTU and ADU show Authentication Failed.

OTP Databases Only

Step 1 Use your hardware token device or SofToken program to obtain the one-time password.
Step 2 When the Token Configuration window appears (see Figure 6-5), enter the one-time password.

Figure 6-5 Token Configuration Window

![Token Configuration Window]

Note The username is filled in automatically.
Step 3 Click **OK** to begin the authentication process.

| Note | If the password is invalid or entered incorrectly, the Token Configuration window reappears, enabling you to re-enter it. |

If your client adapter authenticates, ASTU and the Link Status field on the ADU Current Status window show *Authenticated*. If the authentication attempt fails, ASTU and ADU show *Authentication Failed*.

Using PEAP (EAP-MSCHAP V2)

After you (or auto profile selection) select a profile that uses PEAP (EAP-MSCHAP V2) authentication or you eject and reinsert the client adapter, reboot the computer, or log on while this profile is selected, the EAP authentication process begins automatically. The client adapter should EAP authenticate using either your Windows credentials or the username and password entered in the Define PEAP (EAP-MSCHAP V2) Configuration window.

If your client adapter authenticates, ASTU and the Link Status field on the ADU Current Status window show *Authenticated*. If the authentication attempt fails, ASTU and ADU show *Authentication Failed*.
Using PEAP (EAP-MSCHAP V2)
Viewing Status and Statistics

This chapter explains how to use ADU to view the client adapter’s status and its transmit and receive statistics.

The following topics are covered in this chapter:

- Overview of ADU Status and Statistics Tools, page 7-2
- Setting Parameters that Affect ADU Status and Statistics Tools, page 7-2
- Viewing the Current Status of Your Client Adapter, page 7-4
- Viewing Statistics for Your Client Adapter, page 7-11
Overview of ADU Status and Statistics Tools

In addition to enabling you to configure your client adapter for use in various types of networks, ADU provides tools that enable you to assess the performance of the client adapter and other devices on the wireless network. These tools perform the following functions:

- Display your client adapter’s current status and configured settings
- Display statistics pertaining to your client adapter’s transmission and reception of data

Table 7-1 enables you to quickly find instructions for using ADU status and statistics tools.

Table 7-1 Status and Statistics Tool Instructions

<table>
<thead>
<tr>
<th>Tool</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>7-4</td>
</tr>
<tr>
<td>Statistics</td>
<td>7-11</td>
</tr>
</tbody>
</table>

Setting Parameters that Affect ADU Status and Statistics Tools

Several parameters affect the operation of ADU status and statistics tools. Follow these steps to set these parameters.

Step 1
Open ADU.

Step 2
Choose **Display Settings** from the Options drop-down menu. The Display Settings window appears (see Figure 7-1).

Figure 7-1 Display Settings Window

![Display Settings Window](image-url)

- **Signal Strength Display Units**: %, dBm
- **Refresh Interval (seconds)**: 3
- **Data Display**: Relative, Cumulative

Click **OK** or **Cancel**.
Step 3 Table 7-2 lists and describes the parameters that affect the operation of ADU status and statistics tools. Follow the instructions in the table to change any parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Strength Display Units</td>
<td>Specifies the units used to display signal strength on the Advanced Status and Available Infrastructure and Ad Hoc Networks windows. Options: % or dBm Default: dBm</td>
</tr>
<tr>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>%</td>
<td>Displays the signal strength as a percentage.</td>
</tr>
<tr>
<td>dBm</td>
<td>Displays the signal strength in decibels with respect to milliwatts.</td>
</tr>
<tr>
<td>Refresh Interval</td>
<td>Specifies how often the ADU status and statistics windows and the ASTU icon are updated. Range: 1 to 5 seconds between updates (in 1-second increments) Default: 3 seconds between updates</td>
</tr>
<tr>
<td>Data Display</td>
<td>Specifies whether the data that is displayed on the Diagnostics and Advanced Statistics windows continue to increment until the driver is reloaded or only until an update occurs (every 1 to 5 seconds). Options: Relative or Cumulative Default: Cumulative</td>
</tr>
<tr>
<td>Data Display</td>
<td>Description</td>
</tr>
<tr>
<td>Relative</td>
<td>Displays statistical data collected since the last update, as specified by the Refresh Interval (1 to 5 seconds).</td>
</tr>
<tr>
<td>Cumulative</td>
<td>Displays statistical data collected since the driver was loaded, upon card insertion or reboot.</td>
</tr>
</tbody>
</table>

Step 4 Click OK to save your changes.
Viewing the Current Status of Your Client Adapter

ADU enables you to view the current status of your client adapter as well as many of the settings that have been configured for the adapter. To view your client adapter’s status and settings, open ADU. The Current Status window appears (see Figure 7-2).

Table 7-3 interprets each element of the Current Status window.
Table 7-3 Basic Client Adapter Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Name</td>
<td>The network configuration (or profile) your client adapter is currently using.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to Chapter 4 for information on creating, modifying, and selecting profiles.</td>
</tr>
<tr>
<td>Link Status</td>
<td>The operational mode of your client adapter.</td>
</tr>
<tr>
<td>Value:</td>
<td>Not Associated, Associated, Authenticating, Authenticated, Authentication Failed, Authentication Failed Retrying</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Associated</td>
<td>The client adapter has not established a connection to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Associated</td>
<td>The client adapter has established a connection to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Authenticating</td>
<td>The client adapter is associated to an access point, and the EAP authentication process has begun but not yet succeeded.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>The client adapter is associated to an access point, and the user is EAP authenticated.</td>
</tr>
<tr>
<td>Authentication Failed</td>
<td>The client adapter is associated to an access point, but the user has failed to EAP authenticate.</td>
</tr>
<tr>
<td>Authentication Failed Retrying</td>
<td>The client adapter is associated to an access point, the user has failed to EAP authenticate, but another authentication attempt is being made.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Based Authentication</th>
<th>The method by which authentication to a back-end server is being performed to establish secure connectivity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
<td>None, LEAP, EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2)</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the “Overview of Security Features” section on page 5-14 for details on these server-based authentication types.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Encryption</th>
<th>The data encryption type that was negotiated with the access point (in infrastructure mode) or another client (in ad hoc mode) upon association.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
<td>None, WEP, CKIP, or TKIP</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the “Overview of Security Features” section on page 5-14 for details on these data encryption types.</td>
</tr>
</tbody>
</table>
Viewing the Current Status of Your Client Adapter

Table 7-3 Basic Client Adapter Status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>The type of network in which your client adapter is being used.</td>
</tr>
<tr>
<td>Value</td>
<td>Infrastructure or Ad Hoc</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Network Type parameter in Table 5-3 for information on setting the network type.</td>
</tr>
<tr>
<td>Current Channel</td>
<td>The channel that your client adapter is currently using for communications. This field displays Scanning while the client adapter searches for a channel.</td>
</tr>
<tr>
<td>Value</td>
<td>Dependent on radio band and regulatory domain</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Channel parameter in Table 5-3 for information on setting the channel for your client adapter.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to Appendix D for a list of channel identifiers, channel center frequencies, and regulatory domains for each channel.</td>
</tr>
<tr>
<td>Wireless Mode</td>
<td>The frequency and rate at which your current wireless connection is capable of transmitting or receiving packets.</td>
</tr>
<tr>
<td>Value</td>
<td>5 GHz 54 Mbps, 2.4 GHz 11 Mbps, or 2.4 GHz 54 Mbps</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Wireless Mode parameter in Table 5-3 for information on setting the wireless mode for your client adapter.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of your client adapter.</td>
</tr>
<tr>
<td>Signal Strength</td>
<td>The signal strength for all received packets. The color of this parameter’s progress bar provides a visual interpretation of signal strength.</td>
</tr>
<tr>
<td>Value</td>
<td>Excellent (green), Good (green), Fair (yellow), Poor (red), or No Link</td>
</tr>
</tbody>
</table>

Click Advanced if you want to view more detailed status information for your client adapter. The Advanced Status window appears (see Figure 7-3).
Table 7-4 interprets each element of the Advanced Status window.

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Name (SSID)</td>
<td>The name of the network to which your client adapter is currently associated.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the SSID1 parameter in Table 5-2 for information on setting the client adapter’s SSID.</td>
</tr>
<tr>
<td>Server Based Authentication</td>
<td>The method by which authentication to a back-end server is being performed to establish secure connectivity.</td>
</tr>
<tr>
<td></td>
<td>Value: None, LEAP, EAP-TLS, PEAP (EAP-GTC), or PEAP (EAP-MSCHAP V2)</td>
</tr>
<tr>
<td></td>
<td>Refer to the “Overview of Security Features” section on page 5-14 for details on these server-based authentication types.</td>
</tr>
<tr>
<td>Data Encryption</td>
<td>The data encryption type that was negotiated with the access point (in infrastructure mode) or another client (in ad hoc mode) upon association.</td>
</tr>
<tr>
<td></td>
<td>Value: None, WEP, CKIP, or TKIP</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the “Overview of Security Features” section on page 5-14 for details on these data encryption types.</td>
</tr>
</tbody>
</table>
Chapter 7 Viewing Status and Statistics

Viewing the Current Status of Your Client Adapter

Authentication Type
Specifies whether the client adapter must share the same WEP keys as the access point in order to authenticate or can authenticate to the access point regardless of its WEP settings.

Value: Open or Shared

Note
An incorrect WEP key setting prevents connectivity to the network regardless of the 802.11 authentication type selected.

Note
Refer to the “Setting Advanced Parameters” section on page 5-5 for information on setting the 802.11 authentication mode.

Message Integrity Check
Indicates whether your client adapter is using message integrity check (MIC) to protect packets sent to and received from the access point. MIC prevents bit-flip attacks on encrypted packets. During a bit-flip attack, an intruder intercepts an encrypted message, alters it slightly, and retransmits it, and the receiver accepts the retransmitted message as legitimate.

Note
MIC is supported automatically by the client adapter’s driver, but it must be enabled on the access point.

Value: None, MMH, or Michael

Table 7-4 Advanced Client Adapter Status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Type</td>
<td>Specifies whether the client adapter must share the same WEP keys as the access point in order to authenticate or can authenticate to the access point regardless of its WEP settings.</td>
</tr>
<tr>
<td>Value:</td>
<td>Open or Shared</td>
</tr>
<tr>
<td>Note</td>
<td>An incorrect WEP key setting prevents connectivity to the network regardless of the 802.11 authentication type selected.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the “Setting Advanced Parameters” section on page 5-5 for information on setting the 802.11 authentication mode.</td>
</tr>
<tr>
<td>Message Integrity Check</td>
<td>Indicates whether your client adapter is using message integrity check (MIC) to protect packets sent to and received from the access point.</td>
</tr>
<tr>
<td>Value:</td>
<td>None, MMH, or Michael</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Integrity Check</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>MIC is disabled.</td>
</tr>
<tr>
<td>MMH</td>
<td>MIC is enabled and is being used with CKIP.</td>
</tr>
<tr>
<td>Michael</td>
<td>MIC is enabled and is being used with WPA and TKIP.</td>
</tr>
</tbody>
</table>

| Associated AP Name | The name of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). |
| Note | This field shows up to 15 characters although the name of the access point may be longer. |

| Associated AP IP Address | The IP address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). |
| Note | If Aironet Extensions are disabled, the IP address of the associated access point is shown as 0.0.0.0. |
Table 7-4 Advanced Client Adapter Status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated AP MAC Address</td>
<td>The MAC address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode.
 Note This field displays the MAC address of the access point’s Ethernet port (for access points that do not run Cisco IOS software) or the MAC address of the access point’s radio (for access points that run Cisco IOS software). The MAC address of the Ethernet port on access points that run Cisco IOS software is printed on a label on the back of the device.</td>
</tr>
<tr>
<td>Power Save Mode</td>
<td>The client adapter’s current power consumption setting.
 Value: CAM (Constantly Awake Mode), Max PSP (Max Power Saving), or Fast PSP (Power Save Mode)
 Note Refer to the Power Save Mode parameter in Table 5-3 for information on setting the client adapter’s power save mode.</td>
</tr>
<tr>
<td>Current Power Level</td>
<td>The power level at which your client adapter is currently transmitting. The maximum level is dependent upon the radio band used and your country’s regulatory agency.
 Value: 10, 20, 30, 50, 63, or 100 mW (802.11b/g band); 10, 13, 20, 25, or 40 mW (802.11a band)
 Note Refer to the Transmit Power Level parameter in Table 5-3 for information on setting the client adapter’s power level.</td>
</tr>
<tr>
<td>Available Power Levels</td>
<td>The power levels at which your client adapter is capable of transmitting. The maximum level is dependent upon the radio band used and your country’s regulatory agency.
 Value: 10, 13, 20, 25, or 40 mW (802.11a); 10, 20, 30, 50, 63, or 100 mW (802.11b/g)
 Note Refer to the Transmit Power Level parameter in Table 5-3 for information on the client adapter’s available power levels.</td>
</tr>
<tr>
<td>Current Signal Strength</td>
<td>The signal strength for all received packets. The higher the value, the stronger the signal.
 Range: 0 to 100% or 0 to –100 dBm</td>
</tr>
</tbody>
</table>
| Current Signal Quality | The signal quality for all received packets. The higher the value, the clearer the signal.
 Range: 0 to 100%
 Note This setting appears only if you selected signal strength to be displayed as a percentage. See the Signal Strength Display Units parameter in Table 7-2 for information.
Table 7-4 Advanced Client Adapter Status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Noise Level</td>
<td>The level of background radio frequency energy in the current radio band. The lower the value, the less background noise present.</td>
</tr>
<tr>
<td>Range: 0 to –100 dBm</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This setting appears only if you selected signal strength to be displayed in dBm. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
<tr>
<td>Up Time</td>
<td>The amount of time (in hours:minutes:seconds) since the client adapter has been receiving power. If the adapter has been running for more than 24 hours, the time is displayed in days, hours:minutes:seconds.</td>
</tr>
<tr>
<td>802.11b Preamble</td>
<td>Indicates whether your client adapter is using only long radio headers or short and long radio headers.</td>
</tr>
<tr>
<td>Value: Short & Long or Long Only</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This field contains a value only when the client adapter is operated in 2.4-GHz 11-Mbps or 2.4-GHz 54-Mbps mode.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the 802.11b Preamble parameter in Table 5-3 for information on using radio headers.</td>
</tr>
<tr>
<td>Current Link Speed</td>
<td>The rate at which your client adapter is currently transmitting data packets.</td>
</tr>
<tr>
<td>Value: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>The channel that your client adapter is currently using for communications. This field displays Scanning while the client adapter searches for a channel.</td>
</tr>
<tr>
<td>Value: Dependent on radio band and regulatory domain</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Channel parameter in Table 5-3 for information on setting the channel for your client adapter.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to Appendix D for a list of channel identifiers, channel center frequencies, and regulatory domains for each channel.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The radio frequency that your client adapter is currently using for communications. This field displays “Scanning” while the client adapter searches for a frequency.</td>
</tr>
<tr>
<td>Value: Dependent on radio band and regulatory domain</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Wireless Mode parameter in Table 5-3 for information on setting the frequency for your client adapter.</td>
</tr>
<tr>
<td>Channel Set</td>
<td>The regulatory domain for which your client adapter is currently configured. This value is not user selectable.</td>
</tr>
<tr>
<td>Value: America, EMEA, Japan, or Rest of World</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Refer to Appendix D for a list of channel identifiers, channel center frequencies, and regulatory domains for each channel.</td>
</tr>
</tbody>
</table>

Click **OK** to close the Advanced Status window.
Viewing Statistics for Your Client Adapter

ADU enables you to view statistics that indicate how data is being received and transmitted by your client adapter.

To view your client adapter’s statistics, open ADU and click the **Diagnostics** tab. The Cisco Aironet Desktop Utility (Diagnostics) window appears (see **Figure 7-4**).

Figure 7-4 Cisco Aironet Desktop Utility (Diagnostics) Window

This window displays basic transmit and receive statistics for your client adapter. The statistics are calculated on a relative or cumulative basis as specified by the Data Display parameter and are continually updated at the rate specified by the Refresh Interval parameter. Instructions for changing the Data Display and Refresh Interval settings are provided in **Table 7-2**.

Note

The receive and transmit statistics are host statistics. That is, they show packets and errors received or sent by the Windows device.
Table 7-5 describes each statistic that is displayed for your client adapter.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Statistics</td>
<td></td>
</tr>
<tr>
<td>Multicast Packets</td>
<td>The number of multicast packets that were transmitted.</td>
</tr>
<tr>
<td>Broadcast Packets</td>
<td>The number of broadcast packets that were transmitted.</td>
</tr>
<tr>
<td>Unicast Packets</td>
<td>The number of unicast packets that were transmitted successfully.</td>
</tr>
<tr>
<td>Total Bytes</td>
<td>The number of bytes of data that were transmitted successfully.</td>
</tr>
<tr>
<td>Receive Statistics</td>
<td></td>
</tr>
<tr>
<td>Multicast Packets</td>
<td>The number of multicast packets that were received.</td>
</tr>
<tr>
<td>Broadcast Packets</td>
<td>The number of broadcast packets that were received.</td>
</tr>
<tr>
<td>Unicast Packets</td>
<td>The number of unicast packets that were received successfully.</td>
</tr>
<tr>
<td>Total Bytes</td>
<td>The number of bytes of data that were received successfully.</td>
</tr>
</tbody>
</table>

Click Advanced Statistics if you want to view additional statistics for your client adapter. The Advanced Statistics window appears (see Figure 7-5).

Figure 7-5 Advanced Statistics Window
Table 7-6 interprets each element of the Advanced Statistics window.

Table 7-6 Advanced Client Adapter Statistics

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Statistics</td>
<td></td>
</tr>
<tr>
<td>Frames Transmitted OK</td>
<td>The number of frames that were transmitted successfully.</td>
</tr>
<tr>
<td>Frames Retried</td>
<td>The number of frames that were retried.</td>
</tr>
<tr>
<td>Frames Dropped</td>
<td>The number of frames that were dropped because of errors or collisions.</td>
</tr>
<tr>
<td>No ACK Frames</td>
<td>The number of transmitted frames that did not have their corresponding Ack frame received successfully.</td>
</tr>
<tr>
<td>ACK Frames</td>
<td>The number of transmitted frames that had their corresponding Ack frame received successfully.</td>
</tr>
<tr>
<td>RTS Frames</td>
<td>The number of request-to-send (RTS) transmissions that were attempted.</td>
</tr>
<tr>
<td>CTS Frames</td>
<td>The number of clear-to-send (CTS) frames that were received in response to a successfully transmitted RTS frame.</td>
</tr>
<tr>
<td>No CTS Frames</td>
<td>The number of request-to-send (RTS) transmissions that were unsuccessful. The access point sends CTS frames in response to the client’s RTS frames. This field keeps track of each time the client does not receive a CTS back from the access point.</td>
</tr>
<tr>
<td>Retried RTS Frames</td>
<td>The number of request-to-send (RTS) frames that were retransmitted.</td>
</tr>
<tr>
<td>Retried Data Frames</td>
<td>The number of normal data frames that were retransmitted.</td>
</tr>
<tr>
<td>Receive Statistics</td>
<td></td>
</tr>
<tr>
<td>Beacons Received</td>
<td>The number of beacon frames that were received successfully.</td>
</tr>
<tr>
<td>Frames Received OK</td>
<td>The number of all frames that were received successfully.</td>
</tr>
<tr>
<td>Frames Received with Errors</td>
<td>The number of frames that were received with an invalid checksum.</td>
</tr>
<tr>
<td>CRC Errors</td>
<td>The number of cyclic redundancy check (CRC) errors detected in the data portion of the frame.</td>
</tr>
<tr>
<td>Encryption Errors</td>
<td>The number of frames that were received with encryption errors.</td>
</tr>
<tr>
<td>Duplicate Frames</td>
<td>The number of duplicate frames that were received.</td>
</tr>
<tr>
<td>AP Mismatches</td>
<td>The number of times the client adapter tried to associate to an access point but was unable to because the access point was not the adapter’s specified access point.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Access Point 1 through Access Point 4 parameters on page 5-12 for information on specifying access points.</td>
</tr>
<tr>
<td>Data Rate Mismatches</td>
<td>The number of times the client adapter tried to associate to an access point but was unable to because the adapter’s data rate was not supported by the access point.</td>
</tr>
<tr>
<td>Note</td>
<td>Refer to the Wireless Mode parameter in Table 5-3 for information on supported data rates.</td>
</tr>
</tbody>
</table>
Table 7-6 Advanced Client Adapter Statistics (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Time-Out</td>
<td>The number of times the client adapter tried to authenticate to an access</td>
</tr>
<tr>
<td></td>
<td>point but was unable to because the access point did not respond fast</td>
</tr>
<tr>
<td></td>
<td>enough (timed out).</td>
</tr>
<tr>
<td>Authentication Rejects</td>
<td>The number of times the client adapter tried to authenticate to an access</td>
</tr>
<tr>
<td></td>
<td>point but was rejected.</td>
</tr>
<tr>
<td>Association Time-Out</td>
<td>The number of times the client adapter tried to associate to an access</td>
</tr>
<tr>
<td></td>
<td>point but was unable to because the access point did not respond fast</td>
</tr>
<tr>
<td></td>
<td>enough (timed out).</td>
</tr>
<tr>
<td>Association Rejects</td>
<td>The number of times the client adapter tried to associate to an access</td>
</tr>
<tr>
<td></td>
<td>point but was rejected.</td>
</tr>
<tr>
<td>Standard MIC OK</td>
<td>The number of frames that were received with the correct message integrity</td>
</tr>
<tr>
<td></td>
<td>check (MIC) value.</td>
</tr>
<tr>
<td>Standard MIC Errors</td>
<td>The number of frames that were discarded due to an incorrect message</td>
</tr>
<tr>
<td></td>
<td>integrity check (MIC) value.</td>
</tr>
<tr>
<td>CKIP MIC OK</td>
<td>The number of frames that were received with the correct message integrity</td>
</tr>
<tr>
<td></td>
<td>check (MIC) value when CKIP was being used.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed only if MIC is enabled on the access</td>
</tr>
<tr>
<td></td>
<td>point.</td>
</tr>
<tr>
<td>CKIP MIC Errors</td>
<td>The number of frames that were discarded due to an incorrect message</td>
</tr>
<tr>
<td></td>
<td>integrity check (MIC) value when CKIP was being used.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed only if MIC is enabled on the access</td>
</tr>
<tr>
<td></td>
<td>point.</td>
</tr>
</tbody>
</table>

Click **OK** to close the Advanced Statistics window.
Using the Aironet System Tray Utility (ASTU)

This chapter explains how to use the Aironet System Tray Utility (ASTU) to access status information about your client adapter and perform basic tasks.

The following topics are covered in this chapter:

- Overview of ASTU, page 8-2
- The ASTU Icon, page 8-2
- Tool Tip Window, page 8-3
- Pop-Up Menu, page 8-5
Overview of ASTU

ASTU is an optional application that provides a small subset of the features available through ADU. Specifically, it enables you to access status information about your client adapter and perform basic tasks. ASTU is accessible from an icon in the Windows system tray, making it easily accessible and convenient to use. The ASTU icon appears only if a client adapter is installed in your computer and you did not disable ASTU during installation.

ASTU provides information and options in the following ways:

- In the appearance of the icon itself
- Through a tool tip window that appears when you hover the cursor over the icon
- Through a pop-up menu that appears when you right-click the icon
- Through a Connection Status window that appears when you double-click the icon

The ASTU Icon

The appearance of the ASTU icon indicates the connection status of your client adapter. ASTU reads the client adapter status and updates the icon every 1 to 5 seconds, depending on the value entered for the Refresh Interval on the Display Settings window. Table 8-1 interprets the different appearances of the ASTU icon.

Note: Windows 2000 and XP may display their own wireless network connection status icon in the system tray. Cisco recommends that you turn off the Windows icon and use the ASTU icon to monitor your wireless connection.

Table 8-1 Interpreting the ASTU Icon

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A white icon indicates that the client adapter’s radio is disabled.</td>
</tr>
<tr>
<td></td>
<td>A dark gray icon indicates that the client adapter is not associated to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td></td>
<td>A light gray icon indicates that the client adapter is associated to an access point (in infrastructure mode) or another client (in ad hoc mode) but the user is not EAP authenticated.</td>
</tr>
<tr>
<td></td>
<td>A green icon indicates that the client adapter is associated to an access point (in infrastructure mode) or another client (in ad hoc mode), the user is authenticated if the client adapter is configured for EAP authentication, and the signal strength is excellent or good.</td>
</tr>
</tbody>
</table>
Tool Tip Window

When you hover the cursor over the ASTU icon, the Tool Tip window appears (see Figure 8-1).

Note If the client adapter’s radio is disabled, a message appears instead of the Tool Tip window to inform you that the wireless network interface is disabled.

Table 8-1 Interpreting the ASTU Icon (continued)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A yellow icon indicates that the client adapter is associated to an access point (in infrastructure mode) or another client (in ad hoc mode), the user is authenticated if the client adapter is configured for EAP authentication, and the signal strength is fair.</td>
</tr>
<tr>
<td></td>
<td>A red icon indicates that the client adapter is associated to an access point (in infrastructure mode) or another client (in ad hoc mode), the user is authenticated if the client adapter is configured for EAP authentication, and the signal strength is poor.</td>
</tr>
</tbody>
</table>

This window provides information on the current status of your client adapter. Table 8-2 lists and describes each element of the Tool Tip window.

Table 8-2 Tool Tip Window Elements

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active profile</td>
<td>The network configuration (or profile) that your client adapter is currently using.</td>
</tr>
</tbody>
</table>
| SSID | The name of the network to which your client adapter is currently associated.
Note This field is blank if your client adapter is not associated to an access point (in infrastructure mode) or another client (in ad hoc mode).
Note Refer to the SSID1 parameter in Table 5-2 for information on setting the client adapter’s SSID. |
Table 8-2 Tool Tip Window Elements (continued)

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection status</td>
<td>The operational mode of your client adapter. Value: Not Associated, Associated, Authenticating, Authenticated, Authentication Failed, or Authentication Failed Retrying</td>
</tr>
<tr>
<td>Not Associated</td>
<td>The client adapter has not established a connection to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Associated</td>
<td>The client adapter has established a connection to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Authenticating</td>
<td>The client adapter is associated to an access point, and the EAP authentication process has begun but not yet succeeded.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>The client adapter is associated to an access point, and the user is EAP authenticated.</td>
</tr>
<tr>
<td>Authentication Failed</td>
<td>The client adapter is associated to an access point, but the user has failed to EAP authenticate. Note: This status may appear very briefly or not at all as the authentication failure may result in the client adapter becoming disassociated, in which case the status reads Not Associated.</td>
</tr>
<tr>
<td>Authentication Failed Retrying</td>
<td>The client adapter is associated to an access point, the user has failed to EAP authenticate, but another authentication attempt is being made. Note: This status may appear very briefly or not at all as the authentication failure may result in the client adapter becoming disassociated, in which case the status reads Not Associated.</td>
</tr>
</tbody>
</table>
When you right-click the ASTU icon, the ASTU pop-up menu appears (see Figure 8-2).

Figure 8-2 ASTU Pop-Up Menu

<table>
<thead>
<tr>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
</tr>
</tbody>
</table>

Open Aironet Desktop Utility…
Troubleshooting
Preferences…

Disable Radio
Manual LEAP Login
Reauthenticate
Select Profile

Show Connection Status

The following sections describe each ASTU pop-up menu option.

Note
If you used the Aironet System Tray Utility Preferences window or your system administrator used an administrative tool to deactivate certain ASTU menu options, these options do not appear in the menu and therefore cannot be selected.

Help
This option enables you to access the online help.
Chapter 8 Using the Aironet System Tray Utility (ASTU)

Exit

This option closes ADU and ASTU.

Note

To reactivate ADU, double-click the Aironet Desktop Utility icon on your computer desktop. To reactivate ASTU, choose the Enable Tray Icon option from the ADU Action drop-down menu.

Open Aironet Desktop Utility

This option activates ADU.

Troubleshooting

This option activates the troubleshooting utility, which enables you to identify and resolve configuration and association problems with your client adapter. Refer to the “Using the Troubleshooting Utility” section on page 10-3 for detailed instructions on using this utility.

Preferences

When you choose this option, the Aironet System Tray Utility Preferences window appears (see Figure 8-3).

Figure 8-3 Aironet System Tray Utility Preferences Window

![Aironet System Tray Utility Preferences Window](image)
This window enables you to determine when ADU and ASTU run and to choose the options that appear on the ASTU pop-up menu. Follow these steps to make your selections.

Step 1
If you want ADU and ASTU to run automatically when Windows starts, make sure the **Run the program automatically when Windows starts** check box is checked. Otherwise, uncheck this check box.

Note
If you do not choose this option and later want to run ADU and ASTU, you must double-click the Aironet Desktop Utility icon on your computer desktop.

Step 2
In the Menu Options portion of the window, make sure the check boxes of all the options that you want to appear in the ASTU pop-up menu are checked. Any options that are not checked will not be included in the menu.

Note
The Preferences option cannot be deselected. It always appears in the ASTU pop-up menu.

Step 3
Click **OK** to save your changes.

Enable/Disable Radio

This option enables you to disable or enable the client adapter’s radio. Disabling the radio prevents the adapter from transmitting RF energy. You might want to disable the client adapter’s radio in the following situations:

- You are not transmitting data and want to conserve battery power.
- You are using a laptop on an airplane and want to prevent the adapter’s transmissions from potentially interfering with the operation of certain devices.

When the radio is enabled, it periodically sends out probes even if it is not associated to an access point (in infrastructure mode) or another client (in ad hoc mode), as required by the 802.11 specification. Therefore, it is important to disable it around devices that are susceptible to RF interference.

Note
If the client adapter’s radio is disabled, your client adapter is not associated, and a message appears when you hover the cursor over the ASTU icon to inform you that the wireless network interface is disabled.

Note
If your client adapter’s radio is disabled before your computer enters standby or hibernate mode or before you reboot the computer, the radio remains disabled when the computer resumes. You must enable the radio to resume operation.

If the radio is enabled, choose **Disable Radio** to disable the radio.

If the radio is disabled, choose **Enable Radio** to enable the radio.
Manual LEAP Login

This option enables you to manually invoke the authentication process for a profile that is configured to use a manually prompted LEAP username and password. When you choose this option, the Enter Wireless Network Password window appears. Enter your LEAP credentials and click OK. The LEAP Authentication Status window appears, and the authentication process begins.

Note

Refer to Chapter 5 for information on setting a manual LEAP profile and Chapter 6 for details on the authentication process.

Reauthenticate

This option forces your client adapter to try to reauthenticate using the username and password of the current profile. It is available only for LEAP-enabled profiles. When you choose this option, the LEAP Authentication Status window appears, and the authentication process begins.

If your client adapter is unable to authenticate using the specified username and password, you are prompted to re-enter them. If you click Cancel, a message appears indicating that the current profile will be disabled until you choose the Reauthenticate option, reboot your computer, or eject and reinsert the client adapter.

Select Profile

This option enables you to select the active profile for your client adapter. When you choose this option, a profiles submenu appears (see Figure 8-4).

Figure 8-4 Profiles Submenu

<table>
<thead>
<tr>
<th>Use Auto Profile Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
</tr>
<tr>
<td>✔ Office</td>
</tr>
</tbody>
</table>

From this menu, you can choose between the following options:

- **Use Auto Profile Selection**—Causes the client adapter’s driver to automatically select a profile from the list of profiles that were set up in ADU to be included in auto profile selection.

 If the client adapter loses association for more than 10 seconds (or for more than the time specified by the LEAP authentication timeout value on the LEAP Settings window if LEAP is enabled), the driver switches automatically to another profile that is included in auto profile selection. The adapter will not switch profiles as long as it remains associated or reassociates within 10 seconds (or within the time specified by the LEAP authentication timeout value). To force the client adapter to associate to a different access point (in infrastructure mode) or another client (in ad hoc mode), you must select a new profile.

Note

This option is available only if two or more profiles are included in auto profile selection.
Login scripts are not reliable if you use auto profile selection with LEAP. If you LEAP authenticate and achieve full network connectivity before or at the same time as you log into the computer, the login scripts will run. However, if you LEAP authenticate and achieve full network connectivity after you log into the computer, the login scripts will not run.

A specific profile—When you select a profile from the list of available profiles, the client adapter attempts to establish a connection to an access point (in infrastructure mode) or another client (in ad hoc mode) using the parameters that were configured for that profile.

If the client adapter cannot associate to the access point (or other client) or loses association while using the selected profile, the adapter does not attempt to associate using another profile. To get it to associate, you must select a different profile or select Use Auto Profile Selection.

Simply click the desired profile to select it. A check mark appears beside the profile, and the client adapter attempts to establish a connection using the selected profile.

Show Connection Status

When you choose this option, the Connection Status window appears (see Figure 8-5).

Figure 8-5 Connection Status Window

This window provides information on the current status of your client adapter. Table 8-3 interprets each element of the Connection Status window.

Note

You can also access the Connection Status window by double-clicking the ASTU icon.
Table 8-3 Connection Status Window Elements

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Profile</td>
<td>The network configuration (or profile) that your client adapter is currently using.</td>
</tr>
<tr>
<td>Auto Profile Selection</td>
<td>Indicates whether your client adapter is using auto profile selection.</td>
</tr>
<tr>
<td></td>
<td>Value: Enabled or Disabled</td>
</tr>
<tr>
<td>Connection Status</td>
<td>The operational mode of your client adapter.</td>
</tr>
<tr>
<td></td>
<td>Value: Not Associated, Associated, Authenticating, Authenticated, Authentication Failed, or Authentication Failed Retrying</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Associated</td>
<td>The client adapter has not established a connection to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Associated</td>
<td>The client adapter has established a connection to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Authenticating</td>
<td>The client adapter is associated to an access point, and the EAP authentication process has begun but not yet succeeded.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>The client adapter is associated to an access point, and the user is EAP authenticated.</td>
</tr>
<tr>
<td>Authentication Failed</td>
<td>The client adapter is associated to an access point, but the user has failed to EAP authenticate.</td>
</tr>
<tr>
<td>Note</td>
<td>This status may appear very briefly or not at all as the authentication failure may result in the client adapter becoming disassociated, in which case the status reads Not Associated.</td>
</tr>
<tr>
<td>Authentication Failed Retrying</td>
<td>The client adapter is associated to an access point, the user has failed to EAP authenticate, but another authentication attempt is being made.</td>
</tr>
<tr>
<td>Note</td>
<td>This status may appear very briefly or not at all as the authentication failure may result in the client adapter becoming disassociated, in which case the status reads Not Associated.</td>
</tr>
</tbody>
</table>
Table 8-3 Connection Status Window Elements (continued)

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Quality</td>
<td>The client adapter’s signal strength for all received packets.</td>
</tr>
<tr>
<td></td>
<td>Value: Excellent, Good, Fair, Poor, or No Link</td>
</tr>
<tr>
<td>SSID</td>
<td>The name of the network to which your client adapter is currently associated.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the SSID1 parameter in Table 5-2 for information on setting the client adapter’s SSID.</td>
</tr>
<tr>
<td>Access Point Name</td>
<td>The name of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later).</td>
</tr>
<tr>
<td></td>
<td>Note This field shows up to 15 characters although the name of the access point may be longer.</td>
</tr>
<tr>
<td>Access Point IP Address</td>
<td>The IP address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later).</td>
</tr>
<tr>
<td></td>
<td>Note If Aironet Extensions are disabled, the IP address of the associated access point is shown as 0.0.0.0.</td>
</tr>
<tr>
<td>Link Speed</td>
<td>The rate at which your client adapter is currently transmitting data packets.</td>
</tr>
<tr>
<td></td>
<td>Value: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps</td>
</tr>
<tr>
<td>Client Adapter IP Address</td>
<td>The IP address of your client adapter.</td>
</tr>
</tbody>
</table>
Chapter 8 Using the Aironet System Tray Utility (ASTU)

Pop-Up Menu
Routine Procedures

This chapter provides procedures for common tasks related to the client adapter. The following topics are covered in this chapter:

- Removing a Client Adapter, page 9-2
- Client Adapter Software Procedures, page 9-3
- Enabling or Disabling Your Client Adapter’s Radio, page 9-9
Removing a Client Adapter

Follow the instructions in this section to remove a PC-Cardbus card or PCI card from a computing device, when necessary.

⚠️ Caution

These procedures and the physical connections they describe apply generally to conventional Cardbus slots and PCI expansion slots. In cases of custom or nonconventional equipment, be alert to possible differences in Cardbus slot and PCI expansion slot configurations.

Removing a PC-Cardbus Card

To remove a PC-Cardbus card after it is successfully installed and configured (such as when your laptop is to be transported), completely shut down your computer and pull the card directly out of the Cardbus slot. When the card is reinserted and the computer is rebooted, your connection to the network should be re-established.

Note

If you need to remove your PC-Cardbus card but do not want to shut down your computer, double-click the **Unplug or Eject Hardware** icon in the Windows system tray, choose the Cisco Aironet client adapter you want to remove under Hardware devices, click **Stop**, and click **OK** to close each open window. Then pull the card directly out of the card slot.

Removing a PCI Card

Because PCI client adapters are installed inside desktop computers, which are not designed for portable use, you should have little reason to remove the adapter. However, instructions are provided below in case you need to remove your PCI card.

Step 1

Completely shut down your computer.

Step 2

Remove the computer cover.

Step 3

Remove the screw from the top of the CPU back panel above the PCI expansion slot that holds your client adapter.

Step 4

Pull up firmly on the client adapter to release it from the slot and carefully tilt the adapter to slip its antenna through the opening near the slot.

Step 5

Reinstall the screw on the CPU back panel and replace the computer cover.
Client Adapter Software Procedures

This section provides instructions for the following procedures:

- Upgrading the client adapter software, page 9-3
- Uninstalling the client adapter software, page 9-6
- ADU procedures, page 9-7
- ASTU procedures, page 9-9

Upgrading the Client Adapter Software

Follow these steps to upgrade your Cisco Aironet CB21AG or PI21AG client adapter software to a more recent release using the settings that were selected during the last installation.

Note
If you want to upgrade your client adapter software using new installation settings, uninstall the previous installation (see the instructions on page 9-6); then install the new software (see the instructions on page 3-2).

Step 1
Make sure the client adapter is inserted in your computer.

Note
If your client adapter is not inserted, the software cannot be upgraded.

Step 2
Use Windows Explorer to find the Install Wizard file.

Step 3
Double-click the file. The “Starting InstallShield Wizard” message appears followed by the Preparing Setup window (see Figure 9-1) and the Previous Installation Detected window (see Figure 9-2).
Figure 9-1 Preparing Setup Window

Cisco Aironet Driver and Client Applications - InstallShield Wizard

Preparing Setup
Please wait while the InstallShield Wizard prepares the setup.

Cisco Aironet Driver and Client Applications Setup is preparing the InstallShield Wizard, which will guide you through the rest of the setup process. Please wait.

Figure 9-2 Previous Installation Detected Window

Cisco Aironet Installation Program

Previous Installation Detected

The installation program has detected that a previous installation exists. What do you want to do?

- Update the previous installation
- Uninstall the previous installation

InstallShield
Step 4
Choose **Update the previous installation** and click **Next**.

Step 5
When a message appears indicating that you are required to restart your computer at the end of the installation process, click **Yes**.

Note
If you click **No**, you are asked to confirm your decision. If you proceed, the installation process terminates.

The Setup Status window appears (see Figure 9-3).

Figure 9-3 Setup Status Window

![Setup Status Window](image)

The upgrade process begins, and you are notified as each software component is installed.

Step 6
When a message appears indicating that your computer needs to be rebooted, click **OK** and allow your computer to restart. The client adapter's software has been upgraded.
Uninstalling the Client Adapter Software

This section provides instructions for uninstalling the software for your Cisco Aironet CB21AG or PI21AG client adapter. This procedure is necessary if you want to remove installed client adapter software from your computer or downgrade to a previous release.

Note

If you want to downgrade to an earlier release of client adapter software, use this procedure to uninstall the current software. Then install the older software.

Note

When you uninstall the client adapter software, any existing profiles are removed. If you want to save your profiles for later use, follow the instructions in Chapter 4 to export your profiles before uninstalling the software.

Step 1

Perform one of the following:

- If you want to remove the client adapter from your computer, shut down your computer, remove the client adapter, and reboot your computer. Then go to Step 2.
- If you want to leave your client adapter inserted in your computer, go to Step 2.

Step 2

Use Windows Explorer to find the Install Wizard file.

Step 3

Double-click the file. The “Starting InstallShield Wizard” message appears followed by the Preparing Setup window (see Figure 9-1) and the Previous Installation Detected window (see Figure 9-2).

Step 4

Choose Uninstall the previous installation and click Next.

Step 5

When a message appears indicating that you are required to restart your computer at the end of the operation, click Yes.

Note

If you click No, you are asked to confirm your decision. If you proceed, the installation process terminates.

Step 6

When prompted to confirm your decision, click OK. The process to uninstall the files begins.

Step 7

When prompted to uninstall the device driver, click Yes.

Step 8

When a message appears indicating that your computer needs to be rebooted, click OK and allow your computer to restart.

Step 9

If you did not remove the client adapter from your computer, the Found New Hardware Wizard window appears after your computer reboots. Click Cancel.

The client adapter software and its program folder have been uninstalled.

Note

This procedure does not remove the Install Wizard file. If you want to remove it from your computer, find the file using Windows Explorer and delete it.
ADU Procedures

This section provides instructions for the following procedures:

- Opening ADU, page 9-7
- Exiting ADU, page 9-7
- Finding the version of ADU, page 9-8
- Viewing client adapter information, page 9-8
- Accessing online help, page 9-9

Opening ADU

To open ADU, perform one of the following:

- Double-click the Aironet Desktop Utility icon on your desktop.
- Choose Aironet Desktop Utility from the folder in the Windows Start Menu that you chose during installation (the default location is Start > Program Files > Cisco Aironet > Aironet Desktop Utility).
- Right-click the ASTU icon in the Windows system tray and choose Open Aironet Desktop Utility.

Exiting ADU

To exit ADU, perform one of the following:

- Choose Exit from the Action drop-down menu (see Figure 9-4).
- Right-click the ASTU icon in the Windows system tray and choose Exit.

Figure 9-4 Action Drop-Down Menu
Finding the Version of ADU

Follow these steps to find the current version of ADU.

Step 1 Open ADU.

Step 2 Choose the *About Aironet Desktop Utility* option from the Help drop-down menu. The About window appears (see Figure 9-5).

Figure 9-5 About Window

![About Window](image)

Viewing Client Adapter Information

To view information about your client adapter, open ADU. Click the **Diagnostics** tab and **Adapter Information**. The Adapter Information window appears (see Figure 9-6).

Figure 9-6 Adapter Information Window

![Adapter Information Window](image)
Enabling or Disabling Your Client Adapter’s Radio

Your client adapter’s radio can be enabled or disabled. Disabling the radio off prevents the adapter from transmitting RF energy. You might want to disable the client adapter’s radio in the following situations:

- You are not transmitting data and want to conserve battery power.
- You are using a laptop on an airplane and want to prevent the adapter’s transmissions from potentially interfering with the operation of certain devices.

When the radio is enabled, it periodically sends out probes even if it is not associated to an access point (in infrastructure mode) or another client (in ad hoc mode), as required by the 802.11 specification. Therefore, it is important to disable it around devices that are susceptible to RF interference.

Note Your client adapter is not associated while its radio is disabled.

Table 9-1 interprets each element of the Adapter Information window.

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card Name</td>
<td>A description of your client adapter.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address assigned to your client adapter at the factory.</td>
</tr>
<tr>
<td>Driver</td>
<td>The filename and location of your client adapter’s driver.</td>
</tr>
<tr>
<td>Driver Version</td>
<td>The version of the NDIS device driver that is currently installed on your computer.</td>
</tr>
<tr>
<td>Driver Date</td>
<td>The date that your client adapter’s driver was created.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>The serial number of your client adapter.</td>
</tr>
<tr>
<td>Client Name</td>
<td>The name your client adapter uses when it associates to an access point. Note Refer to the Client Name parameter in Table 5-2 for information on setting the client name.</td>
</tr>
</tbody>
</table>

Click OK to close the Adapter Information window.

Accessing Online Help

To access the ADU online help, open ADU. Then choose the Aironet Desktop Utility Help option from the Help drop-down menu.

ASTU Procedures

Refer to Chapter 8 for instructions on using ASTU.
Enabling or Disabling Your Client Adapter’s Radio

Note

If your client adapter’s radio is disabled before your computer enters standby or hibernate mode or before you reboot the computer, the radio remains disabled when the computer resumes. You must enable the radio to resume operation.

You can use ADU or ASTU to enable or disable the client adapter’s radio. Follow the instructions below to use ADU or refer to the “Enable/Disable Radio” section on page 8-7 to use ASTU.

If your client adapter’s radio is enabled, open ADU and choose Disable Radio from the Action drop-down menu (see Figure 9-4) to disable the radio.

If your client adapter’s radio is disabled, open ADU and choose Enable Radio from the Action drop-down menu (see Figure 9-4) to enable the radio.
Troubleshooting

This chapter provides information for diagnosing and correcting common problems that may occur when you install and operate the client adapter.

The following topics are covered in this chapter:

- Accessing the Latest Troubleshooting Information, page 10-2
- Interpreting the Indicator LEDs, page 10-2
- Troubleshooting the Client Adapter, page 10-3
- Error Messages, page 10-12
Accessing the Latest Troubleshooting Information

This chapter provides basic troubleshooting tips for your client adapter. For more up-to-date and detailed troubleshooting information, refer to the TAC web site. To access this site, go to Cisco.com, click Technical Support > Hardware Support > Wireless Devices. Then choose your product and click Troubleshooting to find information on the problem you are experiencing.

Interpreting the Indicator LEDs

The client adapter shows messages through its two LEDs. Table 10-1 interprets the LED operating messages.

<table>
<thead>
<tr>
<th>Status LED (green)</th>
<th>Activity LED (amber)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Client adapter is not receiving power.</td>
</tr>
<tr>
<td>Blinking slowly</td>
<td>Off</td>
<td>Client adapter is in power save mode.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Client adapter has awakened from power save mode.</td>
</tr>
<tr>
<td>Alternating blink:</td>
<td></td>
<td>Client adapter is scanning for the wireless network for which it is configured.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blinking slowly</td>
<td>Blinking slowly</td>
<td>Client adapter is associated to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
<tr>
<td>Blinking quickly</td>
<td>Blinking quickly</td>
<td>Client adapter is transmitting or receiving data while associated to an access point (in infrastructure mode) or another client (in ad hoc mode).</td>
</tr>
</tbody>
</table>
Troubleshooting the Client Adapter

This section provides troubleshooting tips should you encounter problems with your client adapter. Use Table 10-2 to quickly find specific troubleshooting information.

<table>
<thead>
<tr>
<th>Troubleshooting Information</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the troubleshooting utility</td>
<td>10-3</td>
</tr>
<tr>
<td>Disabling the Microsoft Wireless Configuration Manager</td>
<td>10-8</td>
</tr>
<tr>
<td>Disabling the Microsoft 802.1X supplicant</td>
<td>10-8</td>
</tr>
<tr>
<td>Client adapter recognition problems</td>
<td>10-9</td>
</tr>
<tr>
<td>Resolving resource conflicts</td>
<td>10-9</td>
</tr>
<tr>
<td>Problems associating to an access point</td>
<td>10-11</td>
</tr>
<tr>
<td>Problems authenticating to an access point</td>
<td>10-11</td>
</tr>
<tr>
<td>Problems connecting to the network</td>
<td>10-11</td>
</tr>
<tr>
<td>Prioritizing network connections</td>
<td>10-11</td>
</tr>
<tr>
<td>Parameters missing from Profile Management windows</td>
<td>10-12</td>
</tr>
<tr>
<td>Windows Wireless Network Connection icon shows unavailable connection (Windows XP only)</td>
<td>10-12</td>
</tr>
</tbody>
</table>

Using the Troubleshooting Utility

The troubleshooting utility enables you to identify and resolve configuration and association problems with your client adapter. It is meant to be used only when the client adapter is in infrastructure mode because it assesses the connection between the adapter and an access point.

Follow the instructions in one of the subsections below to use the utility to diagnosis your client adapter’s operation, save a detailed report to a text file, or access online help.

Diagnosing Your Client Adapter’s Operation

Step 1 Perform one of the following to activate the troubleshooting utility:
- Open ADU; choose **Troubleshooting** from the Action drop-down menu.
- Open ADU; click the **Diagnostics** tab and **Troubleshooting**.
- Right-click the ASTU icon; choose **Troubleshooting** from the pop-up menu.

The Troubleshooting Utility window appears (see Figure 10-1).
Troubleshooting the Client Adapter

Step 2 Click Run Test. The utility performs the following series of seven tests to check the operation of your client adapter and to identify specific problems if they exist:

1. Driver installation test
2. Card insertion test
3. Card enable test
4. Radio test
5. Association test
6. Authentication test
7. Network test

The utility runs and then displays the results for each test (see Figure 10-2).
One of the following status messages appears for each test:

- **Test passed**—The test completed successfully.
- **Test bypassed**—The test was skipped because it was not required for the active profile.
- **Test failed**—The test failed. Follow the instructions in Step 3 to obtain more details.

Note You can click **Stop Test** at any time to stop the testing process, or you can click **Start Test** after the testing process has stopped to run the test again.

Step 3 To view more detailed information, click **View Report**. A report appears that provides more detailed results for your client adapter (see Figure 10-3).
Chapter 10 Troubleshooting

Figure 10-3 Troubleshooting Utility Window (Detailed Report)

Note The report contains valuable information that, if necessary, could be used by your system administrator or TAC to analyze any problems. Follow the instructions in the next section if you want to save the report to a text file.

Step 4 If a problem is discovered, the report provides some possible repair suggestions. Follow the repair instructions carefully and run the troubleshooting utility again.
Saving the Detailed Report to a Text File

Follow the steps below to save the detailed troubleshooting report to your computer’s hard drive.

Step 1 Click **Save Report**. The Save Report window appears (see **Figure 10-4**).

Figure 10-4 Save Report Window

![Save Report Window](image)

Step 2 Enter a name for the detailed report in the File name field. The report is saved as a *.txt file.

Step 3 Use the Save in box at the top of the window to specify the location on your computer’s hard drive where the file will be saved.

Note The default location is the directory where ADU is installed (such as C:\Program Files\Cisco Aironet).

Step 4 Click **Save**. The file is saved as a text file in the location specified.
Disabling the Microsoft Wireless Configuration Manager (Windows XP Only)

If any conflicts arise between ADU and the Microsoft Wireless Configuration Manager on a computer running Windows XP, follow these steps to disable the Microsoft configuration manager.

Note
If you chose to configure your client adapter using ADU during installation, the Microsoft 802.1X supplicant should already be disabled.

Note
Disabling the Microsoft Wireless Configuration Manager on Windows XP also disables the Microsoft 802.1X supplicant.

Step 1
Double-click *My Computer*, *Control Panel*, and *Network Connections*.

Step 2
Right-click *Wireless Network Connection* and click *Properties*.

Step 3
Click the *Wireless Networks* tab and uncheck the *Use Windows to configure my wireless network settings* check box.

Step 4
Click *OK* to save your settings.

Disabling the Microsoft 802.1X Supplicant

The Microsoft 802.1X supplicant can be installed on a computer running Windows 2000 through either a Microsoft hot fix or Windows 2000 Service Pack 4. If any conflicts arise between ADU and the Microsoft 802.1X supplicant, follow these steps to disable the Microsoft supplicant on a Windows 2000 computer.

Note
The Microsoft 802.1X supplicant, if installed, should have been disabled during installation.

Note
Disabling the Microsoft Wireless Configuration Manager on Windows XP also disables the Microsoft 802.1X supplicant.

Step 1
Double-click *My Computer*, *Control Panel*, and *Network and Dial-up Connections*. Right-click *Local Area Connection*. Click *Properties*. The Local Area Connection Properties window appears.

Step 2
Click the *Authentication* tab.

Step 3
Uncheck the *Enable network access control using IEEE 802.1X* or *Enable IEEE 802.1x authentication for this network* check box.

Step 4
Click *OK* to save your settings.
Client Adapter Recognition Problems

If your computer’s PCMCIA adapter does not recognize your client adapter, check your computer’s BIOS and make sure that the PC card controller mode is set to PCIC compatible.

Note

A computer’s BIOS varies depending on the manufacturer. For support on BIOS-related issues, consult your computer’s manufacturer.

Resolving Resource Conflicts

If you encounter problems while installing your client adapter on a computer running a Windows operating system, you may need to specify a different interrupt request (IRQ) or I/O range for the adapter.

The default IRQ for the client adapter is IRQ 10, which may not work for all systems. Follow the steps for your specific operating system to obtain an available IRQ.

During installation the adapter’s driver installation script scans for an unused I/O range. The installation can fail if the I/O range found by the driver installation script is occupied by another device but not reported by Windows. An I/O range might not be reported if a device is physically present in the system but not enabled under Windows. Follow the steps for your specific operating system to obtain an available I/O range.

Resolving Resource Conflicts in Windows 2000

Step 1 Double-click My Computer, Control Panel, and System.
Step 2 Click the Hardware tab and Device Manager.
Step 3 Double-click Network Adapters and the Cisco Systems Wireless LAN Adapter.
Step 4 In the General window, the Device Status field indicates if a resource problem exists. If a problem is indicated, click the Resources tab.
Step 5 Uncheck the Use automatic settings check box.
Step 6 Under Resource Settings or Resource Type, click Input/Output Range.
Step 7 Look in the Conflicting Device list at the bottom of the window. If it indicates that the range is being used by another device, click the Change Setting button.
Step 8 Scroll through the ranges in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the window indicates if the range is already being used.
Step 9 Click OK.
Step 10 Under Resource Settings or Resource Type, click Interrupt Request.
Step 11 Look in the Conflicting Device list at the bottom of the window. If it indicates that the IRQ is being used by another device, click the Change Setting button.
Troubleshooting the Client Adapter

Step 12 Scroll through the IRQs in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the window indicates if the IRQ is already being used.

Step 13 Click OK.

Step 14 Reboot your computer.

Resolving Resource Conflicts in Windows XP

Note These instructions assume you are using the Windows XP classic view, not the category view.

Step 1 Double-click My Computer, Control Panel, and System.
Step 2 Click the Hardware tab and Device Manager.
Step 3 Under Network Adapters, double-click the Cisco Systems Wireless LAN Adapter.
Step 4 In the General window, the Device Status field indicates if a resource problem exists. If a problem is indicated, click the Resources tab.
Step 5 Uncheck the Use automatic settings check box.
Step 6 Under Resource Settings, click I/O Range.
Step 7 Look in the Conflicting Device list at the bottom of the window. If it indicates that the range is being used by another device, click the Change Setting button.
Step 8 Scroll through the ranges in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the window indicates if the range is already being used.
Step 9 Click OK.
Step 10 Under Resource Settings, click IRQ.
Step 11 Look in the Conflicting Device list at the bottom of the window. If it indicates that the IRQ is being used by another device, click the Change Setting button.
Step 12 Scroll through the IRQs in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the window indicates if the IRQ is already being used.
Step 13 Click OK.
Step 14 Reboot your computer.
Problems Associating to an Access Point

Follow the instructions below if your client adapter fails to associate to an access point.

- If possible, move your workstation a few feet closer to an access point and try again.
- Make sure that the client adapter is securely inserted in your computer’s client adapter slot.
- If you are using a PCI card, make sure that the antenna is securely attached.
- Make sure that the access point is turned on and operating.
- Check that all parameters are set properly for both the client adapter and the access point. These include the SSID, EAP authentication, WEP activation, network type, channel, etc.
- Follow the instructions in the previous section to resolve any resource conflicts.
- If the client adapter still fails to establish contact, refer to the “Obtaining Technical Assistance” section in the Preface for technical support information.

Problems Authenticating to an Access Point

If your client adapter is a 40-bit card and LEAP or EAP is enabled, the adapter can associate but not authenticate to access points using 128-bit encryption. To authenticate to an access point using 128-bit encryption, you have two options:

- Purchase a 128-bit client adapter. This is the most secure option.
- Disable static WEP for the client adapter and configure the adapter and the access point to associate to mixed cells. This option presents a security risk because your data is not encrypted as it is sent over the RF network.

Problems Connecting to the Network

After you have installed the appropriate driver and client utilities, contact your IS department if you have a problem connecting to the network. Proxy server, network protocols, and further authentication information might be needed to connect to the network.

Prioritizing Network Connections

If your computer has more than one network adapter enabled (such as a Cisco Aironet client adapter and an Ethernet card), you can choose which one to use by assigning a priority to your network connections. Follow the steps below to prioritize your network connections.

Step 1 Right-click the **My Network Places** icon on your desktop.

Step 2 Click **Properties**.

Step 3 Choose the **Advanced** menu option at the top of the window.
Step 1
Click Advanced Settings. Your network connections are listed in the Connections box on the Adapters and Bindings tab.

Step 5
Use the arrows beside the Connections box to move the network connection that you want to use to the top.

Step 6
Click OK.

Parameters Missing from Profile Management Windows

If some parameters are unavailable on the Profile Management windows, your system administrator may have used an administrative tool to deactivate these parameters. In this case, these parameters cannot be selected.

Windows Wireless Network Connection Icon Shows Unavailable Connection (Windows XP Only)

If your computer is running Windows XP and you configured your client adapter using ADU, the Windows Wireless Network Connection icon in the Windows system tray may be marked with a red X and show an unavailable connection even though a wireless connection exists. This is caused by a conflict between the wireless network settings of ADU and Windows XP. Simply ignore the Windows icon and use the ASTU icon to check the status of your client adapter’s wireless connection.

Error Messages

This section provides a list of error messages that may appear during the installation, configuration, or use of your client adapter. The messages are listed in alphabetical order within each section, and an explanation as well as a recommended user action are provided for each message.

Error Message At least one wireless checkbox must be selected.

Explanation You clicked OK or selected another Profile Management tab before selecting any Wireless Mode options on the Profile Management (Advanced) window.

Recommended Action Choose at least one of the Wireless Mode options.

Error Message Authentication failed.

Explanation The domain logon failed for an unknown reason.

Recommended Action Try again to authenticate. If this message reappears, verify that all of the proper certificates have been loaded onto your computer and that your client adapter’s current profile has been configured properly. If the domain logon continues to fail, contact your system administrator.
Error Message Authentication failed because server rejected username or password.

Explanation The domain logon failed because your username or password is invalid.

Recommended Action Re-enter your username and password on the Define PEAP (EAP-GTC) Configuration window or the Define PEAP (EAP-MSCHAP V2) Configuration window and save your settings. Then try again to authenticate.

Error Message Authentication failed due to invalid client attributes (e.g., Login Name).

Explanation The domain logon failed because of an invalid client configuration setting, such as a mistyped login name.

Recommended Action Return to the PEAP configuration windows, verify your settings, and make any necessary modifications.

Error Message Authentication failed due to invalid client certificate.

Explanation The domain logon failed because of an invalid client certificate.

Recommended Action Contact your system administrator to obtain a valid certificate.

Error Message Authentication failed due to invalid server certificate.

Explanation The domain logon failed because of an invalid server certificate.

Recommended Action Contact your system administrator.

Error Message Authentication failed due to invalid server/domain name.

Explanation The domain logon failed because of an invalid server/domain name.

Recommended Action Make sure the Specific Server or Domain field is blank on the Advanced Configuration window for PEAP (EAP-GTC) or PEAP (EAP-MSCHAP V2). Then follow the instructions in the “Enabling PEAP (EAP-GTC)” section on page 5-29 or the “Enabling PEAP (EAP-MSCHAP V2)” section on page 5-31 to correctly enter your username in the Login Name field.

Error Message Authentication timed out. Do you want to retry?

Explanation LEAP authentication failed because the authentication server is down.

Recommended Action Click **Retry** to try to authenticate again using the same credentials or click **Cancel** to cancel the operation.
Error Message: Cannot load oemres.dll.

Explanation: The oemres.dll file cannot be installed.

Recommended Action: Uninstall the current client adapter software; then install the latest release.

Error Message: Cisco Aironet 802.11a/b/g wireless adapter software update can’t proceed. Please insert the adapter in the system and try again.

Explanation: You attempted to upgrade your client adapter’s software when the adapter was not inserted in your computer.

Recommended Action: Click OK, insert your client adapter, and start the upgrade process again.

Error Message: DHCP failure.

Explanation: The domain logon failed because of a DHCP failure.

Recommended Action: Try again to authenticate. If this message reappears, contact your system administrator.

Error Message: Entry must be xx characters long. Please enter xx more characters.

Explanation: The static WEP key that you entered on the Define Pre-Shared Keys window does not contain the correct number of characters.

Recommended Action: Re-enter the static WEP key following the guidelines in the “Enabling Static WEP” section on page 5-22.

Error Message: Failed to initialize supplicant. This error may be due to the absence of a valid machine certificate or the incomplete configuration of profiles.

Explanation: The domain logon failed because the EAP supplicant could not be initialized.

Recommended Action: Verify that a valid machine certificate has been loaded onto your computer and that your client adapter’s current profile has been configured properly.

Error Message: In order to select an Ad Hoc network, you must have a Network Name. Do you want to enter a Network Name?

Explanation: You chose Ad Hoc for Network Type on the Profile Management (Advanced) window, but a network name was not entered on the Profile Management (General) window.

Recommended Action: If you want to set up an ad hoc network, click Yes and enter a network name in the SSID1 field on the Profile Management (General) window. Otherwise, click No.
Error Message: No certificates were found in your computer. Please select a different EAP option.

Explanation: You tried to choose the EAP-TLS option on the Profile Management (Security) window, but no certificates are installed on your computer. EAP-TLS requires both a Certificate Authority (CA) certificate and a user certificate.

Recommended Action: Contact your system administrator if you need help obtaining and importing the necessary certificates.

Error Message: Please enter a profile name.

Explanation: While creating a new profile, you clicked OK or chose another Profile Management tab before entering a profile name on the Profile Management (General) window.

Recommended Action: Enter a profile name.

Error Message: Please enter exactly 12 characters, or leave the entry field empty.

Explanation: You entered fewer than 12 characters in one of the fields on the Preferred Access Points window.

Recommended Action: Leave the fields on the Preferred Access Points window empty or re-enter the MAC address for the specified access point, which must be exactly 12 characters.

Error Message: The configuration name you entered is already being used. Enter a unique name.

Explanation: While creating a new profile, you entered a profile name on the Profile Management (General) window that already exists.

Recommended Action: Enter a new profile name.

Error Message: The Passphrase must be between 8 and 64 characters.

Explanation: The WPA Passphrase that you entered on the Define WPA Pre-Shared Key window did not contain the correct number of characters.

Recommended Action: Enter a WPA Passphrase with 8 to 64 characters.

Error Message: The password is empty. Please enter a password.

Explanation: You chose the Use Saved User Name and Password option on the LEAP Settings window but did not enter a password, or you did not enter a password on the Enter Wireless Network Password window.

Recommended Action: Enter your LEAP password in the Password field.
Error Message The passwords you entered do not match. Please enter them again.

Explanation The passwords that you entered in the Password and Confirm Password fields on the LEAP Settings window do not match.

Recommended Action Re-enter your LEAP password in both fields.

Error Message The specified path does not exist. Please enter another path.

Explanation You chose the Make Driver Installation Diskette(s) option during installation, but a diskette was not inserted in the computer’s A: drive.

Recommended Action Insert a floppy diskette into your computer’s floppy disk drive, and choose the Make Driver Installation Diskette(s) option again.

Error Message The user name is empty. Please enter a user name.

Explanation You chose the Use Saved User Name and Password option on the LEAP Settings window but did not enter a username, or you did not enter a username on the Enter Wireless Network Password window.

Recommended Action Enter your LEAP username in the User Name field.

Error Message This Device is controlled by the Windows XP Automatic Wireless Network Configuration. It may override Network Name, Security and other settings from this profile.

Explanation You attempted to activate ADU while the Microsoft Wireless Configuration Manager in Windows XP was enabled. When a message appeared asking if you wanted to disable the Microsoft configuration manager, you chose No.

Recommended Action If you want to use ADU to configure your client adapter, disable the Microsoft Wireless Configuration Manager.

Error Message This Product does not support this version of Windows. Please check the product documentation for the system requirements.

Explanation You tried to install the CB21AG and PI21AG client adapter software on an unsupported Windows operating system.

Recommended Action Install the CB21AG and PI21AG client adapter software on a computer running Windows 2000 or XP.

Error Message ‘x’ contains characters which are non-hexadecimal.

Explanation One of the static WEP keys on the Define Pre-Shared Keys window contains non-hexadecimal characters even though Hexadecimal is specified as the Key Entry type.

Recommended Action Re-enter the static WEP key following the guidelines in the “Enabling Static WEP” section on page 5-22.
Error Message ‘x’ is not a hexadecimal character.

Explanation The character you entered on the Define Pre-Shared Keys window is not a hexadecimal character.

Recommended Action Re-enter the static WEP key following the guidelines in the “Enabling Static WEP” section on page 5-22.

Error Message You must select a Passphrase to use Pre-Shared keys and WPA.

Explanation You chose the Pre-Shared Key (Static WEP) option on the Profile Management (Security) window and clicked OK without entering a static WEP key.

Recommended Action Enter a static WEP key on the Define Pre-Shared Keys window.

Error Message You must set at least one shared key or the WPA Passphrase to enable security.

Explanation You chose the WPA Passphrase option on the Profile Management (Security) window and clicked OK without entering a WPA Passphrase.

Recommended Action Enter a WPA Passphrase on the Define WPA Pre-Shared Key window.

Error Message Your security setting is invalid for an Ad Hoc network. If you want, security will be disabled for you. You can also configure security to Pre-shared keys. Do you want to disable security?

Explanation Pre-Shared Key (Static WEP) is the only valid security option for an ad hoc network. You chose Ad Hoc for Network Type on the Profile Management (Advanced) window when a security option other than static WEP was already selected.

Recommended Action If you want to configure this profile for use in an ad hoc network, click Yes to disable security. Otherwise, click No.
This appendix provides technical specifications for the Cisco Aironet CB21AG and PI21AG Wireless LAN Client Adapters.

The following topics are covered in this appendix:

- Physical Specifications, page A-2
- Radio Specifications, page A-2
- Power Specifications, page A-6
- Safety and Regulatory Compliance Specifications, page A-6
Table A-1 lists the technical specifications for the Cisco Aironet CB21AG and PI21AG Wireless LAN Client Adapters.

Table A-1 Technical Specifications for CB21AG and PI21AG Client Adapters

Physical Specifications

<table>
<thead>
<tr>
<th></th>
<th>PC-Cardbus card</th>
<th>PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>4.5 in. L x 2.1 in. W x 0.2 in. H (11.3 cm L x 5.4 cm W x 0.5 cm H)</td>
<td>Standard PCI card 4.7 in. L x 0.7 in. W x 4.8 in. H (12 cm L x 1.8 cm W x 12.1 cm H) Low-profile PCI card 4.7 in. L x 0.7 in. W x 3.1 in. H (12 cm L x 1.8 cm W x 7.9 cm H)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.55 oz (44 g)</td>
<td>Standard PCI card with antenna 3.6 oz (103 g) Standard PCI card without antenna 1.9 oz (55 g) Low-profile PCI card with antenna 3.5 oz (98 g) Low-profile PCI card without antenna 1.7 oz (49 g)</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Type II Cardbus</td>
<td>Standard or low-profile Type II PCI</td>
</tr>
<tr>
<td>Connector</td>
<td>68-pin Cardbus</td>
<td>62-pin PCI</td>
</tr>
<tr>
<td>Status indicators</td>
<td>Green and amber LEDs; see Chapter 10</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>32°F to 158°F (0°C to 70°C)</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>32°F to 185°F (0°C to 85°C)</td>
<td></td>
</tr>
<tr>
<td>Humidity (non-operational)</td>
<td>90% relative humidity</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>15 kV (human body model)</td>
<td></td>
</tr>
</tbody>
</table>

Radio Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Orthogonal frequency division multiplexing (OFDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Direct-sequence spread spectrum (DSSS) and orthogonal frequency division multiplexing (OFDM)</td>
</tr>
</tbody>
</table>
Technical Specifications for CB21AG and PI21AG Client Adapters (continued)

| Power output | 802.11a | 40 mW (16 dBm) @ 6, 9, 12, 18, 24 Mbps
| | | 25 mW (14 dBm) @ 6, 9, 12, 18, 24, 36 Mbps
| | | 20 mW (13 dBm) @ 6, 9, 12, 18, 24, 36, 48, 54 Mbps
| | | 13 mW (11 dBm) @ 6, 9, 12, 18, 24, 36, 48, 54 Mbps
| | | 10 mW (10 dBm) @ 6, 9, 12, 18, 24, 36, 48, 54 Mbps
| Note | | Refer to Appendix D for limitations on radiated power (EIRP) levels in the European community and other countries.
| 802.11b/g | 100 mW (20 dBm) @ 1, 2, 5.5, 11 Mbps
| | 63 mW (18 dBm) @ 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36 Mbps
| | 50 mW (17 dBm) @ 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36 Mbps
| | 30 mW (15 dBm) @ 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48 Mbps
| | 20 mW (13 dBm) @ 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps
| | 10 mW (10 dBm) @ 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps
| Note | | The maximum power setting varies according to individual country regulations.
| Operating frequency | 802.11a | 5.15 to 5.25 GHz in the UNII 1 band*
| | | 5.25 to 5.35 GHz in the UNII 2 band*
| | | 5.470 to 5.725 GHz in the European band
| | | 5.725 to 5.825 GHz in the UNII 3 band*
| | | *Depending on the regulatory domain in which the client adapter is used
| 802.11b/g | 2.400 to 2.497 GHz (depending on the regulatory domain in which the client adapter is used)
| Usable channels | 802.11a | 5150 to 5350 MHz and 5725 to 5825 MHz
| | 802.11b/g | 2412 to 2484 MHz in 5-MHz increments
| Data rates | 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and 54 Mbps
| Modulation | Differential binary phase shift keying (DBPSK) - 1 Mbps
| | Differential quaternary phase shift keying (DQPSK) - 2 Mbps
| | Complementary code keying (CCK) - 5.5 and 11 Mbps
| | Binary phase shift keying (BPSK) - 6 and 9 Mbps
| | Quaternary phase shift keying (QPSK) - 12 and 18 Mbps
| | 16-quadrate amplitude modulation (16-QAM) - 24 and 36 Mbps
| | 64-quadrate amplitude modulation (64-QAM) - 48 and 54 Mbps
|
Table A-1 Technical Specifications for CB21AG and PI21AG Client Adapters (continued)

<table>
<thead>
<tr>
<th>Receiver sensitivity</th>
<th>5150 to 5250 MHz</th>
<th>5250 to 5350 MHz</th>
<th>5470 to 5725 MHz</th>
<th>5725 to 5805 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>-87 dBm @ 6, 9, 12, and 18 Mbps</td>
<td>-89 dBm @ 6, 9, and 12 Mbps</td>
<td>-87 dBm @ 6, 9, 12, and 18 Mbps</td>
<td>-84 dBm @ 6, 9, and 12 Mbps</td>
</tr>
<tr>
<td></td>
<td>-82 dBm @ 24 Mbps</td>
<td>-85 dBm @ 18 Mbps</td>
<td>-82 dBm @ 24 Mbps</td>
<td>-83 dBm @ 18 Mbps</td>
</tr>
<tr>
<td></td>
<td>-79 dBm @ 36 Mbps</td>
<td>-79 dBm @ 36 Mbps</td>
<td>-74 dBm @ 48 Mbps</td>
<td>-82 dBm @ 36 Mbps</td>
</tr>
<tr>
<td></td>
<td>-74 dBm @ 48 Mbps</td>
<td>-72 dBm @ 54 Mbps</td>
<td>-74 dBm @ 48 Mbps</td>
<td>-72 dBm @ 54 Mbps</td>
</tr>
<tr>
<td></td>
<td>-72 dBm @ 54 Mbps</td>
<td>-72 dBm @ 54 Mbps</td>
<td>-72 dBm @ 54 Mbps</td>
<td>-65 dBm @ 54 Mbps</td>
</tr>
<tr>
<td>802.11b/g</td>
<td>-94 dBm @ 1 Mbps</td>
<td>-93 dBm @ 2 Mbps</td>
<td>-92 dBm @ 5.5 Mbps</td>
<td>-90 dBm @ 11 Mbps</td>
</tr>
<tr>
<td></td>
<td>-90 dBm @ 11 Mbps</td>
<td>-86 dBm @ 6, 9, 12, and 18 Mbps</td>
<td>-84 dBm @ 24 Mbps</td>
<td>-80 dBm @ 36 Mbps</td>
</tr>
<tr>
<td></td>
<td>-80 dBm @ 36 Mbps</td>
<td>-75 dBm @ 48 Mbps</td>
<td>-72 dBm @ 54 Mbps</td>
<td>-71 dBm @ 54 Mbps</td>
</tr>
</tbody>
</table>
Appendix A Technical Specifications

Table A-1 Technical Specifications for CB21AG and PI21AG Client Adapters (continued)

<table>
<thead>
<tr>
<th>Receiver delay spread (multipath)</th>
<th>802.11a/g</th>
<th>802.11b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400 ns @ 6 Mbps</td>
<td>350 ns @ 1 Mbps</td>
</tr>
<tr>
<td></td>
<td>250 ns @ 9 and 12 Mbps</td>
<td>300 ns @ 2 Mbps</td>
</tr>
<tr>
<td></td>
<td>220 ns @ 18 Mbps</td>
<td>200 ns @ 5.5 Mbps</td>
</tr>
<tr>
<td></td>
<td>160 ns @ 24 Mbps</td>
<td>130 ns @ 11 Mbps</td>
</tr>
<tr>
<td></td>
<td>100 ns @ 36 Mbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 ns @ 48 Mbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 ns @ 54 Mbps</td>
<td></td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>802.11a</th>
<th>Indoor (typical)</th>
<th>Outdoor (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>165 ft (50 m) @ 6 Mbps</td>
<td>1000 ft (304 m) @ 6 Mbps</td>
<td></td>
</tr>
<tr>
<td>110 ft (33 m) @ 18 Mbps</td>
<td>600 ft (183 m) @ 18 Mbps</td>
<td></td>
</tr>
<tr>
<td>45 ft (13 m) @ 54 Mbps</td>
<td>100 ft (30 m) @ 54 Mbps</td>
<td></td>
</tr>
</tbody>
</table>

Note The above range numbers assume that the client adapter is being used at maximum transmit power with a Cisco Aironet 1200 Series Access Point with a 6-dBi patch antenna. Different range characteristics are likely when using the client adapter with a different access point or a Cisco Aironet 1200 Series Access Point with a different antenna.

<table>
<thead>
<tr>
<th>802.11b/g</th>
<th>Indoor (typical)</th>
<th>Outdoor (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>410 ft (124 m) @ 1 Mbps</td>
<td>2000 ft (610 m) @ 1 Mbps</td>
<td></td>
</tr>
<tr>
<td>300 ft (91 m) @ 6 Mbps</td>
<td>1300 ft (396 m) @ 6 Mbps</td>
<td></td>
</tr>
<tr>
<td>160 ft (48 m) @ 11 Mbps</td>
<td>1000 ft (304 m) @ 11 Mbps</td>
<td></td>
</tr>
<tr>
<td>180 ft (54 m) @ 18 Mbps</td>
<td>600 ft (183 m) @ 18 Mbps</td>
<td></td>
</tr>
<tr>
<td>90 ft (27 m) @ 54 Mbps</td>
<td>250 ft (76 m) @ 54 Mbps</td>
<td></td>
</tr>
</tbody>
</table>

Note The above range numbers assume that the client adapter is being used at maximum transmit power with a Cisco Aironet 1200 Series Access Point with a 2.2-dBi dipole antenna. Different range characteristics are likely when using the client adapter with a different access point or a Cisco Aironet 1200 Series Access Point with a different antenna.
Table A-1 Technical Specifications for CB21AG and PI21AG Client Adapters (continued)

<table>
<thead>
<tr>
<th>Antennas</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-Cardbus card</td>
<td>Integrated 0-dBi dual-band 2.4/5-GHz diversity antenna</td>
</tr>
<tr>
<td>PCI card</td>
<td>1-dBi dual-band 2.4/5-GHz antenna, permanently attached by 6.6-ft (2-m) cable</td>
</tr>
</tbody>
</table>

Power Specifications

<table>
<thead>
<tr>
<th>Operational voltage</th>
<th>3.3 V (± 0.3 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive current steady state</td>
<td></td>
</tr>
<tr>
<td>802.11a</td>
<td>318 mA maximum</td>
</tr>
<tr>
<td>802.11b</td>
<td>327 mA maximum</td>
</tr>
<tr>
<td>802.11g</td>
<td>282 mA maximum</td>
</tr>
<tr>
<td>Transmit current steady state</td>
<td></td>
</tr>
<tr>
<td>802.11a</td>
<td>554 mA maximum</td>
</tr>
<tr>
<td>802.11b</td>
<td>539 mA maximum</td>
</tr>
<tr>
<td>802.11g</td>
<td>530 mA maximum</td>
</tr>
<tr>
<td>Sleep mode steady state</td>
<td>203 mA average</td>
</tr>
</tbody>
</table>

Safety and Regulatory Compliance Specifications

<table>
<thead>
<tr>
<th>Safety</th>
<th>Designed to meet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• UL 60950</td>
</tr>
<tr>
<td></td>
<td>• CSA 22.2 No. 60950</td>
</tr>
<tr>
<td></td>
<td>• IEC 60950 Second Ed., including Amendments 1-4 with all national deviations</td>
</tr>
<tr>
<td></td>
<td>• EN 60950 Second Ed., including Amendments 1-4</td>
</tr>
<tr>
<td>EMI and susceptibility</td>
<td>FCC Part 15.107 & 15.109 Class B</td>
</tr>
<tr>
<td></td>
<td>ICES-003 Class B (Canada)</td>
</tr>
<tr>
<td></td>
<td>VCCI (Japan)</td>
</tr>
<tr>
<td></td>
<td>EN 301.489-1 and EN-301.489-17 (Europe)</td>
</tr>
<tr>
<td>Radio approvals</td>
<td>FCC Part 15.247</td>
</tr>
<tr>
<td></td>
<td>FCC Part 15.401-15.407</td>
</tr>
<tr>
<td></td>
<td>Canada RSS-210</td>
</tr>
<tr>
<td></td>
<td>Europe EN-300.328, EN-301.893</td>
</tr>
<tr>
<td></td>
<td>ARIB STD-33, ARIB STD-66, ARIB STD-T71 (Japan)</td>
</tr>
<tr>
<td></td>
<td>AS 4268.2 (Australia)</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 3548 (Australia and New Zealand)</td>
</tr>
<tr>
<td>RF exposure</td>
<td>FCC Bulletin OET-65C</td>
</tr>
<tr>
<td></td>
<td>Industry Canada RSS-102</td>
</tr>
</tbody>
</table>
Translated Safety Warnings

This appendix provides translations of the safety warnings that appear in this publication. The second warning pertains to the PI21AG client adapter, and the third warning pertains to the CB21AG client adapter.

The following topics are covered in this appendix:

- Explosive Device Proximity Warning, page B-2
- Antenna Installation Warning, page B-3
- Warning for Laptop Users, page B-4
Explosive Device Proximity Warning

<table>
<thead>
<tr>
<th>Language</th>
<th>Warning Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>Do not operate your wireless network device near unshielded blasting caps or in an explosive environment unless the device has been modified to be especially qualified for such use.</td>
</tr>
<tr>
<td>Waarschuwing</td>
<td>Gebruik dit draadloos netwerkapparaat alleen in de buurt van onbeschermd ontstekers of in een omgeving met explosieven indien het apparaat speciaal is aangepast om aan de eisen voor een dergelijk gebruik te voldoen.</td>
</tr>
<tr>
<td>Varoitus</td>
<td>Älä käytä johdotonta verkkolaitetta suojaamattomien räjäytysnallien läheisyydessä tai räjäytyssäteellä, jos laitetta ei ole erityisesti muunnettettä sopivaksi sellaiseen käyttöön.</td>
</tr>
<tr>
<td>Attention</td>
<td>Ne jamais utiliser un équipement de réseau sans fil à proximité d’un détonateur non blindé ou dans un lieu présentant des risques d'explosion, sauf si l'équipement a été modifié à cet effet.</td>
</tr>
<tr>
<td>Warnung</td>
<td>Benutzen Sie Ihr drahtloses Netzwerkgerät nicht in der Nähe ungeschützter Sprengkapseln oder anderer explosiver Stoffe, es sei denn, Ihr Gerät wurde eigens für diesen Gebrauch modifiziert und bestimmt.</td>
</tr>
<tr>
<td>Avvertenza</td>
<td>Non utilizzare la periferica di rete senza fili in prossimità di un detonatore non protetto o di esplosivi a meno che la periferica non sia stata modificata a tale proposito.</td>
</tr>
<tr>
<td>Advarsel</td>
<td>Ikke bruk den trådløse nettverksenheten nært inntil uisolerte fengheter eller i et eksplosivt miljø med mindre enheten er modifisert slik at den tåler slik bruk.</td>
</tr>
<tr>
<td>Aviso</td>
<td>Não opere o dispositivo de rede sem fios perto de cápsulas explosivas não protegidas ou num ambiente explosivo, a não ser que o dispositivo tenha sido modificado para se qualificar especialmente para essa utilização.</td>
</tr>
<tr>
<td>¡Advertencia!</td>
<td>No utilizar un aparato de la red sin cable cerca de un detonador que no esté protegido ni tampoco en un entorno explosivo a menos que el aparato haya sido modificado con ese fin.</td>
</tr>
<tr>
<td>Warning!</td>
<td>Använd inte den trådlösa nätverksenheten i närheten av oskyddade tändhållare eller i en explosiv miljö om inte enheten modifierats för att kunna användas i sådana sammanhang.</td>
</tr>
</tbody>
</table>
Antenna Installation Warning

⚠️ Warning ⚠️
In order to comply with FCC radio frequency (RF) exposure limits, antennas should be located at a minimum of 7.9 inches (20 cm) or more from the body of all persons.

Waarschuwing
Om te voldoen aan de FCC radiofrequentie (RF) blootstellingslimieten dienen antennes zich minstens 20 cm of meer van de lichamen van alle personen bevinden.

Varoitus
FCC:n antamien radiotaajuksille altistumista koskevien rajoitusten mukaan antennien on sijaittava vähintään 20 cm:n päässä kaikista henkilöistä.

Attention
Pour se conformer aux limites d’exposition à la fréquence radio préconisées par la FCC (Federal Communications Commission), les antennes doivent se situer à un minimum de 20 cm de toute personne.

Warnung
Um die in den FCC-Richtlinien festgelegten Expositionshöchstgrenzen für Radiofrequenzen (RF) nicht zu überschreiten, sollten antennen mindestens 20 cm (7,9 Zoll) vom Körper aller Person entfernt aufgestellt werden.

Avvertenza
Per conformarsi ai limiti FCC di esposizione a radiofrequenza (RF), le antenne a devono stare ad una distanza minima di 20 cm dal corpo di ogni persona.

Advarsel
I henhold til eksponeringsgrensene for radiofrekvenser (RF), skal antennen befinne seg på en avstand av minst 20 cm eller mer fra mennesker.

Aviso
Para estar de acordo com as normas FCC de limites de exposição para frequência de rádio (RF), as antenas devem estar distantes no mínimo 20 cm (7,9 pol) do corpo de qualquer pessoa.

¡Advertencia!
Para cumplir con los límites de exposición de radio frecuencia (RF) de la Comisión Federal de Comunicaciones (FCC) es preciso ubicar las antenas a un mínimo de 20 cm (7,9 pulgadas) o más del cuerpo de las personas.

Warning!
För att följa FCC-exponeringsgränserna för radiofrekvens (RF), bör antenner placeras på minst 20 cm avstånd från alla människor.
Warning for Laptop Users

This device has been tested and complies with FCC RF Exposure (SAR) limits in typical laptop computer configurations and this device can be used in desktop or laptop computers with side mounted PC Card slots that can provide at least 0.394 in (1 cm) separation distance from the antenna to the body of the user or a nearby person. Thin laptop computers may need special attention to maintain antenna spacing while operating. This device cannot be used with handheld PDAs (personal digital assistants). Use in other configurations may not ensure compliance with FCC RF exposure guidelines. This device and its antenna must not be co-located or operated in conjunction with any other antenna or transmitter.

Warning

Warning for Laptop Users

Warning

Waarschuwing

Dit apparaat is getest en voldoet aan de FCC-beperkingen voor radiofrequentieblootstelling (SAR) bij standaardconfiguraties met een laptopcomputer. Dit apparaat kan worden gebruikt in desktop- of laptopcomputers met PC-kaartsleuven aan de zijkant, waarbij minimaal 1 cm afstand bestaat tussen de antenne en het lichaam van de gebruiker of een persoon in de buurt. Bij kleine laptopcomputers is mogelijk extra aandacht vereist om tijdens gebruik voldoende afstand tot de antenne te houden. Dit apparaat kan niet worden gebruikt in combinatie met mobiele PDA’s (personal digital assistants; persoonlijke digitale assistenten). Als u dit apparaat gebruikt in andere configuraties, voldoet het wellicht niet meer aan de FCC-regelgeving met betrekking tot radiofrequentieblootstelling. Dit apparaat en de bijbehorende antenne mogen niet in combinatie met andere antennes of zenders worden gebruikt en ook niet in de buurt van andere antennes of zenders worden geplaatst.

Varoitus

Attention

Cet appareil a été testé et respecte les limites (TAS - Taux d’absorption spécifique) d’exposition aux RF de la FCC relatives aux configurations standard des ordinateurs portables. Il peut être utilisé dans des ordinateurs de bureau ou portables dotés d’un emplacement pour carte PC latérale et peut fournir une distance de séparation d’au moins 1 cm entre l’antenne et le corps de l’utilisateur ou d’une personne avoisinante. Nous vous recommandons de porter une attention particulière lors de l’utilisation d’ordinateurs portatifs minces afin d’assurer le maintien de l’espacement de l’antenne. Cet appareil ne peut pas être utilisé avec des assistants numériques personnels de poche. L’utilisation dans d’autres configurations risque de ne pas être conforme aux lignes directrices de la FCC sur l’exposition aux RF. Cet appareil et son antenne ne doivent pas se trouver dans le même emplacement ou fonctionner conjointement avec une autre antenne ou un autre émetteur.
Warning for Laptop Users

Avvertenza Questo dispositivo è stato testato ed è conforme alle norme sulle emissioni radio (SAR) nelle configurazioni tipiche di computer portatile. Questo dispositivo può essere utilizzato in desktop o computer portatili con slot per scheda PC laterale che garantisca un minimo spazio di 1 cm (0,394 pollici) tra l'antenna e l'utente o qualsiasi persona nelle vicinanze. I computer portatili sottile richiedono particolare attenzione al mantenimento dello spazio minimo quando in funzione. Questo dispositivo non può essere utilizzato con computer palmari (PDA). L'utilizzo in configurazioni differenti non assicura la conformità alle norme sulle emissioni radio. Questo dispositivo e la propria antenna non devono operare congiuntamente e altre antenne o trasmettitori.

Advarsel Denne enheten er testet og overholder grensene for FCC RF-eksponering (SAR) i vanlige konfigurasjoner for bærbare datamaskiner. Den kan brukes i stasjonære eller bærbare datamaskiner som har kortplass på siden, og der det er minst 1 cm avstand mellom antennen og brukeren eller andre personer. Ved bruk av flate bærbare PCer må du være ekstra påpasseig med antenneavstanden. Denne enheten kan ikke brukes sammen med håndholdte PDAer (personal digital assistant). Det er ikke sikkert at bruk i andre konfigurasjoner vil være i samsvar med retningslinjene for FCC RF-eksponering. Denne enheten og antennen må ikke plasseres på samme sted som eller brukes sammen med andre antener eller sendere.

Aviso Este dispositivo foi testado e está em conformidade com os limites SAR de exposição a radiofrequência (RF) da Comissão Federal de Comunicações (FCC), em configurações típicas de portátil, e pode ser utilizado em computadores de secretária ou portáteis com ranhuras de placa PC laterais que permitem um distanciamento mínimo de 1cm. entre a antena e o corpo do utilizador ou de alguém que esteja por perto. Os portáteis finos necessitam de uma atenção especial para manter a distância da antena durante o funcionamento. Este dispositivo não pode ser utilizado com PDAs (personal digital assistants) de mão. A utilização noutras configurações não assegura a conformidade com as directrizes de exposição a radiofrequência (RF) da Comissão Federal de Comunicações (FCC). Este dispositivo e a respectiva antena não devem ser colocados nem postos a funcionar com outras antenas ou transmissores.

¡Advertencia! El dispositivo ha sido probado y cumple los límites de la FCC sobre exposición a radiofrecuencia (SAR o tasa de absorción específica) en cualquier configuración tradicional de equipos portátiles. Además, puede utilizarse en equipos de escritorio o portátiles que cuenten con ranuras de tarjeta PC laterales a una distancia de, al menos, 1 cm (0,394 pulgadas) de la antena al usuario o persona más cercana. Puede que los equipos portátiles de menor grosor requieran atención especial a la hora de mantener la distancia de la antena al utilizarlos. No puede utilizarse este dispositivo con equipos digitales personales portátiles (PDA). Su utilización en otras configuraciones no garantiza el cumplimiento de las directivas de la FCC sobre exposición a radiofrecuencia. Este dispositivo y la antena no deben situarse o accionarse junto con otra antena o transmisor.
Warning for Laptop Users

Figyelem

Преупреждение

Это устройство протестировано и признано соответствующим ограничением FCC, касающимися высокочастотного излучения (SAR), для обычных конфигураций портативных компьютеров. Оно может использоваться на переносных или портативных компьютерах с боковыми гнездами для плат PC, которые обеспечивают зазор не менее 0,394 дюйма (1 см) между антенной и телом пользователя или другого лица, находящегося в непосредственной близости. Возможно, потребуется соблюдать особую осторожность при обеспечении зазора антенны в тонких портативных компьютерах. Это устройство нельзя использовать для карманнских компьютеров. Использование в других конфигурациях не может гарантировать соответствие директивам FCC, касающихся высокочастотного излучения. Это устройство и его антенна нельзя располагать рядом или использовать совместно с другим антенной или передатчиком.

警告

将本设备用于典型膝上型计算机配置已经通过测试并且符合 FCC RF 辐射暴露 (SAR) 限制。本设备可用于侧面安装有 PC 卡插槽的台式计算机或膝上型计算机。该插槽可确保用户或周围的人与天线至少相距 0.394 英寸（1 厘米）。使用超薄膝上型计算机时，可能需要特别注意在操作过程中与天线保持一定距离。本设备不能与手持式 PDA（个人数字助理）一起使用。在其他配置中使用本设备可能无法确保符合 FCC RF 辐射暴露限制规定。禁止将本设备及其天线与任何其他天线或发射器安装在一起或同时使用。

警告

この機器は既にテスト済みで、一般的なラップトップ コンピュータの構成における米国 FCC（連邦通信委員会）の無線周波 (RF) 照射 (SAR) 制限値に準拠しています。この機器は、デスクトップ コンピュータもしくは本体側面に PC カードスロットを備えたラップトップ コンピュータでの使用が可能です。いずれのコンピュータの場合は、アンテナとの間に、最低 1 cm の距離があることが前提です。薄型のラップトップ コンピュータの場合、操作中アンテナとのスペースを維持するため、特別な注意が必要になることがあります。この機器は、ハンドヘルド式の PDA（携帯情報端末）には使用できません。他の配置構成での使用は、FCC の無線周波照射に関するガイドラインに準拠しない場合があります。この機器およびアンテナは、他のアンテナもしくはトランスミッタと同一の場所に配置したり、同時に使用してはなりません。
Declarations of Conformity and Regulatory Information

This appendix provides declarations of conformity and regulatory information for the Cisco Aironet CB21AG and PI21AG Wireless LAN Client Adapters.

The following topics are covered in this appendix:

- Department of Communications – Canada, page C-3
- European Community, Switzerland, Norway, Iceland, and Liechtenstein, page C-3
- Declaration of Conformity for RF Exposure, page C-7
- Guidelines for Operating Cisco Aironet Wireless LAN Client Adapters in Japan, page C-7
- Administrative Rules for Cisco Aironet Wireless LAN Client Adapters in Taiwan, page C-8
Manufacturer's Federal Communication Commission Declaration of Conformity Statement

FCC Certification Number: LDK102050 (CB21AG)
LDK102051 (PI21AG)

Manufacturer: Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA

This device complies with Part 15 rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

The CB21AG client adapter has been tested and complies with FCC RF Exposure (SAR) limits in typical laptop computer configurations, and this device can be used in laptop computers with side-mounted PCMCIA slots which can provide 0.394 in (1 cm) separation distance from the antenna to the body of the user or a nearby person. Thin laptop computers may need special attention to maintain antenna spacing while operating.

The PI21AG client adapter has been tested and complies with FCC RF Exposure (SAR) limits in typical desktop computer configurations. A separation distance of 7.9 in (20 cm) must be maintained between this device’s antenna and the body of the user or a nearby person.

These devices cannot be used with handheld personal digital assistants (PDAs). Use in other configurations may not ensure compliance with FCC RF exposure guidelines. These devices and their antennas must not be co-located or operated in conjunction with any other antenna or transmitter.

Caution

The Part 15 radio device operates on a non-interference basis with other devices operating at this frequency when using integrated antennas. Any changes or modification to the product not expressly approved by Cisco could void the user’s authority to operate this device.

Caution

Within the 5.15-to-5.25-GHz band, UNII devices are restricted to indoor operations to reduce any potential for harmful interference to co-channel Mobile Satellite Systems (MSS) operations.
Department of Communications - Canada

Canadian Compliance Statement

This Class B Digital apparatus meets all the requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe B respecte les exigences du Reglement sur le matériel broilleur du Canada.

This device complies with Class B Limits of Industry Canada. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

Cisco Aironet CB21AG and PI21AG Wireless LAN Client Adapters are certified to the requirements of RSS-210 for 2.4-GHz and 5-GHz devices. The use of these devices in a system operating either partially or completely outdoors may require the user to obtain a license for the system according to the Canadian regulations. For further information, contact your local Industry Canada office.

European Community, Switzerland, Norway, Iceland, and Liechtenstein

Declaration of Conformity with Regard to the R&TTE Directive 1999/5/EC

<table>
<thead>
<tr>
<th>Language</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>This equipment is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Dieses Gerät entspricht den grundlegenden Anforderungen und den weiteren entsprechenenden Vorgaben der Richtlinie 1999/5/EU.</td>
</tr>
<tr>
<td>Dansk</td>
<td>Dette udstyr er i overensstemmelse med de væsentlige krav og andre relevante bestemmelser i Direktiv 1999/5/EF.</td>
</tr>
<tr>
<td>Español</td>
<td>Este equipo cumple con los requisitos esenciales así como con otras disposiciones de la Directiva 1999/5/EC.</td>
</tr>
<tr>
<td>Έλληνας</td>
<td>Αυτός ο εξοπλισμός συμμορφώνεται με τις ουσιώδεις οριστήριες και τις λοιπές διατάξεις της Οδηγίας 1999/5/EK.</td>
</tr>
<tr>
<td>Français</td>
<td>Cet appareil est conforme aux exigences essentielles et aux autres dispositions pertinentes de la Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Íslenska</td>
<td>Þessi búnaður samrýmist lögboðnum kröfum og öðrum ákvæðum tilskipunar 1999/5/ESB.</td>
</tr>
<tr>
<td>Italiano</td>
<td>Questo apparato è conforme ai requisiti essenziali ed agli altri principi sanciti dalla Direttiva 1999/5/EC.</td>
</tr>
</tbody>
</table>
Nederlands: Deze apparatuur voldoet aan de belangrijkste eisen en andere voorzieningen van richtlijn 1999/5/EC.

Norsk: Dette utstyret er i samsvar med de grunnleggende krav og andre relevante bestemmelser i EU-directiv 1999/5/EC.

Português: Este equipamento satisfaz os requisitos essenciais e outras provisões da Directiva 1999/5/EC.

Suomalainen: Tämä laite täyttää direktiivin 1999/5/EY oleelliset vaatimukset ja on siinä asetettujen muidenkin ehtojen mukainen.

Svenska: Denna utrustning är i överensstämmelse med de väsentliga kraven och andra relevanta bestämmelser i Direktiv 1999/5/EC.

The Declaration of Conformity related to this product can be found at the following URL:

http://www.ciscofax.com

The following standards were applied:

- Radio: EN 300.328-1, EN 300.328-2 (2.4-GHz operation);
 EN 301.893 (5-GHz operation)
- EMC: EN 301.489-1, EN 301.489-17
- Safety: EN 60950

The following CE mark is affixed to the Cisco Aironet CB21AG and PI21AG Wireless LAN Client Adapters:

![CE mark]

Note

This equipment is intended to be used in all EU and EFTA countries. Outdoor use may be restricted to certain frequencies and/or may require a license for operation. For more details, contact your customer service representative.
Declaration of Conformity Statement

Cisco Aironet CB21AG Wireless LAN Client Adapter

DECLARATION OF CONFORMITY
with regard to the R&TTE Directive 1999/5/EC
according to EN 45014

Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134 - USA

Declare under our sole responsibility that the product,

AIR-CB21AG-E-K9 / Cisco Aironet 802.11a/b/g Wireless CardBus Adapter

Fulfils the essential requirements of the Directive 1999/5/EC.

The following standards were applied:

EMC EN 301.489-1 v1.4.1: 2002-08; EN 301.489-17 v1.2.1: 2002-04

Health & Safety EN60950: 2000

Radio EN 300 328 v1.4.1: 2003-04
EN 301.893 v1.2.3: 2003-08

The conformity assessment procedure referred to in Article 10.4 and Annex III of Directive 1999/5/EC has been followed.

The product carries the CE Mark:

[CE Mark]

Date & Place of Issue: 1 January 2004, San Jose

Signature:

Tony Youssef
Director Corporate Compliance
125 West Tasman Drive
San Jose, CA 95134 - USA

DofC 340347
Cisco Aironet PI21AG Wireless LAN Client Adapter

DECLARATION OF CONFORMITY
with regard to the R&TTE Directive 1999/5/EC
according to EN 45014

Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134 - USA

Declare under our sole responsibility that the product,

AIR-PI21AG-E-K9 / Cisco Aironet 802.11a/b/g Wireless PCI Adapter

Fulfills the essential requirements of the Directive 1999/5/EC.

The following standards were applied:

EMC EN 301.489-1 v1.4.1: 2002-08; EN 301.489-17 v1.2.1: 2002-04

Health & Safety EN60950: 2000

Radio EN 300 328 v1.4.1: 2003-04
EN 301.893 v1.2.3: 2003-08

The conformity assessment procedure referred to in Article 10.4 and Annex III of Directive 1999/5/EC has been followed.

The product carries the CE Mark:

Date & Place of Issue: 1 January 2004, San Jose

Signature:

Tony Youssef
Director Corporate Compliance
125 West Tasman Drive
San Jose, CA 95134 - USA

Do/C 340350
Declaration of Conformity for RF Exposure

The radio module has been evaluated under FCC Bulletin OET 65C and found compliant to the requirements as set forth in CFR 47 Sections 2.1091, 2.1093, and 15.247 (b) (4) addressing RF Exposure from radio frequency devices.

Guidelines for Operating Cisco Aironet Wireless LAN Client Adapters in Japan

This section provides guidelines for avoiding interference when operating Cisco Aironet Wireless LAN Client Adapters in Japan. These guidelines are provided in both Japanese and English.

Note

The use of 5-GHz devices is limited to indoor use in Japan.

Japanese Translation

この機器の使用周波数帯では、電子レンジ等の産業・科学・医療用機器のほか工場の製造ライン等で使用されている移動体識別用の構内無線局（許可要する無線局）及び特定小電力無線局（許可要しない無線局）が運用されています。1. この機器を使用する前に、近くで移動体識別用の構内無線局及び特定小電力無線局が運用されていないことを確認して下さい。
2. 万一、この機器から移動体識別用の構内無線局に対して電波干渉の事例が発生した場合には、速やかに使用周波数を変更するか又は電波の発射を停止したうえ、下記連絡先にご連絡頂き、混信回避のための処置等(例えば、パーティションの設置等)についてご相談下さい。
3. その他、この機器から移動体識別用の特定小電力無線局に対して電波干渉の事例が発生した場合など何かお困りのことが起きたときは、次の連絡先へお問い合わせ下さい。

連絡先：03-5549-6500

English Translation

This equipment operates in the same frequency bandwidth as industrial, scientific, and medical devices such as microwave ovens and mobile object identification (RF-ID) systems (licensed premises radio stations and unlicensed specified low-power radio stations) used in factory production lines.

1. Before using this equipment, make sure that no premises radio stations or specified low-power radio stations of RF-ID are used in the vicinity.

2. If this equipment causes RF interference to a premises radio station of RF-ID, promptly change the frequency or stop using the device; contact the number below and ask for recommendations on avoiding radio interference, such as setting partitions.

3. If this equipment causes RF interference to a specified low-power radio station of RF-ID, contact the number below.

Contact Number: 03-5549-6500
Administrative Rules for Cisco Aironet Wireless LAN Client Adapters in Taiwan

This section provides administrative rules for operating Cisco Aironet Wireless LAN Client Adapters in Taiwan. The rules are provided in both Chinese and English.

2.4- and 5-GHz Client Adapters

Chinese Translation

低功率電波輻射性電機管理辦法

第十四條 經型式認證合格之低功率射頻電機，非經許可，公司、商號或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功能。

第十七條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現象時，應立即停用，並改善至無干擾時方得繼續使用。

前項合法通信，指依電信法規定作業之無線電信。

低功率射頻電機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。

English Translation

Administrative Rules for Low-power Radio-Frequency Devices

Article 14

For those low-power radio-frequency devices that have already received a type-approval, companies, business units or users should not change its frequencies, increase its power or change its original features and functions.

Article 17

The operation of the low-power radio-frequency devices is subject to the conditions that no harmful interference is caused to aviation safety and authorized radio station; and if interference is caused, the user must stop operating the device immediately and can’t re-operate it until the harmful interference is clear.

The authorized radio station means a radio-communication service operating in accordance with COMMUNICATION ACT.
The operation of the low-power radio-frequency devices is subject to the interference caused by the operation of an authorized radio station, by another intentional or unintentional radiator, by industrial, scientific and medical (ISM) equipment, or by an incidental radiator.

5-GHz Client Adapters

Chinese Translation

本設備限於室內使用

English Translation

This equipment is limited for indoor use.
 Channels, Power Levels, and Antenna Gains

This appendix lists the IEEE 802.11a, b, and g channels supported by the world's regulatory domains as well as the maximum power levels and antenna gains allowed per data rate.

The following topics are covered in this appendix:

- Channels, page D-2
- Maximum Power Levels and Antenna Gains, page D-4
Appendix D Channels, Power Levels, and Antenna Gains

Channels

IEEE 802.11a

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11a 20-MHz-wide channel are shown in Table D-1.

Table D-1 Channels for IEEE 802.11a

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (in MHz)</th>
<th>Regulatory Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>America (-A)</td>
</tr>
<tr>
<td>34</td>
<td>5170</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>5180</td>
<td>X</td>
</tr>
<tr>
<td>38</td>
<td>5190</td>
<td>–</td>
</tr>
<tr>
<td>40</td>
<td>5200</td>
<td>X</td>
</tr>
<tr>
<td>42</td>
<td>5210</td>
<td>–</td>
</tr>
<tr>
<td>44</td>
<td>5220</td>
<td>X</td>
</tr>
<tr>
<td>46</td>
<td>5230</td>
<td>–</td>
</tr>
<tr>
<td>48</td>
<td>5240</td>
<td>X</td>
</tr>
<tr>
<td>52</td>
<td>5260</td>
<td>X</td>
</tr>
<tr>
<td>56</td>
<td>5280</td>
<td>X</td>
</tr>
<tr>
<td>60</td>
<td>5300</td>
<td>X</td>
</tr>
<tr>
<td>64</td>
<td>5320</td>
<td>X</td>
</tr>
<tr>
<td>100</td>
<td>5500</td>
<td>–</td>
</tr>
<tr>
<td>104</td>
<td>5520</td>
<td>–</td>
</tr>
<tr>
<td>108</td>
<td>5540</td>
<td>–</td>
</tr>
<tr>
<td>112</td>
<td>5560</td>
<td>–</td>
</tr>
<tr>
<td>116</td>
<td>5580</td>
<td>–</td>
</tr>
<tr>
<td>120</td>
<td>5600</td>
<td>–</td>
</tr>
<tr>
<td>124</td>
<td>5620</td>
<td>–</td>
</tr>
<tr>
<td>128</td>
<td>5640</td>
<td>–</td>
</tr>
<tr>
<td>132</td>
<td>5660</td>
<td>–</td>
</tr>
<tr>
<td>136</td>
<td>5680</td>
<td>–</td>
</tr>
<tr>
<td>140</td>
<td>5700</td>
<td>–</td>
</tr>
<tr>
<td>149</td>
<td>5745</td>
<td>X</td>
</tr>
<tr>
<td>153</td>
<td>5765</td>
<td>X</td>
</tr>
<tr>
<td>157</td>
<td>5785</td>
<td>X</td>
</tr>
<tr>
<td>161</td>
<td>5805</td>
<td>X</td>
</tr>
</tbody>
</table>

Note

All channel sets are restricted to indoor usage except America (-A), which allows for indoor and outdoor use on channels 52 through 161 in the United States.
IEEE 802.11b/g

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11b/g 22-MHz-wide channel are shown in Table D-2.

Table D-2 Channels for IEEE 802.11b/g

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (in MHz)</th>
<th>Regulatory Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>America (-A)</td>
</tr>
<tr>
<td>1</td>
<td>2412</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>2417</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>2422</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>2427</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>2432</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>2437</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>2442</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>2447</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>2452</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>2457</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>2462</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>2486</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>2472</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>2484</td>
<td>–</td>
</tr>
</tbody>
</table>

Note Mexico is included in the Rest of World regulatory domain; however, channels 1 through 8 are for indoor use only while channels 9 through 11 can be used indoors and outdoors. Users are responsible for ensuring that the channel set configuration is in compliance with the regulatory standards of Mexico.

Note In Japan, channel 14 is not supported for 802.11g mode.
Maximum Power Levels and Antenna Gains

IEEE 802.11a

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table D-3 indicates the maximum EIRP allowed for each data rate in the IEEE 802.11a regulatory domains.

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Maximum EIRP for PC-Cardbus Card with 0-dBi Antenna Gain and PCI Card with 1-dBi Antenna Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>6 Mbps</td>
<td>40</td>
</tr>
<tr>
<td>9 Mbps</td>
<td>40</td>
</tr>
<tr>
<td>12 Mbps</td>
<td>40</td>
</tr>
<tr>
<td>18 Mbps</td>
<td>40</td>
</tr>
<tr>
<td>24 Mbps</td>
<td>40</td>
</tr>
<tr>
<td>36 Mbps</td>
<td>25.1</td>
</tr>
<tr>
<td>48 Mbps</td>
<td>20</td>
</tr>
<tr>
<td>54 Mbps</td>
<td>20</td>
</tr>
</tbody>
</table>

IEEE 802.11b

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table D-4 indicates the maximum EIRP allowed for each data rate in the IEEE 802.11b regulatory domains.

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Maximum EIRP for PC-Cardbus Card with 0-dBi Antenna Gain and PCI Card with 1-dBi Antenna Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>1 Mbps</td>
<td>100</td>
</tr>
<tr>
<td>2 Mbps</td>
<td>100</td>
</tr>
<tr>
<td>5.5 Mbps</td>
<td>100</td>
</tr>
<tr>
<td>11 Mbps</td>
<td>100</td>
</tr>
</tbody>
</table>
IEEE 802.11g

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table D-5 indicates the maximum EIRP allowed for each data rate in the IEEE 802.11g regulatory domains.

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Maximum EIRP for PC-Cardbus Card with 0-dBi Antenna Gain and PCI Card with 1-dBi Antenna Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>6 Mbps</td>
<td>50</td>
</tr>
<tr>
<td>9 Mbps</td>
<td>50</td>
</tr>
<tr>
<td>12 Mbps</td>
<td>50</td>
</tr>
<tr>
<td>18 Mbps</td>
<td>50</td>
</tr>
<tr>
<td>24 Mbps</td>
<td>50</td>
</tr>
<tr>
<td>36 Mbps</td>
<td>40</td>
</tr>
<tr>
<td>48 Mbps</td>
<td>31.6</td>
</tr>
<tr>
<td>54 Mbps</td>
<td>20</td>
</tr>
</tbody>
</table>
Configuring the Client Adapter through the Windows XP Operating System

This appendix explains how to configure and use the client adapter with Windows XP.

The following topics are covered in this appendix:

- **Overview**, page E-2
- **Configuring the Client Adapter**, page E-5
- **Associating to an Access Point Using Windows XP**, page E-18
- **Viewing the Current Status of Your Client Adapter**, page E-18
Overview

This appendix provides instructions for minimally configuring the client adapter through the Microsoft Wireless Configuration Manager in Windows XP (instead of through ADU) as well as for enabling the security options that are available for use with this operating system. The “Overview of Security Features” section below describes each of these options so that you can make an informed decision before you begin the configuration process.

In addition, this appendix also provides basic information on using Windows XP to specify the networks to which the client adapter associates and to view the current status of your client adapter.

Note

If you require more information about configuring or using your client adapter with Windows XP, refer to Microsoft’s documentation for Windows XP.

Overview of Security Features

When you use your client adapter with Windows XP, you can protect your data as it is transmitted through your wireless network by encrypting it through the use of wired equivalent privacy (WEP) encryption keys. With WEP encryption, the transmitting device encrypts each packet with a WEP key, and the receiving device uses that same key to decrypt each packet.

The WEP keys used to encrypt and decrypt transmitted data can be statically associated with your adapter or dynamically created as part of the EAP authentication process. The information in the “Static WEP Keys” and “EAP (with Dynamic WEP Keys)” sections below can help you to decide which type of WEP keys you want to use. Dynamic WEP keys with EAP offer a higher degree of security than static WEP keys.

WEP keys, whether static or dynamic, are either 40 or 128 bits in length. 128-bit WEP keys offer a greater level of security than 40-bit WEP keys.

Static WEP Keys

Each device within your wireless network can be assigned up to four static WEP keys. If a device receives a packet that is not encrypted with the appropriate key (as the WEP keys of all devices that are to communicate with each other must match), the device discards the packet and never delivers it to the intended receiver.

You do not need to re-enter static WEP keys each time the client adapter is inserted or the Windows device is rebooted because the keys are stored (in an encrypted format for security reasons) in the registry of the Windows device. When the driver loads and reads the client adapter’s registry parameters, it also finds the static WEP keys, unencrypts them, and stores them in volatile memory on the adapter.
EAP (with Dynamic WEP Keys)

The standard for wireless LAN security, as defined by IEEE, is called 802.1X for 802.11, or simply 802.1X. An access point that supports 802.1X and its protocol, Extensible Authentication Protocol (EAP), acts as the interface between a wireless client and an authentication server, such as a RADIUS server, to which the access point communicates over the wired network.

Two 802.1X authentication types are available when configuring your client adapter through Windows XP:

- **EAP-TLS**—This authentication type uses a dynamic session-based WEP key derived from the client adapter and RADIUS server to encrypt data. It uses a client certificate for authentication.

 RADIUS servers that support EAP-TLS include Cisco Secure ACS release 3.0 or later and Cisco Access Registrar release 1.8 or later.

- **Protected EAP** (or **PEAP**)—One of the following PEAP authentication types are available, depending on the software that is installed on your computer:

 - **PEAP (EAP-MSCHAP V2)**—This PEAP authentication type is available if Cisco’s PEAP security module (included in the Install Wizard file for Cisco Aironet 340, 350, and CB20A client adapters) was not previously installed on your computer or was installed prior to Service Pack 1 for Windows XP.

 PEAP (EAP-MSCHAP V2) authentication is based on EAP-TLS authentication but uses a password instead of a client certificate for authentication. PEAP (EAP-MSCHAP V2) uses a dynamic session-based WEP key derived from the client adapter and RADIUS server to encrypt data.

 RADIUS servers that support PEAP (EAP-MSCHAP V2) authentication include Cisco Secure ACS release 3.2 or later.

 - **PEAP (EAP-GTC)**—Although this authentication type is not officially supported for CB21AG and PI21AG client adapters, you may be able to use it successfully if Cisco’s PEAP security module (included in the Install Wizard file for Cisco Aironet 340, 350, and CB20A client adapters) was previously installed on your computer and installed after Service Pack 1 for Windows XP.

 PEAP (EAP-GTC) authentication is designed to support One-Time Password (OTP), Windows NT or 2000 domain, and LDAP user databases over a wireless LAN. It is based on EAP-TLS authentication but uses a password or PIN instead of a client certificate for authentication. PEAP (EAP-GTC) uses a dynamic session-based WEP key derived from the client adapter and RADIUS server to encrypt data. If your network uses an OTP user database, PEAP (EAP-GTC) requires you to enter either a hardware token password or a software token PIN to start the EAP authentication process and gain access to the network. If your network uses a Windows NT or 2000 domain user database or an LDAP user database (such as NDS), PEAP (EAP-GTC) requires you to enter your username, password, and domain name in order to start the authentication process.

 RADIUS servers that support PEAP (EAP-GTC) authentication include Cisco Secure ACS release 3.1 or later and Cisco Access Registrar release 3.5 or later.
Overview

When you enable Require EAP on your access point and configure your client adapter for EAP-TLS or PEAP using Windows XP, authentication to the network occurs in the following sequence:

1. The client adapter associates to an access point and begins the authentication process.

 Note The client does not gain full access to the network until authentication between the client and the RADIUS server is successful.

2. Communicating through the access point, the client and RADIUS server complete the authentication process, with the password (PEAP) or certificate (EAP-TLS) being the shared secret for authentication. The password is never transmitted during the process.

3. If authentication is successful, the client and RADIUS server derive a dynamic, session-based WEP key that is unique to the client.

4. The RADIUS server transmits the key to the access point using a secure channel on the wired LAN.

5. For the length of a session, or time period, the access point and the client use this key to encrypt or decrypt all unicast packets (and broadcast packets if the access point is set up to do so) that travel between them.

 Note Refer to the IEEE 802.11 Standard for more information on 802.1X authentication and to the following URL for additional information on RADIUS servers:

Wi-Fi Protected Access (WPA)

Wi-Fi Protected Access (WPA) is a standards-based, interoperable security enhancement that greatly increases the level of data protection and access control for existing and future wireless LAN systems. It is derived from and is forward-compatible with the upcoming IEEE 802.11i standard. WPA leverages Temporal Key Integrity Protocol (TKIP) and Michael message integrity check (MIC) for data protection and 802.1X for authenticated key management.

WPA supports two mutually exclusive key management types: WPA and WPA passphrase (also known as WPA Pre-shared Key or WPA-PSK). Using WPA, clients and the authentication server authenticate to each other using an EAP authentication method, and the client and server generate a pairwise master key (PMK). Using WPA, the server generates the PMK dynamically and passes it to the access point. Using WPA passphrase, however, you configure a passphrase (or pre-shared key) on both the client and the access point, and that passphrase is used as the PMK.

Windows XP Service Pack 1 and Microsoft support patch 815485 must be installed in order to use WPA. They can be downloaded from the following URLs:

- Service Pack 1:

- 815485 support patch:

 Note WPA must also be enabled on the access point. Access points must use Cisco IOS Release 12.2(11)JA or later to enable WPA. Refer to the documentation for your access point for instructions on enabling this feature.
Configuring the Client Adapter

Follow the steps below to configure your client adapter using Windows XP.

Note

These instructions assume you are using the following:
- Windows XP Service Pack 1 and Microsoft support patch 815485
- Windows XP classic view rather than category view
If you do not use Service Pack 1 and the 815485 support patch, the windows you see will look different than those shown in this section and will not support WPA.

Note

The appropriate certificates must be installed on your computer if you are planning to enable EAP-TLS or PEAP authentication. EAP-TLS requires both a Certificate Authority (CA) certificate and a user certificate while PEAP requires only a CA certificate. Contact your system administrator if you need help obtaining and importing the necessary certificates.

Step 1
Make sure the client adapter’s driver has been installed and the client adapter is inserted in the Windows XP device.

Step 2
Double-click My Computer, Control Panel, and Network Connections.

Step 3
Right-click Wireless Network Connection.

Step 4
Click Properties. The Wireless Network Connection Properties window appears.

Step 5
Click the Wireless Networks tab. The following window appears (see Figure E-1).
Figure E-1 Wireless Network Connection Properties Window (Wireless Networks Tab)

Step 6 Make sure that the Use Windows to configure my wireless network settings check box is checked.

Step 7 Choose the SSID of the access point to which you want the client adapter to associate from the list of available networks and click Configure. If the SSID of the access point you want to use is not listed or you are planning to operate the client adapter in an ad hoc network (a computer-to-computer network without access points), click Add.

Note The Allow Broadcast SSID to Associate option on the access point must be enabled for the SSID to appear in the list of available networks.

The Wireless Network Properties window appears (see Figure E-2).
Step 8 Perform one of the following:

- If you chose an SSID from the list of available networks, make sure the SSID appears in the Network name (SSID) field.
- If you clicked Add, enter the case-sensitive SSID of the access point or the ad hoc network to which you want the client adapter to associate in the Network name (SSID) field.

Step 9 Check the This is a computer-to-computer (ad hoc mode) network; wireless access points are not used check box at the bottom of the window if you are planning to operate the client adapter in an ad hoc network.
Step 10 Choose one of the following options from the Network Authentication drop-down list:

- **Open**—Enables your client adapter, regardless of its WEP settings, to authenticate and attempt to communicate with an access point. However, communication can occur only if the adapter’s WEP key matches that of the access point. If your adapter is not using WEP, it will not attempt to authenticate to an access point that is using WEP and vice versa. This option is recommended if you want to use static WEP or EAP authentication without WPA.

- **Shared**—Enables your client adapter to authenticate and communicate only with access points that have the same WEP key. Cisco recommends that shared key authentication not be used because it presents a security risk.

| Note | Your client adapter’s network authentication setting must match that of the access points with which it is to communicate. Otherwise, your client adapter may not be able to authenticate to them. |

| Note | EAP-TLS does not work with shared key authentication because shared key authentication requires the use of a WEP key, and a WEP key is not set for EAP-TLS until after the completion of EAP authentication. |

- **WPA**—Enables WPA, which enables your client adapter to associate to access points using WPA.

- **WPA-PSK**—Enables WPA Pre-shared key (WPA-PSK), which enables your client adapter to associate to access points using WPA-PSK.

| Note | The WPA-None option is not supported for use with the CB21AG or PI21AG client adapter. |

| Note | Refer to the “Wi-Fi Protected Access (WPA)” section on page E-4 for more information on WPA and WPA-PSK. |

Step 11 Choose one of the following options from the Data encryption drop-down list:

- **Disabled**—Disables data encryption for your client adapter. This option is available only when Open or Shared has been selected for Network Authentication.

- **WEP**—Enables static or dynamic WEP for your client adapter. This option is recommended for use with open authentication.

- **TKIP**—Enables Temporal Key Integrity Protocol (TKIP) for your client adapter. This option is recommended for use with WPA and WPA-PSK.
Step 12 Follow the steps below to enter a static WEP key if you are planning to use static WEP.

Note If you are planning to use EAP-TLS or PEAP authentication, which uses dynamic WEP, go to Step 13.

a. Make sure the The key is provided for me automatically check box is unchecked.

b. Obtain the WEP key for the access point (in an infrastructure network) or other clients (in an ad hoc network) from your system administrator and enter it in both the Network key and Confirm network key fields. Follow the guidelines below to enter a new static WEP key:

- WEP keys must contain the following number of characters:
 - 10 hexadecimal characters or 5 ASCII text characters for 40-bit keys
 Example: 5A5A313859 (hexadecimal) or ZZ18Y (ASCII)
 - 26 hexadecimal characters or 13 ASCII text characters for 128-bit keys
 Example: 5A5831353355495549333534 (hexadecimal) or ZX1535TYUI354 (ASCII)

Note ASCII text WEP keys are not supported on Cisco Aironet 1200 Series Access Points, so you must enter hexadecimal characters if your client adapter will be used with these access points.

- Your client adapter’s WEP key must match the WEP key used by the access point (in infrastructure mode) or clients (in ad hoc mode) with which you are planning to communicate.

c. In the Key index (advanced) field, choose the number of the WEP key you are creating (1, 2, 3, or 4).

Note The WEP key must be assigned to the same number on both the client adapter and the access point (in an infrastructure network) or other clients (in an ad hoc network).

d. Click OK to save your settings and to add this SSID to the list of preferred networks (see Figure E-1). The configuration is complete for static WEP. The client adapter automatically attempts to associate to the network(s) in the order in which they are listed.

Step 13 If you enabled WPA-PSK, obtain the pre-shared key for the access point from your system administrator and enter it in both the Network key and Confirm network key fields. Follow the guidelines below to enter a pre-shared key:

- Pre-shared keys must contain 8 to 63 ASCII text characters or 64 hexadecimal characters.
- Your client adapter’s pre-shared key must match the pre-shared key used by the access point with which you are planning to communicate.

Step 14 Check the The key is provided for me automatically check box if you are planning to use EAP-TLS or PEAP, which uses dynamic WEP keys.

Note This parameter is not available if you enabled WPA or WPA-PSK.
Step 15 Perform one of the following if you are planning to use EAP authentication:

- If you are planning to use EAP-TLS authentication, follow the instructions in the “Enabling EAP-TLS Authentication” section on page E-10.
- If you are planning to use PEAP authentication, follow the instructions in the “Enabling PEAP Authentication” section on page E-13.

Enabling EAP-TLS Authentication

Follow the steps below to prepare the client adapter to use EAP-TLS authentication, provided you have completed the initial configuration.

Step 1 Click the Authentication tab on the Wireless Network Properties window. The following window appears (see Figure E-3).

Figure E-3 Wireless Network Properties Window (Authentication Tab)
Step 2 Check the **Enable IEEE 802.1x authentication for this network** check box if you did not enable WPA on the Association window.

Step 3 For EAP type, choose **Smart Card or other Certificate**.

Step 4 Click **Properties**. The Smart Card or other Certificate Properties window appears (see **Figure E-4**).

![Figure E-4 Smart Card or other Certificate Properties Window](image)

Step 5 Choose the **Use a certificate on this computer** option.

Step 6 Check the **Use simple certificate selection (Recommended)** check box.

Step 7 Check the **Validate server certificate** check box if server certificate validation is required.
Appendix E Configuring the Client Adapter through the Windows XP Operating System

Configuring the Client Adapter

Step 8 If you want to specify the name of the server to connect to, check the Connect to these servers check box and enter the server name in the field below.

Note If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.

Step 9 In the Trusted Root Certification Authorities field, check the check box beside the name of the certificate authority from which the server certificate was downloaded.

Note If you leave all check boxes unchecked, you are prompted to accept a connection to the root certification authority during the authentication process.

Step 10 Click OK in each window to save your settings. The configuration is complete.

Step 11 If a pop-up message appears above the system tray informing you that you need to accept a certificate to begin the EAP authentication process, click the message and follow the instructions provided to accept the certificate.

Note You should not be prompted to accept a certificate for future authentication attempts. After you accept one, the same certificate is used subsequently.

Step 12 If a message appears indicating the root certification authority for the server’s certificate, and it is the correct certification authority, click OK to accept the connection. Otherwise, click Cancel.

Step 13 If a message appears indicating the server to which your client adapter is connected, and it is the correct server to connect to, click OK to accept the connection. Otherwise, click Cancel.

The client adapter should now EAP authenticate.

Note Whenever the computer reboots and you enter your Windows username and password, the EAP authentication process begins automatically and the client adapter should EAP authenticate.

Step 14 To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.
Enabling PEAP Authentication

Follow the steps below to prepare the client adapter to use PEAP authentication, provided you have completed the initial configuration.

Step 1 Click the **Authentication** tab on the Wireless Network Properties window. The following window appears (see Figure E-5).

Figure E-5 Wireless Network Properties Window (Authentication Tab)

![Wireless Network Properties Window](image)

Step 2 Check the **Enable IEEE 802.1x authentication for this network** check box if you did not enable WPA on the Association window.

Step 3 For EAP type, choose one of the following, depending on the software that is installed on your computer:

- **Protected EAP (PEAP)**—This option appears for PEAP (EAP-MSCHAP V2).
- **PEAP**—This option appears for PEAP (EAP-GTC).

Note PEAP (EAP-GTC) is not officially supported for CB21AG and PI21AG client adapters, but you may be able to use it successfully if Cisco’s PEAP security module (included in the Install Wizard file for Cisco Aironet 340, 350, and CB20A client adapters) was previously installed on your computer and installed after Service Pack 1 for Windows XP.
Confuguring the Client Adapter through the Windows XP Operating System

Step 4 Perform one of the following:

- If you chose Protected EAP (PEAP), follow the instructions in the “Enabling PEAP (EAP-MSCHAP V2)” section below.
- If you chose PEAP, follow the instructions in the “Enabling PEAP (EAP-GTC)” section on page E-16.

Enabling PEAP (EAP-MSCHAP V2)

Follow the steps below to enable PEAP (EAP-MSCHAP V2).

Step 1 Click Properties. The Protected EAP Properties window appears (see Figure E-8).

Figure E-6 Protected EAP Properties Window

Step 2 Check the Validate server certificate check box if server certificate validation is required (recommended).
Appendix E Configuring the Client Adapter through the Windows XP Operating System

Configuring the Client Adapter

Step 3
If you want to specify the name of the server to connect to, check the **Connect to these servers** check box and enter the appropriate server name in the field below.

Note
If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note
If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.

Step 4
In the Trusted Root Certification Authorities field, choose the certificate authority from which the server certificate was downloaded.

Step 5
In the Select Authentication Method drop-down box, choose **Secured password (EAP-MSCHAP v2)**.

Step 6
Click **Configure**. The EAP MSCHAPv2 Properties window appears (see Figure E-7).

Figure E-7 EAP MSCHAPv2 Properties Window

- Make sure the **Automatically use my Windows logon name and password (and domain if any)** check box is checked.

Step 8
Click **OK** in each window to save your settings. The configuration is complete.

Step 9
The EAP authentication process begins automatically, and the client adapter should EAP authenticate using your Windows credentials. To verify authentication, double-click **My Computer, Control Panel, and Network Connections**. The status appears to the right of your Wireless Network Connection. Click **View** and **Refresh** to obtain the current status. If the client adapter is authenticated, the status reads **Authentication succeeded**.
Enabling PEAP (EAP-GTC)

Follow the steps below to enable PEAP (EAP-GTC).

Step 1 Click **Properties**. The PEAP Properties window appears (see Figure E-8).

Figure E-8 PEAP Properties Window

![PEAP Properties Window](image)

Step 2 Check the **Validate server certificate** check box if server certificate validation is required (recommended).

Step 3 If you want to specify the name of the server to connect to, check the **Connect only if server name ends with** check box and enter the appropriate server name suffix in the field below.

Note If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.

Step 4 Make sure that the name of the certificate authority from which the server certificate was downloaded appears in the Trusted root certificate authority (CA) field. If necessary, click the arrow on the drop-down menu and choose the appropriate name.

Note If you leave this field blank, you are prompted to accept a connection to the root certification authority during the authentication process.
Step 5 Check the **Connect only if server is signed by specified trusted root CA** check box if you want to ensure that the certificate server uses the trusted root certificate specified in the field above. This prevents the client from establishing connections to rogue access points.

Step 6 Currently Generic Token Card is the only second phase EAP type available. Click **Properties**. The Generic Token Card Properties window appears (see Figure E-9).

Figure E-9 Generic Token Card Properties Window

![Generic Token Card Properties Window](image)

Step 7 Choose either the **Static Password (Windows NT/2000, LDAP)** or the **One Time Password** option, depending on your user database.

Step 8 Perform one of the following:

- If you chose the **Static Password (Windows NT/2000, LDAP)** option in Step 7, go to Step 9.
- If you chose the **One Time Password** option in Step 7, check one or both of the following check boxes to specify the type of tokens that will be supported for one-time passwords:

 - **Support Hardware Token**—A hardware token device obtains the one-time password. You must use your hardware token device to obtain the one-time password and enter the password when prompted for your user credentials.

 - **Support Software Token**—The PEAP supplicant works with a software token program to retrieve the one-time password. You have to enter only the PIN, not the one-time password. If you check this check box, you must also choose from the Supported Type drop-down box the software token software that is installed on the client (such as Secure Computing SofToken Version 2.1, Secure Computing SofToken II 2.0, or RSA SecurID Software Token 2.5), and if Secure Computing SofToken Version 2.1 is selected, you must find the software program path using the Browse button.

 Note The SofToken Program Path field is unavailable if a software token program other than Secure Computing SofToken Version 2.1 is selected.
Step 9 Click OK in each window to save your settings. The configuration is complete.

Step 10 Refer to Chapter 6 of the Cisco Aironet 340, 350, and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows (OL-1394-07 or later) for instructions on authenticating using PEAP (EAP-GTC).

Associating to an Access Point Using Windows XP

Windows XP causes the client adapter’s driver to automatically attempt to associate to the first network in the list of preferred networks (see Figure E-1). If the adapter fails to associate or loses association, it automatically switches to the next network in the list of preferred networks. The adapter does not switch networks as long as it remains associated to the access point. To force the client adapter to associate to a different access point, you must choose a different network from the list of available networks (and click Configure and OK).

Viewing the Current Status of Your Client Adapter

To view the status of your client adapter, click the icon of the two connected computers in the Windows system tray. The Wireless Network Connection Status window appears (see Figure E-10).
16-QAM
Quadrate amplitude modulation. A modulation technique used by IEEE 802.11-compliant wireless LANs for transmission at 24 and 36 Mbps.

64-QAM
Quadrate amplitude modulation. A modulation technique used by IEEE 802.11-compliant wireless LANs for transmission at 48 and 54 Mbps.

802.1X
Also called 802.1X for 802.11. 802.1X is the standard for wireless LAN security, as defined by the Institute of Electrical and Electronics Engineers (IEEE). An access point that supports 802.1X and its protocol, Extensible Authentication Protocol (EAP), acts as the interface between a wireless client and an authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) server, to which the access point communicates over the wired network.

802.11
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 1- and 2-megabit-per-second (Mbps) 2.4-GHz wireless LANs.

802.11a
The IEEE standard that governs the deployment of 5-GHz OFDM systems. It specifies the implementation of the physical layer for wireless UNII bands (see UNII, UNII 1, and UNII 2) and provides four channels per 100 MHz of bandwidth.

802.11b
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 5.5- and 11-Mbps 2.4-GHz wireless LANs.

802.11g
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 54-Mbps 2.4-GHz wireless LANs.

A

access point
A wireless LAN data transceiver that uses radio waves to connect a wired network with wireless stations.

ad hoc network
A wireless network composed of stations without access points.

alphanumeric
A set of characters that contains both letters and numbers.

associated
A station is configured properly to enable it to wirelessly communicate with an access point.
bandwidth Specifies the amount of the frequency spectrum that is usable for data transfer. It identifies the maximum data rate that a signal can attain on the medium without encountering significant power loss.

BPSK Binary phase shift keying. A modulation technique used by IEEE 802.11-compliant wireless LANs for transmission at 1 Mbps.

broadcast key rotation A security feature for use with dynamic WEP keys. If your client adapter uses LEAP, EAP-TLS, or PEAP authentication and you enable this feature, the access point changes the dynamic broadcast WEP key that it provides at the interval you select.

CCK Complementary code keying. A modulation technique used by IEEE 802.11b-compliant wireless LANs for transmission at 5.5 and 11 Mbps.

CCKM Cisco Centralized Key Management. Using CCKM, authenticated client devices can roam from one access point to another without any perceptible delay during reassociation. An access point on your network provides wireless domain services (WDS) and creates a cache of security credentials for CCKM-enabled client devices on the subnet. The WDS access point’s cache of credentials dramatically reduces the time required for reassociation when a CCKM-enabled client device roams to a new access point.

CKIP Cisco Key Integrity Protocol. Cisco’s WEP key permutation technique based on an early algorithm presented by the IEEE 802.11i security task group.

client A radio device that uses the services of an access point to communicate wirelessly with other devices on a local area network.

CSMA Carrier sense multiple access. A wireless LAN media access method specified by the IEEE 802.11 specification.

CRC Cyclic redundancy check. A method of checking for errors in a received packet.

data rates The range of data transmission rates supported by a device. Data rates are measured in megabits per second (Mbps).

dBi A ratio of decibels to an isotropic antenna that is commonly used to measure antenna gain. The greater the dBi value, the higher the gain and the more acute the angle of coverage.

DHCP Dynamic Host Configuration Protocol. A protocol available with many operating systems that automatically issues IP addresses within a specified range to devices on the network. The device retains the assigned address for a specific administrator-defined period.
DSSS Direct-sequence spread spectrum. A type of spread spectrum radio transmission that spreads its signal continuously over a wide frequency band.

duplicate packets Packets that were received twice because an acknowledgement got lost and the sender retransmitted the packet.

E Extensible Authentication Protocol. EAP is the protocol for the optional IEEE 802.1X wireless LAN security feature. An access point that supports 802.1X and EAP acts as the interface between a wireless client and an authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) server, to which the access point communicates over the wired network.

Ethernet The most widely used wired local area network. Ethernet uses carrier sense multiple access (CSMA) to enable computers to share a network and operates at 10, 100, or 1000 megabits per second (Mbps), depending on the physical layer used.

F A repository for files so that a local area network can share files, mail, and programs.

file server The size at which packets are fragmented and transmitted a piece at a time instead of all at once. The setting must be within the range of 64 to 2312 bytes.

fragmentation threshold A means of communication whereby each node receives and transmits simultaneously (two-way). See also full duplex.

full duplex A set of characters consisting of ten numbers and six letters (0-9, A-F, and a-f).

G A device that connects two otherwise incompatible networks together.

gateway Gigahertz. One billion cycles per second. A unit of measure for frequency.

GHz A means of communication whereby each node receives and transmits in turn (one-way). See also full duplex.

H A set of characters consisting of ten numbers and six letters (0-9, A-F, and a-f).
IEEE Institute of Electrical and Electronics Engineers. A professional society serving electrical engineers through its publications, conferences, and standards development activities. The body responsible for the Ethernet 802.3 and wireless LAN 802.11 specifications.

infrastructure The wired Ethernet network.

infrastructure device A device (such as an access point, bridge, or base station) that connects client adapters to a wired LAN.

IP address The Internet Protocol address of a station.

IP subnet mask The number used to identify the IP subnetwork, indicating whether the IP address can be recognized on the LAN or if it must be reached through a gateway.

IPX Internetwork Packet Exchange. The NetWare network layer protocol used for transferring data from servers to workstations.

LEAP, or EAP-Cisco Wireless, is an 802.1X authentication type. With LEAP, a username and password are used by the client adapter to perform mutual authentication with the RADIUS server through an access point.

MAC address The Media Access Control (MAC) address is a unique serial number assigned to a networking device by the manufacturer.

Message integrity check. MIC prevents bit-flip attacks on encrypted packets. During a bit-flip attack, an intruder intercepts an encrypted message, alters it slightly, and retransmits it, and the receiver accepts the retransmitted message as legitimate. The client adapter’s driver must support MIC functionality, and MIC must be enabled on the access point.

modulation Any of several techniques for combining user information with a transmitter’s carrier signal.

multicast packets Packets transmitted to multiple stations.

multipath The echoes created as a radio signal bounces off of physical objects.
Glossary

O

OFDM
Orthogonal frequency division multiplexing. A multicarrier modulation method for broadband wireless communications.

overrun packets
Packets that were discarded because the access point had a temporary overload of packets to handle.

P

packet
A basic message unit for communication across a network. A packet usually includes routing information, data, and sometimes error detection information.

Q

QPSK
Quadruple phase shift keying. A modulation technique used by IEEE 802.11-compliant wireless LANs for transmission at 2 Mbps.

R

radio channel
The frequency at which a radio operates.

range
A linear measure of the distance that a transmitter can send a signal.

receiver sensitivity
A measurement of the weakest signal a receiver can receive and still correctly translate it into data.

RF
Radio frequency. A generic term for radio-based technology.

roaming
A feature of some access points that enables users to move through a facility while maintaining an unbroken connection to the LAN.

RTS threshold
The packet size at which an access point issues a request to send (RTS) before sending the packet.

S

spread spectrum
A radio transmission technology that spreads data over a much wider bandwidth than otherwise required in order to gain benefits such as improved interference tolerance and unlicensed operation.

SSID
Service set identifier. A unique identifier that stations must use to be able to communicate with an access point. The SSID can be any alphanumeric entry up to a maximum of 32 characters.
TKIP

Temporal Key Integrity Protocol. Also referred to as WEP key hashing. A security feature that defends against an attack on WEP in which the intruder uses the initialization vector (IV) in encrypted packets to calculate the WEP key. TKIP removes the predictability that an intruder relies on to determine the WEP key by exploiting IVs.

transmit power

The power level of radio transmission.

UNII

Unlicensed National Information Infrastructure. An FCC regulatory domain for 5-GHz wireless devices. UNII bands are 100 MHz wide and divided into four channels when using 802.11a OFDM modulation.

UNII 1

A UNII band dedicated to in-building wireless LAN applications. UNII 1 is located at 5.15 to 5.25 GHz and allows for a maximum transmit power of 40 mW (or 16 dBm) with an antenna up to 6 dBi. UNII 1 regulations require a nonremovable, integrated antenna.

UNII 2

A UNII band dedicated to in-building wireless LAN applications. UNII 2 is located at 5.25 to 5.35 GHz and allows for a maximum transmit power of 200 mW (or 23 dBm) with an antenna up to 6 dBi. UNII 2 regulations allow for an auxiliary, user-installable antenna.

UNII 3

A UNII band dedicated to wireless LAN applications. UNII 3 is located at 5.725 to 5.825 GHz and allows for a maximum transmit power of 1 Watt (or 30 dBm) with an antenna up to 6 dBi. UNII 3 regulations allow for an auxiliary, user-installable antenna.

VLAN

A switched network that is logically segmented, by functions, project teams, or applications rather than on a physical or geographical basis. For example, all workstations and servers used by a particular workgroup team can be connected to the same VLAN regardless of their physical connections to the network or the fact that they might be intermingled with other teams. You use VLANs to reconfigure the network through software rather than physically unplugging and moving devices or wires.

A VLAN consists of a number of end systems, either hosts or network equipment (such as bridges and routers), connected by a single bridging domain. The bridging domain is supported on various pieces of network equipment such as LAN switches that operate bridging protocols between them with a separate group for each VLAN.
W

WDS Wireless domain services (WDS). An access point providing WDS on your wireless LAN maintains a cache of credentials for CCKM-capable client devices on your wireless LAN. When a CCKM-capable client roams from one access point to another, the WDS access point forwards the client's credentials to the new access point with the multicast key. Only two packets pass between the client and the new access point, greatly shortening the reassociation time.

WEP Wired equivalent privacy. An optional security mechanism defined within the 802.11 standard designed to protect your data as it is transmitted through your wireless network by encrypting it through the use of encryption keys.

workstation A computing device with an installed client adapter.

WPA Wi-Fi Protected Access. A standards-based, interoperable security enhancement that strongly increases the level of data protection and access control for existing and future wireless LAN systems. It is derived from and will be compatible with the upcoming IEEE 802.11i standard. WPA leverages Temporal Key Integrity Protocol (TKIP) for data protection and 802.1X for authenticated key management.
Numerics

802.11 Authentication Mode parameter 5-11
802.11b preamble, status of 7-10
802.11b Preamble parameter 5-8
802.1X
 - authentication types
 - in ADU 5-15 to 5-16
 - in Windows XP E-3
 - defined 5-15, E-3
802.1x EAP Type parameter 5-25, 5-27, 5-29, 5-31
802.1x option 5-25, 5-27, 5-29, 5-31

A

About Aironet Desktop Utility, ADU menu option 9-8
About window 9-8
access point
 - currently associated to 7-8, 8-11
 - in wireless infrastructure 1-6
IP address 7-8, 8-11
MAC address 7-9
mismatches 7-13
name 7-8, 8-11
problems
 - associating to 10-11
 - authenticating to 10-11
role in wireless network 1-5
security settings 5-19 to 5-21
Access Point 1 through 4 parameters 5-12
access points
 - associating to in Windows XP E-18
 - preferred, setting 5-12
reporting those that fail LEAP authentication 5-17 to 5-18, 5-21
ACK frames 7-13
Action drop-down menu 9-7
Activate button 4-5, 4-8
Adapter Information
 - button 9-8
 - window 9-8
ad hoc network
 - defined E-6
 - selecting in ADU 5-8
 - selecting in Windows XP E-7
 - setting wireless mode 5-9
wireless LAN configuration 1-5
ADU
 See Aironet Desktop Utility (ADU)
Advanced button 7-6
Advanced Configuration window
 - PEAP EAP-GTC 5-31
 - PEAP EAP-MSCHAP V2 5-33
advanced parameters
 - described 5-2
 - setting 5-5 to 5-12
Advanced Statistics
 - button 7-12
 - window 7-12
Advanced Status window 7-7
Aironet Desktop Utility (ADU)
 - accessing help 9-9
 - described 1-4
 - exiting 9-7
 - feature comparison to Windows XP 3-9 to 3-10
 - finding version 9-8
icon, using to open ADU 9-7
opening 9-7
Profile Management windows, overview 5-2
status and statistics tools
overview 7-2
setting parameters 7-2 to 7-3
using 7-4 to 7-14
Aironet Desktop Utility Help, ADU menu option 9-9
Aironet System Tray Utility (ASTU)
accessing help 8-5
described 1-4
exiting 8-6
icon 8-2 to 8-3
opening 8-6
overview 8-2
pop-up menu 8-5 to 8-11
selecting the active profile 8-8 to 8-9
setting preferences 8-6 to 8-7
specifying pop-up menu options 8-7
specifying when it runs 8-7
Tool Tip window 8-3 to 8-5
using 8-1 to 8-11
using to open ADU 8-6
using to open troubleshooting utility 8-6
Aironet System Tray Utility (ASTU) icon 9-7
Aironet System Tray Utility Preferences window 8-6
Allow Association to Mixed Cells parameter 5-13 to 5-14
antenna
assembling 3-16 to 3-17
described 1-3
gains
IEEE 802.11a D-4
IEEE 802.11b D-4
IEEE 802.11g D-5
mounting 3-17 to 3-19
rotating 3-18
specifications A-6
antenna base, mounting 3-17 to 3-18
association
rejections 7-14
time-outs 7-14
ASTU
See Aironet System Tray Utility (ASTU)
audience of document x
authentication
process 5-16, E-4
rejections 7-14
time-outs 7-14
type
setting 5-11
status of 7-8
auto profile selection
enabling 4-9
including a profile in 4-7 to 4-8
prioritizing profiles 4-8
removing a profile from 4-8
restrictions 4-7 to 4-8
status of 8-10
using 8-8
Auto Profile Selection Management window 4-7
Auto Select Profiles parameter 4-9
Available Infrastructure and Ad Hoc Networks window 4-4
B
beacons, number received successfully 7-13
broadcast key rotation

described 5-18
setting on client and access point 5-21
broadcast packets
number received 7-12
number transmitted 7-12
broadcast SSIDs 4-4, 5-4, E-6
BSS Aging Interval parameter (Windows Control Panel) 5-35
bytes
 number received 7-12
 number transmitted 7-12

C
CAM
 See Constantly Awake Mode (CAM)
Canadian compliance statement C-3
card name 9-9
cautions, defined xi
CCKM
 See fast roaming
channel, currently being used 4-5, 7-6, 7-10
Channel parameter 5-10
channels, supported by regulatory domains
 IEEE 802.11a D-2
 IEEE 802.11b/g D-3
channel set, for which client adapter is configured 7-10
Choose Destination Location window (Install Wizard) 3-6
Cisco.com
 obtaining documentation xiii
 obtaining technical assistance xiv
Cisco Aironet 802.11a/b/g Wireless Adapter Properties window 5-34
Cisco Aironet Desktop Utility (Diagnostics) window 7-11
Cisco Aironet Desktop Utility (Profile Management) window 4-2
Cisco Aironet Installation Program window (Install Wizard) 3-4
Cisco Centralized Key Management (CCKM)
 See fast roaming
Cisco Key Integrity Protocol (CKIP)
 statistics 7-14
 status of 7-5
 with LEAP 5-15
client name 9-9
Client Name parameter 5-3
client utilities
 See Aironet Desktop Utility (ADU) and Aironet System Tray Utility (ASTU)
configuring client adapter
 deciding between ADU and Windows XP 3-9 to 3-10
 in ADU 5-1 to 5-34
 in Windows XP E-5 to E-10
connection status 8-4, 8-10
Connection Status window (ASTU) 8-9
Constantly Awake Mode (CAM) 5-7
conventions of document xi to xii
CRC errors 7-13
CTS frames 7-13
Current Status window 7-4

D
Data Display parameter 7-3, 7-11
data encryption, currently being used 7-7
data frames 7-13
data rate
 current 7-6
 mismatches 7-13
 setting 5-9
 specifications A-3
dBm, signal strength units on Status windows 7-3
declarations of conformity
 European community, Switzerland, Norway, Iceland, and Liechtenstein C-3 to C-7
 FCC C-2
 RF exposure C-7
default values, using 5-2
Define Certificate window 5-28
Define PEAP (EAP-GTC) Configuration window 5-29
Define PEAP (EAP-Mschap V2) Configuration window 5-32
Define Pre-Shared Keys window 5-22
Define WPA Pre-Shared Key window 5-24
diagnosing client adapter operation 10-3 to 10-6
Diagnostics window 7-11
Disable Radio
 ADU menu option 9-10
 ASTU menu option 8-7
Display Settings
 ADU menu option 7-2
 window 7-2
diversity antenna 1-3
document
 audience x
 conventions xi to xii
 organization x to xi
 purpose x
documentation
 CD-ROM xiii
 feedback xiv
 obtaining xiii to xiv
 ordering xiv
domain logon
 enabling for PEAP (EAP-GTC) 5-30
 enabling for PEAP (EAP-MSCHAP V2) 5-32
domain name
 including in Windows login 5-26
 specifying for saved user name and password 5-26
driver
 current version 9-9
 date 9-9
 described 1-4
 name 9-9
duplicate frames, number received 7-13
dynamic WEP keys, overview 5-15 to 5-16, E-3 to E-4

E
EAP-Cisco Wireless
 See LEAP authentication
EAP MSCHAPv2 Properties window - Windows XP E-15
EAP-TLS authentication
 authenticating after profile selection/card
 insertion/reboot/logon 6-8
 described 5-15 to 5-16, E-3, E-4
 disabling 5-34
 enabling
 in ADU 5-27 to 5-28
 in Windows XP E-10 to E-12
 RADIUS servers supported 5-15, E-3
 requirements 5-27
 setting on client and access point 5-19 to 5-20
EAP-TLS option 5-27
EIRP, maximum supported by regulatory domains
 IEEE 802.11a D-4
 IEEE 802.11b D-4
 IEEE 802.11g D-5
Enable Radio
 ADU menu option 9-10
 ASTU menu option 8-7
Enable Tray Icon, ADU menu option 8-6
encryption errors 7-13
Enter Wireless Network Password window 6-5, 6-6
error messages 10-12 to 10-17
errors
 CRC 7-13
 encryption 7-13
 MIC 7-14
Exit
 ADU menu option 9-7
 ASTU menu option 8-7
Export button 4-11
Export Profile window 4-12
F

Fast PSP 5-7
fast roaming
 described 5-17
 setting on client and access point 5-21
FCC
 declaration of conformity statement C-2
 safety compliance statement 2-2
frames
 ACK 7-13
 CTS 7-13
duplicate 7-13
number dropped 7-13
number received successfully 7-13
number received with errors 7-13
number retried 7-13
number transmitted successfully 7-13
RTS 7-13
frequencies, supported by regulatory domains
 IEEE 802.11a D-2
 IEEE 802.11b/g D-3
frequency
 currently being used 7-6, 7-10
 setting 5-9

G

general parameters
 described 5-2
 setting 5-3 to 5-4
Generic Token Card Properties window - Windows XP E-17

H

hardware components of client adapter 1-3
Help, ASTU menu option 8-5
help, for ADU 9-9
host devices 2-4

I

I/O range 10-9
Import button 4-10
Import Profile window 4-11
Include Windows Logon Domain with User Name parameter 5-26
information about client adapter 9-8 to 9-9
infrastructure device, defined 1-2
infrastructure network
 selecting in ADU 5-8
 wireless LAN configuration 1-6
inserting client adapter 3-2 to 3-19
installing client adapter software 3-2 to 3-12
Install Wizard file
 described 1-4
 installing 3-2 to 3-12
 name 3-2
 removing 9-6
interference 2-5, 3-17
interrupt request (IRQ) 10-9
introduction to client adapters 1-2
IP address
 of associated access point 7-8, 8-11
 of client adapter 7-6, 8-5, 8-11

J

Japan, guidelines for operating client adapters C-7

K

key icon 4-5
LEAP authentication

- authenticating after a reboot/logon
 - with manually prompted login: 6-6 to 6-7
 - with saved username and password: 6-7
 - with Windows username and password: 6-4
- authenticating after profile selection/card insertion
 - with manually prompted login: 6-4 to 6-6
 - with saved username and password: 6-7
 - with Windows username and password: 6-7
- described: 5-15 to 5-16
- disabling: 5-34
- enabling: 5-24 to 5-26
- overview: 6-2 to 6-3
- RADIUS servers supported: 5-15
- requirements: 5-24
- setting on client and access point: 5-19
- stages of: 6-3
- timeout value: 4-9, 8-8
- using with login scripts: 4-9

LEAP Authentication Status window: 6-2

LEAP Authentication Timeout Value parameter: 5-26

LEAP option: 5-25

LEAP Settings window: 5-25

LEDs
- described: 1-3
- interpreting: 10-2
- link quality: 8-5, 8-11
- link speed, current: 7-10, 8-5, 8-11
- login scripts, using with LEAP: 4-9, 8-9
- long radio headers
 - status of: 7-10
 - using: 5-8

MAC address
- of access point
 - specifying: 5-12
 - viewing: 7-9
- of client adapter: 9-9
- machine certificate: 5-30, 5-32

Manual LEAP Login
- ADU menu option: 6-5, 6-6
- ASTU menu option: 8-8

Manually Prompt for LEAP User Name and Password option: 5-26

Max PSP: 5-7

message integrity check (MIC)
- described: 5-18, 7-8
- errors: 7-14
- setting on client and access point: 5-21
- statistics: 7-14
- status of: 7-8
- types of: 7-8

Michael MIC
- status of: 7-8
- with WPA: 5-16

microcellular network: 1-6

Microsoft 802.1X supplicant, disabling: 3-2, 10-8

Microsoft Wireless Configuration Manager
- disabling: 10-8
- enabling in Install Wizard: 3-9

MMH MIC
- status of: 7-8
- with LEAP: 5-15

Modify button
- 4-9, 5-3

multicast packets
- number received: 7-12
- number transmitted: 7-12
network
configurations 1-5 to 1-6
prioritizing connections 10-11 to 10-12
problems connecting to type, current 4-3, 7-6
Network Type parameter 5-8
New button 4-4, 5-3
noise level, current 7-10
No Network Connection Unless User Is Logged In parameter 5-26, 6-7
note, defined xi

online help
for ADU 9-9
for ASTU 8-5
Open Aironet Desktop Utility, ASTU menu option 8-6, 9-7
open authentication
setting 5-11, E-8
status of 7-8
operating systems supported x, 2-4, 3-2
Order Profiles button 4-7
organization of document x to xi

package contents 2-3
packets
broadcast 7-12
multicast 7-12
unicast 7-12
PC-Cardbus card
antenna 1-3
described 1-2
inserting 3-13
profiles tied to slot 4-6
removing 9-2
PCI card
antenna
assembling 3-16 to 3-17
described 1-3
mounting 3-17 to 3-19
rotating 3-18
changing bracket 3-14
described 1-2
inserting 3-14 to 3-19
removing 9-2
PEAP (EAP-GTC) authentication
authenticating after profile selection/card insertion/reboot/logon 6-8 to 6-9
described 5-15, E-3, E-4
disabling 5-34
enabling
in ADU 5-29 to 5-31
in Windows XP E-13 to E-14, E-16 to E-18
RADIUS servers supported 5-15, E-3
requirements 5-27
setting on client and access point 5-20
user databases supported 5-15
PEAP (EAP-GTC) option 5-29
PEAP (EAP-MSCHAP V2) authentication
authenticating after profile selection/card insertion/reboot/logon 6-9
described 5-15 to 5-16, E-3, E-4
disabling 5-34
enabling
in ADU 5-31 to 5-33
in Windows XP E-13 to E-15
RADIUS servers supported 5-15, E-3
requirements 5-27
setting on client and access point 5-20
PEAP (EAP-MSCHAP V2) option 5-31
PEAP Properties window - Windows XP E-16
peer-to-peer network 1-5, 5-8
physical specifications A-2
power level, current 7-9
power levels, available 7-9
power save mode, currently being used 7-9
Power Save Mode parameter 5-7
power specifications A-6
Preferences, ASTU menu option 8-6
Preferred Access Points window 5-12
Preparing Setup window (Install Wizard) 3-3, 9-3
Pre-Shared Key (Static WEP) option 5-22
Previous Installation Detected window (Install Wizard) 9-4
product model numbers 1-2
profile
active 4-9, 8-3, 8-10
default 4-2
described 4-2
Profile Management (Advanced) window 5-5
Profile Management (General) window 4-6
Profile Management (Security) window 5-13
Profile Management window 4-2
Profile Management windows, parameters missing 10-12
profile manager
auto profile selection feature 4-7 to 4-8
creating a new profile 4-4 to 4-6
deleting a profile 4-10
editing a profile 4-9
exporting a profile 4-11 to 4-12
importing a profile 4-10 to 4-11
opening 4-2 to 4-3
parameters missing 4-3, 10-12
selecting the active profile 4-8 to 4-9
Profile Name parameter 5-3
profiles, losing 9-6
profiles submenu (ASTU) 8-8
Protected EAP
See PEAP (EAP-GTC) authentication and PEAP (EAP-MSCHAP V2) authentication
Protected EAP Properties window - Windows XP E-14
purpose of document x
R
radio
described 1-3
enabling or disabling 8-7, 9-9 to 9-10
specifications A-2 to A-6
RADIUS servers
additional information 5-16, E-4
defined 5-15, E-3
supported 5-15 to 5-16, E-3
range 5-6
Reauthenticate
ADU menu option 6-3
ASTU menu option 8-8
reauthentication process 6-3
receive statistics 7-12, 7-13 to 7-14
Refresh button 4-4
Refresh Interval parameter 7-3, 7-11
regulatory
domains
IEEE 802.11a D-2
IEEE 802.11b/g D-3
information C-2 to C-9
specifications A-6
related publications xiii
Remove button 4-10
removing client adapter 9-2
resource conflicts, resolving
in Windows 2000 10-9 to 10-10
in Windows XP 10-10
RF obstructions 2-5, 3-17
roaming 1-6
roaming parameters, setting in the Windows Control Panel 5-34 to 5-35
roaming threshold 5-35
RTS frames 7-13
Run Test button 10-4

S
safety
information 2-2 to 2-3
specifications A-6
saved username and password
described 5-26
entering 5-26
Save Report
button 10-7
window 10-7
Scan button 4-4
Scan Valid Interval parameter (Windows Control Panel) 5-35
seamless roaming 1-6
security features
overview 5-14 to 5-18
synchronizing 5-19 to 5-21
security mode 4-3
security parameters
described 5-2
setting 5-12 to 5-33
Select Profile, ASTU menu option 8-8 to 8-9
sensitivity A-4
serial number of client adapter 9-9
server-based authentication, currently being used 7-7
Setup Status window (Install Wizard) 9-5
Setup Type window (Install Wizard) 3-5
shared authentication
setting 5-11, E-8
status of 7-8
short radio headers
status of 7-10
using 5-8
Show Connection Status, ASTU menu option 8-9
signal quality, current 7-9
signal strength
as a percentage 7-3
current 4-5, 7-6, 7-9, 8-5
in dBm 7-3
Signal Strength Display Units parameter 7-3
site requirements
for client devices 2-5
for infrastructure devices 2-5
Smart Card or other Certificate Properties window - Windows XP E-11
software
compatibility with Cisco Aironet client adapters 3-2
installing 3-2 to 3-12
procedures 9-3 to 9-9
uninstalling 9-6
upgrading 9-3 to 9-5
software components of client adapter 1-4
specifications
physical A-2
power A-6
radio A-2 to A-6
regulatory compliance A-6
safety A-6
spread spectrum 1-3
SSID, viewing 4-3, 4-5, 7-7, 8-3, 8-11
SSID1 parameter 5-4
SSID2 parameter 5-4
SSID3 parameter 5-4
Start Test button 10-5
static WEP
disabling 5-34
enabling 5-22 to 5-23
with open authentication, setting on client and access point 5-19
with shared key authentication, setting on client and access point 5-19
static WEP keys
guidelines for entering
in ADU 5-23
in Windows XP E-9
overview 5-14 to 5-15, E-2
selecting transmit key 5-23
size of 5-22
statistics
 method of calculation 7-11
 receive 7-12, 7-13 to 7-14
 transmit 7-12, 7-13
 viewing 7-11 to 7-14
status of client adapter
 in ADU Advanced Status window 7-7 to 7-10
 in ADU Current Status window 7-4 to 7-6
 in ASTU Connection Status window 8-9 to 8-11
 in ASTU Tool Tip window 8-4
 in Windows XP E-18
Stop Test button 10-5
system requirements 2-4

Troubleshooting

ADU menu option 10-3
ASTU menu option 8-6, 10-3
button 10-3
troubleshooting information, accessing 10-2
troubleshooting utility
 saving detailed report to text file 10-7
 using 10-3 to 10-7
Troubleshooting Utility window
 detailed report 10-6
 initial window 10-4
 with test results 10-5

U
unicast packets
 number received 7-12
 number transmitted 7-12
uninstalling client adapter software 9-6
unpacking the client adapter 2-3
Unplug or Eject Hardware icon (Windows) 9-2
upgrading client adapter software 9-3 to 9-5
up time, status of 7-10
Use Auto Profile Selection, ASTU menu option 8-8
Use Machine Information For Domain Logon check box
 PEAP (EAP-GTC) 5-30
 PEAP (EAP-MSCHAP V2) 5-32
Use Saved User Name and Password option 5-26
Use Temporary User Name and Password option 5-26
Use Windows to configure my wireless network settings parameter - Windows XP E-6
Use Windows User Name and Password option 5-26

V
View Report button 10-5
<table>
<thead>
<tr>
<th>W</th>
<th>warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined xi to xii</td>
<td></td>
</tr>
<tr>
<td>dipole antenna 2-2, B-3</td>
<td></td>
</tr>
<tr>
<td>explosive device proximity 2-2, B-2</td>
<td></td>
</tr>
<tr>
<td>laptop users 2-3, B-4 to B-6</td>
<td></td>
</tr>
<tr>
<td>WEP</td>
<td>keys</td>
</tr>
<tr>
<td>additional security features 5-18</td>
<td></td>
</tr>
<tr>
<td>defined 5-14, E-2</td>
<td></td>
</tr>
<tr>
<td>entry method 5-22</td>
<td></td>
</tr>
<tr>
<td>size of 5-14, E-2</td>
<td></td>
</tr>
<tr>
<td>types of 5-14, E-2</td>
<td></td>
</tr>
<tr>
<td>status of 7-5</td>
<td></td>
</tr>
<tr>
<td>WEP key hashing, described 5-18</td>
<td></td>
</tr>
<tr>
<td>WEP option, in Windows XP E-8</td>
<td></td>
</tr>
<tr>
<td>Wi-Fi Protected Access (WPA)</td>
<td>described 5-16, E-4</td>
</tr>
<tr>
<td>enabling in Windows XP E-8</td>
<td></td>
</tr>
<tr>
<td>enabling with EAP-TLS in ADU 5-27</td>
<td></td>
</tr>
<tr>
<td>enabling with LEAP in ADU 5-25</td>
<td></td>
</tr>
<tr>
<td>enabling with PEAP (EAP-GTC) in ADU 5-29</td>
<td></td>
</tr>
<tr>
<td>enabling with PEAP (EAP-MSCHAP V2) in ADU 5-31</td>
<td></td>
</tr>
<tr>
<td>software required E-4</td>
<td></td>
</tr>
<tr>
<td>Windows 2000</td>
<td>disabling Microsoft 802.1X supplicant 10-8</td>
</tr>
<tr>
<td>resolving resource conflicts 10-9 to 10-10</td>
<td></td>
</tr>
<tr>
<td>Windows Wireless Network Connection icon, shows unavailable connection 10-12</td>
<td></td>
</tr>
<tr>
<td>Windows XP</td>
<td>associating to an access point E-18</td>
</tr>
<tr>
<td>configuring client adapter through E-5 to E-10</td>
<td></td>
</tr>
<tr>
<td>disabling Microsoft Wireless Configuration Manager 10-8</td>
<td></td>
</tr>
<tr>
<td>enabling EAP-TLS authentication E-10 to E-12</td>
<td></td>
</tr>
<tr>
<td>enabling PEAP authentication E-13 to E-18</td>
<td></td>
</tr>
<tr>
<td>feature comparison to ADU 3-9 to 3-10</td>
<td></td>
</tr>
<tr>
<td>making a configuration decision 3-9 to 3-10</td>
<td></td>
</tr>
<tr>
<td>resolving resource conflicts 10-10</td>
<td></td>
</tr>
<tr>
<td>security features E-2 to E-4</td>
<td></td>
</tr>
<tr>
<td>viewing status of client adapter E-18</td>
<td></td>
</tr>
<tr>
<td>wireless infrastructure 1-6</td>
<td></td>
</tr>
<tr>
<td>wireless mode, current 4-5, 7-6</td>
<td></td>
</tr>
<tr>
<td>Wireless Mode parameter 5-9</td>
<td></td>
</tr>
<tr>
<td>Wireless Mode When Starting Ad Hoc Network parameter 5-9</td>
<td></td>
</tr>
<tr>
<td>Wireless Network Connection Properties window (Wireless Networks Tab) - Windows XP E-6</td>
<td></td>
</tr>
<tr>
<td>Wireless Network Connection Status window - Windows XP E-18</td>
<td></td>
</tr>
<tr>
<td>Wireless Network Properties window (Association Tab) - Windows XP E-7</td>
<td></td>
</tr>
<tr>
<td>Wireless Network Properties window (Authentication Tab) - Windows XP E-10, E-13</td>
<td></td>
</tr>
<tr>
<td>workstation</td>
<td>defined 1-2</td>
</tr>
<tr>
<td>in wireless infrastructure 1-6</td>
<td></td>
</tr>
<tr>
<td>WPA</td>
<td>See Wi-Fi Protected Access (WPA)</td>
</tr>
<tr>
<td>WPA EAP Type parameter 5-25, 5-27, 5-29, 5-31</td>
<td></td>
</tr>
<tr>
<td>WPA option</td>
<td>in ADU 5-25, 5-27, 5-29, 5-31</td>
</tr>
<tr>
<td>in Windows XP E-8</td>
<td></td>
</tr>
<tr>
<td>WPA passphrase</td>
<td>described 5-16, E-4</td>
</tr>
<tr>
<td>disabling 5-34</td>
<td></td>
</tr>
<tr>
<td>enabling 5-23 to 5-24</td>
<td></td>
</tr>
<tr>
<td>guidelines for entering 5-24</td>
<td></td>
</tr>
<tr>
<td>setting on client and access point 5-19</td>
<td></td>
</tr>
<tr>
<td>WPA Passphrase option 5-23</td>
<td></td>
</tr>
<tr>
<td>WPA Pre-Shared Key</td>
<td></td>
</tr>
<tr>
<td>See WPA passphrase</td>
<td></td>
</tr>
<tr>
<td>WPA-PSK</td>
<td>described 5-16, E-4</td>
</tr>
<tr>
<td>WPA-PSK option, in Windows XP E-8</td>
<td></td>
</tr>
</tbody>
</table>