Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

- Turn the television or radio antenna until the interference stops.
- Move the equipment to one side or the other of the television or radio.
- Move the equipment farther away from the television or radio.
- Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCSP, the Cisco Square Bridge logo, Cisco Unity, Follow Me Browsing, FormShare, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and iQuick Study are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream, Linksys, MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, Registrar, ScriptShare, SlideCast, SMARTnet, StrataView Plus, SwitchProbe, TeleRouter, The Fastest Way to Increase Your Internet Quotient, TransPath, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0406R)

Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows
Copyright © 2001-2004 Cisco Systems, Inc.
All rights reserved.
CONTENTS
Preface xi
Audience xii
Purpose xii
Organization xii
Conventions xiii
Related Publications xv
Obtaining Documentation xv
Cisco.com xv
Ordering Documentation xvi
Documentation Feedback xvi
Obtaining Technical Assistance xvi
Cisco TAC Website xvi
Opening a TAC Case xvii
TAC Case Priority Definitions xvii
Obtaining Additional Publications and Information xvii

CHAPTER 1
Product Overview 1-1
Introduction to the Client Adapters 1-2
Terminology 1-3
Hardware Components 1-3
Radio 1-3
Radio Antenna 1-4
LEDs 1-4
Software Components 1-5
Radio Firmware 1-5
Driver 1-5
Client Utilities 1-6
Overview of ACU 1-6
Buttons on the ACU Screens 1-7
Network Configurations Using Client Adapters 1-8
Ad Hoc Wireless LAN 1-8
Wireless Infrastructure with Workstations Accessing a Wired LAN 1-9
CHAPTER 2
Preparing for Installation 2-1
Safety information 2-2
FCC Safety Compliance Statement 2-2
Safety Guidelines 2-2
Warnings 2-3
Unpacking the Client Adapter 2-3
Package Contents 2-3
System Requirements 2-4
Site Requirements 2-5
For Infrastructure Devices 2-5
For Client Devices 2-6

CHAPTER 3
Installing the Client Adapter 3-1
Installing or Upgrading the Client Adapter Software 3-2
Verifying Installation 3-14
Deciding How to Configure Your Client Adapter (Windows XP Only) 3-14
Selecting Among Several Installed Client Adapters 3-15

CHAPTER 4
Using the Profile Manager 4-1
Overview of Profile Manager 4-2
Opening Profile Manager 4-2
Creating a New Profile 4-3
Including a Profile in Auto Profile Selection 4-4
Selecting the Active Profile 4-6
Modifying a Profile 4-7
Editing a Profile 4-7
Setting a Profile to Default Values 4-8
Renaming a Profile 4-8
Deleting a Profile 4-8
Importing and Exporting Profiles 4-9
Importing a Profile 4-9
Exporting a Profile 4-9
Granting or Denying Access to Non-Administrative Users 4-10
CHAPTER 5

Configuring the Client Adapter 5-1

Overview 5-2
Setting System Parameters 5-3
Setting RF Network Parameters 5-7
Setting Advanced Infrastructure Parameters 5-14
Setting Advanced Ad Hoc Parameters 5-18
Setting Network Security Parameters 5-21
 Setting the Allow Association to Mixed Cells Parameter 5-22
Overview of Security Features 5-23
 Static WEP Keys 5-23
 EAP (with Dynamic WEP Keys) 5-23
 Wi-Fi Protected Access (WPA) 5-27
 Fast Roaming (CCKM) 5-28
 Reporting Access Points that Fail LEAP or EAP-FAST Authentication 5-29
 Additional WEP Key Security Features 5-29
Synchronizing Security Features 5-31
Using Static WEP 5-35
 Entering a New Static WEP Key 5-35
 Overwriting an Existing Static WEP Key 5-37
 Disabling Static WEP 5-38
Enabling LEAP 5-38
Enabling EAP-FAST 5-42
Enabling Host-Based EAP 5-49
 Enabling Host-Based EAP Authentication in ACU 5-50
 Enabling WPA (Optional) 5-51
 Enabling EAP Authentication in Windows 5-54
Disabling LEAP, EAP-FAST, or Host-Based EAP 5-61
 Disabling LEAP or EAP-FAST 5-61
 Disabling Host-Based EAP 5-61
Enabling Wi-Fi Multimedia 5-62
 Enabling the QoS Packet Scheduler on Windows 2000 5-62
 Enabling the QoS Packet Scheduler on Windows XP 5-65
Using EAP Authentication

Overview 6-2

Using LEAP or EAP-FAST 6-2

Using LEAP or EAP-FAST with the Windows Username and Password 6-4
 After Profile Selection or Card Insertion 6-4
 After a Reboot or Logon 6-4
 After Your LEAP Credentials Expire 6-6
 After Your EAP-FAST Credentials Expire 6-6

Using LEAP or EAP-FAST with an Automatically Prompted Login 6-7
 After Profile Selection or Card Insertion 6-7
 After a Reboot or Logon 6-9
 After Your LEAP Credentials Expire 6-11
 After Your EAP-FAST Credentials Expire 6-12

Using LEAP or EAP-FAST with a Manually Prompted Login 6-13
 After Profile Selection 6-13
 After a Reboot, Logon, or Card Insertion 6-16
 After Your LEAP Credentials Expire 6-18
 After Your EAP-FAST Credentials Expire 6-19

Using LEAP or EAP-FAST with a Saved Username and Password 6-19
 After Profile Selection or Card Insertion 6-19
 After a Reboot or Logon 6-20
 After Your LEAP Credentials Expire 6-20
 After Your EAP-FAST Credentials Expire 6-21

Using EAP-TLS 6-22
 After Profile Selection or Card Insertion 6-22
 After a Reboot or Logon 6-22

Using PEAP 6-23
 After Profile Selection, Card Insertion, Reboot, or Logon 6-23
 Windows NT or 2000 Domain Databases or LDAP Databases Only 6-23
 OTP Databases Only 6-24
 After Your Password Expires (Windows NT or 2000 Domain Databases Only) 6-26
 After Your PIN Expires (OTP Databases Only) 6-27

Using EAP-SIM 6-28
 If You Are Prompted for the PIN 6-28
 If the PIN Is Stored on the Computer 6-29

Restarting the Authentication Process 6-29
CHAPTER 7
Performing Diagnostics 7-1
Overview of ACU Diagnostic Tools 7-2
Setting Parameters that Affect ACU Diagnostic Tools 7-3
Viewing the Current Status of Your Client Adapter 7-4
Viewing Statistics for Your Client Adapter 7-12
Viewing the Link Status Meter 7-16
Running an RF Link Test 7-18

CHAPTER 8
Using the Aironet Client Monitor (ACM) 8-1
Overview of ACM 8-2
The ACM Icon 8-2
Tool Tip Window 8-3
Pop-Up Menu 8-5
About 8-5
Exit 8-6
Launch Aironet Client Utility 8-6
Troubleshooting 8-6
Preferences 8-6
Turn Radio On/Off 8-7
Reauthenticate 8-8
Select Profile 8-8
Show Connection Status 8-9

CHAPTER 9
Routine Procedures 9-1
Inserting and Removing a Client Adapter 9-2
Inserting a Client Adapter 9-2
Inserting a PC Card or PC-Cardbus Card 9-2
Inserting a PCI Card 9-3
Removing a Client Adapter 9-4
Removing a PC Card or PC-Cardbus Card 9-4
Removing a PCI Card 9-5
Client Adapter Software Procedures 9-5
Finding the Install Wizard Version 9-5
Upgrading the Client Adapter Software 9-6
Uninstalling the Client Adapter Software 9-6
Finding the Driver Version 9-8
Contents

Firmware Procedures 9-8
- Finding the Firmware Version 9-8
- Upgrading the Firmware 9-8
- Preventing the Driver from Upgrading the Firmware 9-11

ACU Procedures 9-12
- Opening ACU 9-12
- Exiting ACU 9-13
- Modifying ACU Installation Settings 9-13
- Finding the Version of ACU 9-14
- Adding the ACU Icon to or Removing it from the Desktop 9-14
- Accessing Online Help 9-15

ACM Procedures 9-15
- Restarting the Client Adapter 9-15
- Turning Your Client Adapter’s Radio On or Off 9-16
- Turning Quiet Mode On or Off 9-16

CHAPTER 10 10-1

Troubleshooting 10-1
- Accessing the Latest Troubleshooting Information 10-2
- Interpreting the Indicator LEDs 10-2
- Troubleshooting the Client Adapter 10-3
 - Using the Troubleshooting Utility 10-4
 - Diagnosing Your Client Adapter’s Operation 10-4
 - Saving the Detailed Report to a Text File 10-6
 - Accessing Online Help 10-7
 - Client Adapter Recognition Problems 10-7
- Resolving Resource Conflicts 10-8
 - Resolving Resource Conflicts in Windows 2000 10-8
 - Resolving Resource Conflicts in Windows XP 10-9
- Problems Associating to an Access Point 10-9
- Problems Authenticating to an Access Point 10-10
- Problems Connecting to the Network 10-10
- Prioritizing Network Connections 10-10
- Parameters Missing from Profile Manager Screen 10-10
- Windows Wireless Network Connection Icon Shows Unavailable Connection (Windows XP Only) 10-11
- Creating Strong Passwords 10-11
- Error Messages 10-12
 - General Error Messages 10-12
 - Installation Error Messages 10-16
Contents

Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows

OL-1394-09

LEAP Authentication Error Messages 10-18
EAP-FAST Authentication Error Messages 10-21
PEAP Authentication Error Messages 10-30
 For All PEAP-Supported Databases 10-30
 For Windows NT or 2000 Domain Databases 10-31
 For All OTP Databases 10-31
 For OTP Databases Using Secure Computing SofToken Version 1.3 10-32
 For OTP Databases Using Secure Computing SofToken II Version 2.0 10-34
 For OTP Databases Using RSA SecurID Version 2.5 10-34
EAP-SIM Authentication Error Messages 10-35

APPENDIX A

Technical Specifications A-1

APPENDIX B

Translated Safety Warnings B-1
 Explosive Device Proximity Warning B-2
 Antenna Installation Warning B-3
 Warning for Laptop Users B-4

APPENDIX C

Declarations of Conformity and Regulatory Information C-1
 Manufacturer’s Federal Communication Commission Declaration of Conformity Statement C-2
 Department of Communications – Canada C-3
 Canadian Compliance Statement C-3
 European Community, Switzerland, Norway, Iceland, and Liechtenstein C-4
 Declaration of Conformity with Regard to the R&TTE Directive 1999/5/EC C-4
 2.4-GHz Client Adapters C-5
 5-GHz Client Adapters C-6
 Declaration of Conformity for RF Exposure C-6
 Guidelines for Operating Cisco Aironet Wireless LAN Client Adapters in Japan C-6
 Japanese Translation C-6
 English Translation C-7
 Administrative Rules for Cisco Aironet Wireless LAN Client Adapters in Taiwan C-7
 2.4- and 5-GHz Client Adapters C-7
 Chinese Translation C-7
 English Translation C-8
 5-GHz Client Adapters C-8
 Chinese Translation C-8
 English Translation C-8
Declaration of Conformity Statements C-8
Declaration of Conformity Statements for European Union Countries C-8

APPENDIX D
Channels, Power Levels, and Antenna Gains D-1
Channels D-2
IEEE 802.11a D-2
IEEE 802.11b D-3
Maximum Power Levels and Antenna Gains D-4
IEEE 802.11a D-4
IEEE 802.11b D-4

APPENDIX E
Configuring the Client Adapter through the Windows XP Operating System E-1
Overview E-2
Overview of Security Features E-2
Static WEP Keys E-2
EAP (with Dynamic WEP Keys) E-2
Wi-Fi Protected Access (WPA) E-4
Configuring the Client Adapter E-5
Enabling EAP-TLS Authentication E-10
Enabling PEAP Authentication E-13
Enabling EAP-SIM Authentication E-16
Enabling Wi-Fi Multimedia E-19
Associating to an Access Point Using Windows XP E-21
Viewing the Current Status of Your Client Adapter E-21

APPENDIX F
Performing a Site Survey F-1
Overview F-2
Guidelines F-2
Additional Information F-2
Specifying Signal Strength Units F-3
Using Passive Mode F-3
Using Active Mode F-7
Forcing the Client Adapter to Reassociate F-13

GLOSSARY
INDEX
Preface

The preface provides an overview of the Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows, references related publications, and explains how to obtain other documentation and technical assistance, if necessary.

The following topics are covered in this section:

- Audience, page xii
- Purpose, page xii
- Organization, page xii
- Conventions, page xiii
- Related Publications, page xv
- Obtaining Documentation, page xv
- Obtaining Technical Assistance, page xvi
- Obtaining Additional Publications and Information, page xvii
Audience

This publication is for the person responsible for installing, configuring, and maintaining a Cisco Aironet 350 or CB20A Wireless LAN Client Adapter on a computer running Microsoft Windows 2000 or XP. This person should be familiar with computing devices and with network terms and concepts.

Purpose

This publication describes the Cisco Aironet 350 and CB20A client adapters and explains how to install, configure, and troubleshoot them.

Note

This version of the Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows pertains specifically to versions of the client adapter software that are installed through an Install Wizard file. If you are using, installing, or upgrading to versions of client adapter software that do not use the Install Wizard, refer to version OL-1394-04 of this manual for information and instructions.

Note

Install Wizard version 1.3 or later and its software components are not supported for use with Cisco Aironet 340 series client adapters or Windows 98, 98 SE, NT, and Me.

Organization

This publication contains the following chapters:

- **Chapter 1, “Product Overview,”** describes the client adapters and their hardware and software components and illustrates two common network configurations.
- **Chapter 2, “Preparing for Installation,”** provides information that you need to know before installing a client adapter, such as safety information and system requirements.
- **Chapter 3, “Installing the Client Adapter,”** provides instructions for installing client adapter software.
- **Chapter 4, “Using the Profile Manager,”** explains how to use the ACU profile manager feature to create and manage profiles for your client adapter.
- **Chapter 5, “Configuring the Client Adapter,”** explains how to change the configuration parameters for a specific profile.
- **Chapter 6, “Using EAP Authentication,”** explains the sequence of events that occurs and the actions you must take when a profile that is set for EAP authentication is selected for use.
- **Chapter 7, “Performing Diagnostics,”** explains how to use ACU to perform user-level diagnostics.
Conventions

This publication uses the following conventions to convey instructions and information:

- Commands and keywords are in **boldface**.
- Variables are in *italics*.
- Configuration parameters are capitalized.
- Notes, cautions, and warnings use the following conventions and symbols:

 Note
 Means *reader take note*. Notes contain helpful suggestions or references to materials not contained in this manual.
Caution

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Warning

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. (To see translations of the warnings that appear in this publication, refer to the appendix “Translated Safety Warnings.”)
Related Publications

For more information about Cisco Aironet 350 and CB20A Wireless LAN Client Adapters for Windows, refer to the following publications:

- Release Notes for Cisco Aironet Client Adapter Install Wizard for Windows
- Release Notes for Cisco Aironet Client Adapter Firmware

For more information about related Cisco Aironet products, refer to the publications for your infrastructure device. You can access Cisco Aironet technical documentation at this URL:

Obtaining Documentation

Cisco documentation and additional literature are available on Cisco.com. Cisco also provides several ways to obtain technical assistance and other technical resources. These sections explain how to obtain technical information from Cisco Systems.

Cisco.com

You can access the most current Cisco documentation on the World Wide Web at this URL:

http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:

http://www.cisco.com

International Cisco websites can be accessed from this URL:

Ordering Documentation

You can find instructions for ordering documentation at this URL:

You can order Cisco documentation in these ways:

• Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from
 the Ordering tool:

• Nonregistered Cisco.com users can order documentation through a local account representative by
calling Cisco Systems Corporate Headquarters (California, USA) at 408 526-7208 or, elsewhere in
North America, by calling 800 553-NETS (6387).

Documentation Feedback

You can submit e-mail comments about technical documentation to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front cover of your
document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

For all customers, partners, resellers, and distributors who hold valid Cisco service contracts, the Cisco
Technical Assistance Center (TAC) provides 24-hour-a-day, award-winning technical support services,
online and over the phone. Cisco.com features the Cisco TAC website as an online starting point for
technical assistance. If you do not hold a valid Cisco service contract, please contact your reseller.

Cisco TAC Website

The Cisco TAC website provides online documents and tools for troubleshooting and resolving technical
issues with Cisco products and technologies. The Cisco TAC website is available 24 hours a day, 365
days a year. The Cisco TAC website is located at this URL:
http://www.cisco.com/tac

Accessing all the tools on the Cisco TAC website requires a Cisco.com user ID and password. If you
have a valid service contract but do not have a login ID or password, register at this URL:
Opening a TAC Case

Using the online TAC Case Open Tool is the fastest way to open P3 and P4 cases. (P3 and P4 cases are those in which your network is minimally impaired or for which you require product information.) After you describe your situation, the TAC Case Open Tool automatically recommends resources for an immediate solution. If your issue is not resolved using the recommended resources, your case will be assigned to a Cisco TAC engineer. The online TAC Case Open Tool is located at this URL:

http://www.cisco.com/tac/caseopen

For P1 or P2 cases (P1 and P2 cases are those in which your production network is down or severely degraded) or if you do not have Internet access, contact Cisco TAC by telephone. Cisco TAC engineers are assigned immediately to P1 and P2 cases to help keep your business operations running smoothly.

To open a case by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553-2447

For a complete listing of Cisco TAC contacts, go to this URL:

TAC Case Priority Definitions

To ensure that all cases are reported in a standard format, Cisco has established case priority definitions.

Priority 1 (P1)—Your network is “down” or there is a critical impact to your business operations. You and Cisco will commit all necessary resources around the clock to resolve the situation.

Priority 2 (P2)—Operation of an existing network is severely degraded, or significant aspects of your business operation are negatively affected by inadequate performance of Cisco products. You and Cisco will commit full-time resources during normal business hours to resolve the situation.

Priority 3 (P3)—Operational performance of your network is impaired, but most business operations remain functional. You and Cisco will commit resources during normal business hours to restore service to satisfactory levels.

Priority 4 (P4)—You require information or assistance with Cisco product capabilities, installation, or configuration. There is little or no effect on your business operations.

Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

- Cisco Marketplace provides a variety of Cisco books, reference guides, and logo merchandise. Go to this URL to visit the company store:
 http://www.cisco.com/go/marketplace/

- The Cisco Product Catalog describes the networking products offered by Cisco Systems, as well as ordering and customer support services. Access the Cisco Product Catalog at this URL:
 http://cisco.com/univercd/cc/td/doc/pcat/
• *Cisco Press* publishes a wide range of general networking, training and certification titles. Both new and experienced users will benefit from these publications. For current Cisco Press titles and other information, go to Cisco Press online at this URL:

 http://www.ciscopress.com

• *Packet* magazine is the Cisco quarterly publication that provides the latest networking trends, technology breakthroughs, and Cisco products and solutions to help industry professionals get the most from their networking investment. Included are networking deployment and troubleshooting tips, configuration examples, customer case studies, tutorials and training, certification information, and links to numerous in-depth online resources. You can access Packet magazine at this URL:

 http://www.cisco.com/packet

• *iQ Magazine* is the Cisco bimonthly publication that delivers the latest information about Internet business strategies for executives. You can access iQ Magazine at this URL:

 http://www.cisco.com/go/iqmagazine

• *Internet Protocol Journal* is a quarterly journal published by Cisco Systems for engineering professionals involved in designing, developing, and operating public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

 http://www.cisco.com/ipj

• Training—Cisco offers world-class networking training. Current offerings in network training are listed at this URL:

Product Overview

This chapter describes the Cisco Aironet 350 and CB20A Wireless LAN Client Adapters and illustrates their role in a wireless network.

The following topics are covered in this chapter:
- Introduction to the Client Adapters, page 1-2
- Hardware Components, page 1-3
- Software Components, page 1-5
- Network Configurations Using Client Adapters, page 1-8
Introduction to the Client Adapters

The Cisco Aironet 350 and CB20A Wireless LAN Client Adapters are radio modules that provide transparent wireless data communications between fixed, portable, or mobile devices and other wireless devices or a wired network infrastructure. The client adapters are fully compatible when used in devices supporting Plug-and-Play (PnP) technology.

The primary function of the client adapters is to transfer data packets transparently through the wireless infrastructure through an access point connected to a wired LAN. The adapters operate similarly to a standard network product except that the cable is replaced with a radio connection and an access point is required to make the connection to the wire. No special wireless networking functions are required, and all existing applications that operate over a network can operate using the adapters.

This document covers the five client adapters described in Table 1-1.

Table 1-1 Client Adapter Types

<table>
<thead>
<tr>
<th>Client Adapter</th>
<th>Model Number</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC card</td>
<td>AIR-PCM35x</td>
<td>An IEEE 802.11b-compliant 2.4-GHz 11-Mbps PCMCIA card radio module that can be inserted into any device equipped with an external Type II or Type III PC card slot. Host devices can include laptops, notebook computers, personal digital assistants, and handheld or portable devices.</td>
<td></td>
</tr>
<tr>
<td>LM card</td>
<td>AIR-LMC35x</td>
<td>An IEEE 802.11b-compliant 2.4-GHz 11-Mbps PCMCIA card radio module that is usually preinstalled in a device equipped with an internal Type II or Type III PC card slot. Host devices usually include handheld or portable devices.</td>
<td></td>
</tr>
<tr>
<td>PCI card</td>
<td>AIR-PCI35x</td>
<td>An IEEE 802.11b-compliant 2.4-GHz 11-Mbps client adapter card radio module that can be inserted into any device equipped with an empty PCI expansion slot, such as a desktop personal computer.</td>
<td></td>
</tr>
<tr>
<td>Mini PCI card</td>
<td>AIR-MPI350</td>
<td>An IEEE 802.11b-compliant 2.4-GHz 11-Mbps client adapter card radio module that is preinstalled in a device equipped with an internal Type IIA mini PCI card slot, such as a laptop computer.</td>
<td></td>
</tr>
<tr>
<td>PC-Cardbus card</td>
<td>AIR-CB20A</td>
<td>An IEEE 802.11a-compliant 5-GHz 54-Mbps client adapter card radio module with a Cardbus interface that can be inserted into any device equipped with an external Type II or Type III Cardbus slot. Host devices can include laptops and notebook computers.</td>
<td></td>
</tr>
</tbody>
</table>
Note

In the first three product model numbers, the x indicates the wired equivalent privacy (WEP) level of the card, where 0 = no WEP capability, 1 = 40-bit WEP, and 2 = 128-bit WEP. If the last two product model numbers contain K9, the card is 128-bit WEP capable.

Note

Install Wizard version 1.3 or later and its software components are not supported for use with Cisco Aironet 340 series client adapters or Windows 98, 98 SE, NT, and Me.

Terminology

The following terms are used throughout this document:

- **client adapter**—Refers to all five types of adapters.
- **PC card, LM card, PCI card, mini PCI card, or PC-Cardbus card**—Refers to a specific adapter.
- **workstation (or station)**—Refers to a computing device with an installed client adapter.
- **infrastructure device**—Refers to a device that connects client adapters to a wired LAN, such as an access point, bridge, or base station. Throughout this document, *access point* is used to represent infrastructure devices in general.

Hardware Components

The client adapter has three major hardware components: a radio, a radio antenna, and two LEDs.

Radio

Different radios are used for the 2.4-GHz and 5-GHz client adapters:

- The Cisco Aironet 350 series PC, LM, PCI, and mini PCI cards are IEEE 802.11b-compliant client adapters. They contain a direct-sequence spread spectrum (DSSS) radio that operates in the 2.4-GHz Industrial Scientific Medical (ISM) license-free band. The 100-mW radio transmits data over a half-duplex radio channel operating at up to 11 Mbps. These cards operate with other IEEE 802.11b-compliant client devices in ad hoc (or peer-to-peer) mode or with Cisco Aironet 340, 350, 1100, and 1200 Series Access Points (with a 2.4-GHz radio) and other IEEE 802.11b-compliant infrastructure devices in infrastructure mode. They are approved for indoor and outdoor use.

 DSSS technology distributes a radio signal over a wide range of frequencies and then returns the signal to the original frequency range at the receiver. The benefit of this technology is its ability to protect the data transmission from interference. For example, if a particular frequency encounters noise or interference or both, enough redundancy is built into the signal on other frequencies that the client adapter usually will still be successful in its transmission.

- The Cisco Aironet AIR-CB20A PC-Cardbus card is an IEEE 802.11a-compliant client adapter. It contains an orthogonal frequency division multiplexing (OFDM) radio that operates in the Unlicensed National Information Infrastructure (UNII) 1 and UNII 2 license-free bands located in the lower 5-GHz portion of the radio frequency spectrum. The 20-mW radio transmits data over a half-duplex radio channel operating at up to 54 Mbps. This card interoperates with other IEEE 802.11a-compliant client devices in ad hoc mode or with Cisco Aironet 1200 Series Access Points...
(with a 5-GHz radio) and other IEEE 802.11a-compliant infrastructure devices in infrastructure mode. It is approved for indoor use only except in the United States, which allows for outdoor use on channels 52 through 64.

Radio Antenna

The type of antenna used depends on your client adapter:

- **PC cards** have an integrated, permanently attached diversity antenna. The benefit of the diversity antenna system is improved coverage. The system works by allowing the card to switch and sample between its two antenna ports in order to select the optimum port for receiving data packets. As a result, the card has a better chance of maintaining the radio frequency (RF) connection in areas of interference. The antenna is housed within the section of the card that hangs out of the PC card slot when the card is installed.

- **LM cards** are shipped without an antenna; however, an antenna can be connected through the card’s external connector.

- **PCI cards** are shipped with a 2-dBi dipole antenna that attaches to the card’s antenna connector. However, other types of antennas may be used. PCI cards can be operated through only the primary (or right) antenna port.

- **Mini PCI cards** are designed to be used with either one or two antennas, which connect to the card’s two antenna connectors. If two antennas are used, the radio automatically selects the antenna that presents the best RF signal. If only one antenna is used, the radio finds and uses it regardless of which connector it is plugged into.

- **PC-Cardbus cards** have an integrated, permanently attached non-diversity antenna that contains two antenna ports, one for transmitting and one for receiving. The card cannot switch and sample between the ports. The antenna is housed within the section of the card that hangs out of the Cardbus slot when the card is installed.

Note

Refer to the Antenna Mode (Transmit and Receive) parameters in Table 5-4 and Table 5-5 for information on setting the client adapter’s antenna mode.

Note

External antennas used in combination with a power setting resulting in a radiated power level above 100 mW equivalent isotropic radiated power (EIRP) are not allowed for use within the European community and other countries that have adopted the European R&TTE directive or the CEPT recommendation Rec 70.03 or both. For more details on legal combinations of power levels and antennas in those countries, refer to the “Declaration of Conformity with Regard to the R&TTE Directive 1999/5/EC” section on page C-4 and the “Maximum Power Levels and Antenna Gains” section on page D-4.

LEDs

The client adapters have two LEDs that glow or blink to indicate the status of the adapter or to convey error messages. Refer to Chapter 10 for an interpretation of the LED codes.

Note

Mini PCI cards do not have LEDs.
Software Components

The client adapter has three major software components: radio firmware, a driver, and client utilities. These components are installed together by running a single Install Wizard file that is available from Cisco.com. This file can be run on Windows 2000 or XP and can be used with any of the following client adapter types:

- 350 series PC, LM, PCI, and mini PCI cards
- PC-Cardbus (CB20A) cards

Note
Install Wizard version 1.3 or later and its software components are not supported for use with Cisco Aironet 340 series client adapters or Windows 98, 98 SE, NT, and Me.

Chapter 3 provides instructions on using the Install Wizard to install or upgrade these software components.

Prior to the release of the Install Wizard file, each software component had to be installed separately. This version of the Cisco Aironet Wireless LAN Client Adapters Installation and Configuration Guide for Windows pertains specifically to versions of the software that are available through the Install Wizard. If you are using, installing, or upgrading to versions of client adapter software that do not use the Install Wizard, refer to version OL-1394-04 of this manual for information and instructions.

Radio Firmware

The firmware controls the client adapter’s radio. The client adapter is shipped with the firmware installed in Flash memory. However, Cisco recommends that you always use the latest version. You can upgrade the client adapter’s firmware in three ways:

- Through the Install Wizard—The Install Wizard automatically upgrades the client adapter’s firmware to the version included in the Install Wizard file.
- Through the driver—The driver included in the Install Wizard file is also bundled with client adapter firmware. Each time you insert a client adapter or reboot your computer, the driver loads and may install the firmware with which it is bundled (if that firmware is newer than the firmware that is currently installed in the adapter). You can use the Install Wizard’s Disable Firmware Checking parameter or ACU’s Automatically Load New Firmware When NDIS Driver Is Updated parameter to specify whether the driver upgrades the firmware. Refer to page 3-6 and page 9-11 for more information.
- Through ACU—The Load Firmware icon or Load New Firmware menu option in ACU enables you to upgrade the client adapter’s firmware from an image (*.img) file that contains only firmware. Refer to the “Upgrading the Firmware” section on page 9-8 for more information.

Driver

The driver provides an interface between a computer running a Windows operating system and the client adapter, thereby enabling Windows and the applications it runs to communicate with the adapter. The driver must be installed before the adapter can be used.
Client Utilities

Two client utilities are available for use with Cisco Aironet client adapters: Aironet Client Utility (ACU) and Aironet Client Monitor (ACM). These utilities are optional applications that interact with the radio firmware to adjust client adapter settings and display information about the adapter.

ACU enables you to create configuration profiles for your client adapter and perform user-level diagnostics. Because ACU performs a variety of functions, it is documented by function throughout this manual. However, an overview of the utility is provided below to familiarize you with its interface.

ACM, which is accessible from an icon in the Windows system tray, provides a small subset of the features available through ACU. Specifically, it enables you to access status information about your client adapter and perform basic tasks. Chapter 8 provides detailed information and instructions on using ACM.

Note

If your computer is running Windows XP, you can configure your client adapter through the Windows operating system instead of through ACU. Refer to Appendix E for information. However, ACU is recommended for configuring the client adapter.

Overview of ACU

The Aironet Client Utility screen (see Figure 1-1) is the ACU primary screen.

Figure 1-1 Aironet Client Utility Screen
Chapter 1 Product Overview

Software Components

The title bar at the top of the Aironet Client Utility screen shows the profile that is being used by the client adapter.

The status bar at the bottom of the Aironet Client Utility screen reflects the current state of your client adapter. The following states are possible, where radio_name is the client adapter type and ap_name is the configured name of an access point:

- Your radio_name is Associated to ap_name
- Your radio_name is Not Associated!
- Authentication Started with ap_name
- Your radio_name is Authenticated to ap_name
- Authentication Failed with ap_name
- Your radio_name is in AdHoc Mode
- Your radio_name is being loaded with new firmware!
- The radio in your radio_name is turned OFF!
- Unable to read the status from your Wireless LAN Adapter!
- Your radio_name has a problem!

Note: Aironet Extensions must be enabled on access points running Cisco IOS Release 12.2(4)JA or later in order for the ap_name to appear in the status bar.

The information shown in the status bar is updated once per second.

The right side of the status bar shows the current time of day. If you set the clock to display seconds in the Aironet Client Utility Preferences screen, the time includes seconds in addition to hours and minutes.

Note: To enable the clock to display seconds, open ACU, click the Preferences icon or choose Preferences from the Options drop-down menu, check the Display Seconds on Clock check box, and click OK.

Buttons on the ACU Screens

The buttons on the ACU screens are used to perform specific functions. Table 1-2 describes the most common buttons.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>Saves any changes without exiting the screen</td>
</tr>
<tr>
<td>Cancel</td>
<td>Exits the screen without saving any changes</td>
</tr>
<tr>
<td>Defaults</td>
<td>Displays the default value of each parameter</td>
</tr>
<tr>
<td>Help</td>
<td>Provides information on the screen and its parameters</td>
</tr>
<tr>
<td>OK</td>
<td>Saves any changes and exits the screen</td>
</tr>
<tr>
<td>Start</td>
<td>Initiates a test</td>
</tr>
<tr>
<td>Stop</td>
<td>Stops a test that is running</td>
</tr>
</tbody>
</table>
Network Configurations Using Client Adapters

Client adapters can be used in a variety of network configurations. In some configurations, access points provide connections to your network or act as repeaters to increase wireless communication range. The maximum communication range is based on how you configure your wireless network.

This section describes and illustrates the two most common network configurations:

- Ad hoc wireless local area network (LAN)
- Wireless infrastructure with workstations accessing a wired LAN

For examples of more complex network configurations involving client adapters and access points, refer to the documentation for your access point.

Note: Refer to Chapter 5 for information on setting the client adapter’s network mode.

Ad Hoc Wireless LAN

An ad hoc (or peer-to-peer) wireless LAN (see Figure 1-2) is the simplest wireless LAN configuration. In a wireless LAN using an ad hoc network configuration, all devices equipped with a client adapter can be linked together and communicate directly with each other. The use of an infrastructure device, such as an access point, is not required.

Figure 1-2 Ad Hoc Wireless LAN
Wireless Infrastructure with Workstations Accessing a Wired LAN

A microcellular network can be created by placing two or more access points on a LAN. Figure 1-3 shows a microcellular network with workstations accessing a wired LAN through several access points. This configuration is useful with portable or mobile stations because it allows them to be directly connected to the wired network even while moving from one microcell domain to another. This process is transparent, and the connection to the file server or host is maintained without disruption. The mobile station stays connected to an access point as long as it can. However, once the transfer of data packets needs to be retried or beacons are missed, the station automatically searches for and associates to another access point. This process is referred to as seamless roaming.

Figure 1-3 Wireless Infrastructure with Workstations Accessing a Wired LAN
Preparing for Installation

This chapter provides information that you need to know before installing a client adapter. The following topics are covered in this chapter:

- Safety information, page 2-2
- Unpacking the Client Adapter, page 2-3
- System Requirements, page 2-4
- Site Requirements, page 2-5
Safety information

Follow the guidelines in this section to ensure proper operation and safe use of the client adapter.

FCC Safety Compliance Statement

The FCC, with its action in ET Docket 96-8, has adopted a safety standard for human exposure to RF electromagnetic energy emitted by FCC-certified equipment. When used with approved Cisco Aironet antennas, Cisco Aironet products meet the uncontrolled environmental limits found in OET-65 and ANSI C95.1, 1991. Proper operation of this radio device according to the instructions in this publication will result in user exposure substantially below the FCC recommended limits.

Safety Guidelines

- Do not touch or move the antenna while the unit is transmitting or receiving.
- Do not hold any component containing a radio such that the antenna is very close to or touching any exposed parts of the body, especially the face or eyes, while transmitting.
- Do not operate the radio or attempt to transmit data unless the antenna is connected; otherwise, the radio may be damaged.
- High-gain, wall-mount, or mast-mount antennas are designed to be professionally installed and should be located at a minimum distance of 12 inches (30 cm) or more from the body of all persons. Please contact your professional installer, VAR, or antenna manufacturer for proper installation requirements.
- Use in specific environments:
 - The use of wireless devices in hazardous locations is limited to the constraints posed by the safety directors of such environments.
 - The use of wireless devices on airplanes is governed by the Federal Aviation Administration (FAA).
 - The use of wireless devices in hospitals is restricted to the limits set forth by each hospital.
Chapter 2 Preparing for Installation

Unpacking the Client Adapter

Warnings

Observe the following warnings when operating the client adapter:

<table>
<thead>
<tr>
<th>Warning</th>
<th>Do not operate your wireless network device near unshielded blasting caps or in an explosive environment unless the device has been modified to be especially qualified for such use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>In order to comply with FCC radio frequency (RF) exposure limits, antennas should be located at a minimum of 7.9 inches (20 cm) or more from the body of all persons.</td>
</tr>
<tr>
<td>Warning</td>
<td>In order to comply with RF exposure limits established in the ANSI C95.1 standards, it is recommended when using a laptop with a PC card client adapter that the adapter’s integrated antenna is positioned more than 2 inches (5 cm) from your body or nearby persons during extended periods of transmitting or operating time. If the antenna is positioned less than 2 inches (5 cm) from the user, it is recommended that the user limit exposure time.</td>
</tr>
</tbody>
</table>

Translated versions of these safety warnings are provided in Appendix B.

Unpacking the Client Adapter

Follow these steps to unpack the client adapter:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Open the shipping container and carefully remove the contents.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Return all packing materials to the shipping container and save it.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Ensure that all items listed in the “Package Contents” section below are included in the shipment. Check each item for damage.</td>
</tr>
</tbody>
</table>

Note If any item is damaged or missing, notify your authorized Cisco sales representative. Any remote antenna and its associated wiring are shipped separately.

Package Contents

Each client adapter is shipped with the following items:

- Standard 2-dBi dipole antenna (PCI cards only)
- Quick Start Guide: Cisco Aironet Wireless LAN Client Adapters
- Cisco Aironet Wireless LAN Client Adapters CD
- Cisco product registration card
System Requirements

In addition to the items shipped with the client adapter, you also need the following items in order to install and use the adapter:

- One of the following computing devices running Windows 2000 or XP:
 - Laptop or notebook computer equipped with a Type II or Type III PC card slot or Cardbus slot
 - Desktop personal computer equipped with an empty PCI expansion slot
 - Handheld or portable device with an embedded LM card
 - Laptop or other computing device with an embedded mini PCI card

Note: Install Wizard version 1.3 or later and its software components are not supported for use with Windows 98, 98 SE, NT, and Me.

Note: Cisco recommends using a display with a minimum resolution of 800 x 600 pixels.

Note: All drivers and supporting software (Card and Socket Services) for the PC card slot or Cardbus slot must be loaded and configured.

- 35 MB of free hard disk space (minimum)
- A Phillips screwdriver (for PCI cards)
- Software with WPA support if your wireless network uses host-based EAP authentication with WPA:
 - Funk Odyssey Client supplicant version 2.2 (for Windows 2000)
 - Windows XP Service Pack 1 and Microsoft support patch 815485 (for Windows XP)

Note: Meetinghouse AEGIS Client supplicant version 2.1 or later is also supported for use with Windows 2000 and XP; however, it was not tested with this client adapter software release.

- The Microsoft 802.1X supplicant, if your wireless network uses EAP-TLS, PEAP, or EAP-SIM authentication
- If your wireless network uses PEAP authentication with a One-Time Password (OTP) user database:
 - SofToken version 1.3, 2.0, or later from Secure Computing; SecurID version 2.5 from RSA; or hardware token from OTP vendors
 - Your software token PIN or hardware token password
Chapter 2 Preparing for Installation

Site Requirements

For Infrastructure Devices

Because of differences in component configuration, placement, and physical environment, every network application is a unique installation. Therefore, before you install any wireless infrastructure devices (such as access points, bridges, and base stations, which connect your client adapters to a wired LAN), a site survey must be performed to determine the optimum placement of these devices to maximize range, coverage, and network performance. Appendix F, which is provided for people who are responsible for conducting a site survey, explains how ACU’s site survey tool can be used to determine the best placement for infrastructure devices within a wireless network.

Note

Infrastructure devices are installed and initially configured prior to client devices.
For Client Devices

Because the client adapter is a radio device, it is susceptible to RF obstructions and common sources of interference that can reduce throughput and range. Follow these guidelines to ensure the best possible performance:

- Install the client adapter in an area where large steel structures such as shelving units, bookcases, and filing cabinets will not obstruct radio signals to and from the client adapter.
- Install the client adapter away from microwave ovens. Microwave ovens operate on the same frequency as the client adapter and can cause signal interference.
Installing the Client Adapter

This chapter provides instructions for installing the client adapter’s firmware, driver, utilities, and security modules.

The following topics are covered in this chapter:

- Installing or Upgrading the Client Adapter Software, page 3-2
- Verifying Installation, page 3-14
- Deciding How to Configure Your Client Adapter (Windows XP Only), page 3-14
- Selecting Among Several Installed Client Adapters, page 3-15
Installing or Upgrading the Client Adapter Software

This section enables you to install or upgrade Cisco Aironet client adapter firmware, drivers, utilities, and security modules from a self-extracting executable file named Win-Client-802.11a-b-Ins-Wizard-vxx.exe, where xx represents the version number.

Follow the instructions below to install or upgrade client adapter software on a computer running Windows 2000 or XP.

⚠️ Caution
The Install Wizard automatically upgrades client adapter firmware to the version included in the Install Wizard file. Both of the client adapter’s LEDs light continuously while the firmware upgrade occurs. Do not eject the client adapter while the firmware is being upgraded.

🏠 Note
Windows XP comes with a driver that is installed automatically the first time you insert a PC, LM, or PCI card. Follow the procedure below to upgrade this driver to the latest one available.

🏠 Note
Install Wizard version 1.3 or later and its software components are not supported for use with Cisco Aironet 340 series client adapters or Windows 98, 98 SE, NT, and Me.

🏠 Note
If you are installing or upgrading to versions of client adapter software that do not use the Install Wizard file, refer to version OL-1394-04 of this manual for installation, configuration, and operation instructions.

🏠 Note
If you experience any problems during installation, refer to Chapter 10 for a list of installation error messages.

cta 1
Use your computer’s web browser to access the following URL:

Step 2
Choose Option #2: Aironet Wireless Software Display Tables.

🏠 Note
You can download software from the Software Selector tool instead of the display tables. To do so, choose Option #1: Aironet Wireless Software Selector, follow the instructions on the screen, and go to Step 6.

Step 3
Click Cisco Aironet Wireless LAN Client Adapters.

Step 4
Under Aironet Client Adapter Installation Wizard (For Windows), click 802.11a/b (CB20A, 350 Series, 340 Series).

Step 5
Click the Install Wizard file with the latest version number.

Step 6
Complete the encryption authorization form; then read and accept the terms and conditions of the Software License Agreement.

Step 7
Click the file again to download it.
Step 8 Save the file to your computer's hard drive.

Step 9 Follow the instructions in Chapter 9 to insert the client adapter into your computer, if it is not already inserted. The instructions are different for PC cards, PC-Cardbus cards, and PCI cards.

Caution Do not eject your client adapter at any time during the installation process, including during the reboot.

Step 10 If a driver is not currently installed for your client adapter, the Found New Hardware Wizard screen appears. Click Cancel.

Step 11 Find the Install Wizard file using Windows Explorer, double-click it, and extract its files to a folder.

Note To extract the files, click Browse on the WinZip Self-Extractor screen, choose the folder in which you want the files to be placed, and click OK and Unzip. After the files are extracted, click OK to close the screen.

Step 12 Close Windows Explorer. The Cisco Aironet Wireless LAN Client Adapter Installation Wizard screen appears (see Figure 3-1).

Figure 3-1 Cisco Aironet Wireless LAN Client Adapter Installation Wizard Screen

This wizard will help you to install compatible drivers, client utilities, firmware, and security modules.

- Express Installation/Upgrade (recommended)
- Custom Installation/Upgrade
- Uninstall All Components
Step 13 Choose one of the following options on the Cisco Aironet Wireless LAN Client Adapter Installation Wizard screen and click **Next**:

![Note](image)

- **Express Installation/Upgrade (recommended)**—Silently installs the client adapter firmware, drivers, client utilities, and security modules using the default values listed in Table 3-1.

- **Custom Installation/Upgrade**—Enables you to specify which software components are installed and to change the default values of certain parameters.

Step 14 If a message appears indicating that you may be required to restart your computer at the end of the installation process, click **OK**.

![Note](image)

If you click **Cancel**, the installation process terminates.

Step 15 If you chose an express installation, go to Step 17. If you chose a custom installation, the Custom Installation screen appears (see Figure 3-2).

Figure 3-2 Custom Installation Screen

![Custom Installation Screen](image)
Step 16 Follow these steps to make selections on this screen.

 a. Make sure a check mark appears beside every software component that you want to install. For every component that is checked, the Install Wizard will install its version of that component. Every component that is not checked will remain as it currently is on your system.

 Note Click the + sign beside the Security Modules option to reveal the available security components.

 Note Some components are dependent on others. Therefore, when you select or deselect these components, the settings of other components may change. A dependency notice appears when this occurs.

 b. Click the + sign beside each component to view additional parameters. The current value of each parameter appears in the Value field.

 c. To change the value of any parameter, click its current value in the Value field. A screen appears that lets you change the existing value.

 d. Enter or choose a new value and click OK. Table 3-1 describes each component and its parameters and lists any default value.
Table 3-1 Software Components and Their Parameters

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware</td>
<td>Installs the firmware version included in the Install Wizard file.</td>
</tr>
<tr>
<td>Default: Checked</td>
<td></td>
</tr>
<tr>
<td>Disable Firmware Checking</td>
<td>The Disable Firmware Checking parameter affects the firmware that is bundled with the driver, not the firmware that is included in the Install Wizard. This parameter controls whether the driver (whenever it loads) installs the firmware with which it is bundled.</td>
</tr>
<tr>
<td>Options: Yes or No</td>
<td></td>
</tr>
<tr>
<td>Default: Yes</td>
<td></td>
</tr>
</tbody>
</table>

Note
The driver loads each time you insert a client adapter or reboot your computer.

Options: Yes or No

Default: Yes

<table>
<thead>
<tr>
<th>Disable Firmware Checking</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Prevents the driver from installing the firmware with which it is bundled, enabling the client adapter to retain its current firmware version.</td>
</tr>
<tr>
<td>No</td>
<td>Causes the driver to install the firmware with which it is bundled if that firmware is newer than the firmware that is currently installed in the client adapter.</td>
</tr>
</tbody>
</table>

Note
The Disable Firmware Checking parameter is functionally equivalent to the *Automatically Load New Firmware When NDIS Driver Is Updated* parameter on the ACU Preferences screen. The parameter that is set last is the one that governs how the driver behaves. Refer to the “Preventing the Driver from Upgrading the Firmware” section on page 9-11 for additional information.

Note
The Disable Firmware Checking parameter is available in Install Wizard version 1.1 or later.

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Installs the driver version included in the Install Wizard file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default: Checked</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-1 Software Components and Their Parameters (continued)

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Quiet Mode?</td>
<td>Specifies whether the client becomes quiet (to passively scan or listen) when its associated access point is turned off. In quiet mode, the client generates radio frequency energy only in direct response to an access point transmission. When the access point is turned back on, it starts sending beacons, which the client hears and can now respond to. This parameter applies to individual cards rather than profiles. It can be set differently for different cards and remains in effect across ACU sessions and computer reboots. Options: Yes or No Default: No Note: The Set Quiet Mode? parameter is available in Install Wizard version 1.3 or later. Note: You can also change the quiet mode setting in ACU by choosing the Turn Quiet Mode On/Off option from the Commands drop-down menu.</td>
</tr>
<tr>
<td>Aironet Client Utility</td>
<td>Installs the ACU version included in the Install Wizard file. Default: Checked</td>
</tr>
<tr>
<td>Installation Path</td>
<td>Determines the path where the ACU software will be installed. You can change the default by entering a new path. Default: C:\Program Files\Cisco Systems\Aironet Client Utility</td>
</tr>
<tr>
<td>Program Folder</td>
<td>Determines the program folder where the ACU software will be installed. You can change the default by entering a new folder name. Default: Cisco Systems</td>
</tr>
<tr>
<td>Place Icon on Desktop</td>
<td>Causes the installation program to add an ACU icon to your computer’s desktop to provide quick access to the utility. Options: Yes or No Default: Yes</td>
</tr>
<tr>
<td>Allow Non-Administrator Users to Save Settings to the Registry</td>
<td>Enables users without administrative rights to modify profiles in ACU and save them to the registry on computers running Windows 2000 or XP. Options: Yes or No Default: Yes</td>
</tr>
</tbody>
</table>
Table 3-1 Software Components and Their Parameters (continued)

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aironet Client Monitor</td>
<td>Installs the ACM version included in the Install Wizard file.</td>
</tr>
<tr>
<td></td>
<td>Default: Checked</td>
</tr>
<tr>
<td>Installation Path</td>
<td>Determines the path where the ACM software will be installed. You can change the default by entering a new path.</td>
</tr>
<tr>
<td></td>
<td>Default: C:\Program Files\Cisco Systems\Aironet Client Monitor</td>
</tr>
<tr>
<td>Program Folder</td>
<td>Determines the program folder where the ACM software will be installed. You can change the default by entering a new folder name.</td>
</tr>
<tr>
<td></td>
<td>Default: Cisco Systems</td>
</tr>
<tr>
<td>Auto Start</td>
<td>Determines whether ACM starts automatically every time Windows boots.</td>
</tr>
<tr>
<td></td>
<td>Options: Yes or No</td>
</tr>
<tr>
<td></td>
<td>Default: Yes</td>
</tr>
<tr>
<td></td>
<td>Note If you choose No, you can later activate ACM by using Windows Explorer to find the path where the ACM software is installed and double-clicking ACUMon.exe.</td>
</tr>
<tr>
<td>Start After Install</td>
<td>Determines whether ACM starts automatically after ACM is installed.</td>
</tr>
<tr>
<td></td>
<td>Options: Yes or No</td>
</tr>
<tr>
<td></td>
<td>Default: Yes</td>
</tr>
<tr>
<td></td>
<td>Note If you choose No, you can later activate ACM by using Windows Explorer to find the path where the ACM software is installed and double-clicking ACUMon.exe.</td>
</tr>
</tbody>
</table>
Table 3-1 Software Components and Their Parameters (continued)

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Feature Overrides</td>
<td>Determines which ACM components are enabled. If any components are not selected now and you later want to use them, you must run this installation program again and enable them.</td>
</tr>
<tr>
<td>Components:</td>
<td>See the table below</td>
</tr>
<tr>
<td>Options per component:</td>
<td>Enable or Disable</td>
</tr>
<tr>
<td>Default per component:</td>
<td>Enable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Box (Help)</td>
<td>Displays the ACM version number and enables you to access the online help.</td>
</tr>
<tr>
<td>Exit Program</td>
<td>Closes ACM for all client adapters.</td>
</tr>
<tr>
<td>Launch Aironet Client Utility</td>
<td>Activates ACU, if it is installed.</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>Activates the troubleshooting utility, which enables you to identify and resolve configuration and association problems with your client adapter.</td>
</tr>
<tr>
<td>Preferences</td>
<td>Enables you to determine when ACM runs and to choose the options that appear on the ACM pop-up menu.</td>
</tr>
<tr>
<td>Turn Radio On/Off</td>
<td>Turns the client adapter’s radio on or off.</td>
</tr>
<tr>
<td>Reauthenticate</td>
<td>Forces your client adapter to try to reauthenticate using the username and password of the current profile.</td>
</tr>
<tr>
<td>Select Profile</td>
<td>Enables you to select the active profile for your client adapter.</td>
</tr>
<tr>
<td>Auto Profile Selection</td>
<td>Causes the client adapter’s driver to automatically select a profile from the list of profiles that were set up in ACU to be included in auto profile selection.</td>
</tr>
<tr>
<td>Other Configuration Application</td>
<td>Enables an application other than ACU to configure the client adapter.</td>
</tr>
<tr>
<td>Show Connection Status</td>
<td>Provides information on the current status of your client adapter.</td>
</tr>
<tr>
<td>Menu Options (Defaults)</td>
<td>Determines which options are displayed on the ACM pop-up menu.</td>
</tr>
<tr>
<td>Menu options:</td>
<td>About Box (Help), Exit Program, Launch Aironet Client Utility, Troubleshooting, Turn Radio On/Off, Reauthenticate, Select Profile, Show Connection Status</td>
</tr>
<tr>
<td>Options per menu option:</td>
<td>Show or Hide</td>
</tr>
<tr>
<td>Default per menu option:</td>
<td>Show</td>
</tr>
</tbody>
</table>

Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows

OL-1394-09

3-9
Table 3-1 Software Components and Their Parameters (continued)

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Modules</td>
<td></td>
</tr>
</tbody>
</table>
| LEAP | Installs the LEAP supplicant included in the Install Wizard file. Installing the LEAP supplicant enables you to create a profile in ACU that uses LEAP authentication. If this option is not selected now and you later want to create a profile that uses LEAP, you must run this installation program again and choose this option.
Default: Checked
Note Refer to Chapter 5 for information on enabling LEAP.
Note If you choose LEAP on a Windows XP device, Windows XP’s fast user switching feature is disabled. |
| Allow Saved LEAP User Name and Password | Enables you to create a profile in ACU that uses a saved (rather than temporary) username and password for LEAP authentication. When such a profile is used, the saved username and password are used to start the LEAP authentication process, and you are not prompted to enter them.
Options: Yes or No
Default: Yes |
| EAP-SIM | Installs the EAP-SIM supplicant included in the Install Wizard file. Installing the EAP-SIM supplicant enables the client to support EAP-SIM authentication. If this option is not selected now and you later want to use EAP-SIM, you must run this installation program again and choose this option.
Default: Unchecked
Note Refer to Chapter 5 for information on enabling EAP-SIM.
Note To enable EAP-SIM authentication, your computer must run Windows 2000 with the Microsoft 802.1X supplicant installed or Windows XP.
Note If you installed the new EAP-SIM supplicant from Cisco.com, make sure the EAP-SIM option is not selected. Otherwise, the EAP-SIM supplicant included in the Install Wizard file overwrites the new supplicant’s settings. |
Table 3-1 Software Components and Their Parameters (continued)

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| PEAP | Installs the PEAP supplicant included in the Install Wizard file. Installing the PEAP supplicant enables the client to support PEAP authentication. If this option is not selected now and you later want to use PEAP, you must run this installation program again and choose this option.
Default: Unchecked
Note Refer to Chapter 5 for information on enabling PEAP.
Note To enable Cisco PEAP authentication, your computer must run Windows 2000 with the Microsoft 802.1X supplicant installed or Windows XP.
Note Windows XP Service Pack 1 and the Microsoft 802.1X supplicant for Windows 2000 include Microsoft’s PEAP supplicant, which supports a Windows username and password only and does not interoperate with Cisco’s PEAP supplicant. To use Cisco’s PEAP supplicant, install the Install Wizard file after Windows XP Service Pack 1 or the Microsoft 802.1X supplicant for Windows 2000. Otherwise, Cisco’s PEAP supplicant is overwritten by Microsoft’s PEAP supplicant. |
| EAP-FAST | Installs the EAP-FAST supplicant included in the Install Wizard file. Installing the EAP-FAST supplicant enables you to create a profile in ACU that uses EAP-FAST authentication. If this option is not selected now and you later want to create a profile that uses EAP-FAST, you must run this installation program again and choose this option.
Default: Checked
Note The EAP-FAST supplicant is installed and can be enabled only on computers running Windows 2000 or XP.
Note Refer to Chapter 5 for information on enabling EAP-FAST.
Note If you choose EAP-FAST on a Windows XP device, Windows XP’s fast user switching feature is disabled. |
| Allow Saved EAP-FAST User Name and Password | Enables you to create a profile in ACU that uses a saved (rather than temporary) username and password for EAP-FAST authentication. When such a profile is used, the saved username and password are used to start the EAP-FAST authentication process, and you are not prompted to enter them.
Options: Yes or No
Default: Yes
Note This parameter is applicable only to client adapters that are installed in computers running Windows 2000 or XP. |
Chapter 3 Installing the Client Adapter

Installing or Upgrading the Client Adapter Software

Table 3-1 Software Components and Their Parameters (continued)

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Auto-Provisioning?</td>
<td>Enables a protected access credentials (PAC) file to be obtained automatically as needed (for instance, when a PAC expires, when the client adapter accesses a different server, when the EAP-FAST username cannot be matched to a previously provisioned PAC, etc.).</td>
</tr>
</tbody>
</table>
| | **Options:** Yes or No
| | **Default:** Yes
| | **Note:** This parameter is applicable only to client adapters that are installed in computers running Windows 2000 or XP.
| | **Note:** Refer to Chapter 5 for information on enabling automatic provisioning. |

e. When you are finished making selections, click **Next**.

Step 17
The installation process begins, and you are notified as each component is installed. Perform one of the following:

- If a message appears asking if you wish to reboot now, click **Yes**.

 Note
 To ensure that your client adapter software is installed properly, Cisco recommends that you click **Yes** to reboot your computer now.

- If a message appears indicating that the system is about to reboot, click **OK** and allow your computer to restart.

- If the following message appears, click **OK** and then reboot your computer: “The installation will complete and applications will be installed when a wireless LAN client adapter is inserted. If an adapter is already inserted, remove and reinsert the adapter or reboot the machine.”

The Found New Hardware screen appears. Depending on your computer’s operating system, you may have to click **Next**. The driver and other software components are installed. Then an ACM icon appears in the Windows system tray (unless you changed the default value during installation). Perform one of the following:

- If a message appears asking if you wish to reboot now, click **Yes**.

 Note
 To ensure that your client adapter software is installed properly, Cisco recommends that you click **Yes** to reboot your computer now.

- If a message appears indicating that the system is about to reboot, click **OK** and allow your computer to restart.
Step 18 If you want to install a second client adapter, allow your computer to reboot completely; then insert the second adapter into your computer. Depending on your computer’s operating system, one of the following scenarios occurs:

- The Found New Hardware Wizard screen appears. Depending on your computer’s operating system, you may have to click Next. The driver and other software components are installed, and another ACM icon appears in the Windows system tray. Click Yes or OK when a message appears about rebooting your computer.

 Note To ensure that your client adapter software is installed properly, Cisco recommends that you reboot your computer now.

- The driver and other software components are installed, and another ACM icon appears in the Windows system tray. Click Yes or OK when a message appears about rebooting your computer.

 Note To ensure that your client adapter software is installed properly, Cisco recommends that you reboot your computer now.

Step 19 If your network setup does not include a DHCP server and you plan to use TCP/IP, follow these steps for your operating system. If you have more than one client adapter installed, repeat this step for each adapter.

- Windows 2000—Double-click My Computer, Control Panel, and Network and Dial-up Connections. Right-click Local Area Connection x (where x represents the number of the connection). Click Properties, Internet Protocol (TCP/IP), and Properties. Click Use the following IP address and enter the IP address, subnet mask, and default gateway address of your computer (which can be obtained from your system administrator). Click OK. In the Local Area Connection Properties window, click OK.

- Windows XP—Right-click Wireless Network Connection and click Properties. Click Internet Protocol (TCP/IP) and click Properties. Click Use the following IP address and enter the IP address, subnet mask, and default gateway address of your computer (which can be obtained from your system administrator). Click OK.

Step 20 If you are prompted to restart your computer, click Yes.

Step 21 Go to the “Verifying Installation” section on page 3-14 to determine if the installation was successful. After you verify installation, go to Chapter 4 if you want to create profiles for your client adapter.
Verifying Installation

To verify that you have properly installed the client adapter software, check the client adapter’s LEDs. If the installation was successful, the client adapter’s green LED blinks.

Note
If your installation was unsuccessful or you experienced problems during or after installation, refer to Chapter 10 for a list of installation error messages and troubleshooting information.

Now that your client adapter is properly installed, you are ready to go to Chapter 4 to create profiles for your client adapter, unless you are running Windows XP or have more than one client adapter installed.

- If you are running Windows XP, go to the “Deciding How to Configure Your Client Adapter (Windows XP Only)” section below.
- If you have more than one client adapter installed, go to the “Selecting Among Several Installed Client Adapters” section on page 3-15.

Deciding How to Configure Your Client Adapter (Windows XP Only)

Windows XP is the only operating system that enables you to configure your client adapter without using ACU. Therefore, if your computer is running Windows XP, you must decide whether to configure your client adapter through Windows XP or ACU. To help you with your decision, Table 3-2 compares the Windows XP and ACU client adapter features.

Table 3-2 Comparison of Windows XP and ACU Client Adapter Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Windows XP</th>
<th>ACU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration parameters</td>
<td>Limited</td>
<td>Extensive</td>
</tr>
<tr>
<td>Create profiles</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Upgrade radio firmware</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Restart client adapter without rebooting or ejecting card</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Turn radio on or off</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static WEP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LEAP authentication with dynamic WEP</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EAP-FAST authentication with dynamic WEP</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Host-based EAP authentication with dynamic WEP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Step 1 Double-click the Aironet Client Utility (ACU) icon on your desktop or double-click My Computer > Control Panel > Aironet Client Utility to open ACU. The Select A Wireless LAN Adapter Card screen appears (see Figure 3-3).

Note The Select A Wireless LAN Adapter Card screen appears when you start ACU if more than one card is inserted in your computer or no cards are inserted but more than one card is installed.
Step 2 Choose the card you wish to configure from the list of available cards and click OK.
Step 3 Go to Chapter 4 to create profiles for this card.
CHAPTER 4-1
Cisco Aironet 350 and CB20A Wireless LAN Client Adapters Installation and Configuration Guide for Windows

Using the Profile Manager

This chapter explains how to use ACU’s profile manager feature to create and manage profiles for your client adapter.

The following topics are covered in this chapter:

- Overview of Profile Manager, page 4-2
- Opening Profile Manager, page 4-2
- Creating a New Profile, page 4-3
- Including a Profile in Auto Profile Selection, page 4-4
- Selecting the Active Profile, page 4-6
- Modifying a Profile, page 4-7
- Importing and Exporting Profiles, page 4-9
- Granting or Denying Access to Non-Administrative Users, page 4-10
Overview of Profile Manager

ACU’s profile manager feature allows you to create and manage up to 16 profiles (or saved configurations) for your client adapter. These profiles enable you to use your client adapter in different locations, each of which requires different configuration settings. For example, you may want to set up profiles for using your client adapter at the office, at home, and in public areas such as airports. Once the profiles are created, you can easily switch between them without having to reconfigure your client adapter each time you enter a new location.

Profiles are stored in the part of the registry reserved for the client adapter driver and, therefore, are tied to radio type. Consequently, if you set up profiles for a 340 series PC card and later upgrade to a 350 series PC card, all of the profiles will be lost. Similarly, all profiles are lost if you uninstall the client adapter’s software components. To prevent your profiles from becoming lost, Cisco recommends that you back up your profiles using the profile manager’s import/export feature. See the “Importing and Exporting Profiles” section on page 4-9 for details.

Opening Profile Manager

To open ACU’s profile manager, double-click the Aironet Client Utility (ACU) icon on your desktop or double-click My Computer > Control Panel > Aironet Client Utility to open ACU. Then click the Profile Manager icon or choose Profile Manager from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).

Figure 4-1 Profile Manager Screen
Profile manager allows you to perform the following tasks related to the management of profiles:

- Create a new profile, see below
- Include a profile in auto profile selection, page 4-4
- Select the active profile, page 4-6
- Edit a profile, page 4-7
- Set a profile to default values, page 4-8
- Rename a profile, page 4-8
- Delete a profile, page 4-8
- Import a profile, page 4-9
- Export a profile, page 4-9

Follow the instructions on the page indicated for the task you want to perform.

Note
If your system administrator used an administrative tool to deactivate certain parameters, these parameters are disabled on the Profile Manager screen and cannot be selected.

Creating a New Profile

Follow these steps to create a new profile.

1. **Step 1** Click **Add** on the Profile Manager screen. A cursor appears in the Profile Management edit box.
2. **Step 2** Enter the name for your new profile (for example, Office, Home, etc.).
3. **Step 3** Press **Enter**. The Properties screens appear with the name of your new profile in parentheses.
4. **Step 4** Perform one of the following:
 - If you want this profile to use the default values, click **OK**. The profile is added to the list of profiles on the Profile Manager screen.
 - If you want to change any of the configuration parameter settings, follow the instructions in Chapter 5. The profile is added to the list of profiles on the Profile Manager screen.
5. **Step 5** Click **OK** or **Apply** to save your profile.

Note
The profiles for PC-Cardbus cards are tied to the slot in which the card is inserted. Therefore, you must always insert your PC-Cardbus card into the same slot, create profiles for both slots, or export the profiles from one slot and import them for the other slot.
Including a Profile in Auto Profile Selection

After you have created profiles for your client adapter, you can choose to include them in the profile manager’s auto profile selection feature. Then when auto profile selection is enabled, the client adapter automatically selects a profile from the list of profiles that were included in auto profile selection and uses it to establish a connection to the network.

Follow these steps to include any of your profiles in auto profile selection and to establish the order in which the profiles will be selected for use.

Step 1 Open ACU; click the Select Profile icon or select Select Profile from the Commands drop-down menu. The Select Profile screen appears (see Figure 4-2).

Step 2 Click the Manage button next to the Use Auto Profile Selection option. The Auto Profile Selection Management screen appears (see Figure 4-3).
Step 3 All the profiles that you created are listed in the Available Profiles box. Highlight each one that you want to include in auto profile selection and click the Add button. The profiles move to the Auto Selected Profiles box.

The following rules apply to auto profile selection:

- You must include at least two profiles in the Auto Selected Profiles Box.
- The profiles must specify an SSID; otherwise, they cannot be selected in the Available Profiles box.
- Profiles cannot specify multiple SSIDs; otherwise, they cannot be selected in the Available Profiles box.
- Each profile that is included in auto profile selection must have a unique SSID. For example, if Profile A and Profile B both have “ABCD” as their SSID, only Profile A or Profile B can be included in auto profile selection.

Note If you ever want to remove a profile from auto profile selection, highlight the profile in the Auto Selected Profiles box and click the Remove button. The profile moves to the Available Profiles box.
Selecting the Active Profile

Follow these steps to specify the profile that the client adapter is to use.

Step 1
Open ACU; click the **Select Profile** icon or choose **Select Profile** from the Commands drop-down menu. The Select Profile screen appears (see Figure 4-2).

Step 2
Choose one of the following options:

- **Use Selected Profile**—This option enables you to select one profile for the client adapter to use. If you choose this option, you also must select the desired profile from the drop-down box.

 If the client adapter cannot associate to an access point or loses association while using the selected profile, the adapter does not attempt to associate using another profile. To associate, you must select a different profile or select Use Auto Profile Selection.

Note
If no profiles have been set for your client adapter, the Use Selected Profile drop-down box is disabled but displays “Driver Advanced Tab Settings.”
Use Auto Profile Selection—This option causes the client adapter’s driver to automatically select a profile from the list of profiles that were set up to be included in auto profile selection. If the client adapter loses association for more than 10 seconds (or for more than the time specified by the authentication timeout value on the LEAP Settings screen if LEAP is enabled or the EAP-FAST Settings screen if EAP-FAST is enabled), the driver switches automatically to another profile that is included in auto profile selection. The adapter will not switch profiles as long as it remains associated or reassociates within 10 seconds (or within the time specified by the authentication timeout value). To force the client adapter to associate to a different access point, you must select a new profile using the Use Selected Profile option.

- **Note** This option is available only if two or more profiles are included in auto profile selection.

- **Note** Login scripts are not reliable if you use auto profile selection with LEAP or EAP-FAST. If you authenticate and achieve full network connectivity before or at the time you log into the computer, the login scripts run. However, if you authenticate and achieve full network connectivity after you log into the computer, the login scripts do not run.

Use Another Application to Configure My Wireless Settings—This option enables an application other than ACU to configure the client adapter. Examples of such applications include Windows XP and Boingo.

- **Note** You must select this option if you are configuring your card through Windows XP but want to use ACU’s diagnostic tools. Refer to Appendix E for information on configuring your client adapter through Windows XP.

Step 3 Click OK or Apply to save your selection. The client adapter starts using a profile based on the option selected above.

Modifying a Profile

This section provides instructions for modifying an existing profile. Follow the steps in the corresponding section below to edit, set to default values, rename, or delete a profile.

Editing a Profile

Step 1 Open ACU; click the Profile Manager icon or choose Profile Manager from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).

Step 2 From the Profile Management drop-down box, select the profile that you want to edit.

Step 3 Click Edit. The Properties screens appear with the name of the profile in parentheses.

Step 4 Follow the instructions in Chapter 5 to change any of the configuration parameters for this profile.

Step 5 Click OK or Apply to save your configuration changes.
Modifying a Profile

Setting a Profile to Default Values

Step 1: Open ACU; click the Profile Manager icon or choose Profile Manager from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).
Step 2: From the Profile Management drop-down box, select the profile that you want to set to default values.
Step 3: Click Use Defaults.
Step 4: When prompted, click Yes to confirm your decision.
Step 5: Click OK or Apply to save your change. The profile is saved with default values.

Renaming a Profile

Step 1: Open ACU; click the Profile Manager icon or choose Profile Manager from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).
Step 2: From the Profile Management drop-down box, select the profile that you want to rename.
Step 3: Click Rename. The Profile Management edit box becomes enabled.
Step 4: Enter a new name for the profile.
Step 5: Click OK or Apply to save your change. The profile is renamed and added to the list of profiles.

Deleting a Profile

Step 1: Open ACU; click the Profile Manager icon or choose Profile Manager from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).
Step 2: From the Profile Management drop-down box, select the profile that you want to delete.
Step 3: Click Delete.
Step 4: When prompted, click Yes to confirm your decision.
Step 5: Click OK or Apply to save your change. The profile is deleted.
Importing and Exporting Profiles

This section provides instructions for importing and exporting profiles. You may want to use the import/export feature for the following reasons:

- To back up profiles before changing client adapter types or uninstalling client adapter software components
- To export profiles for a PC-Cardbus card in one Cardbus slot and import them for use with a second Cardbus slot
- To set up your computer with a profile from another computer
- To export one of your profiles and use it to set up additional computers

Follow the steps in the corresponding section below to import or export profiles.

Importing a Profile

Step 1 If the profile that you want to import is on a floppy disk, insert the disk into your computer’s floppy drive.

Step 2 Open ACU; click the **Profile Manager** icon or choose **Profile Manager** from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).

Step 3 Click **Import**. The Import Profile screen appears.

Step 4 Find the directory where the profile is located.

Step 5 Click the profile so it appears in the File name box at the bottom of the Import Profile screen.

Step 6 Click **Open**. The imported profile appears in the list of profiles on the Profile Manager screen.

Exporting a Profile

Step 1 Insert a blank floppy disk into your computer’s floppy drive, if you wish to export a profile to a floppy disk.

Step 2 Open ACU; click the **Profile Manager** icon or choose **Profile Manager** from the Commands drop-down menu. The Profile Manager screen appears (see Figure 4-1).

Step 3 From the Profile Management drop-down box, select the profile that you want to export.

Step 4 Click **Export**. The Save Profile As screen appears. The default filename is **ProfileName.pro**, where **ProfileName** is the name of the selected profile, and the default directory is the directory in which ACU is installed.

Step 5 If you want to change the profile name, enter a new name in the File name edit box.

Step 6 Choose a different directory (for example, your computer’s floppy disk drive or a location on the network) from the Save in drop-down box.

Step 7 Click **Save**. The profile is exported to the specified location.

Step 8 Follow the instructions in the “Importing a Profile” section to import the profile on another computer.
Granting or Denying Access to Non-Administrative Users

If you used the Install Wizard to perform a custom installation, you were able to specify the value of the Allow Non-Administrator Users to Save Settings to the Registry parameter. When this parameter is set to Yes, it enables users without administrative rights to modify profiles in ACU and save them to the registry on computers running Windows 2000 or XP. When this parameter is set to No, access to non-administrative users is denied.

Note: Install Wizard version 1.3 or later and its software components are not supported for use with Windows 98, 98 SE, NT, and Me.

ACU has a similar parameter that you can use to change the selection you made during installation, provided you have administrative rights. Follow these steps if you want to change the current setting of this parameter.

Step 1: Open ACU.
Step 2: Click the Preferences icon or choose Preferences from the Options drop-down menu. The Aironet Client Utility Preferences screen appears (see Figure 4-4).

Figure 4-4 Aironet Client Utility Preferences Screen
Step 3 Perform one of the following:

- Check the Allow Non-Administrator Users to Save Profiles to the Registry check box if you want to allow regular-class users to modify and save profiles.
- Uncheck the Allow Non-Administrator Users to Save Profiles to the Registry check box if you want to prevent regular-class users from modifying and saving profiles.

Step 4 Click OK to save your changes.
Granting or Denying Access to Non-Administrative Users
Configuring the Client Adapter

This chapter explains how to set the configuration parameters for a specific profile. The following topics are covered in this chapter:

- Overview, page 5-2
- Setting System Parameters, page 5-3
- Setting RF Network Parameters, page 5-7
- Setting Advanced Infrastructure Parameters, page 5-14
- Setting Advanced Ad Hoc Parameters, page 5-18
- Setting Network Security Parameters, page 5-21
- Enabling Wi-Fi Multimedia, page 5-62
Overview

When you choose to create a new profile or edit an existing profile on the Profile Manager screen, the Properties screens appear with the name of your profile in parentheses. These screens enable you to set the configuration parameters for that profile.

Note

If you do not change any of the configuration parameters, the default values are used.

Note

If you are planning to set parameters on more than one of the Properties screens, wait until you are finished with all of the screens before clicking OK. When you click OK, you are returned to the Profile Manager screen.

Each of the Properties screens (listed below) contains parameters that affect a specific aspect of the client adapter:

- **System Parameters**—Prepares the client adapter for use in a wireless network
- **RF Network**—Controls how the client adapter transmits and receives data
- **Advanced (Infrastructure)**—Controls how the client adapter operates within an infrastructure network
- **Advanced (Ad Hoc)**—Controls how the client adapter operates within an ad hoc (peer-to-peer) network
- **Network Security**—Controls how a client adapter associates to an access point, authenticates to the wireless network, and encrypts and decrypts data

Table 5-1 enables you to quickly locate the instructions for setting each Properties screen’s parameters.

Table 5-1 Locating Configuration Instructions

<table>
<thead>
<tr>
<th>Parameter Category</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>page 5-3</td>
</tr>
<tr>
<td>RF network</td>
<td>page 5-7</td>
</tr>
<tr>
<td>Advanced infrastructure</td>
<td>page 5-14</td>
</tr>
<tr>
<td>Advanced ad hoc</td>
<td>page 5-18</td>
</tr>
<tr>
<td>Network security</td>
<td>page 5-21</td>
</tr>
</tbody>
</table>
Setting System Parameters

The System Parameters screen (see Figure 5-1) enables you to set parameters that prepare the client adapter for use in a wireless network. This screen appears after you create and save a new profile or click Edit on the Profile Manager screen.

Figure 5-1 System Parameters Screen

![System Parameters Screen](image)

Table 5-2 lists and describes the client adapter’s system parameters. Follow the instructions in the table to change any parameters.
Table 5-2 System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Client Name** | A logical name for your workstation. It allows an administrator to determine which devices are connected to the access point without having to memorize every MAC address. This name is included in the access point’s list of connected devices.
Range: You can key in up to 16 ASCII characters
Default: A blank field
Note: Each computer on the network should have a unique client name. |
| **SSID1** | The service set identifier (SSID) identifies the specific wireless network that you want to access.
Range: You can key in up to 32 ASCII characters (case sensitive)
Default: A blank field
Note: If you leave this parameter blank, your client adapter can associate to any access point on the network that is configured to allow broadcast SSIDs (see the AP Radio Hardware page in the access point management system). If the access point with which the client adapter is to communicate is not configured to allow broadcast SSIDs, the value of this parameter must match the SSID of the access point. Otherwise, the client adapter is unable to access the network. |
| **SSID2** | An optional SSID that identifies a second distinct network and enables you to roam to that network without having to reconfigure your client adapter.
Range: You can key in up to 32 ASCII characters (case sensitive)
Default: A blank field
Note: If a profile specifies more than one SSID, it cannot be included in auto profile selection.
Note: This field is unavailable for any profiles that are included in auto profile selection. |
| **SSID3** | An optional SSID that identifies a third distinct network and enables you to roam to that network without having to reconfigure your client adapter.
Range: You can key in up to 32 ASCII characters (case sensitive)
Default: A blank field
Note: If a profile specifies more than one SSID, it cannot be included in auto profile selection.
Note: This field is unavailable for any profiles that are included in auto profile selection. |
Setting System Parameters

Power Save Mode

Sets your client adapter to its optimum power consumption setting.

Options: CAM, Max PSP, or Fast PSP

Default: CAM (Constantly Awake Mode)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Save Mode</td>
<td>Sets your client adapter to its optimum power consumption setting.</td>
</tr>
<tr>
<td>Options: CAM, Max PSP, or Fast PSP</td>
<td></td>
</tr>
<tr>
<td>Default: CAM (Constantly Awake Mode)</td>
<td></td>
</tr>
</tbody>
</table>

Power Save Mode

<table>
<thead>
<tr>
<th>Power Save Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM (Constantly Awake Mode)</td>
<td>Keeps the client adapter powered up continuously so there is little lag in message response time. Consumes the most power but offers the highest throughput. Is recommended for desktop computers and devices that use AC power.</td>
</tr>
<tr>
<td>Max PSP (Max Power Savings)</td>
<td>Causes the access point to buffer incoming messages for the client adapter, which wakes up periodically and polls the access point to see if any buffered messages are waiting for it. The adapter can request each message and then go back to sleep. Conserves the most power but offers the lowest throughput. Is recommended for devices for which power consumption is the ultimate concern (such as small battery-powered devices).</td>
</tr>
</tbody>
</table>

Note When you set Max PSP mode and close ACU, the following message appears the next time you open ACU: “Maximum Power Save Mode will be temporarily disabled while you are running this application.” While ACU is open, Fast PSP mode is active. When you close ACU, the card returns to Max PSP mode.

| Fast PSP (Power Save Mode) | Switches between PSP mode and CAM mode, depending on network traffic. This mode switches to CAM when retrieving a large number of packets and switches back to PSP after the packets have been retrieved. Is recommended when power consumption is a concern but you need greater throughput than that allowed by Max PSP. |

Table 5-2 System Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Save Mode</td>
<td>Sets your client adapter to its optimum power consumption setting.</td>
</tr>
</tbody>
</table>
Table 5-2 System Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Type</td>
<td>Specifies the type of network in which your client adapter is installed.</td>
</tr>
<tr>
<td></td>
<td>Options: Ad Hoc or Infrastructure</td>
</tr>
<tr>
<td></td>
<td>Default: Infrastructure</td>
</tr>
<tr>
<td>Ad Hoc</td>
<td>Often referred to as peer to peer. Indicates that your wireless network</td>
</tr>
<tr>
<td></td>
<td>consists of a few wireless devices that are not connected to a wired</td>
</tr>
<tr>
<td></td>
<td>Ethernet network through an access point. For example, an ad hoc network</td>
</tr>
<tr>
<td></td>
<td>can be set up between computers in a conference room so users can share</td>
</tr>
<tr>
<td></td>
<td>information in a meeting.</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Indicates that your wireless network is connected to a wired Ethernet</td>
</tr>
<tr>
<td></td>
<td>network through an access point.</td>
</tr>
</tbody>
</table>

Go to the next section to set additional parameters or click **OK** to return to the Profile Manager screen. On the Profile Manager screen, click **OK** or **Apply** to save your changes.
Setting RF Network Parameters

The RF Network screen (see Figure 5-2) enables you to set parameters that control how and when the client adapter transmits and receives data. To access this screen, choose the RF Network tab from the Properties screens.

Figure 5-2 RF Network Screen

![RF Network Screen](image)
Table 5-3 lists and describes the client adapter’s RF network parameters. Follow the instructions in the table to change any parameters.

Table 5-3 RF Network Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>Specifies the rate at which your client adapter should transmit or receive packets to or from access points (in infrastructure mode) or other clients (in ad hoc mode). Auto Rate Selection is recommended for infrastructure mode; setting a specific data rate is recommended for ad hoc mode. Options: Auto Rate Selection, 1 Mbps Only, 2 Mbps Only, 5.5 Mbps Only, or 11 Mbps Only (2.4-GHz client adapters); Auto Rate Selection, 6 Mbps Only, 9 Mbps Only, 12 Mbps Only, 18 Mbps Only, 24 Mbps Only, 36 Mbps Only, 48 Mbps Only, or 54 Mbps Only (5-GHz client adapters) Default: Auto Rate Selection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-GHz Client Adapters</td>
<td>5-GHz Client Adapters</td>
</tr>
<tr>
<td>Auto Rate Selection</td>
<td>Auto Rate Selection</td>
</tr>
<tr>
<td>1 Mbps Only</td>
<td>6 Mbps Only</td>
</tr>
<tr>
<td>2 Mbps Only and 5.5 Mbps Only</td>
<td>9 Mbps Only to 48 Mbps Only</td>
</tr>
<tr>
<td>11 Mbps Only</td>
<td>54 Mbps Only</td>
</tr>
</tbody>
</table>

Note Your client adapter’s data rate must be set to Auto Rate Selection or must match the data rate of the access point (in infrastructure mode) or the other clients (in ad hoc mode) with which it is to communicate. Otherwise, your client adapter may not be able to associate to them.
Table 5-3 RF Network Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Short Radio Headers</td>
<td>Checking this check box sets your client adapter to use short radio headers. However, the adapter can use short radio headers only if the access point is also configured to support them and is using them. If any clients associated to an access point are using long headers, then all clients in that cell must also use long headers, even if both this client and the access point have short radio headers enabled. Short radio headers improve throughput performance; long radio headers ensure compatibility with clients and access points that do not support short radio headers. Default: Checked Note This parameter is available only for 2.4-GHz client adapters. Note This parameter is referred to as Preambles on the access point screens.</td>
</tr>
<tr>
<td>World Mode</td>
<td>Checking this check box enables the client adapter to adopt the maximum transmit power level and the frequency range of the access point to which it is associated, provided the access point is also configured for world mode. This parameter is available only in infrastructure mode and is designed for users who travel between countries and want their client adapters to associate to access points in different regulatory domains. Default: Unchecked Note This parameter is available only for 2.4-GHz client adapters. Note When World Mode is enabled, the client adapter is limited to the maximum transmit power level allowed by the country of operation’s regulatory agency.</td>
</tr>
<tr>
<td>Scan For A Better Access Point</td>
<td>Checking this check box causes the client to look for a better access point if the signal strength of its associated access point is less than the specified value after the specified time and to switch associations if it finds one. Example: If the default values of 20 seconds and 50% are used, the client begins monitoring the strength of the signal received from its associated access point 20 seconds after becoming associated. The monitoring continues once per second. If the client detects a signal strength reading below 50%, it scans for a better access point. Range: 5 to 255 seconds; 0 to 75% signal strength Defaults: Checked, 20 seconds, 50% signal strength Note The ability to specify the time and signal strength is available in ACU version 6.1 or later, which is included in Install Wizard version 1.1 or later.</td>
</tr>
</tbody>
</table>
Chapter 5 Configuring the Client Adapter

Setting RF Network Parameters

Table 5-3 RF Network Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Specifies the frequency that your client adapter will use as the channel for communications. These channels conform to the IEEE 802.11 Standard for your regulatory domain.</td>
</tr>
<tr>
<td></td>
<td>• In infrastructure mode, this parameter is set automatically and cannot be changed. The client adapter listens to the entire spectrum, selects the best access point to associate to, and uses the same frequency as that access point.</td>
</tr>
<tr>
<td></td>
<td>• In ad hoc mode, the channel of the client adapter must be set to match the channel used by the other clients in the wireless network. If the client adapter does not find any other ad hoc adapters, this parameter specifies the channel with which the adapter will start its cell.</td>
</tr>
<tr>
<td>Range:</td>
<td>Dependent on client adapter radio and regulatory domain</td>
</tr>
<tr>
<td></td>
<td>Example for 2.4-GHz client adapters: 1 to 11 (2412 to 2462 MHz) in North America</td>
</tr>
<tr>
<td></td>
<td>Example for 5-GHz client adapters: 36, 40, 44, 48, 52, 56, 60, and 64 (5180, 5200, 5220, 5240, 5260, 5280, 5300, and 5320 MHz) in North America</td>
</tr>
<tr>
<td>Default:</td>
<td>Dependent on client adapter radio and regulatory domain</td>
</tr>
<tr>
<td></td>
<td>Example for 2.4-GHz client adapters: 6 (2437 MHz) in North America</td>
</tr>
<tr>
<td></td>
<td>Example for 5-GHz client adapters: 36 (5180 MHz) in North America</td>
</tr>
<tr>
<td>Note:</td>
<td>Refer to Appendix D for a list of channel identifiers, channel center frequencies, and regulatory domains for each channel.</td>
</tr>
</tbody>
</table>
Transmit Power

Defines the power level at which your client adapter transmits. This value must not be higher than that allowed by your country’s regulatory agency (FCC in the U.S., DOC in Canada, ETSI in Europe, MKK in Japan, etc.).

Options: Dependent on the power table programmed into the client adapter; see the table below

Default: The maximum power level programmed into the client adapter and allowed by your country’s regulatory agency

Possible Power Levels

<table>
<thead>
<tr>
<th>Possible Power Levels</th>
<th>Client Adapter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mW, 50 mW, 30 mW, 20 mW, 5 mW, or 1 mW</td>
<td>350 series client adapters</td>
</tr>
<tr>
<td>20 mW, 10 mW, or 5 mW</td>
<td>PC-Cardbus card</td>
</tr>
</tbody>
</table>

Note: Reducing the transmit power level conserves battery power but decreases radio range.

Note: When World Mode is enabled, the client adapter is limited to the maximum transmit power level allowed by the country of operation’s regulatory agency.

Note: If you are using an older version of a 350 series client adapter, your power level options may be different than those listed here.
Table 5-3 RF Network Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Channel Assessment</td>
<td>Specifies the method that determines whether the channel on which your client adapter will operate is clear prior to the transmission of data.</td>
</tr>
<tr>
<td>Options:</td>
<td>Firmware Default (XXX), Carrier/Correlation (Car/Cor), Energy Detect (ED), or ED or Car/Cor</td>
</tr>
<tr>
<td>Default:</td>
<td>Firmware Default (XXX)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware Default (XXX)</td>
<td>The Clear Channel Assessment (CCA) mechanism will report that the channel is busy based on the default value of the client adapter’s firmware. The firmware’s CCA default value is shown in parentheses.</td>
</tr>
<tr>
<td>Note</td>
<td>The CCA default value for PCM, LMC, and PCI card firmware is Car/Cor; the default value for mini PCI card firmware is ED.</td>
</tr>
<tr>
<td>Carrier/Correlation (Car/Cor)</td>
<td>The CCA mechanism will report that the channel is busy upon detection of a direct-sequence spread spectrum (DSSS) signal. This signal may be above or below the ED threshold.</td>
</tr>
<tr>
<td>Energy Detect (ED)</td>
<td>The CCA mechanism will report that the channel is busy upon detection of any energy above the ED threshold.</td>
</tr>
<tr>
<td>ED or Car/Cor</td>
<td>The CCA mechanism will report that the channel is busy upon detection of a DSSS signal or any energy above the ED threshold.</td>
</tr>
</tbody>
</table>

Note This parameter is available only for 2.4-GHz client adapters.
Table 5-3 RF Network Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Retries</td>
<td>Defines the number of times a packet is resent if the initial transmission is unsuccessful. Range: 1 to 128</td>
</tr>
<tr>
<td>Default:</td>
<td>16 (2.4-GHz client adapters) or 32 (5-GHz client adapters)</td>
</tr>
<tr>
<td>Note</td>
<td>If your network protocol performs its own retries, set this to a smaller value than the default. This way notification of a “bad” packet is sent up the protocol stack quickly so the application can retransmit the packet if necessary.</td>
</tr>
<tr>
<td>Fragment Threshold</td>
<td>Defines the threshold above which an RF data packet is split up or fragmented. If one of those fragmented packets experiences interference during transmission, only that specific packet would need to be resent. Throughput is generally lower for fragmented packets because the fixed packet overhead consumes a higher portion of the RF bandwidth. Range: 256 to 2312 Default: 2312</td>
</tr>
</tbody>
</table>

Go to the next section to set additional parameters or click OK to return to the Profile Manager screen. On the Profile Manager screen, click OK or Apply to save your changes.
Setting Advanced Infrastructure Parameters

You can set advanced infrastructure parameters only if your client adapter has been set to operate in an infrastructure network. See the Network Type parameter in Table 5-2.

The Advanced (Infrastructure) screen (see Figure 5-3) enables you to set parameters that control how the client adapter operates within an infrastructure network. To access this screen, choose the Advanced (Infrastructure) tab from the Properties screens.

Figure 5-3 Advanced (Infrastructure) Screen
Table 5-4 lists and describes the client adapter’s advanced infrastructure parameters. Follow the instructions in the table to change any parameters.

Table 5-4 Advanced (Infrastructure) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna Mode (Receive)</td>
<td>Specifies the antenna that your client adapter uses to receive data.</td>
</tr>
<tr>
<td></td>
<td>- PC card—The PC card’s integrated, permanently attached antenna operates best when used in diversity mode. Diversity mode allows the card to use the better signal from its two antenna ports.</td>
</tr>
<tr>
<td></td>
<td>Options: Diversity (Both), Primary Antenna Only, Secondary Antenna Only</td>
</tr>
<tr>
<td></td>
<td>Default: Diversity (Both)</td>
</tr>
<tr>
<td></td>
<td>- LM card—The LM card is shipped without an antenna; however, an antenna can be connected through the card’s external connector. If a snap-on antenna is used, diversity mode is recommended. Otherwise, choose the mode that corresponds to the antenna port to which the antenna is connected.</td>
</tr>
<tr>
<td></td>
<td>Options: Diversity (Both), Primary Antenna Only, Secondary Antenna Only</td>
</tr>
<tr>
<td></td>
<td>Default: Diversity (Both)</td>
</tr>
<tr>
<td></td>
<td>- PCI card—The PCI card must use the Primary Antenna Only option.</td>
</tr>
<tr>
<td></td>
<td>Default: Primary Antenna Only</td>
</tr>
<tr>
<td></td>
<td>- Mini PCI card—The mini PCI card, which can be used with one or two antennas, operates best in diversity mode. Diversity mode allows the card to use the better signal from its two antenna connectors.</td>
</tr>
<tr>
<td></td>
<td>Options: Diversity (Both), Primary Antenna Only, Secondary Antenna Only</td>
</tr>
<tr>
<td></td>
<td>Default: Diversity (Both)</td>
</tr>
<tr>
<td>Antenna Mode (Transmit)</td>
<td>Specifies the antenna that your client adapter uses to transmit data.</td>
</tr>
<tr>
<td></td>
<td>See the Antenna Mode (Receive) parameter above for information on the options available for your client adapter.</td>
</tr>
<tr>
<td>Note</td>
<td>This parameter is available only for 2.4-GHz client adapters.</td>
</tr>
<tr>
<td>Note</td>
<td>The Primary Antenna Only and Secondary Antenna Only options were formerly named Right Antenna Only and Left Antenna Only, respectively.</td>
</tr>
<tr>
<td>Antenna Mode (Transmit)</td>
<td>Specifies the antenna that your client adapter uses to transmit data.</td>
</tr>
<tr>
<td>Note</td>
<td>This parameter is available only for 2.4-GHz client adapters.</td>
</tr>
</tbody>
</table>
Chapter 5 Configuring the Client Adapter

Table 5-4 Advanced (Infrastructure) Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Specified Access Point 1-4 | Specifies the MAC addresses of up to four preferred access points with which the client adapter can associate. If the specified access points are not found or the client adapter roams out of range, the adapter may associate to another access point. You can enter the MAC addresses of the access points in the edit boxes or choose not to specify access points by leaving the boxes blank.
 Default: Blank fields
 Note This parameter should be used only for access points that are in repeater mode. For normal operation, leave these fields blank because specifying an access point slows down the roaming process. |
| RTS Threshold | Specifies the size of the data packet that the low-level RF protocol issues to a request-to-send (RTS) packet. Setting this parameter to a small value causes RTS packets to be sent more often. When this occurs, more of the available bandwidth is consumed and the throughput of other network packets is reduced, but the system is able to recover faster from interference or collisions, which may be caused from a high multipath environment characterized by obstructions or metallic surfaces.
 Range: 0 to 2312
 Default: 2312
 Note Refer to the IEEE 802.11 Standard for more information on the RTS/CTS mechanism. |
| RTS Retry Limit | Specifies the number of times the client adapter resends a request-to-send (RTS) packet if it does not receive a clear-to-send (CTS) packet from the previously sent RTS packet. Setting this parameter to a large value decreases the available bandwidth whenever interference is encountered but makes the system more immune to interference and collisions, which may be caused from a high multipath environment characterized by obstructions or metallic surfaces.
 Range: 1 to 128
 Default: 16 (2.4-GHz client adapters) or 32 (5-GHz client adapters)
 Note Refer to the IEEE 802.11 Standard for more information on the RTS/CTS mechanism. |
Table 5-4 Advanced (Infrastructure) Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Enable Radio Management Support | Checking this check box enables the access point to which the client adapter is associated to control the use of radio management (RM), provided RM is enabled on the access point. RM is a system-wide feature that involves multiple infrastructure nodes. The RM feature on the access point acts on radio measurement requests from other network devices to instruct the access point and its associated clients to perform required radio measurements and then report them.
Default: Checked |
| **Note** | This parameter is available in Install Wizard version 1.2 or later for 350 series cards and Install Wizard version 1.3 or later for CB20A cards. |
| **Note** | Access points must use Cisco IOS Release 12.2(13)JA or later to enable RM. Refer to the documentation for your access point for instructions on enabling this feature. |

Go to the next section to set additional parameters or click **OK** to return to the Profile Manager screen. On the Profile Manager screen, click **OK** or **Apply** to save your changes.
Setting Advanced Ad Hoc Parameters

You can set advanced ad hoc parameters only if your client adapter has been set to operate in an ad hoc network. See the Network Type parameter in Table 5-2.

The Advanced (Ad Hoc) screen (see Figure 5-4) enables you to set parameters that control how the client adapter operates within an ad hoc network. To access this screen, choose the Advanced (Ad Hoc) tab from the Properties screens.

Figure 5-4 Advanced (Ad Hoc) Screen
Table 5-5 lists and describes the client adapter’s advanced ad hoc parameters. Follow the instructions in the table to change any parameters.

Table 5-5 Advanced (Ad Hoc) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna Mode (Receive)</td>
<td>Specifies the antenna that your client adapter uses to receive data.</td>
</tr>
<tr>
<td></td>
<td>• PC card—The PC card’s integrated, permanently attached antenna operates</td>
</tr>
<tr>
<td></td>
<td>best when used in diversity mode. Diversity mode allows the card to use</td>
</tr>
<tr>
<td></td>
<td>the better signal from its two antenna ports.</td>
</tr>
<tr>
<td></td>
<td>Options: Diversity (Both), Primary Antenna Only, Secondary</td>
</tr>
<tr>
<td></td>
<td>Antenna Only</td>
</tr>
<tr>
<td></td>
<td>Default: Diversity (Both)</td>
</tr>
<tr>
<td></td>
<td>• LM card—The LM card is shipped without an antenna; however, an antenna</td>
</tr>
<tr>
<td></td>
<td>can be connected through the card’s external connector. If a snap-on</td>
</tr>
<tr>
<td></td>
<td>antenna is used, diversity mode is recommended. Otherwise, choose the</td>
</tr>
<tr>
<td></td>
<td>mode that corresponds to the antenna port to which the antenna is</td>
</tr>
<tr>
<td></td>
<td>connected.</td>
</tr>
<tr>
<td></td>
<td>Options: Diversity (Both), Primary Antenna Only, Secondary</td>
</tr>
<tr>
<td></td>
<td>Antenna Only</td>
</tr>
<tr>
<td></td>
<td>Default: Diversity (Both)</td>
</tr>
<tr>
<td></td>
<td>• PCI card—The PCI card must use the Primary Antenna Only option.</td>
</tr>
<tr>
<td></td>
<td>Default: Primary Antenna Only</td>
</tr>
<tr>
<td></td>
<td>• Mini PCI card—The mini PCI card, which can be used with one or two</td>
</tr>
<tr>
<td></td>
<td>antennas, operates best in diversity mode. Diversity mode allows the</td>
</tr>
<tr>
<td></td>
<td>card to use the better signal from its two antenna connectors.</td>
</tr>
<tr>
<td></td>
<td>Options: Diversity (Both), Primary Antenna Only, Secondary</td>
</tr>
<tr>
<td></td>
<td>Antenna Only</td>
</tr>
<tr>
<td></td>
<td>Default: Diversity (Both)</td>
</tr>
<tr>
<td>Note</td>
<td>This parameter is available only for 2.4-GHz client adapters.</td>
</tr>
<tr>
<td>Note</td>
<td>The Primary Antenna Only and Secondary Antenna Only options were formerly</td>
</tr>
<tr>
<td></td>
<td>named Right Antenna Only and Left Antenna Only, respectively.</td>
</tr>
<tr>
<td>Antenna Mode (Transmit)</td>
<td>Specifies the antenna that your client adapter uses to transmit data.</td>
</tr>
<tr>
<td></td>
<td>See the Antenna Mode (Receive) parameter above for information on the</td>
</tr>
<tr>
<td></td>
<td>options available for your client adapter.</td>
</tr>
<tr>
<td>Note</td>
<td>This parameter is available only for 2.4-GHz client adapters.</td>
</tr>
</tbody>
</table>
Setting Advanced Ad Hoc Parameters

The parameters discussed below are used to adjust the behavior of the wireless client adapter in an ad hoc network. These parameters can help improve performance and reduce interference.

RTS Threshold
Specifies the size of the data packet that the low-level RF protocol issues to a request-to-send (RTS) packet. Setting this parameter to a small value causes RTS packets to be sent more often, potentially consuming more bandwidth and reducing throughput for other network packets. However, the system can recover faster from interference or collisions, which may be caused by a high multipath environment characterized by obstructions or metallic surfaces.

Range: 0 to 2312
Default: 2312
Note: Refer to the IEEE 802.11 Standard for more information on the RTS/CTS mechanism.

RTS Retry Limit
Specifies the number of times the client adapter resends a request-to-send (RTS) packet if it does not receive a clear-to-send (CTS) packet from the previously sent RTS packet. Setting this parameter to a large value decreases available bandwidth whenever interference is encountered but makes the system more immune to interference and collisions, which may be caused by a high multipath environment characterized by obstructions or metallic surfaces.

Range: 1 to 128
Default: 16 (2.4-GHz client adapters) or 32 (5-GHz client adapters)
Note: Refer to the IEEE 802.11 Standard for more information on the RTS/CTS mechanism.

Wake Duration (Kµs)
Specifies the amount of time following a beacon that the client adapter stays awake to receive announcement traffic indication message (ATIM) packets, which are sent to the adapter to keep it awake until the next beacon.

Range: 0 Kµs (in CAM mode); 5 to 60 Kµs (in Max PSP or Fast PSP mode)
Default: 5 Kµs
Note: Refer to the Power Save Mode parameter in Table 5-2.

Note: If your client adapter is set to CAM mode, you must set the wake duration to 0 Kµs. If your client adapter is set to Max PSP or Fast PSP mode, you must set the wake duration to a minimum of 5 Kµs.

Note: Kµs is a unit of measurement in software terms. K = 1024, µ = 10^-6, and s = seconds, so Kµs = .001024 seconds, 1.024 milliseconds, or 1024 microseconds.

Table 5-5 Advanced (Ad Hoc) Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS Threshold</td>
<td>Specifies the size of the data packet that the low-level RF protocol issues to a request-to-send (RTS) packet. Setting this parameter to a small value causes RTS packets to be sent more often. When this occurs, more of the available bandwidth is consumed and the throughput of other network packets is reduced, but the system is able to recover faster from interference or collisions, which may be caused from a high multipath environment characterized by obstructions or metallic surfaces.</td>
</tr>
</tbody>
</table>
| Range: 0 to 2312 | Default: 2312
Note: Refer to the IEEE 802.11 Standard for more information on the RTS/CTS mechanism. |

| RTS Retry Limit | Specifies the number of times the client adapter resends a request-to-send (RTS) packet if it does not receive a clear-to-send (CTS) packet from the previously sent RTS packet. Setting this parameter to a large value decreases the available bandwidth whenever interference is encountered but makes the system more immune to interference and collisions, which may be caused from a high multipath environment characterized by obstructions or metallic surfaces. |
| Range: 1 to 128 | Default: 16 (2.4-GHz client adapters) or 32 (5-GHz client adapters)
Note: Refer to the IEEE 802.11 Standard for more information on the RTS/CTS mechanism. |

| Wake Duration (Kµs) | Specifies the amount of time following a beacon that the client adapter stays awake to receive announcement traffic indication message (ATIM) packets, which are sent to the adapter to keep it awake until the next beacon. Refer to the Power Save Mode parameter in Table 5-2. |
| Range: 0 Kµs (in CAM mode); 5 to 60 Kµs (in Max PSP or Fast PSP mode) | Default: 5 Kµs
Note: If your client adapter is set to CAM mode, you must set the wake duration to 0 Kµs. If your client adapter is set to Max PSP or Fast PSP mode, you must set the wake duration to a minimum of 5 Kµs.

Note: Kµs is a unit of measurement in software terms. K = 1024, µ = 10^-6, and s = seconds, so Kµs = .001024 seconds, 1.024 milliseconds, or 1024 microseconds. |
Setting Network Security Parameters

The Network Security screen (see Figure 5-5) enables you to set parameters that control how the client adapter associates to an access point, authenticates to the wireless network, and encrypts and decrypts data. To access this screen, choose the Network Security tab from the Properties screens.

Figure 5-5 Network Security Screen

Table 5-5 Advanced (Ad Hoc) Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon Period (Kµs)</td>
<td>Specifies the duration between beacon packets, which are used to help clients find each other in ad hoc mode.</td>
</tr>
<tr>
<td>Range: 20 to 976 Kµs</td>
<td>Default: 100 Kµs</td>
</tr>
</tbody>
</table>

Go to the next section to set additional parameters or click OK to return to the Profile Manager screen. On the Profile Manager screen, click OK or Apply to save your changes.
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

This screen is different from the other Properties screens in that it presents several security features, each of which involves a number of steps. In addition, the security features themselves are complex and need to be understood before they are implemented. Therefore, this section provides an overview of the security features as well as procedures for using them.

However, before you determine the appropriate security settings for your client adapter, you must decide how to set the **Allow Association to Mixed Cells** parameter, which appears at the bottom of the Network Security screen and is not associated to any of the security features. See the “Setting the Allow Association to Mixed Cells Parameter” section below.

Setting the Allow Association to Mixed Cells Parameter

The Allow Association to Mixed Cells parameter indicates whether the client adapter can associate to an access point that allows both WEP and non-WEP associations. Follow these steps to set this parameter.

Note

This parameter is unavailable if the Wi-Fi Protected Access (WPA) check box is checked.

Step 1

Perform one of the following:

- Check the **Allow Association to Mixed Cells** check box if the access point with which the client adapter is to associate has WEP set to Optional and WEP is enabled on the client adapter. Otherwise, the client is unable to establish a connection with the access point.

- Uncheck the **Allow Association to Mixed Cells** check box if the access point with which the client adapter is to associate does not have WEP set to Optional. This is the default setting.

Note

For security reasons, Cisco recommends that WEP-enabled and WEP-disabled clients not be allowed in the same cell because broadcast packets are sent unencrypted, even to clients running WEP.

Step 2

Perform one of the following:

- If you do not want to change any other parameters on the Network Security screen, click **OK** to return to the Profile Manager screen; then click **OK** or **Apply** to save your changes.

- If you want to change some of the other parameters on the Network Security screen, go to the next section.
Overview of Security Features

You can protect your data as it is transmitted through your wireless network by encrypting it through the use of wired equivalent privacy (WEP) encryption keys. With WEP encryption, the transmitting device encrypts each packet with a WEP key, and the receiving device uses that same key to decrypt each packet.

The WEP keys used to encrypt and decrypt transmitted data can be statically associated with your adapter or dynamically created as part of the EAP authentication process. The information in the “Static WEP Keys” and “EAP (with Dynamic WEP Keys)” sections below can help you to decide which type of WEP keys you want to use. Dynamic WEP keys with EAP offer a higher degree of security than static WEP keys.

WEP keys, whether static or dynamic, are either 40 or 128 bits in length. 128-bit WEP keys offer a greater level of security than 40-bit WEP keys.

Note
Refer to the “Additional WEP Key Security Features” section on page 5-29 for information on three security features that can make your WEP keys even more secure.

Static WEP Keys

Each device (or profile) within your wireless network can be assigned up to four static WEP keys. If a device receives a packet that is not encrypted with the appropriate key (as the WEP keys of all devices that are to communicate with each other must match), the device discards the packet and never delivers it to the intended receiver.

Static WEP keys are write-only and temporary; therefore, they cannot be read back from the client adapter, and they are lost when power to the adapter is removed or the Windows device is rebooted. Although the keys are temporary, you do not need to re-enter them each time the client adapter is inserted or the Windows device is rebooted. This is because the keys are stored (in an encrypted format for security reasons) in the registry of the Windows device. When the driver loads and reads the client adapter’s registry parameters, it also finds the static WEP keys, unencrypts them, and stores them in volatile memory on the adapter.

The Network Security screen enables you to view the current WEP key settings for the client adapter and then to assign new WEP keys or overwrite existing WEP keys as well as to enable or disable static WEP. Refer to the “Using Static WEP” section on page 5-35 for instructions.

EAP (with Dynamic WEP Keys)

The new standard for wireless LAN security, as defined by the Institute of Electrical and Electronics Engineers (IEEE), is called 802.1X for 802.11, or simply 802.1X. An access point that supports 802.1X and its protocol, Extensible Authentication Protocol (EAP), acts as the interface between a wireless client and an authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) server, to which the access point communicates over the wired network.

Three 802.1X authentication types can be selected in ACU for use with Windows operating systems:

- **EAP-Cisco Wireless** (or LEAP)—This authentication type is available for 350 series and CB20A cards on Windows 2000 and XP. Support for LEAP is provided not in the Windows operating system but in your client adapter’s firmware and the Cisco software that supports it. RADIUS servers that support LEAP include Cisco Secure ACS version 2.6 and later, Cisco Access Registrar version 1.7 and later, and Funk Software’s Steel-Belted RADIUS version 3.0 and later.
LEAP is enabled or disabled for a specific profile through ACU, provided the LEAP security module was selected during installation. After LEAP is enabled, a variety of configuration options are available, including how and when a username and password are entered to begin the authentication process.

The username and password are used by the client adapter to perform mutual authentication with the RADIUS server through the access point. The username and password need to be re-entered each time the client adapter is inserted or the Windows device is rebooted, unless you configure your adapter to use saved LEAP credentials.

Note
If the LEAP security module was not selected during installation, the LEAP option is unavailable in ACU. If you want to be able to enable and disable LEAP, you must run the installation program again and choose LEAP.

- **EAP-FAST**—This authentication type (Flexible Authentication via Secure Tunneling) is available for 350 series and CB20A cards on computers running Windows 2000 or XP. EAP-FAST uses a three-phased tunneled authentication process to provide advanced 802.1X EAP mutual authentication.
 - Phase 0 enables the client to dynamically provision a protected access credentials (PAC) when necessary. During this phase, a PAC is generated securely between the user and the network.
 - Phase 1 uses the PAC to establish a mutually authenticated and secure tunnel between the client and the RADIUS server. RADIUS servers that support EAP-FAST include Cisco Secure ACS version 3.2.3 and later.
 - Phase 2 performs client authentication in the established tunnel.

EAP-FAST is enabled or disabled for a specific profile through ACU, provided the EAP-FAST security module was selected during installation. After EAP-FAST is enabled, a variety of configuration options are available, including how and when a username and password are entered to begin the authentication process and whether automatic or manual PAC provisioning is used.

The client adapter uses the username, password, and PAC to perform mutual authentication with the RADIUS server through the access point. The username and password need to be re-entered each time the client adapter is inserted or the Windows device is rebooted, unless you configure your adapter to use saved EAP-FAST credentials.

PACs are created by Cisco Secure ACS and are identified by an ID. The user obtains his or her own copy of the PAC from the server, and the ID links the PAC to the profile created in ACU. When manual PAC provisioning is enabled, the PAC file is manually copied from the server and imported onto the client device. The following rules govern PAC storage:
 - In most cases PACs are provisioned and stored separately for each Windows logon user. These per-user PACs are not viewable by other users.
 - If a profile is configured to use manual provisioning, each user must manually provision his or her own PAC for that profile.
 - PAC files can be added or replaced using the import feature, but they cannot be removed or exported.
 - For profiles configured with saved EAP-FAST usernames and passwords, the PACs are not stored per user but in a global PAC area shared by all users. Global PACs are also enabled when the No Network Connection Unless User Is Logged In check box is unchecked. These global PACs can be imported and used by all users.
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

Note PACs are also stored globally on computers that use the Novell Network login prompt or any other third-party login application that does not share its credentials with the EAP-FAST supplicant.

EAP-FAST authentication is designed to support the following user databases over a wireless LAN:

- Cisco Secure ACS internal user database
- Cisco Secure ACS ODBC user database
- Windows NT/2000/2003 domain user database
- LDAP user database

LDAP user databases (such as NDS) support only manual PAC provisioning while the other three user databases support both automatic and manual PAC provisioning.

Note If the EAP-FAST security module was not selected during installation, the EAP-FAST option is unavailable in ACU. If you want to be able to enable and disable EAP-FAST, you must run the installation program again and choose EAP-FAST. EAP-FAST is supported in Install Wizard version 1.3 and later.

- **Host Based EAP**—Choosing this option enables you to use any 802.1X authentication type for which your operating system has support. For example, if your operating system uses the Microsoft 802.1X supplicant, it provides native support for EAP-TLS authentication and general support for PEAP and EAP-SIM authentication.

Note To use EAP-TLS, PEAP, or EAP-SIM authentication, you must install the Microsoft 802.1X supplicant, ACU, and the PEAP or EAP-SIM supplicant; configure your client adapter using ACU; enable the authentication type in Windows; and enable Network-EAP on the access point.

- **EAP-TLS**—EAP-TLS is enabled or disabled through the operating system and uses a dynamic session-based WEP key, which is derived from the client adapter and RADIUS server, to encrypt data. Once enabled, a few configuration parameters must be set within the operating system.

RADIUS servers that support EAP-TLS authentication include Cisco Secure ACS version 3.0 or later and Cisco Access Registrar version 1.8 or later.

Note EAP-TLS requires the use of a certificate. Refer to Microsoft’s documentation for information on downloading and installing the certificate.

- **Protected EAP** (or **PEAP**)—PEAP authentication is designed to support One-Time Password (OTP), Windows NT or 2000 domain, and LDAP user databases over a wireless LAN. It is based on EAP-TLS authentication but uses a password or PIN instead of a client certificate for authentication. PEAP is enabled or disabled through the operating system and uses a dynamic session-based WEP key, which is derived from the client adapter and RADIUS server, to encrypt data. If your network uses an OTP user database, PEAP requires you to enter either a hardware token password or a software token PIN to start the EAP authentication process and gain access to the network. If your network uses a Windows NT or 2000 domain user database or an LDAP user database (such as NDS), PEAP requires you to enter your username, password, and domain name in order to start the authentication process.
RADIUS servers that support PEAP authentication include Cisco Secure ACS version 3.1 or later and Cisco Access Registrar version 3.5 or later.

Note Windows XP Service Pack 1 and the Microsoft 802.1X supplicant for Windows 2000 include Microsoft’s PEAP supplicant, which supports a Windows username and password only and does not interoperate with Cisco’s PEAP supplicant. To use Cisco’s PEAP supplicant, install the Install Wizard file after Windows XP Service Pack 1 or the Microsoft 802.1X supplicant for Windows 2000. Otherwise, Cisco’s PEAP supplicant is overwritten by Microsoft’s PEAP supplicant.

- **EAP-SIM**—EAP-SIM authentication is designed for use in public wireless LANs and requires clients equipped with PCSC-compliant smartcard readers. The EAP-SIM supplicant included in the Install Wizard file supports only Gemplus SIM+ cards; however, an updated supplicant is available that supports standard GSM-SIM cards as well as more recent versions of the EAP-SIM protocol. The new supplicant is available for download from Cisco.com at the following URL:

 http://www.cisco.com/cgi-bin/tablebuild.pl/access-registrar-encrypted

Please note that the above requirements are necessary but not sufficient to successfully perform EAP-SIM authentication. Typically, you are also required to enter into a service contract with a WLAN service provider, who must support EAP-SIM authentication in its network. Also, while your PCSC smartcard reader may be able to read standard GSM-SIM cards or chips, EAP-SIM authentication usually requires your GSM cell phone account to be provisioned for WLAN service by your service provider.

EAP-SIM is enabled or disabled through the operating system and uses a dynamic session-based WEP key, which is derived from the client adapter and RADIUS server, to encrypt data. EAP-SIM requires you to enter a user verification code, or PIN, for communication with the SIM card. You can choose to have the PIN stored in your computer or to be prompted to enter it after a reboot or prior to every authentication attempt.

RADIUS servers that support EAP-SIM include Cisco Access Registrar version 3.0 or later.

Note Because EAP-TLS, PEAP, and EAP-SIM authentication are enabled in the operating system and not in ACU, you cannot switch between these authentication types simply by switching profiles in ACU. You can create a profile in ACU that uses host-based EAP, but you must enable the specific authentication type in Windows (provided Windows uses the Microsoft 802.1X supplicant). In addition, Windows can be set for only one authentication type at a time; therefore, if you have more than one profile in ACU that uses host-based EAP and you want to use another authentication type, you must change authentication types in Windows after switching profiles in ACU.

When you enable Network-EAP or EAP on your access point and configure your client adapter for LEAP, EAP-FAST, EAP-TLS, PEAP, or EAP-SIM, authentication to the network occurs in the following sequence:

1. The client associates to an access point and begins the authentication process.

Note The client does not gain full access to the network until authentication between the client and the RADIUS server is successful.
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

2. Communicating through the access point, the client and RADIUS server complete the authentication process, with the password (LEAP and PEAP), password and PAC (EAP-FAST), certificate (EAP-TLS), or internal key stored on the SIM card and in the service provider’s Authentication Center (EAP-SIM) being the shared secret for authentication. The password, PAC, or internal key is never transmitted during the process.

3. If authentication is successful, the client and RADIUS server derive a dynamic, session-based WEP key that is unique to the client.

4. The RADIUS server transmits the key to the access point using a secure channel on the wired LAN.

5. For the length of a session, or time period, the access point and the client use this key to encrypt or decrypt all unicast packets (and broadcast packets if the access point is set up to do so) that travel between them.

Refer to one of these sections for instructions on enabling EAP authentication:

- Enabling LEAP, page 5-38
- Enabling EAP-FAST, page 5-42
- Enabling Host-Based EAP, page 5-49

Wi-Fi Protected Access (WPA)

Wi-Fi Protected Access (WPA) is a standards-based, interoperable security enhancement that greatly increases the level of data protection and access control for existing and future wireless LAN systems. It is derived from and will be compatible with the upcoming IEEE 802.11i standard. WPA leverages Temporal Key Integrity Protocol (TKIP) and Michael message integrity check (MIC) for data protection and 802.1X for authenticated key management.

WPA supports two mutually exclusive key management types: WPA and WPA-Pre-shared key (WPA-PSK). Using WPA key management, clients and the authentication server authenticate to each other using an EAP authentication method, and the client and server generate a pairwise master key (PMK). The server generates the PMK dynamically and passes it to the access point. Using WPA-PSK key management, however, you configure a pre-shared key on both the client and the access point, and that pre-shared key is used as the PMK.

Only 350 series and CB20A cards that are installed on computers running Windows 2000 or XP and running LEAP, EAP-FAST, or host-based EAP authentication can be used with WPA. Support for WPA is available in the software components included in Install Wizard version 1.2 or later. However, if you want to use host-based EAP authentication with WPA, you must install additional software with WPA support. The following WPA software is recommended for use with Cisco Aironet client adapters:

- Funk Odyssey Client supplicant version 2.2 (for Windows 2000)
- Windows XP Service Pack 1 and Microsoft support patch 815485 (for Windows XP)

Note Refer to the IEEE 802.11 Standard for more information on 802.1X authentication and to the following URL for additional information on RADIUS servers:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/secur_c/scprt2/scrad.htm

Note Meetinghouse AEGIS Client supplicant version 2.1 or later is also supported for use with Windows 2000 and XP; however, it was not tested with this client adapter software release.
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

The software components included in Install Wizard version 1.3 or later automatically support WPA migration mode. *WPA migration mode* is an access point setting that enables both WPA and non-WPA clients to associate to the access point using the same SSID.

Refer to one of these sections for instructions on enabling EAP authentication with WPA:

- Enabling LEAP, page 5-38
- Enabling EAP-FAST, page 5-42
- Enabling Host-Based EAP, page 5-49

Note
WPA must also be enabled on the access point. Access points must use Cisco IOS Release 12.2(11)JA or later to enable WPA. Refer to the documentation for your access point for instructions on enabling this feature.

Fast Roaming (CCKM)

Some applications that run on a client device may require fast roaming between access points. Voice applications, for example, require seamless roaming to prevent delays and gaps in conversation. Support for fast roaming is available for LEAP-enabled clients in Install Wizard version 1.1 or later and EAP-FAST-enabled clients in Install Wizard version 1.3 or later.

During normal operation, LEAP- or EAP-FAST-enabled clients mutually authenticate with a new access point by performing a complete LEAP or EAP-FAST authentication, including communication with the main RADIUS server. However, when you configure your wireless LAN for fast roaming, LEAP- or EAP-FAST-enabled clients securely roam from one access point to another without the need to reauthenticate with the RADIUS server. Using Cisco Centralized Key Management (CCKM), an access point that is configured for wireless domain services (WDS) uses a fast rekeying technique that enables client devices to roam from one access point to another in under 150 milliseconds (ms). Fast roaming ensures that there is no perceptible delay in time-sensitive applications such as wireless Voice over IP (VoIP), enterprise resource planning (ERP), or Citrix-based solutions.

This feature is enabled on the client adapter in two ways, depending on the software installed:

- If you are using ACU version 6.2 and client adapter firmware version 5.30.17 (which is included in Install Wizard version 1.2) or later, you need to enable fast roaming in ACU. Refer to Step 10 in the “Enabling LEAP” section or Step 12 in the “Enabling EAP-FAST” section for details.
- If you are using client adapter firmware version 5.20.17 (which is included in Install Wizard version 1.1), fast roaming is supported automatically.

Regardless of how fast roaming is enabled on the client adapter, it must also be enabled on the access point.

Note
Access points must use Cisco IOS Release 12.2(11)JA or later to enable fast roaming. Refer to the documentation for your access point for instructions on enabling this feature.

Note
If the Microsoft 802.1X supplicant is installed on your computer, you must disable one or two Windows parameters in order for this feature to operate correctly. Refer to Step 13 in the “Enabling LEAP” section or Step 15 in the “Enabling EAP-FAST” section for details.
Reporting Access Points that Fail LEAP or EAP-FAST Authentication

The following client adapter and access point firmware versions support a feature that is designed to detect access points that fail LEAP or EAP-FAST authentication:

- Client adapter firmware version 5.02.20 or later (for LEAP)
- Client adapter firmware version 5.40.10 or later (for EAP-FAST)
- 12.00T or later (340, 350, and 1200 series access points)
- Cisco IOS Release 12.2(4)JA or later (1100 series access points)

An access point running one of these firmware versions records a message in the system log when a client running one of these firmware versions discovers and reports another access point in the wireless network that has failed LEAP or EAP-FAST authentication.

The process takes place as follows:

1. A client with a LEAP or EAP-FAST profile attempts to associate to access point A.
2. Access point A does not handle LEAP or EAP-FAST authentication successfully, perhaps because the access point does not understand LEAP or EAP-FAST or cannot communicate to a trusted LEAP or EAP-FAST authentication server.
3. The client records the MAC address for access point A and the reason why the association failed.
4. The client associates successfully to access point B.
5. The client sends the MAC address of access point A and the reason code for the failure to access point B.
6. Access point B logs the failure in the system log.

Note
This feature does not need to be enabled on the client adapter or access point; it is supported automatically in the firmware of both devices. However, both the client and access point must use these firmware versions or later.

Additional WEP Key Security Features

The three security features discussed in this section (MIC, TKIP, and broadcast key rotation) are designed to prevent sophisticated attacks on your wireless network’s WEP keys. These features do not need to be enabled on the client adapter; they are supported automatically in the firmware and driver versions included in the Install Wizard file. However, they must be enabled on the access point.

Note
Access point firmware version 11.10T or later is required to enable these security features. Refer to the documentation for your access point for instructions on enabling these security features.
Message Integrity Check (MIC)

MIC prevents bit-flip attacks on encrypted packets. During a bit-flip attack, an intruder intercepts an encrypted message, alters it slightly, and retransmits it, and the receiver accepts the retransmitted message as legitimate. The MIC adds a few bytes to each packet to make the packets tamper-proof. The Status screen indicates if MIC is being used, and the Statistics screen provides MIC statistics.

Note
If you enable MIC on the access point, your client adapter’s driver must support these features; otherwise, the client cannot associate.

Temporal Key Integrity Protocol (TKIP)

This feature, also referred to as *WEP key hashing*, defends against an attack on WEP in which the intruder uses the initialization vector (IV) in encrypted packets to calculate the WEP key. TKIP removes the predictability that an intruder relies on to determine the WEP key by exploiting IVs. It protects both unicast and broadcast WEP keys.

Note
If you enable TKIP on the access point, your client adapter’s firmware must support these features; otherwise, the client cannot associate.

Note
TKIP is automatically enabled whenever WPA is enabled, and it is disabled whenever WPA is disabled.

Broadcast Key Rotation

EAP authentication provides dynamic unicast WEP keys for client devices but uses static broadcast, or multicast, keys. When you enable broadcast WEP key rotation, the access point provides a dynamic broadcast WEP key and changes it at the interval you choose. When you enable this feature, only wireless client devices using LEAP, EAP-FAST, EAP-TLS, PEAP, or EAP-SIM authentication can associate to the access point. Client devices using static WEP (with open or shared key authentication) cannot associate.
Synchronizing Security Features

In order to use any of the security features discussed in this section, both your client adapter and the access point to which it will associate must be set appropriately. Table 5-6 indicates the client and access point settings required for each security feature. This chapter provides specific instructions for enabling the security features on your client adapter. Refer to the documentation for your access point for instructions on enabling any of these features on the access point.

Table 5-6 Client and Access Point Security Settings

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static WEP with open authentication</td>
<td>Disable Network Authentication, enable Static WEP and Open Authentication and create a WEP key</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID</td>
</tr>
<tr>
<td>Static WEP with shared key authentication</td>
<td>Disable Network Authentication, enable Static WEP and Shared Key Authentication and create a WEP key</td>
<td>Set up and enable WEP and enable Shared Key Authentication for the SSID</td>
</tr>
<tr>
<td>LEAP authentication</td>
<td>Enable LEAP</td>
<td>Set up and enable WEP and enable Network-EAP for the SSID</td>
</tr>
<tr>
<td>LEAP authentication with WPA</td>
<td>Enable LEAP and Wi-Fi Protected Access (WPA)</td>
<td>Select a cipher suite that includes TKIP, set up and enable WEP, and enable Network-EAP and WPA for the SSID</td>
</tr>
<tr>
<td></td>
<td>Note To allow the client to associate to both WPA and non-WPA access points, enable Allow Association to both WPA and non-WPA authenticators.</td>
<td>Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td>EAP-FAST authentication</td>
<td>Enable EAP-FAST and enable automatic provisioning or import a PAC file</td>
<td>Set up and enable WEP and enable Network-EAP for the SSID</td>
</tr>
<tr>
<td>EAP-FAST authentication with WPA</td>
<td>Enable EAP-FAST and Wi-Fi Protected Access (WPA) and enable automatic provisioning or import a PAC file</td>
<td>Select a cipher suite that includes TKIP, set up and enable WEP, and enable Network-EAP and WPA for the SSID</td>
</tr>
<tr>
<td></td>
<td>Note To allow the client to associate to both WPA and non-WPA access points, enable Allow Association to both WPA and non-WPA authenticators.</td>
<td>Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
</tbody>
</table>
Table 5-6 Client and Access Point Security Settings (continued)

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP-TLS authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If using ACU to configure card</td>
<td>Enable Host Based EAP (802.1x) and Dynamic WEP in ACU and select Enable network access control using IEEE 802.1X (or Enable IEEE 802.1x authentication for this network) and Certificates (or Smart Card or other Certificate) as the EAP Type in Windows</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>If using Windows XP to configure card</td>
<td>Select Enable network access control using IEEE 802.1X and Smart Card or Other Certificate as the EAP Type</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>EAP-TLS authentication with WPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If using ACU to configure card</td>
<td>Enable Wi-Fi Protected Access (WPA), Host Based EAP (WPA), and Dynamic WEP in ACU and enable WPA and select Enable network access control using IEEE 802.1X and Certificates (or Smart Card or Other Certificate) as the EAP Type in Windows</td>
<td>Select a cipher suite that includes TKIP; set up and enable WEP; and enable WPA and Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>If using Windows XP to configure card</td>
<td>Enable WPA and select Enable network access control using IEEE 802.1X and Smart Card or other Certificate as the EAP Type</td>
<td>Select a cipher suite that includes TKIP; set up and enable WEP; and enable WPA and Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>PEAP authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If using ACU to configure card</td>
<td>Enable Host Based EAP (802.1x) and Dynamic WEP in ACU and select Enable network access control using IEEE 802.1X (or Enable IEEE 802.1x authentication for this network) and PEAP as the EAP Type in Windows</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td>If using Windows XP to configure card</td>
<td>Select Enable network access control using IEEE 802.1X and PEAP as the EAP Type</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
</tbody>
</table>
Table 5-6 Client and Access Point Security Settings (continued)

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAP authentication with WPA</td>
<td>If using ACU to configure card Enable Wi-Fi Protected Access (WPA), Host Based EAP (WPA), and Dynamic WEP in ACU and enable WPA and select Enable network access control using IEEE 802.1X and PEAP as the EAP Type in Windows</td>
<td>Select a cipher suite that includes TKIP; set up and enable WEP; and enable WPA and Open Authentication for the SSID and specify the use of EAP Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td></td>
<td>If using Windows XP to configure card Enable WPA and select Enable network access control using IEEE 802.1X and PEAP as the EAP Type</td>
<td>Select a cipher suite that includes TKIP; set up and enable WEP; and enable WPA and Open Authentication for the SSID and specify the use of EAP Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td>EAP-SIM authentication</td>
<td>If using ACU to configure card Enable Host Based EAP (802.1x) and Dynamic WEP in ACU and select Enable network access control using IEEE 802.1X (or Enable IEEE 802.1x authentication for this network) and SIM Authentication as the EAP Type in Windows</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td></td>
<td>If using Windows XP to configure card Select Enable network access control using IEEE 802.1X and SIM Authentication as the EAP Type</td>
<td>Set up and enable WEP and enable Open Authentication for the SSID and specify the use of EAP</td>
</tr>
</tbody>
</table>
Table 5-6 Client and Access Point Security Settings (continued)

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP-SIM authentication with WPA</td>
<td>If using ACU to configure card Enable Wi-Fi Protected Access (WPA), Host Based EAP (WPA), and Dynamic WEP in ACU and enable WPA and select Enable network access control using IEEE 802.1X and SIM Authentication as the EAP Type in Windows</td>
<td>Select a cipher suite that includes TKIP; set up and enable WEP; and enable WPA and Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td></td>
<td>Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
<td>Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td></td>
<td>If using Windows XP to configure card Enable WPA and select Enable network access control using IEEE 802.1X and SIM Authentication as the EAP Type</td>
<td>Select a cipher suite that includes TKIP; set up and enable WEP; and enable WPA and Open Authentication for the SSID and specify the use of EAP</td>
</tr>
<tr>
<td></td>
<td>Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
<td>Note To allow both WPA and non-WPA clients to use the SSID, enable optional WPA.</td>
</tr>
<tr>
<td></td>
<td>Fast roaming (CCKM) Enable LEAP or EAP-FAST and select Allow Fast Roaming (CCKM)</td>
<td>Use firmware version 12.2(11)JA or later, select a cipher suite that is compatible with CCKM, and enable Network-EAP and CCKM for the SSID.</td>
</tr>
<tr>
<td>Fast roaming (CCKM) with TKIP</td>
<td>Enable LEAP or EAP-FAST, enable Wi-Fi Protected Access (WPA), and select Allow Fast Roaming (CCKM)</td>
<td>Use firmware version 12.2(11)JA or later, select a cipher suite that includes TKIP, and enable Network-EAP and CCKM for the SSID.</td>
</tr>
<tr>
<td>Reporting access points that fail LEAP or EAP-FAST authentication</td>
<td>No settings required; automatically enabled in firmware version 5.02.20 or later (for LEAP) or 5.40.10 or later (for EAP-FAST)</td>
<td>No settings required; automatically enabled in the following firmware versions: 12.00T or later (340, 350, and 1200 series access points) or Cisco IOS Release 12.2(4)JA or later (1100 series access points)</td>
</tr>
</tbody>
</table>
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

Using Static WEP

This section provides instructions for entering new static WEP keys or overwriting existing static WEP keys.

Entering a New Static WEP Key

Follow these steps to enter a new static WEP key for this profile.

Step 1 Choose None under Network Authentication on the Network Security screen.
Step 2 Choose Static WEP under Data Encryption.
Step 3 Click the Static WEP Keys button. The Static WEP Keys screen appears (see Figure 5-6).

Table 5-6 Client and Access Point Security Settings (continued)

<table>
<thead>
<tr>
<th>Security Feature</th>
<th>Client Setting</th>
<th>Access Point Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC</td>
<td>No settings required; automatically enabled by the driver included in the Install Wizard file</td>
<td>Set up and enable WEP with full encryption, set MIC to MMH or select Enable MIC check box, and set Use Aironet Extensions to Yes</td>
</tr>
<tr>
<td>TKIP</td>
<td>No settings required; automatically enabled by the firmware included in the Install Wizard file</td>
<td>Set up and enable WEP, set TKIP to Cisco or select Enable Per Packet Keying check box, and set Use Aironet Extensions to Yes</td>
</tr>
<tr>
<td>Broadcast key rotation</td>
<td>Enable LEAP, EAP-FAST, EAP-TLS, PEAP, or EAP-SIM and use the firmware included in the Install Wizard file</td>
<td>Set up and enable WEP and set Broadcast WEP Key Rotation Interval to any value other than zero (0)</td>
</tr>
</tbody>
</table>

Figure 5-6 Static WEP Keys Screen
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

Step 4 Choose one of the following WEP key entry methods:

- **Hexadecimal (0-9, A-F)**—Specifies that the WEP key will be entered in hexadecimal characters, which include 0-9, A-F, and a-f.

- **ASCII Text**—Specifies that the WEP key will be entered in ASCII text, which includes alpha characters, numbers, and punctuation marks.

Note ASCII text WEP keys are not supported on the Cisco Aironet 1200 Series Access Points, so you must choose the Hexadecimal (0-9, A-F) option if you are planning to use your client adapter with these access points.

Step 5 For the static WEP key that you are entering (1, 2, 3, or 4), choose a WEP key size of 40 or 128 on the right side of the screen. 128-bit client adapters can use 40- or 128-bit keys, but 40-bit adapters can use only 40-bit keys. If 128 bit is not supported by the client adapter, this option is unavailable.

Step 6 Obtain the static WEP key from your system administrator and enter it in the blank field for the key you are creating. Follow the guidelines below to enter a new static WEP key:

- WEP keys must contain the following number of characters:
 - 10 hexadecimal characters or 5 ASCII text characters for 40-bit keys
 Example: 5A5A313859 (hexadecimal) or ZZ18Y (ASCII)
 - 26 hexadecimal characters or 13 ASCII text characters for 128-bit keys
 Example: 5A58313533355495549333534 (hexadecimal) or ZX1535TYUI354 (ASCII)

Note You must enter hexadecimal characters for 5-GHz client adapters if these adapters will be used with Cisco Aironet 1200 Series Access Points.

- Your client adapter’s WEP key must match the WEP key used by the access point (in infrastructure mode) or clients (in ad hoc mode) with which you are planning to communicate.

- When setting more than one WEP key, the keys must be assigned to the same WEP key numbers for all devices. For example, WEP key 2 must be WEP key number 2 on all devices. When multiple WEP keys are set, they must be in the same order on all devices.

Note After you enter a WEP key, you can write over it, but you cannot edit or delete it.

Step 7 Click the **Transmit Key** button to the left of the key you want to use to transmit packets. Only one WEP key can be selected as the transmit key.

Step 8 Click **OK** to exit the Static WEP Keys screen and return to the Network Security screen.
Chapter 5 Configuring the Client Adapter

Setting Network Security Parameters

Step 9 Choose one of the following access point authentication options, which defines how your client adapter will attempt to authenticate to an access point:

- **Open**—Enables your client adapter, regardless of its WEP settings, to authenticate and attempt to communicate with an access point. Open Authentication is the default setting.

- **Shared Key**—Enables your client adapter to communicate only with access points that have the same WEP key. This option is available only if Use Static WEP Keys is selected.

In shared key authentication, the access point sends a known unencrypted “challenge packet” to the client adapter, which encrypts the packet and sends it back to the access point. The access point attempts to decrypt the encrypted packet and sends an authentication response packet indicating the success or failure of the decryption back to the client adapter. If the packet is successfully encrypted/decrypted, the user is considered to be authenticated.

Note Cisco recommends that shared key authentication not be used because it presents a security risk.

Step 10 Click **OK** to return to the Profile Manager screen; then click **OK** or **Apply** to save your changes.

Overwriting an Existing Static WEP Key

Follow these steps to overwrite an existing static WEP key.

Note You can overwrite existing WEP keys, but you cannot edit or delete them.

Step 1 Click the **Static WEP Keys** button on the Network Security screen. The Static WEP Keys screen appears (see Figure 5-6).

Step 2 Look at the current WEP key settings in the middle of the screen. A check mark appears in the Already Set? box for all existing static WEP keys.

Note For security reasons, the codes for existing static WEP keys do not appear on the screen.

Step 3 Decide which existing static WEP key you want to overwrite.

Step 4 Click within the blank field of that key.

Step 5 Enter a new key, following the guidelines outlined in Step 6 of the “Entering a New Static WEP Key” section on page 5-35.

Step 6 Make sure the **Transmit Key** button to the left of your key is selected, if you want this key to be used to transmit packets.

Step 7 Click **OK** to exit the Static WEP Keys screen and return to the Network Security screen.

Step 8 Click **OK** to return to the Profile Manager screen; then click **OK** or **Apply** to save your changes.
Disabling Static WEP

If you ever need to disable static WEP for a particular profile, choose None under Data Encryption on the Network Security screen, click OK, and click OK or Apply on the Profile Manager screen.

Note: Choosing LEAP or EAP-FAST under Network Authentication on the Network Security screen disables static WEP automatically.

Enabling LEAP

Before you can enable LEAP authentication, your network devices must meet the following requirements:

- Client adapters must support WEP and use the firmware, drivers, utilities, and security modules included in the Install Wizard file.
- To use WPA, 350 series and CB20A client adapters must use the software included in Install Wizard version 1.2 or later on a computer running Windows 2000 or XP.
- Access points to which your client adapter may attempt to authenticate must use the following firmware versions or later: 11.23T (340 and 350 series access points), 11.54T (1200 series access points), or Cisco IOS Release 12.2(4)JA (1100 series access points).

Note: To use WPA or fast roaming (CCKM), access points must use Cisco IOS Release 12.2(11)JA or later. To use the Reporting Access Points That Fail LEAP or EAP-FAST Authentication and Fast Roaming features, access points must use the firmware versions listed on page 5-31.

- All necessary infrastructure devices such as access points and servers must be properly configured for LEAP authentication.

Note: Cisco recommends the use of strong passwords for LEAP authentication in order to minimize the risk of successful attacks by rogue access points. Refer to the “Creating Strong Passwords” section on page 10-11 for tips on creating strong passwords.

Follow these steps to enable LEAP authentication for this profile.

Step 1: Check the Wi-Fi Protected Access (WPA) check box under Network Authentication on the Network Security screen if you want to enable WPA. This parameter enables the client adapter to associate to access points using WPA.

Note: Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-27 for additional information.
Step 2 Choose LEAP or LEAP (WPA).

Note This option is available only if you chose the LEAP security module during installation.

Note When you choose this option, dynamic WEP (if WPA is disabled) or TKIP (if WPA is enabled) is set automatically.

Step 3 Click the Configure button. The LEAP Settings screen appears (see Figure 5-7).

Figure 5-7 LEAP Settings Screen

--

Step 4 Choose one of the following LEAP username and password setting options:

- **Use Temporary User Name and Password**—Requires you to enter the LEAP username and password each time the computer reboots in order to authenticate and gain access to the network.

- **Use Saved User Name and Password**—Does not require you to enter a LEAP username and password each time the computer reboots. Authentication occurs automatically as needed using a saved username and password (which are registered with the RADIUS server).

Note The Use Saved User Name and Password option is available only if the Allow Saved LEAP User Name and Password option was enabled (set to Yes) during installation.
Step 5
Perform one of the following:

- If you selected Use Temporary User Name and Password in Step 4, choose one of the following options:
 - **Use Windows Logon User Name and Password**—Causes your Windows username and password to also serve as your LEAP username and password, giving you only one set of credentials to remember. After you log in, the LEAP authentication process begins automatically. This option is the default setting.
 - **Automatically Prompt for User Name and Password**—Requires you to enter a separate LEAP username and password (which are registered with the RADIUS server) in addition to your regular Windows login in order to start the LEAP authentication process.
 - **Manually Prompt for User Name and Password**—Requires you to manually invoke the LEAP authentication process as needed using the Manual Login option from the Commands drop-down menu. You are not prompted to enter a LEAP username and password during the Windows login. This option might be used to support a software token one-time password system or other systems that require additional software that is not available at login.

- If you selected Use Saved User Name and Password in Step 4, follow these steps:
 a. Enter a username and password in the appropriate fields.

 Note
 Usernames are limited to 64 ASCII characters in the software included in Install Wizard version 1.3 or later and to 32 ASCII characters in previous Install Wizard versions. Passwords are limited to 32 ASCII characters. However, if a domain name is entered in the Domain field, the sum of the username and domain name is limited to 63 ASCII characters in the software included in Install Wizard version 1.3 or later and to 31 characters in previous Install Wizard versions.

 b. Re-enter the password in the Confirm Password field.

 c. If you wish to specify a domain name that will be passed to the RADIUS server along with your username, enter it in the Domain field.

 Note
 If you are using the software included in Install Wizard version 1.3 or later, you can include the domain name in the User Name field as follows: `username@domain.com` (provided that your RADIUS server supports this format). A maximum of 64 ASCII characters can be entered for the `username@domain.com` string. If you include the domain name in the User Name field, the Domain field becomes disabled.

Step 6
If you work in an environment with multiple domains and, therefore, want your Windows login domain to be passed to the RADIUS server along with your username, check the **Include Windows Logon Domain with User Name** check box. The default setting is checked.

Note
If you selected to use a saved username and password but do not check the **Include Windows Logon Domain with User Name** check box, the Domain field becomes unavailable, and a domain name is not passed to the RADIUS server.

Step 7
If you want to force the client adapter to disassociate after you log off so that another user cannot gain access to the wireless network using your credentials, check the **No Network Connection Unless User Is Logged In** check box. The default setting is checked.
Step 8 In the Authentication Timeout Value field, enter the amount of time (in seconds) before a LEAP authentication attempt is considered to be failed and an error message appears.

Range: 10 to 300 seconds

Default: 90 seconds

Step 9 Click OK to exit the LEAP Settings screen.

Step 10 Check the **Allow Fast Roaming (CCKM)** check box on the Network Security screen if you want to enable fast roaming for your client adapter.

- Checking this check box enables the client adapter to use CCKM when associated to an access point that uses CCKM or to associate to access points that are not using CCKM.
- Unchecking this check box prevents the client adapter from using CCKM even with access points that use it.

Default: Unchecked

Note Refer to the “Fast Roaming (CCKM)” section on page 5-28 for additional information.

Step 11 Check the **Allow Association to both WPA and non-WPA authenticators** check box if you want to allow the client adapter to associate to access points that are configured for LEAP authentication with:

- WPA enabled (associates with WPA security)
- WPA disabled or not supported (associates without WPA security)
- Cisco migration mode, where WPA is optional (associates without WPA security)

If this check box is not checked, the client adapter can associate only to access points that are configured for LEAP authentication with WPA.

Default: Unchecked

Note This parameter is available only if you enable WPA.

Step 12 Click OK to exit the Network Security screen and return to the Profile Manager screen. On the Profile Manager screen, click OK or Apply to save your changes.

Step 13 Follow these steps if the Microsoft 802.1X supplicant is installed on your computer and you want to take advantage of the fast roaming feature:

a. Perform one of the following steps, depending on your computer’s operating system:

- If your computer is running Windows 2000, double-click **My Computer**, **Control Panel**, and **Network and Dial-up Connections**. Right-click **Local Area Connection**. Click **Properties**. The Local Area Connection Properties screen appears.
- If your computer is running Windows XP, double-click **My Computer**, **Control Panel**, and **Network Connections**. Right-click **Wireless Network Connection**. Click **Properties**. The Wireless Network Connection Properties screen appears. Choose the **Wireless Networks** tab. Uncheck the **Use Windows to configure my wireless network settings** check box unless you are using Windows XP Service Pack 1.
Setting Network Security Parameters

b. Click the **Authentication** tab.

Note
In Windows Service Pack 1, the Authentication tab has moved from its previous location. To access it, make sure the **Use Windows to configure my wireless network settings** check box is checked. Click the SSID of the profile you are creating from the list of available networks and click **Configure**. If your profile’s SSID is not listed, click **Add**, enter your profile’s SSID in the Network name (SSID) field, and choose the **Authentication** tab.

c. Uncheck the **Enable network access control using IEEE 802.1X** or **Enable IEEE 802.1x** **authentication for this network** check box.

d. Click **OK** to save your settings.

e. If you are using Windows XP Service Pack 1, uncheck the **Use Windows to configure my wireless network settings** check box on the Wireless Networks screen and click **OK**.

Step 14 Refer to **Chapter 6** for instructions on authenticating using LEAP.

Enabling EAP-FAST

Before you can enable EAP-FAST authentication, your network devices must meet the following requirements:

- 350 series and CB20A client adapters must use the software included in Install Wizard version 1.3 or later on a computer running Windows 2000 or XP.

- Access points to which your client adapter may attempt to authenticate must use the following firmware versions or later: 11.23T (340 and 350 series access points), 11.54T (1200 series access points), or Cisco IOS Release 12.2(4)JA (1100 series access points).

Note
To use WPA or fast roaming (CCKM), access points must use Cisco IOS Release 12.2(11)JA or later. To use the Reporting Access Points That Fail LEAP or EAP-FAST Authentication and Fast Roaming features, access points must use the firmware versions listed on page 5-34.

- All necessary infrastructure devices such as access points, servers, gateways, and user databases must be properly configured for EAP-FAST authentication.

Follow these steps to enable EAP-FAST authentication for this profile.

Step 1 Check the **Wi-Fi Protected Access (WPA)** check box under Network Authentication on the Network Security screen if you want to enable WPA. This parameter enables the client adapter to associate to access points using WPA.

Note
Refer to the “**Wi-Fi Protected Access (WPA)”** section on page 5-27 for additional information.
Step 2 Choose EAP-FAST or EAP-FAST (WPA).

Note This option is available only if you selected the EAP-FAST security module during installation.

Note When you choose this option, dynamic WEP (if WPA is disabled) or TKIP (if WPA is enabled) is set automatically.

Step 3 Click Configure. The EAP-FAST Settings screen appears (see Figure 5-8).

Figure 5-8 EAP-FAST Settings Screen
Step 4
Choose one of the following EAP-FAST username and password setting options:

- **Use Temporary User Name and Password**—Requires you to enter the EAP-FAST username and password each time the computer reboots in order to authenticate and gain access to the network.

- **Use Saved User Name and Password**—Does not require you to enter an EAP-FAST username and password each time the computer reboots. Authentication occurs automatically as needed using a saved username and password (which are registered with the RADIUS server).

Note
The Use Saved User Name and Password option is available only if the Allow Saved EAP-FAST User Name and Password option was enabled (set to Yes) during installation.

Step 5
Perform one of the following:

- If you selected Use Temporary User Name and Password in **Step 4**, choose one of the following options:
 - **Use Windows Logon User Name and Password**—Causes your Windows username and password to also serve as your EAP-FAST username and password, giving you only one set of credentials to remember. After you log in, the EAP-FAST authentication process begins automatically. This option is the default setting.

 - **Automatically Prompt for User Name and Password**—Requires you to enter a separate EAP-FAST username and password (which are registered with the RADIUS server) in addition to your regular Windows login in order to start the EAP-FAST authentication process.

 - **Manually Prompt for User Name and Password**—Requires you to manually invoke the EAP-FAST authentication process as needed using the Manual Login option from the Commands drop-down menu. You are not prompted to enter an EAP-FAST username and password during the Windows login. This option might be used to support a software token one-time password system or other systems that require additional software that is not available at login.

- If you selected Use Saved User Name and Password in **Step 4**, follow these steps:

 a. Enter a username and password in the appropriate fields.

 #### Note
 Usernames are limited to 64 ASCII characters, and passwords are limited to 32 ASCII characters. However, if a domain name is entered in the Domain field, the sum of the username and domain name is limited to 63 ASCII characters.

 b. Re-enter the password in the Confirm Password field.

 c. If you wish to specify a domain name that will be passed to the RADIUS server along with your username, enter it in the Domain field or include it in the User Name field as follows: `username@domain.com`. A maximum of 64 ASCII characters can be entered for the `username@domain.com` string, and this format must be supported by your RADIUS server.

 #### Note
 If you include the domain name in the User Name field, the Domain field becomes disabled.
Step 6 If you work in an environment with multiple domains and therefore want your Windows login domain to be passed to the RADIUS server along with your username, check the Include Windows Logon Domain with User Name check box. The default setting is checked.

Note If you chose to use a saved username and password but do not check the Include Windows Logon Domain with User Name check box, the Domain field becomes unavailable, and a domain name is not passed to the RADIUS server.

Step 7 If you want to force the client adapter to disassociate after you log off so that another user cannot gain access to the wireless network using your credentials, check the No Network Connection Unless User Is Logged In check box. The default setting is checked.

Step 8 In the Authentication Timeout Value field, enter the amount of time (in seconds) before an EAP-FAST authentication attempt is considered to be failed and an error message appears.

Range: 10 to 300 seconds
Default: 90 seconds

Step 9 Perform one of the following:

- If you want to enable automatic PAC provisioning, check the Allow Automatic PAC Provisioning for This Profile check box. A protected access credentials (PAC) file is obtained automatically as needed (for instance, when a PAC expires, when the client adapter accesses a different server, when the EAP-FAST username cannot be matched to a previously provisioned PAC, etc.). This is the default setting. If you choose this option, go to Step 11.

- If you want to enable manual PAC provisioning, uncheck the Allow Automatic PAC Provisioning for This Profile check box. You must choose a PAC authority or manually import a PAC file. If you choose this option, go to Step 10.

Note The Allow Automatic PAC Provisioning for This Profile option is available only if the Allow Auto-Provisioning? option was enabled (set to Yes) during installation. If this option is not available, you must enable manual PAC provisioning.

Note LDAP user databases support only manual PAC provisioning while Cisco Secure ACS internal, Cisco Secure ODBC, and Windows NT/2000/2003 domain user databases support both automatic and manual PAC provisioning.

Note Provisioning occurs only upon initial negotiation of the PAC or upon PAC expiration. After the PAC is provisioned, it serves as the per-user key by which authentication transactions are secured.
Step 10 Perform one of the following to enable manual PAC provisioning:

- From the Select a PAC Authority To Use with This Profile drop-down list, select the PAC authority that is associated with the network defined by the profile’s SSID. The list contains the names of all the PAC authorities from which you have previously provisioned a PAC.

- If the PAC authority drop-down list is empty or does not contain the name of a desired PAC authority, follow these steps to import a PAC file:

 a. Click the **Import** button. The Import Protected Access Credentials (PAC) File screen appears (see Figure 5-9).

 ![Figure 5-9 Import Protected Access Credentials (PAC) File Screen](image)

 b. Find the location of the PAC file in the Look in box. The default location is My Documents.

 Note If you browse to a different location to obtain the PAC, the new location becomes the default location going forward.

 c. Click the PAC file (*.pac) so that it appears in the File name box at the bottom of the screen.

 Note The filename and extension of PAC files is determined by the PAC authority that issues them, but the standard file extension is `.pac`.

 d. Click the **Open** button.
e. If a message appears indicating that the PAC file you are about to import will be made accessible to all users of your system, click Yes. If you click No, the PAC file is not imported.

Note
The PAC file you are about to import will be made accessible to all users of your system if your profile is configured for global PACs. Global PACs are enabled when you choose the Use Saved User Name and Password option, uncheck the No Network Connection Unless User Is Logged In check box on the EAP-FAST Settings screen, or use the Novell Network login prompt or any other third-party login application that does not share its credentials with the EAP-FAST supplicant.

Note
If you try to import a PAC file with the same PAC ID as a previously imported PAC file, you are asked if you want to overwrite the existing PAC. If you click Yes, the existing PAC is replaced by the new one from the imported file.

f. If the Enter PAC File Password screen appears (see Figure 5-10), enter the PAC file password and click OK.

![Figure 5-10 Enter PAC File Password Screen](image)

Note
PAC file passwords are optional. The PAC authority determines whether to issue PAC files that require user-supplied passwords. Nevertheless, all PAC files (even those without passwords) are encrypted and protected. PAC file passwords are different from EAP-FAST passwords and need to be entered only once, at the time a PAC is imported.

g. The PAC file is imported and added to your PAC database, and the name of the PAC authority that issued the PAC file is added to the PAC authority drop-down list on the EAP-FAST Settings screen. Choose the desired PAC authority from the list.

Step 11
Click OK to exit the EAP-FAST Settings screen.
Step 12 Check the **Allow Fast Roaming (CCKM)** check box on the Network Security screen if you want to enable fast roaming for your client adapter.

- Checking this check box enables the client adapter to use CCKM when associated to an access point that uses CCKM or to associate to access points that are not using CCKM.
- Unchecking this check box prevents the client adapter from using CCKM even with access points that use it.

Default: Unchecked

Note Refer to the “Fast Roaming (CCKM)” section on page 5-28 for additional information.

Step 13 Check the **Allow Association to both WPA and non-WPA authenticators** check box if you want to allow the client adapter to associate to access points that are configured for EAP-FAST authentication with:

- WPA enabled (associates with WPA security)
- WPA disabled or not supported (associates without WPA security)
- Cisco migration mode, where WPA is optional (associates without WPA security)

If this check box is not checked, the client adapter can associate only to access points that are configured for EAP-FAST authentication with WPA.

Default: Unchecked

Note This parameter is available only if you enable WPA.

Step 14 Click **OK** to exit the Network Security screen and return to the Profile Manager screen. On the Profile Manager screen, click **OK** or **Apply** to save your changes.

Step 15 Follow these steps if the Microsoft 802.1X supplicant is installed on your computer and you want to take advantage of the fast roaming feature:

a. Perform one of the following steps, depending on your computer’s operating system:
 - If your computer is running Windows 2000, double-click **My Computer**, **Control Panel**, and **Network and Dial-up Connections**. Right-click **Local Area Connection**. Click **Properties**. The Local Area Connection Properties screen appears.
 - If your computer is running Windows XP, double-click **My Computer**, **Control Panel**, and **Network Connections**. Right-click **Wireless Network Connection**. Click **Properties**. The Wireless Network Connection Properties screen appears. Choose the **Wireless Networks** tab. Uncheck the **Use Windows to configure my wireless network settings** check box unless you are using Windows XP Service Pack 1.

b. Click the **Authentication** tab.

Note In Windows Service Pack 1, the Authentication tab has moved from its previous location. To access it, make sure the **Use Windows to configure my wireless network settings** check box is checked. Click the SSID of the profile you are creating from the list of available networks and click **Configure**. If your profile’s SSID is not listed, click **Add**, enter your profile’s SSID in the Network name (SSID) field, and choose the **Authentication** tab.
c. Uncheck the **Enable network access control using IEEE 802.1X** or **Enable IEEE 802.1x authentication for this network** check box.

d. Click **OK** to save your settings.

e. If you are using Windows XP Service Pack 1, uncheck the **Use Windows to configure my wireless network settings** check box on the Wireless Networks screen and click **OK**.

Step 16 If you imported a PAC file in **Step 10**, you may want to consider deleting it from its original location, depending on your organization’s policy. PAC files are similar to ID cards and should be protected from unauthorized access. Such action would prevent exposure of the PAC by having multiple storage locations. Contact your system administrator to determine your organization’s policy on PAC security.

Step 17 Refer to **Chapter 6** for instructions on authenticating using EAP-FAST.

Enabling Host-Based EAP

Before you can enable host-based EAP authentication, your network devices must meet the following requirements:

- Client adapters must support WEP and use the firmware, drivers, utilities, and security modules included in the Install Wizard file.
- The Microsoft 802.1X supplicant must be installed on your Windows device.
- To use WPA, you must use a 350 series or CB20A client adapter with the software included in Install Wizard version 1.2 or later on a computer running Windows 2000 or XP. Also, you must install additional software with WPA support. You can download this software from the URLs provided:
 - Funk Odyssey Client supplicant version 2.2 (for Windows 2000)

 http://www.funk.com/radius/wlan/wlan_c_radius.asp
 - Windows XP Service Pack 1 and Microsoft support patch 815485 (for Windows XP)

Note Meetinghouse AEGIS Client supplicant version 2.1 or later is also supported for use with Windows 2000 and XP; however, it was not tested with this client adapter software release. You can download the Meetinghouse supplicant from the following URL:

- Access points to which your client adapter may attempt to authenticate must use the following firmware versions or later: 12.00T (340, 350, and 1200 series access points) or Cisco IOS Release 12.2(4)JA (1100 series access points).

Note To use WPA or fast roaming, access points must use Cisco IOS Release 12.2(11)JA or later.

- All necessary infrastructure devices such as access points, servers, gateways, and user databases must be properly configured for the authentication type you plan to enable on the client.
This section consists of the following three subsections. Follow the steps in each subsection to enable host-based EAP authentication (EAP-TLS, PEAP, or EAP-SIM) for this profile.

- Enabling Host-Based EAP authentication in ACU
- Enabling WPA (an optional procedure for computers running Windows 2000 or XP)
- Enabling EAP authentication in Windows

Note

Because EAP-TLS, PEAP, and EAP-SIM authentication are enabled in the operating system and not in ACU, you cannot switch between these authentication types simply by switching profiles in ACU. You can create a profile in ACU that uses host-based EAP, but you must enable the specific authentication type in Windows (provided Windows uses the Microsoft 802.1X supplicant). In addition, Windows can be set for only one authentication type at a time; therefore, if you have more than one profile in ACU that uses host-based EAP and you want to use another authentication type, you must change authentication types in Windows after switching profiles in ACU.

Enabling Host-Based EAP Authentication in ACU

Follow the steps in this section to set up host-based EAP authentication in ACU.

Step 1

Check the **Wi-Fi Protected Access (WPA)** check box under Network Authentication on the Network Security screen if you want to enable WPA. This parameter enables the client adapter to associate to access points using WPA.

Note

Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-27 for additional information.

Step 2

Choose **Host Based EAP (802.1x)** or **Host Based EAP (WPA)**.

Note

If WPA is disabled, 802.1x appears in parentheses. If WPA is enabled, WPA appears in parentheses.

Step 3

Choose **Dynamic WEP** under Data Encryption if WPA is not enabled.

Step 4

Click **OK** to return to the Profile Manager screen.

Step 5

Click **OK** or **Apply** on the Profile Manager screen to save your changes.

Step 6

Perform one of the following, depending on your computer’s operating system:

- If your computer is running Windows 2000, perform one of the following:
 - If you want to enable WPA, go to the “Enabling WPA (Optional)” section below.
 - If you do not want to enable WPA, double-click **My Computer**, **Control Panel**, and **Network and Dial-up Connections**. Right-click **Local Area Connection**. Click **Properties**. The Local Area Connection Properties screen appears. Go to the “Enabling EAP Authentication in Windows” section on page 5-54.
• If your computer is running Windows XP, perform one of the following:
 - If you want to enable WPA, double-click **My Computer**, **Control Panel**, and **Network Connections**. Right-click **Wireless Network Connection**. Click **Properties**. The Wireless Network Connection Properties screen appears. Go to the “Enabling WPA (Optional)” section below.
 - If you do not want to enable WPA, double-click **My Computer**, **Control Panel**, and **Network Connections**. Right-click **Wireless Network Connection**. Click **Properties**. The Wireless Network Connection Properties screen appears. If you are using Windows XP Service Pack 1, choose the **Wireless Networks** tab, make sure the **Use Windows to configure my wireless network settings** check box is checked. Click the SSID of the profile you are creating from the list of available networks and click **Configure**. If your profile’s SSID is not listed, click **Add** and enter your profile’s SSID in the Network name (SSID) field. Go to the “Enabling EAP Authentication in Windows” section on page 5-54.

Enabling WPA (Optional)

Follow the steps in the corresponding section below if you want to enable WPA for this profile. Instructions are different for computers running Windows 2000 and XP.

Enabling WPA on Windows 2000

Follow these steps to enable WPA in Funk Odyssey Client supplicant version 2.2 on a computer running Windows 2000.

Step 1 Use your web browser to access the following URL:
http://www.funk.com/radius/enterprise/ent_solns.asp

Step 2 Under Manuals, click **Odyssey Client User Guide**.

Step 3 Follow the instructions in the user guide to enable WPA and EAP-TLS, PEAP, or EAP-SIM authentication.

Enabling WPA on Windows XP

Follow these steps to enable WPA in Windows XP Service Pack 1 and Microsoft support patch 815485.

Step 1 Choose the **Wireless Networks** tab on the Wireless Network Connection Properties screen. The following screen appears (see **Figure 5-11**).
Step 2: Make sure that the **Use Windows to configure my wireless network settings** check box is checked.

Step 3: Click the SSID of the profile you began setting up in ACU from the list of available networks and click **Configure**. If your profile’s SSID is not listed, click **Add**. The Wireless Network Properties screen appears (see **Figure 5-12**).
Step 4 Perform one of the following:

- If you selected an SSID from the list of available networks, make sure the SSID appears in the Network name (SSID) field.
- If you clicked Add, enter the case-sensitive SSID of your profile in the Network name (SSID) field.

Step 5 Choose WPA from the Network Authentication drop-down list. This option enables your client adapter to associate to access points using WPA.

Step 6 Choose TKIP from the Data encryption drop-down list.

Step 7 Go to the “Enabling EAP Authentication in Windows” section below to enable EAP authentication for this profile.
Enabling EAP Authentication in Windows

Follow the steps in this section to enable EAP authentication in Windows for this profile.

Step 1
Click the **Authentication** tab. The following screen appears (see Figure 5-13).

![Figure 5-13 Wireless Network Connection Properties Screen (Authentication Tab)](image)

Note
The Authentication screen shown above appears on computers running Windows 2000 or XP. The screen looks slightly different on computers running Windows XP Service Pack 1.

Step 2
Check the **Enable network access control using IEEE 802.1X** or **Enable IEEE 802.1x authentication for this network** check box if you did not enable WPA.

Step 3
Perform one of the following, depending on the authentication type you want to use:

- If you are planning to use EAP-TLS, go to the “Enabling EAP-TLS” section on page 5-55.
- If you are planning to use PEAP, go to the “Enabling PEAP” section on page 5-57.
- If you are planning to use EAP-SIM, go to the “Enabling EAP-SIM” section on page 5-60.
Enabling EAP-TLS

Follow these steps to enable EAP-TLS.

Step 1 For EAP type, choose *Smart Card or other Certificate*.

Step 2 Click *Properties*. The Smart Card or other Certificate Properties screen appears (see Figure 5-14 and Figure 5-15).

Figure 5-14 Smart Card or other Certificate Properties Screen - Windows 2000 or XP
Step 3 Choose the **Use a certificate on this computer** option.

Step 4 If your computer is running Windows XP Service Pack 1, make sure the **Use simple certificate selection (Recommended)** check box is selected.

Step 5 Check the **Validate server certificate** check box if server certificate validation is required.

Step 6 If you want to specify the name of the server to connect to, check the **Connect to these servers** or **Connect only if server name ends with** check box and enter the appropriate server name or server name suffix in the field below.

Note If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.
Step 7 Perform one of the following:

- If your computer is running Windows 2000 or XP, make sure that the name of the certificate authority from which the server certificate was downloaded appears in the Trusted root certificate authority field.

- If your computer is running Windows XP Service Pack 1, check the check box beside the name of the certificate authority from which the server certificate was downloaded in the Trusted Root Certification Authorities field.

Note If you leave this field blank or all check boxes unchecked, you are prompted to accept a connection to the root certification authority during the authentication process.

Step 8 Click OK two or three times to save your settings. The configuration is complete.

Step 9 Refer to Chapter 6 for instructions on authenticating using EAP-TLS.

Enabling PEAP

Follow these steps to enable PEAP.

Step 1 For EAP type, choose **PEAP**.

Step 2 Click **Properties**. The PEAP Properties screen appears (see Figure 5-16).

Figure 5-16 PEAP Properties Screen

- **Validate server certificate**
- **Connect only if server name ends with:**
- **Trusted root certificate authority (CA):**
- **Connect only if server is signed by specified trusted root CA**

- **Second Phase EAP Type:** **Generic Token Card**
- **Always try to resume secure session.**

Step 3 Check the **Validate server certificate** check box if server certificate validation is required (recommended).
Step 4 If you want to specify the name of the server to connect to, check the **Connect only if server name ends with** check box and enter the appropriate server name suffix in the field below.

Note If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.

Step 5 Make sure that the name of the certificate authority from which the server certificate was downloaded appears in the **Trusted root certificate authority (CA)** field. If necessary, click the arrow on the drop-down menu and choose the appropriate name.

Note If you leave this field blank, you are prompted to accept a connection to the root certification authority during the authentication process.

Step 6 Check the **Connect only if server is signed by specified trusted root CA** check box if you want to ensure that the certificate server uses the trusted root certificate specified in the field above. This prevents the client from establishing connections to rogue access points.

Step 7 Perform one of the following:

- Check the **Always try to resume secure session** check box if you want the PEAP protocol to always attempt to resume the previous session before prompting you to re-enter your credentials.
- Uncheck the **Always try to resume secure session** check box if you want to be prompted to re-enter your username and password whenever your client adapter’s radio becomes disassociated (for example, when the card is ejected, the radio is turned off, you wander out of range of an access point, you switch profiles, and so on).

Note Checking this check box gives you the convenience of not having to re-enter your username and password when your client adapter experiences momentary losses of association. The PEAP Session Timeout setting on the Cisco Secure ACS System Configuration - Global Authentication Setup screen controls how long the resume feature is active (that is, the amount of time during which the PEAP session can be resumed without re-entering user credentials). If you leave your device unattended during this timeout period, be aware that someone can resume your PEAP session and access the network.

Step 8 Currently Generic Token Card is the only second phase EAP type available. Click **Properties**. The Generic Token Card Properties screen appears (see Figure 5-17).
Step 9 Choose either the **Static Password (Windows NT/2000, LDAP)** or the **One Time Password** option, depending on your user database.

Step 10 Perform one of the following:

- If you selected the **Static Password (Windows NT/2000, LDAP)** option in Step 9, go to Step 11.

- If you selected the **One Time Password** option in Step 9, check one or both of the following check boxes to specify the type of tokens that will be supported for one-time passwords:
 - **Support Hardware Token**—A hardware token device obtains the one-time password. You must use your hardware token device to obtain the one-time password and enter the password when prompted for your user credentials.
 - **Support Software Token**—The PEAP supplicant works with a software token program to retrieve the one-time password. You have to enter only the PIN, not the one-time password. If you check this check box, you must also select from the Supported Type drop-down box the software token software that is installed on the client (such as Secure Computing SofToken Version 1.3, Secure Computing SofToken II 2.0, or RSA SecurID Software Token v 2.5), and if Secure Computing SofToken Version 1.3 is selected, you must locate the software program path using the Browse button.

 Note The SofToken Program Path field is unavailable if a software token program other than Secure Computing SofToken Version 1.3 is selected.

Step 11 Click **OK** three times to save your settings. The configuration is complete.

Step 12 Refer to **Chapter 6** for instructions on authenticating using PEAP.
Enabling EAP-SIM

Follow these steps to enable EAP-SIM.

Step 1 For EAP type, choose **SIM Authentication**.

Step 2 Click **Properties**. The SIM Authentication Properties screen appears (see Figure 5-18).

Step 3 To access any resources (data or commands) on the SIM, the EAP-SIM supplicant must provide a valid PIN to the SIM card, which must match the PIN stored on the SIM. Choose one of the following options to specify how the EAP-SIM supplicant should handle the SIM card’s PIN:

- **Ask for my PIN once after I turn my computer on (recommended)**—The software does not permanently store the PIN. It prompts you for the PIN once, on the first authentication of every session, where a *session* is defined as the time between power-up and shutdown or reboot.

- **Ask for my PIN every time the network asks for authentication**—The software never stores the PIN; it prompts you for the PIN every time an EAP-SIM authentication is performed. This option is not recommended if your client will be roaming between access points or if session timeouts are implemented (such as for accounting and security purposes).

- **Let me give my PIN to the computer now and never ask me again; PIN will be encrypted and stored on computer (not recommended)**—You need to enter the PIN only once, in the Enter PIN edit box below this option. The software stores the PIN in the registry and retrieves it from there when required. If you choose this option, you must enter the PIN now. The PIN is validated when an authentication attempt is made.

Note This option is not recommended because it enables others to use the SIM without knowing the PIN.
Step 4 Click **OK** twice to save your settings. The configuration is complete.

Step 5 If you are prompted to restart your client adapter, turn off your client adapter’s radio, wait a few seconds, and then turn the radio back on. Refer to the “Turning Your Client Adapter’s Radio On or Off” section on page 9-16 for instructions.

Step 6 Refer to Chapter 6 for instructions on authenticating using EAP-SIM.

Disabling LEAP, EAP-FAST, or Host-Based EAP

If you ever need to disable LEAP, EAP-FAST, or host-based EAP for a particular profile, follow the instructions below for your EAP authentication type.

Disabling LEAP or EAP-FAST

To disable LEAP or EAP-FAST for a particular profile, choose **None** under Network Authentication on the Network Security screen in ACU, click **OK**, and click **OK** or **Apply** on the Profile Manager screen.

Disabling Host-Based EAP

To disable host-based EAP (EAP-TLS, PEAP, or EAP-SIM) for a particular profile, follow these steps:

Step 1 Choose **None** under Network Authentication on the Network Security screen in ACU and click **OK**.

Step 2 Click **OK** or **Apply** on the Profile Manager screen.

Step 3 Perform one of the following, depending on your computer’s operating system:

- If your computer is running Windows 2000, double-click **My Computer**, **Control Panel**, and **Network and Dial-up Connections**. Right-click **Local Area Connection**. Click **Properties**. The Local Area Connection Properties screen appears.

- If your computer is running Windows XP, double-click **My Computer**, **Control Panel**, and **Network Connections**. Right-click **Wireless Network Connection**. Click **Properties**. The Wireless Network Connection Properties screen appears. If you are using Windows XP Service Pack 1, click the **Wireless Networks** tab, click the SSID of the profile for which you are disabling host-based EAP in the Preferred networks list, and click **Properties**.

Step 4 Click the **Authentication** tab.

Step 5 Uncheck the **Enable network access control using IEEE 802.1X** or **Enable IEEE 802.1x authentication for this network** check box.

Step 6 Click **OK**.
Enabling Wi-Fi Multimedia

Wi-Fi Multimedia (WMM) is a component of the IEEE 802.11e wireless LAN standard for quality of service (QoS). It specifically supports priority tagging and queuing. QoS is an access point feature that enables networking professionals to provide preferential treatment to certain traffic at the expense of other traffic. Without QoS, the access point offers best-effort service to each packet, regardless of the packet contents or size. Implementing QoS in a wireless LAN makes network performance more predictable and bandwidth usage more effective.

Cisco recommends that you enable WMM if your computer is running a time-sensitive application for QoS-aware clients such as voice or video (for example, Cisco IP SoftPhone).

QoS and WMM must be enabled on the access point to which the client will associate. These features are supported on the access point in Cisco IOS Release 12.3(2)JA or later. Refer to the documentation for your access point for instructions on enabling these features.

WMM is supported automatically in client adapter firmware version 5.60.08, PC/LM/PCI card driver version 8.6, and mini PCI/CB20A card driver version 3.9, which are included in Install Wizard version 1.5 or later. However, you must enable the Windows QoS Packet Scheduler to ensure WMM support. Follow the instructions below to enable the QoS Packet Scheduler on Windows 2000 or XP.

Note

The QoS Packet Scheduler must be installed before you can enable it. It comes preinstalled on Windows XP; however, you must install it on Windows 2000.

Enabling the QoS Packet Scheduler on Windows 2000

Follow these steps to enable the QoS Packet Scheduler on a computer running Windows 2000.

Step 1 Double-click My Computer, Control Panel, and Network and Dial-up Connections.
Step 2 Right-click your wireless network connection.
Step 3 Click Properties. The Wireless Cisco Connection Properties screen appears (see Figure 5-19).
Step 4 If the QoS Packet Scheduler is already installed, it is included in the list of components that this connection uses. If it appears in the list, go to **Step 8**. Otherwise, go to the next step to install it.

Step 5 Click **Install**. The Select Network Component Type screen appears (see Figure 5-20).
Step 6 Choose Service and click Add. The Select Network Service screen appears (see Figure 5-21).

Step 7 Click QoS Packet Scheduler and OK. The Wireless Cisco Connection Properties screen reappears, and the QoS Packet Scheduler is included in the list of connections.

Step 8 Check the QoS Packet Scheduler check box if it is not checked.

Step 9 Click OK.
Enabling the QoS Packet Scheduler on Windows XP

Follow these steps to enable the QoS Packet Scheduler on a computer running Windows XP.

Step 1 Double-click Control Panel.

Step 2 Click Network Connections.

Step 3 Right-click your wireless network connection.

Step 4 Click Properties. The Wireless Network Connection Properties screen appears (see Figure 5-22).

Step 5 Check the QoS Packet Scheduler check box, which appears in the list of items that this connection uses.

Step 6 Click OK.
Using EAP Authentication

This chapter explains the sequence of events that occurs and the actions you must take when a profile that is set for EAP authentication is selected for use.

The following topics are covered in this chapter:

- Overview, page 6-2
- Using LEAP or EAP-FAST, page 6-2
- Using LEAP or EAP-FAST with the Windows Username and Password, page 6-4
- Using LEAP or EAP-FAST with an Automatically Prompted Login, page 6-7
- Using LEAP or EAP-FAST with a Manually Prompted Login, page 6-13
- Using LEAP or EAP-FAST with a Saved Username and Password, page 6-19
- Using EAP-TLS, page 6-22
- Using PEAP, page 6-23
- Using EAP-SIM, page 6-28
- Restarting the Authentication Process, page 6-29
Overview

This chapter explains the sequence of events that occurs as soon as you or ACU’s auto profile selection feature selects a profile that uses EAP authentication as well as after you eject and reinsert the client adapter, reboot the computer, log on while this profile is selected, or are informed that your username and password have expired. The chapter contains seven sections based on the profile’s authentication type and its username and password settings:

- LEAP or EAP-FAST with the Windows username and password, page 6-4
- LEAP or EAP-FAST with an automatically prompted login, page 6-7
- LEAP or EAP-FAST with a manually prompted login, page 6-13
- LEAP or EAP-FAST with a saved username and password, page 6-19
- EAP-TLS, page 6-22
- PEAP, page 6-23
- EAP-SIM, page 6-28

Also provided are an overview of LEAP and EAP-FAST (below) and instructions for restarting the authentication process when necessary (page 6-29).

Follow the instructions for your profile’s authentication type and credential settings to successfully authenticate.

Note

If any error messages appear during authentication, refer to Chapter 10 for explanations and recommended actions. If any messages appear regarding PAC provisioning for EAP-FAST, refer to the “EAP-FAST Authentication Error Messages” section on page 10-21 for instructions.

Using LEAP or EAP-FAST

Step 1

When LEAP or EAP-FAST authentication begins, the LEAP or EAP-FAST Authentication Status screen appears (see Figure 6-1).

Note

The LEAP or EAP-FAST Authentication Status screen might appear behind any open applications.

Note

You can click **Cancel** at any time to abort the LEAP or EAP-FAST authentication attempt.
This screen provides information about the status of LEAP or EAP-FAST authentication. Table 6-1 lists and explains the stages of LEAP or EAP-FAST authentication. As each stage is completed, a status message (such as Successful) appears in the Status field.

If any error messages appear, refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for an explanation and the recommended action to take.

Table 6-1 Stages of LEAP or EAP-FAST Authentication

<table>
<thead>
<tr>
<th>Stage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting LEAP or EAP-FAST</td>
<td>The client adapter associates to an access point, and the LEAP or EAP-FAST</td>
</tr>
<tr>
<td>Authentication</td>
<td>authentication process begins.</td>
</tr>
<tr>
<td>Waiting on Authentication</td>
<td>The client adapter EAP authenticates, and the network connection is verified.</td>
</tr>
<tr>
<td>Renewing IP Address</td>
<td>If DHCP is enabled, the IP address is released and renewed.</td>
</tr>
<tr>
<td>Detecting IPX Frame Type</td>
<td>On Windows 2000 and XP, the IPX frame type is reset if AutoDetect is enabled.</td>
</tr>
<tr>
<td>Finding Domain Controller</td>
<td>If you are logging into a domain and the active profile specifies that the</td>
</tr>
<tr>
<td></td>
<td>domain name be included, an attempt is made to find the domain controller</td>
</tr>
<tr>
<td></td>
<td>to make sure subsequent access to the domain is successful.</td>
</tr>
</tbody>
</table>
Using LEAP or EAP-FAST with the Windows Username and Password

After Profile Selection or Card Insertion

After you (or auto profile selection) select a profile that uses your Windows username and password for LEAP or EAP-FAST authentication or you eject and reinsert the client adapter while this profile is selected, the following events occur:

1. The LEAP or EAP-FAST Authentication Status screen appears.
2. If your client adapter authenticates, the screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or EAP-FAST Authenticated.

If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.

After a Reboot or Logon

After your computer reboots or you log on, follow these steps to authenticate using LEAP or EAP-FAST.

Step 1
When the Windows login screen appears (see Figure 6-2), enter your Windows username and password and click OK. The domain name is optional.

Note
Your Windows username and password may be retrieved automatically from the registry, making it unnecessary for you to enter your Windows credentials. See this URL for instructions on modifying the registry to enable or disable this feature:
Using LEAP or EAP-FAST with the Windows Username and Password

Chapter 6
Using EAP Authentication

Using LEAP or EAP-FAST with the Windows Username and Password

Note

If your computer has Novell Client 32 software installed, a separate LEAP or EAP-FAST login screen (Enter Wireless Network Password) appears before the Novell login screen. If this occurs, enter your Windows and Novell username and password in the login screens and click OK.

Figure 6-2 Windows Login Screen (Windows 2000)

User name:	USER
Password:	******
Log on to:	AP

Figure 6-2 shows the Windows login screen that appears on Windows 2000 systems. The login screen looks slightly different on computers running Windows XP.

The LEAP or EAP-FAST Authentication Status screen appears.

Step 2

If your client adapter authenticates, the screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or EAP-FAST Authenticated.

If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.

Step 3

Windows continues to log you onto the system.
After Your LEAP Credentials Expire

If the LEAP credentials (username and password) for your current profile expire or become invalid, follow these steps to reauthenticate.

Note

If you change your Windows password using the standard Windows Change Password function, the client updates the LEAP password automatically and maintains its connection to the access point if the current profile uses the Windows username and password.

Step 1

Click OK when the following message appears: “The user name and password entered are no longer valid and have failed the LEAP authentication process. Please enter a new user name and password.”

Step 2

When the Windows login screen appears, enter your new username and password and click OK. The client adapter should authenticate using your new credentials.

Note

If you click Cancel rather than OK on the Windows login screen, the following message appears: “The profile will be disabled until you select the Reauthenticate option, Windows restarts, or the card is ejected and reinserted. Are you sure?” If you click No, the Windows login screen reappears and allows you to enter your new credentials. If you click Yes, the current profile is disabled until you select Reauthenticate from ACM or the Commands drop-down menu in ACU, reboot your computer, or eject and reinsert the card. The Current Profile field on the ACU Status screen lists the profile as being *Disabled*.

After Your EAP-FAST Credentials Expire

If the EAP-FAST credentials (username and password) for your current profile expire or become invalid, follow these steps to change your password.

Note

If you change your Windows password using the standard Windows Change Password function, the client updates the EAP-FAST password automatically and maintains its connection to the access point if the current profile uses the Windows username and password.

Step 1

When the Change Password screen appears (see Figure 6-3) to indicate that your password has expired, enter your old password in the Old Password field.
Using LEAP or EAP-FAST with an Automatically Prompted Login

After Profile Selection or Card Insertion

After you (or auto profile selection) select a profile that uses a separate username and password for LEAP or EAP-FAST authentication or you eject and reinsert the client adapter while this profile is selected, follow these steps to authenticate.

Note

This procedure is applicable the first time an automatically prompted LEAP or EAP-FAST profile is selected. After you follow these steps to enter your LEAP or EAP-FAST credentials, you can switch profiles without having to re-enter your credentials until you reboot your computer, eject and reinsert your client adapter, or change the profile in any way (including its priority in auto profile selection).

Step 1

When the Enter Wireless Network Password screen appears (see Figure 6-4), enter your LEAP or EAP-FAST username and password and click **OK**. The domain name, which can be entered in the Log On To field, is optional.
Step 2 If you are using EAP-FAST and a user prompt screen appears (see Figure 6-5), enter the requested information and click OK.

This screen appears if the server needs additional information. The text displayed at the top of the screen is sent from the server and varies by organization. It should tell you what information to enter.
Step 3 The LEAP or EAP-FAST Authentication Status screen appears. If your client adapter authenticates, the screen shows that each stage was successful and then disappears. ACM now shows \textit{Authenticated}, and the Server Based Authentication field on the ACU Status screen shows \textit{LEAP Authenticated} or \textit{EAP-FAST Authenticated}.

If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.

After a Reboot or Logon

After your computer reboots or you log on, follow these steps to authenticate using LEAP or EAP-FAST.

Step 1

When the Enter Wireless Network Password screen appears (see Figure 6-6), enter your LEAP or EAP-FAST username and password and click \textbf{OK}. The domain name, which can be entered in the Log On To field, is optional.

Figure 6-6 Enter Wireless Network Password Screen

![Enter Wireless Network Password Screen](image)

Note The Enter Wireless Network Password screen appears after the Windows login screen.

Step 2

If you are using EAP-FAST and a user prompt screen appears (see Figure 6-7), enter the requested information and click \textbf{OK}.
Using LEAP or EAP-FAST with an Automatically Prompted Login

Chapter 6 Using EAP Authentication

Figure 6-7 User Prompt Screen

Note
This screen appears if the server needs additional information. The text displayed at the top of
the screen is sent from the server and varies by organization. It should tell you what information
to enter.

Step 3 The LEAP or EAP-FAST Authentication Status screen appears. If your client adapter authenticates, the
screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and
the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or
EAP-FAST Authenticated.

If the authentication attempt fails, an error message appears after the authentication timeout period has
expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST
Authentication Error Messages” section on page 10-21 for the necessary action to take.

Step 4 When the network login screen appears (see Figure 6-8), enter your network username and password and
click OK.

Note
Figure 6-8 shows the network login screen that appears on Windows 2000 systems. The login
screen looks slightly different on computers running Windows XP.
After Your LEAP Credentials Expire

If the LEAP credentials (username and password) for your current profile expire or become invalid, follow these steps to reauthenticate.

Step 1 Click **OK** when the following message appears: “The user name and password entered are no longer valid and have failed the LEAP authentication process. Please enter a new user name and password.”

Step 2 When the Enter Wireless Network Password screen appears, enter your new username and password and click **OK**. The client adapter should authenticate using your new credentials.

Note If you click Cancel rather than **OK** on the Enter Wireless Network Password screen, the following message appears: “The profile will be disabled until you select the Reauthenticate option, Windows restarts, or the card is ejected and reinserted. Are you sure?” If you click No, the Enter Wireless Network Password screen reappears and allows you to enter your new credentials. If you click Yes, the current profile is disabled until you select Reauthenticate from ACM or the Commands drop-down menu in ACU, reboot your computer, or eject and reinsert the card. The Current Profile field on the ACU Status screen lists the profile as being *Disabled.*
After Your EAP-FAST Credentials Expire

If the EAP-FAST credentials (username and password) for your current profile expire or become invalid, follow these steps to change your password.

Step 1 When the Change Password screen appears (see Figure 6-9) to indicate that your password has expired, enter your old password in the Old Password field.

Figure 6-9 Change Password Screen

![Change Password Screen](image)

- **Old Password**
- **New Password**
- **Confirm New Password**

Card Name: Cisco Systems 350 Series PCMCIA Wireless LAN Adapter
Profile Name: Enterprise

Step 2 Enter your new password in both the New Password and Confirm New Password fields.

Step 3 Click **OK**. The client adapter should authenticate using your new password.
Using LEAP or EAP-FAST with a Manually Prompted Login

After Profile Selection

After you (or auto profile selection) select a profile that uses LEAP or EAP-FAST authentication with a manually prompted login, follow these steps to authenticate.

Note

This procedure is applicable the first time a manual LEAP or manual EAP-FAST profile is selected. After you follow these steps to enter your LEAP or EAP-FAST credentials, you can switch profiles without having to re-enter your credentials until you reboot your computer, eject and reinsert your client adapter, or change the profile in any way (including its priority in auto profile selection).

Step 1

Perform one of the following:

- If you select a manual LEAP or manual EAP-FAST profile from the Use Selected Profile drop-down box, the Enter Wireless Network Password screen appears (see Figure 6-10).

Figure 6-10 Enter Wireless Network Password Screen

Enter Wireless Network Password

- Enter your LEAP or EAP-FAST username and password in order to log on to the wireless network.
- Domain Name: Cisco Systems 350 Series PCMCIA Wireless LAN Adapter
- Profile Name: Enterprise

Enter your LEAP or EAP-FAST username and password and click OK. The domain name, which can be entered in the Log On To field, is optional.

- If auto profile selection selects a manual LEAP or manual EAP-FAST profile, you must select the Manual Login option from the Commands drop-down menu (see Figure 6-11).
When the Enter Wireless Network Password screen appears (see Figure 6-10), enter your LEAP or EAP-FAST username and password and click **OK**. The domain name, which can be entered in the Log On To field, is optional.

Step 2 If you are using EAP-FAST and a user prompt screen appears (see Figure 6-12), enter the requested information and click **OK**.
Figure 6-12 User Prompt Screen

EAP-FAST Authentication

Please enter your password for BIGCORP.COM

OK

Cancel

User Name:
Password:
Domain:
Card Name: Cisco Systems 350 Series PCMCIA Wireless LAN Adapter
Profile Name: Enterprise

Note

This screen appears if the server needs additional information. The text displayed at the top of the screen is sent from the server and varies by organization. It should tell you what information to enter.

Step 3

The LEAP or EAP-FAST Authentication Status screen appears. If your client adapter authenticates, the screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or EAP-FAST Authenticated.

If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.
After a Reboot, Logon, or Card Insertion

After your computer reboots, you log on, or you eject and reinsert the client adapter, the adapter does not automatically attempt to authenticate. You must manually invoke the authentication process. To do so, follow these steps.

Step 1 If you rebooted your computer or logged on, complete your standard Windows login.

Step 2 Open ACU.

Step 3 Choose the **Manual Login** option from the Commands drop-down menu (see Figure 6-13).

Figure 6-13 Commands Drop-Down Menu

Step 4 When the Enter Wireless Network Password screen appears (see Figure 6-14), enter your LEAP or EAP-FAST username and password and click **OK**. The domain name, which can be entered in the Log On To field, is optional.
Step 5 If you are using EAP-FAST and a user prompt screen appears (see Figure 6-15), enter the requested information and click OK.

Note This screen appears if the server needs additional information. The text displayed at the top of the screen is sent from the server and varies by organization. It should tell you what information to enter.
Step 6

The LEAP or EAP-FAST Authentication Status screen appears. If your client adapter authenticates, the screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or EAP-FAST Authenticated.

If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.

After Your LEAP Credentials Expire

If the LEAP credentials (username and password) for your current profile expire or become invalid, follow these steps to reauthenticate.

Step 1

Click OK when the following message appears: “The user name and password entered are no longer valid and have failed the LEAP authentication process. Please enter a new user name and password.”

Step 2

When the Enter Wireless Network Password screen appears, enter your new username and password and click OK. The client adapter should authenticate using your new credentials.

Note

If you click Cancel rather than OK on the Enter Wireless Network Password screen, the following message appears: “The profile will be disabled until you select the Reauthenticate option, Windows restarts, or the card is ejected and reinserted. Are you sure?” If you click No, the Enter Wireless Network Password screen reappears and allows you to enter your new credentials. If you click Yes, the current profile is disabled until you select Reauthenticate from ACM or the Commands drop-down menu in ACU, reboot your computer, or eject and reinsert the card. The Current Profile field on the ACU Status screen lists the profile as being Disabled.
After Your EAP-FAST Credentials Expire

If the EAP-FAST credentials (username and password) for your current profile expire or become invalid, follow these steps to change your password.

Step 1
When the Change Password screen appears (see Figure 6-16) to indicate that your password has expired, enter your old password in the Old Password field.

![Figure 6-16 Change Password Screen](image)

Step 2
Enter your new password in both the New Password and Confirm New Password fields.

Step 3
Click OK. The client adapter should authenticate using your new password.

Using LEAP or EAP-FAST with a Saved Username and Password

After Profile Selection or Card Insertion

After you (or auto profile selection) select a profile that uses LEAP or EAP-FAST authentication with a saved LEAP or EAP-FAST username and password or you eject and reinsert the client adapter while this profile is selected, the following events occur:

1. The LEAP or EAP-FAST Authentication Status screen appears.
2. If your client adapter authenticates, the screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or EAP-FAST Authenticated.

If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.
After a Reboot or Logon

After your computer reboots or you log on, the following events occur:

1. After you enter your Windows username and password, the authentication process begins automatically using your saved LEAP or EAP-FAST username and password.

 Note If you unchecked the No Network Connection Unless User Is Logged In check box on the LEAP Settings screen or EAP-FAST Settings screen, the EAP authentication process begins before the Windows login screen appears.

2. If your client adapter authenticates, the LEAP or EAP-FAST Authentication Status screen shows that each stage was successful and then disappears. ACM now shows Authenticated, and the Server Based Authentication field on the ACU Status screen shows LEAP Authenticated or EAP-FAST Authenticated.

 If the authentication attempt fails, an error message appears after the authentication timeout period has expired. Refer to the “LEAP Authentication Error Messages” section on page 10-18 or the “EAP-FAST Authentication Error Messages” section on page 10-21 for the necessary action to take.

3. Windows continues to log you onto the system.

After Your LEAP Credentials Expire

If the LEAP credentials (username and password) for your current profile expire or become invalid, follow these steps to reauthenticate.

Step 1 Click **OK** when the following message appears: “The saved user name and password entered for this profile are no longer valid and have failed the LEAP authentication process. Please enter a new user name and password. Remember to change them permanently in the profile using the ACU Profile Manager.”

Step 2 When the Enter Wireless Network Password screen appears, enter your new username and password and click **OK**. The client adapter should authenticate using your new credentials.

 Note If you click **Cancel** rather than **OK** on the Enter Wireless Network Password screen, the following message appears: “The profile will be disabled until you select the Reauthenticate option, Windows restarts, or the card is ejected and reinserted. Are you sure?” If you click **No**, the Enter Wireless Network Password screen reappears and allows you to enter your new credentials. If you click **Yes**, the current profile is disabled until you select Reauthenticate from ACM or the Commands drop-down menu in ACU, reboot your computer, or eject and reinsert the card. The Current Profile field on the ACU Status screen lists the profile as being Disabled.

Step 3 Edit the profile in ACU by changing the saved username and password on the LEAP Settings screen.

Step 4 Click **OK** three times to save the changes to your profile.
After Your EAP-FAST Credentials Expire

If the EAP-FAST credentials (username and password) for your current profile expire or become invalid, follow these steps to change your password.

Step 1 When the Change Password screen appears (see *Figure 6-17*) to indicate that your password has expired, enter your old password in the Old Password field.

Figure 6-17 Change Password Screen

![EAP-FAST Authentication](image)

Step 2 Enter your new password in both the New Password and Confirm New Password fields.

Step 3 Click OK. The client adapter should authenticate using your new password.

Step 4 Edit the profile in ADU by changing the saved username and password on the EAP-FAST Settings screen.
Using EAP-TLS

After Profile Selection or Card Insertion

After you (or auto profile selection) select a profile that uses host-based EAP authentication and you configure the card in Windows (provided Windows is using the Microsoft 802.1X supplicant) for EAP-TLS authentication or you eject and reinsert the client adapter while this profile is selected, follow these steps to EAP authenticate.

Step 1 If your computer is running Windows XP and a pop-up message appears above the Windows system tray informing you that you need to accept a certificate to begin the EAP authentication process, click the message and follow the instructions provided to accept the certificate.

Note You should not have to accept a certificate for future authentication attempts. After you accept one, the same certificate is used subsequently.

Step 2 If a message appears indicating the root certification authority for the server’s certificate, and it is the correct certification authority, click OK to accept the connection. Otherwise, click Cancel.

Step 3 If a message appears indicating the server to which your client adapter is connected, and it is the correct server to connect to, click OK to accept the connection. Otherwise, click Cancel.

Step 4 The client adapter should now EAP authenticate. To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.

After a Reboot or Logon

After your computer reboots or you log on using your Windows username and password, the EAP authentication process begins automatically and the client adapter should EAP authenticate.

To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.
Using PEAP

After Profile Selection, Card Insertion, Reboot, or Logon

After you (or auto profile selection) select a profile that uses host-based EAP authentication and you configure the card in Windows (provided Windows is using the Microsoft 802.1X supplicant) for PEAP authentication, follow the steps in one of the sections below, depending on your user database, to EAP authenticate.

Note

These instructions are applicable after profile selection, card ejection and re-insertion, reboot, or logon.

Note

If you checked the Always Try to Resume Secure Session check box on the PEAP Properties screen during configuration, the PEAP protocol attempts to resume the previous session before prompting you to re-enter your username and password. The PEAP Session Timeout setting on the Cisco Secure ACS controls how long the resume feature is active (that is, the amount of time during which the PEAP session can be resumed without re-entering user credentials).

Windows NT or 2000 Domain Databases or LDAP Databases Only

Step 1

If your computer is running Windows XP, a pop-up message appears above the Windows system tray informing you that you need to select a certificate or other credentials to access the network. Click this message.

Step 2

If a message appears indicating the root certification authority for the server’s certificate and it is the correct certification authority, click **OK** to accept the connection. Otherwise, click **Cancel**.

Step 3

If a message appears indicating the server to which your client adapter is connected and it is the correct server to connect to, click **OK** to accept the connection. Otherwise, click **Cancel**.

Step 4

Perform one of the following:

- If your computer is running Windows 2000, the Static Password screen appears (see Figure 6-18).
- If your computer is running Windows XP, a pop-up message appears above the Windows system tray prompting you to process your logon information for your wireless network. Click this message. The Static Password screen appears (see Figure 6-18).
Using PEAP

Step 5 Enter your PEAP authentication username and password (which are registered with the RADIUS server).

Step 6 If applicable, choose your domain name from the drop-down list or type it in.

Step 7 Click OK. The client adapter should now EAP authenticate. To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.

Step 8 If you also have a locally cached Windows password, you must change it manually in Windows to synchronize your passwords. To do so, press Ctrl-Alt-Delete, choose Change Password, and enter your old password once and your new password twice.

OTP Databases Only

Step 1 If your computer is running Windows XP, a pop-up message appears above the Windows system tray informing you that you need to select a certificate or other credentials to access the network. Click this message.

Step 2 If a message appears indicating the root certification authority for the server’s certificate and it is the correct certification authority, click OK to accept the connection. Otherwise, click Cancel.

Step 3 If a message appears indicating the server to which your client adapter is connected and it is the correct server to connect to, click OK to accept the connection. Otherwise, click Cancel.

Step 4 Perform one of the following:

• If your computer is running Windows 2000, the One Time Password screen appears (see Figure 6-19).

• If your computer is running Windows XP, a pop-up message appears above the Windows system tray prompting you to process your logon information for your wireless network. Click this message. The One Time Password screen appears (see Figure 6-19).
Step 5 Enter your PEAP authentication username in the User Name field.

Step 6 Choose either the **Hardware Token** or **Software Token** option. If you choose the Software Token option, the Password field on the One Time Password screen changes to the PIN field.

Note The Hardware Token and Software Token options are available only if you selected both of them on the Generic Token Card Properties screen during configuration. Otherwise, only the option you selected will be available.

Step 7 Enter either your hardware token password or your software token PIN.

Step 8 Click **OK**. The client adapter should now EAP authenticate. To verify authentication, double-click **My Computer**, **Control Panel**, and **Network Connections**. The status appears to the right of your Wireless Network Connection. Click **View** and **Refresh** to obtain the current status. If the client adapter is authenticated, the status reads **Authentication succeeded.**
After Your Password Expires (Windows NT or 2000 Domain Databases Only)

If you are using a Windows NT or 2000 domain database with PEAP and the password for your current user ID expires, follow these steps to change your password.

Step 1 When the Change Password screen appears (see Figure 6-20) to indicate that your password has expired, enter your old password in the Old Password field.

![Change Password Screen](image)

Step 2 Enter your new password in both the New Password and Confirm New Password fields.

Note The password is also changed in the Windows NT or 2000 domain user database.

Step 3 Click OK. The client adapter should authenticate using your new password. To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.
After Your PIN Expires (OTP Databases Only)

If you are using an OTP database with PEAP and the PIN for your current user ID expires, follow these steps to change your PIN.

Step 1
When the Change PIN screen appears (see Figure 6-21) to indicate that your PIN has expired, enter your old PIN in the Old PIN field.

Figure 6-21 Change PIN Screen

![Change PIN Screen]

Step 2
Enter your new PIN in both the New PIN and Confirm New PIN fields.

Step 3
Enter a word that will help you to remember your PIN in the PIN Hint Phrase field.

Step 4
Click OK. The client adapter should authenticate using your new PIN. To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.

Note
You should use the new PIN for future authentication attempts.
Using EAP-SIM

After you (or auto profile selection) select a profile that uses host-based EAP authentication and you configure the card in Windows (provided Windows is using the Microsoft 802.1X supplicant) for EAP-SIM authentication, the authentication process varies depending on the configuration option you selected for the SIM card’s PIN.

If You Are Prompted for the PIN

If you chose to be prompted for the PIN after a power-up or reboot or at every authentication request, follow these steps to EAP authenticate.

Note

These instructions are applicable after profile selection, card ejection and re-insertion, reboot, or logon.

Step 1

Perform one of the following:

- If your computer is running Windows 2000, the Enter PIN screen appears (see Figure 6-22).
- If your computer is running Windows XP, a pop-up message appears above the Windows system tray informing you that you need to enter your credentials to access the network. Click this message. The Enter PIN screen appears (see Figure 6-22).

Figure 6-22 Enter PIN Screen

Step 2

Enter your PIN and click OK. The computer now retrieves information from the SIM card. If you enter the PIN incorrectly, an error message appears.

Note

If you exceed the maximum number of retries for entering the PIN, the card locks up.
Step 3 The client adapter should now EAP authenticate. To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.

Note ACU and the Windows Wireless Network Connection icon in the Windows XP system tray may indicate a connection status when authentication is still in the pending state or the authentication server fails to respond.

If the PIN Is Stored on the Computer

If you chose to store the PIN in the computer’s registry, the EAP authentication process begins automatically, and the client adapter should EAP authenticate and use the saved PIN to access the SIM card.

Note These instructions are applicable after profile selection, card ejection and re-insertion, reboot, or logon.

Note If the stored PIN is wrong and therefore rejected by the SIM, the EAP-SIM supplicant temporarily changes the prompt mode to the default setting (Ask for my PIN once after I turn my computer on) in order to prevent the SIM from locking up. Unless changed manually, this setting stays in effect until your computer is powered off. Change your stored PIN on the SIM Authentication Properties screen.

To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.

Note ACU and the Windows Wireless Network Connection icon in the Windows XP system tray may indicate a connection status when authentication is still in the pending state or the authentication server fails to respond.

Restarting the Authentication Process

If your client adapter was unable to authenticate using the specified username and password and you have exhausted the retry limit (for example, LEAP tries only once to prevent you from being locked out of the system), the current profile is disabled until you change the username or password, reboot your computer, or eject and re-insert the client adapter. To force your client adapter to try to reauthenticate using the username and password of the current profile, choose Reauthenticate from ACM or the Commands drop-down menu in ACU.
Restarting the Authentication Process
Performing Diagnostics

This chapter explains how to use ACU to perform user-level diagnostics. The following topics are covered in this chapter:

- Overview of ACU Diagnostic Tools, page 7-2
- Setting Parameters that Affect ACU Diagnostic Tools, page 7-3
- Viewing the Current Status of Your Client Adapter, page 7-4
- Viewing Statistics for Your Client Adapter, page 7-12
- Viewing the Link Status Meter, page 7-16
- Running an RF Link Test, page 7-18
Overview of ACU Diagnostic Tools

In addition to enabling you to configure your client adapter for use in various types of networks, ACU provides tools that enable you to assess the performance of the client adapter and other devices on the wireless network. ACU diagnostic tools perform the following functions:

- Display your client adapter’s current status and configured settings
- Display statistics pertaining to your client adapter’s transmission and reception of data
- Display a graphical image of your client adapter’s RF link
- Run an RF link test to assess the performance of the RF link between your client adapter and its associated access point

Table 7-1 enables you to quickly locate instructions for using each of the diagnostic tools.

<table>
<thead>
<tr>
<th>Diagnostic Tool</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>7-4</td>
</tr>
<tr>
<td>Statistics</td>
<td>7-12</td>
</tr>
<tr>
<td>Link status meter</td>
<td>7-16</td>
</tr>
<tr>
<td>RF link test</td>
<td>7-18</td>
</tr>
</tbody>
</table>
Setting Parameters that Affect ACU Diagnostic Tools

Several parameters affect the operation of ACU diagnostic tools. Follow these steps to set these parameters.

Step 1
Open ACU.

Step 2
Click the Preferences icon or choose Preferences from the Options drop-down menu. The Aironet Client Utility Preferences screen appears (see Figure 7-1).

Figure 7-1 Aironet Client Utility Preferences Screen
Step 3 Table 7-2 lists and describes the parameters that affect the operation of ACU diagnostic tools. Follow the instructions in the table to change any parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Screen Update Timer (seconds between updates) | Specifies how often the Status and Statistics screens are updated. You can type a number in the edit box or use the slider to change this value.
Range: 1 to 60 seconds between updates (in 1-second increments)
Default: 1 second between updates |
| Signal Strength Display Units | Specifies the units used to display signal strength on the Status, Linktest, and Site Survey screens. |
| | **Default:** Percent |
| Units | **Description** |
| Percent | Displays the signal strength as a percentage. |
| dBm | Displays the signal strength in decibels with respect to milliwatts. |
| Show History | Checking this check box causes the Link Status Meter graphical display to show a recent history of the RF performance between your client adapter and its associated access point. Black dots on the graphical display show the performance of the last 50 signals. |
| | **Default:** Checked |

Step 4 Click OK to save your changes.

Viewing the Current Status of Your Client Adapter

ACU enables you to view the current status of your client adapter as well as many of the settings that have been configured for the adapter.

To view your client adapter’s status and settings, open ACU; then click the Status icon or choose Status from the Commands drop-down menu. The Status screen appears. Figure 7-2 shows the Status screen with the signal strength values displayed as percentages, and Figure 7-3 shows the bottom of the same screen with the signal strength values displayed in decibels with respect to milliwatts (dBm).

Note The name of the current profile appears in parentheses at the top of the screen.
Figure 7-2 Status Screen (with Signal Strength as a Percentage)

![Status Screen (with Signal Strength as a Percentage)](image)

Figure 7-3 Bottom of Status Screen (with Signal Strength in dBm)

![Bottom of Status Screen (with Signal Strength in dBm)](image)
Table 7-3 interprets each element of the Status screen.

Table 7-3 Client Adapter Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>A description of your client adapter.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>The serial number of your client adapter.</td>
</tr>
<tr>
<td></td>
<td>Note The serial number appears only if the number has been programmed into your card.</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>The manufacturer of your client adapter.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>The version of the firmware that is currently running on your client adapter.</td>
</tr>
<tr>
<td>Boot Block Version</td>
<td>The version of the boot block firmware that is currently in your client adapter. The boot block firmware contains identification information for the client adapter and functions to start up the radio and pass control to the main firmware, which (unlike the boot block) can be modified and upgraded by the user.</td>
</tr>
<tr>
<td>NDIS Driver Version</td>
<td>The version of the NDIS device driver that is currently installed on your computer.</td>
</tr>
<tr>
<td>Default Profile</td>
<td>The network configuration (or profile) shown in the Use Selected Profile drop-down box on the Profile Manager screen. This is the profile that you have selected as the active profile.</td>
</tr>
<tr>
<td></td>
<td>Note The current profile may be different than the default profile if you are using auto profile selection. The client adapter will not switch profiles as long as it remains associated to the access point or reassociates within 10 seconds (or within the time specified by the authentication timeout value if LEAP or EAP-FAST is enabled). Refer to Chapter 4 for information on creating and using profiles.</td>
</tr>
<tr>
<td>Current Profile</td>
<td>The network configuration (or profile) your client adapter is currently using.</td>
</tr>
<tr>
<td></td>
<td>Note The current profile may be different than the default profile if you are using auto profile selection. The client adapter does not switch profiles as long as it remains associated to the access point or reassociates within 10 seconds (or within the time specified by the authentication timeout value if LEAP or EAP-FAST is enabled). Refer to Chapter 4 for information on creating and using profiles.</td>
</tr>
<tr>
<td></td>
<td>Note If your current profile becomes disabled due to an invalid LEAP username and password, this field lists the profile as Disabled.</td>
</tr>
<tr>
<td>Using Short Radio Headers</td>
<td>Indicates whether your client adapter is actually using short radio headers.</td>
</tr>
<tr>
<td></td>
<td>Value: Yes or No</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 2.4-GHz client adapters.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the Use Short Radio Headers parameter in Table 5-3 for information on using short radio headers.</td>
</tr>
</tbody>
</table>
Table 7-3 Client Adapter Status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Integrity Check</td>
<td>Indicates whether your client adapter is using message integrity check</td>
</tr>
<tr>
<td></td>
<td>(MIC) to protect packets sent to and received from the access point.</td>
</tr>
<tr>
<td></td>
<td>MIC prevents bit-flip attacks on encrypted packets. During a bit-flip</td>
</tr>
<tr>
<td></td>
<td>attack, an intruder intercepts an encrypted message, alters it slightly,</td>
</tr>
<tr>
<td></td>
<td>and retransmits it, and the receiver accepts the retransmitted message</td>
</tr>
<tr>
<td></td>
<td>as legitimate.</td>
</tr>
<tr>
<td></td>
<td>Note MIC is supported automatically by the client adapter’s driver,</td>
</tr>
<tr>
<td></td>
<td>but it must be enabled on the access point.</td>
</tr>
<tr>
<td>Value:</td>
<td>None, MMH, or Michael</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Integrity Check</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>MIC is disabled.</td>
</tr>
<tr>
<td>MMH</td>
<td>MIC is enabled and is being used with CKIP.</td>
</tr>
<tr>
<td>Michael</td>
<td>MIC is enabled and is being used with WPA and TKIP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Based Authentication</th>
<th>Indicates the configuration of the access point to which your client adapter is associated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
<td>None, WEP Key In Use, Cell Is Secure, or LEAP Authenticated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Based Authentication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The access point is configured for No Encryption.</td>
</tr>
<tr>
<td>WEP Key In Use</td>
<td>The access point is configured for Optional encryption.</td>
</tr>
<tr>
<td>Cell Is Secure</td>
<td>The access point is configured for Full Encryption.</td>
</tr>
<tr>
<td>Note</td>
<td>If the client’s current profile does not have Allow Association to Mixed Cells enabled, the client can associate only to access points that use full encryption.</td>
</tr>
<tr>
<td>LEAP Authenticated</td>
<td>The client is using LEAP and is authenticated to an access point that has WEP and Network-EAP enabled.</td>
</tr>
<tr>
<td>EAP-FAST Authenticated</td>
<td>The client is using EAP-FAST and is authenticated to an access point that has WEP and Network-EAP enabled.</td>
</tr>
<tr>
<td>Status</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Data Encryption Type</td>
<td>Indicates the type of encryption that is being used for unicast packets. Value: None, WEP, TKIP, or CKIP. Note: Refer to the “Overview of Security Features” section on page 5-23 for details on these encryption types.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>Indicates whether the client adapter must share the same WEP keys as the access point in order to communicate or can communicate with the access point regardless of its WEP settings. Value: Open or Shared Key. Note: Refer to the “Setting Network Security Parameters” section on page 5-21 for information on setting the authentication type.</td>
</tr>
<tr>
<td>Broadcast Encryption Type</td>
<td>Indicates the type of encryption that is being used for broadcast and multicast packets. Value: None, WEP, TKIP, or CKIP. Note: Refer to the “Overview of Security Features” section on page 5-23 for details on these encryption types.</td>
</tr>
<tr>
<td>WPA Authentication</td>
<td>Indicates whether WPA is enabled on the client adapter and the access point to which it is associated. Value: None or WPA. Note: Refer to the “Wi-Fi Protected Access (WPA)” section on page 5-27 for more information on WPA.</td>
</tr>
<tr>
<td>Fast Roaming</td>
<td>Indicates whether fast roaming is enabled on the client adapter. Value: None or CCKM. Note: Refer to the “Fast Roaming (CCKM)” section on page 5-28 for more information on fast roaming.</td>
</tr>
<tr>
<td>Antenna Selection</td>
<td>The antenna mode that your client adapter is currently using. Value: Diversity, Primary Only, Secondary Only. (Primary Only is the only option available for PCI client adapters) Note: This setting appears only for 2.4-GHz client adapters. Note: The Primary Only and Secondary Only values were formerly named Right Only and Left Only, respectively. Refer to the Antenna Mode (Receive) and Antenna Mode (Transmit) parameters in Table 5-4 and Table 5-5 for information on setting the antenna mode.</td>
</tr>
<tr>
<td>Channel Set</td>
<td>The regulatory domain for which your client adapter is currently configured, such as Americas. (For the Japan channel set, the Call ID is also displayed.) This value is not user selectable. Note: Refer to Appendix D for a list of channel identifiers, channel center frequencies, and regulatory domains for each channel.</td>
</tr>
</tbody>
</table>
Viewing the Current Status of Your Client Adapter

Client Name
The name your client adapter uses when it associates to an access point.

Note Refer to the Client Name parameter in Table 5-2 for information on setting the client name.

MAC Address
The MAC address assigned to your client adapter at the factory.

IP Address
The IP address of your client adapter.

Current Link Speed
The rate at which your client adapter is currently transmitting data packets.

Value:
- 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters);
- 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)

Note Refer to the Data Rate parameter in Table 5-3 for information on setting the client adapter’s data rate.

Data Rate
The rate at which your client adapter has been configured to transmit or receive data packets.

Value:
- 1 Mbps, 2 Mbps, 5.5 Mbps, 11 Mbps, or Auto Rate Selection (2.4-GHz client adapters);
- 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, 54 Mbps, or Auto Rate Selection (5-GHz client adapters)

Note Refer to the Data Rate parameter in Table 5-3 for information on setting the client adapter’s data rate.

Current Power Level
The power level at which your client adapter is currently transmitting. The maximum level is dependent upon the radio installed in your client adapter and your country’s regulatory agency.

Value:
- 1, 5, 20, 30, 50, or 100 mW (350 series client adapters);
- 5, 10, or 20 mW (5-GHz client adapters)

Note Refer to the Transmit Power parameter in Table 5-3 for information on setting the client adapter’s power level.

Available Power Levels
The power levels at which your client adapter is capable of transmitting. The maximum level is dependent upon the radio installed in your client adapter and your country’s regulatory agency.

Value:
- 1, 5, 20, 30, 50, or 100 mW (350 series client adapters);
- 5, 10, or 20 mW (5-GHz client adapters)

Note Refer to the Transmit Power parameter in Table 5-3 for information on the client adapter’s available power levels.

Channel (Frequency)
The frequency that your client adapter is currently using as the channel for communications.

Value: Dependent on client adapter radio and regulatory domain

Note Refer to the Channel parameter in Table 5-3 for information on selecting the frequency for your client adapter.

Status
The operational mode of your client adapter.

Value: Error, Not Associated, Associated, Authenticating, Authenticated, Authentication Failed, or Ad Hoc Mode
Table 7-3 Client Adapter Status (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID</td>
<td>The name of the network to which your client adapter is currently associated.</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the SSID parameter in Table 5-2 for information on the client adapter’s SSID.</td>
</tr>
<tr>
<td>Network Type</td>
<td>The type of network in which your client adapter is being used.</td>
</tr>
<tr>
<td></td>
<td>Value: Infrastructure or Ad Hoc</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the Network Type parameter in Table 5-2 for information on setting the network type.</td>
</tr>
<tr>
<td>Power Save Mode</td>
<td>The client adapter’s current power consumption setting.</td>
</tr>
<tr>
<td></td>
<td>Value: CAM, Max PSP, or Fast PSP</td>
</tr>
<tr>
<td></td>
<td>Note Refer to the Power Save Mode parameter in Table 5-2 for information on setting the client adapter’s power save mode.</td>
</tr>
<tr>
<td>Associated Access Point Name</td>
<td>The name of the access point to which your client adapter is associated.</td>
</tr>
<tr>
<td></td>
<td>It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later).</td>
</tr>
<tr>
<td></td>
<td>Note This field shows up to 15 characters although the name of the access point may be longer.</td>
</tr>
<tr>
<td>Associated Access Point IP Address</td>
<td>The IP address of the access point to which your client adapter is associated.</td>
</tr>
<tr>
<td></td>
<td>It is shown only if the client adapter is in infrastructure mode, the access point was configured with an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later).</td>
</tr>
<tr>
<td></td>
<td>Note If Aironet Extensions are disabled, the IP address of the associated access point is shown as 0.0.0.0.</td>
</tr>
<tr>
<td>Associated Access Point MAC Address</td>
<td>The MAC address of the access point to which your client adapter is associated.</td>
</tr>
<tr>
<td></td>
<td>It is shown only if the client adapter is in infrastructure mode.</td>
</tr>
<tr>
<td></td>
<td>Note This field displays the MAC address of the access point’s Ethernet port (for access points that do not run Cisco IOS) or the MAC address of the access point’s radio (for access points that run Cisco IOS). The MAC address of the Ethernet port on access points that run Cisco IOS is printed on a label on the back of the device.</td>
</tr>
<tr>
<td>Beacon Period</td>
<td>Specifies the duration between beacon packets, which are used to help clients find each other in ad hoc mode.</td>
</tr>
<tr>
<td></td>
<td>Range: Approximately 20 to 999 milliseconds (ms)</td>
</tr>
<tr>
<td></td>
<td>Note The beacon period is shown only if your client adapter is in ad hoc mode.</td>
</tr>
<tr>
<td>Up Time (hh:mm:ss)</td>
<td>The amount of time (in hours:minutes:seconds) that the client adapter has been receiving power. If the adapter has been running for more than 24 hours, the time is displayed in days, hours:minutes:seconds.</td>
</tr>
</tbody>
</table>
Viewing the Current Status of Your Client Adapter

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Signal Strength</td>
<td>The signal strength for all received packets. The higher the value and the more green the bar graph is, the stronger the signal. Range: 0 to 100% or –95 to –45 dBm</td>
</tr>
<tr>
<td>Current Signal Quality (2.4-GHz client adapters)</td>
<td>The signal quality for all received packets. The higher the value and the more green the bar graph is, the clearer the signal. Range: 0 to 100% Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed as a percentage. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
<tr>
<td>Current Noise Level (2.4-GHz client adapters)</td>
<td>The level of background radio frequency energy in the 2.4-GHz band. The lower the value and the more green the bar graph is, the less background noise present. Range: –100 to –45 dBm Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
<tr>
<td>Current Beacons Received (5-GHz client adapters)</td>
<td>The percentage of beacon packets received versus those expected to be received. The higher the value and the more green the bar graph is, the clearer the signal. Example: The access point sends out 10 beacons per second, so you would expect the client adapter to receive 50 beacon packets in 5 seconds. If it receives only 40 packets, the percentage of beacons received would be 80%. Range: 0 to 100% Note This setting appears only for 5-GHz client adapters.</td>
</tr>
<tr>
<td>Overall Link Quality</td>
<td>The client adapter’s ability to communicate with the access point, which is determined by the combined result of the adapter’s signal strength and signal quality. Value: Not Associated, Poor, Fair, Good, or Excellent Note This setting appears for 2.4-GHz client adapters (but only if you selected signal strength to be displayed as a percentage) and for 5-GHz client adapters. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
<tr>
<td>Signal to Noise Ratio (2.4-GHz client adapters)</td>
<td>The difference between the signal strength and the current noise level. The higher the value, the better the client adapter’s ability to communicate with the access point. Range: 0 to 90 dB Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
</tbody>
</table>
Viewing Statistics for Your Client Adapter

ACU enables you to view statistics that indicate how data is being received and transmitted by your client adapter.

To view your client adapter’s statistics, open ACU; then click the Statistics icon or choose Statistics from the Commands drop-down menu. The Statistics screen appears (see Figure 7-4).

Note

The name of the current profile appears in parentheses at the top of the screen.

Note

The receive and transmit statistics are host statistics. That is, they show packets and errors received or sent by the Windows device. Link status tests from the access point or site survey tool are performed at the firmware level; therefore, they have no effect on the statistics shown in the Statistics screen.

Figure 7-4 Statistics Screen

![Statistics Screen](image-url)
The statistics are calculated as soon as your client adapter is started or the Reset button is selected and are continually updated at the rate specified by the Screen Update Timer. Instructions for changing the Screen Update Timer setting are provided in Table 7-2.

Table 7-4 describes each statistic that is displayed for your client adapter.

Table 7-4 Client Adapter Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Statistics</td>
<td></td>
</tr>
<tr>
<td>Multicast Packets Received</td>
<td>The number of multicast packets that were received successfully.</td>
</tr>
<tr>
<td>Broadcast Packets Received</td>
<td>The number of broadcast packets that were received successfully.</td>
</tr>
<tr>
<td>Unicast Packets Received</td>
<td>The number of unicast packets that were received successfully.</td>
</tr>
<tr>
<td>Bytes Received</td>
<td>The number of bytes of data that were received successfully.</td>
</tr>
<tr>
<td>Beacons Received</td>
<td>The number of beacon packets that were received successfully.</td>
</tr>
<tr>
<td>RM Requests Received</td>
<td>The number of valid radio management (RM) request frames that were received successfully.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed only if RM is enabled.</td>
</tr>
<tr>
<td>Total Packets Received OK</td>
<td>The number of all packets that were received successfully.</td>
</tr>
<tr>
<td>Duplicate Packets Received</td>
<td>The number of duplicate packets that were received successfully.</td>
</tr>
<tr>
<td>Overrun Errors</td>
<td>The number of packets received when no receive buffers were available. These errors usually occur when the host does not read the received packets from the client adapter fast enough.</td>
</tr>
<tr>
<td>PLCP CRC Errors</td>
<td>The number of times the client adapter started to receive an 802.11 physical layer convergence protocol (PLCP) header but the rest of the packet was ignored because a cyclic redundancy check (CRC) error was found in the header.</td>
</tr>
<tr>
<td></td>
<td>Note CRC errors can be attributed to packet collisions caused by a dense population of client adapters, overlapping access point coverage on a channel, high multipath conditions from bounced signals, or the presence of other 2.4-GHz signals from devices such as microwave ovens, wireless handset phones, etc.</td>
</tr>
<tr>
<td>PLCP Format Errors</td>
<td>The number of times an 802.11 PLCP header was received with a valid CRC but the rest of the packet was ignored because an unknown value was found in the header.</td>
</tr>
<tr>
<td>PLCP Length Errors</td>
<td>The number of times an 802.11 PLCP header was received but the rest of the packet was ignored because an illegal header length was found.</td>
</tr>
<tr>
<td>MAC CRC Errors</td>
<td>The number of packets that had a valid 802.11 PLCP header but contained a CRC error in the data portion of the packet.</td>
</tr>
<tr>
<td></td>
<td>Note CRC errors can be attributed to packet collisions caused by a dense population of client adapters, overlapping access point coverage on a channel, high multipath conditions from bounced signals, or the presence of other 2.4-GHz signals from devices such as microwave ovens, wireless handset phones, etc.</td>
</tr>
</tbody>
</table>
Partial Packets Received | The number of fragments that were discarded because the entire packet was not received successfully.
SSID Mismatches | The number of times the client adapter tried to associate to an access point but was unable to because the adapter’s SSID was not the same as the access point’s.
AP Mismatches | The number of times the client adapter tried to associate to an access point but was unable to because the access point was not the adapter’s specified access point.
| Note | Refer to the Specified Access Point 1-4 parameter in Table 5-4 for information on specifying access points.
Data Rate Mismatches | The number of times the client adapter tried to associate to an access point but was unable to because the adapter’s data rate was not supported by the access point.
| Note | Refer to the Data Rate parameter in Table 5-3 for information on supported data rates.
WPA Mismatches | The number of probe responses or beacons received that do not qualify for association because of a mismatched WPA information element. WPA information elements are sent by access points to advertise supported authentication modes and supported ciphers.
| Note | This field is displayed only if WPA is enabled.
Authentication Rejects | The number of times the client adapter tried to authenticate to an access point but was rejected.
Authentication Time-out | The number of times the client adapter tried to authenticate to an access point but was unable to because the access point did not respond fast enough (timed out).
Association Rejects | The number of times the client adapter tried to associate to an access point but was rejected.
Association Time-out | The number of times the client adapter tried to associate to an access point but was unable to because the access point did not respond fast enough (timed out).
Packets Aged | The number of packets received successfully but discarded by the client adapter because either all fragments were not received within 10 seconds or the host did not read the packet from the adapter within 10 seconds.
Packets MIC OK | The number of packets that were received successfully with a valid message integrity check (MIC).
| Note | This field is displayed only if MIC is enabled on the access point.
Packets No MIC | The number of packets that were discarded because no MIC was found.
| Note | This field is displayed only if MIC is enabled on the access point.
Table 7-4 Client Adapter Statistics (continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Incorrect MIC</td>
<td>The number of packets that were discarded because an incorrect MIC value was found.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed only if MIC is enabled on the access point.</td>
</tr>
<tr>
<td>Packets No MIC Seed</td>
<td>The number of packets that were discarded because no MIC seed was received.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed only if MIC is enabled on the access point.</td>
</tr>
<tr>
<td>Packets Wrong MIC Sequence</td>
<td>The number of packets that were discarded because the MIC sequence number was wrong.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed only if MIC is enabled on the access point.</td>
</tr>
<tr>
<td>Up Time (hh:mm:ss)</td>
<td>The amount of time (in hours:minutes:seconds) since the Reset button was selected. If the client</td>
</tr>
<tr>
<td></td>
<td>adapter has been running for more than 24 hours, the time is displayed in days, hours:minutes:seconds.</td>
</tr>
<tr>
<td>Total Up Time (hh:mm:ss)</td>
<td>The amount of time (in hours:minutes:seconds) that the client adapter has been receiving power. The</td>
</tr>
<tr>
<td></td>
<td>total up time continues to increment even if the Reset button is selected. If the adapter has</td>
</tr>
<tr>
<td></td>
<td>been running for more than 24 hours, the time is displayed in days, hours:minutes:seconds.</td>
</tr>
</tbody>
</table>

Transmit Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Packets Transmitted</td>
<td>The number of multicast packets that were transmitted successfully.</td>
</tr>
<tr>
<td>Broadcast Packets Transmitted</td>
<td>The number of broadcast packets that were transmitted successfully.</td>
</tr>
<tr>
<td>Unicast Packets Transmitted</td>
<td>The number of unicast packets that were transmitted successfully.</td>
</tr>
<tr>
<td>Bytes Transmitted</td>
<td>The number of bytes of data that were transmitted successfully.</td>
</tr>
<tr>
<td>Beacons Transmitted</td>
<td>The number of beacon packets that were transmitted successfully (in ad hoc mode only).</td>
</tr>
<tr>
<td>RM Reports Transmitted</td>
<td>The number of radio management (RM) report frames that were generated and transmitted in response</td>
</tr>
<tr>
<td></td>
<td>to a valid RM request.</td>
</tr>
<tr>
<td>Ack Packets Transmitted</td>
<td>The number of acknowledgment (Ack) packets that were transmitted in response to successfully</td>
</tr>
<tr>
<td></td>
<td>received unicast packets.</td>
</tr>
<tr>
<td>RTS Packets Transmitted</td>
<td>The number of request-to-send (RTS) packets that were transmitted successfully.</td>
</tr>
<tr>
<td>CTS Packets Transmitted</td>
<td>The number of clear-to-send (CTS) packets that were transmitted in response to a successfully</td>
</tr>
<tr>
<td></td>
<td>received RTS packet.</td>
</tr>
<tr>
<td>Single Collisions</td>
<td>The number of packets that had to be retransmitted once because a collision occurred.</td>
</tr>
</tbody>
</table>
Viewing the Link Status Meter

ACU’s link status meter can be used to assess the performance of your client adapter’s RF link. If this tool is used to assess the RF link at various locations, you can avoid areas where performance is weak and eliminate the risk of losing the connection between your client adapter and an access point.

To open the link status meter, open ACU; then click the Link Status Meter icon or choose Link Status Meter from the Commands drop-down menu. The Link Status Meter screen appears (see Figure 7-5).

The name of the current profile appears in parentheses at the top of the screen.

Table 7-4 Client Adapter Statistics (continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Collisions</td>
<td>The number of packets that had to be retransmitted more than once because additional collisions occurred.</td>
</tr>
<tr>
<td>_packets No Deferral</td>
<td>The number of packets that were able to be transmitted immediately without being delayed due to energy detect or protocol deferral.</td>
</tr>
<tr>
<td>_packets Deferred Protocol</td>
<td>The number of packets that were delayed due to 802.11 protocol reasons (such as not enough time left to send the packet).</td>
</tr>
<tr>
<td>_packets Deferred Energy Detect</td>
<td>The number of packets that were delayed because RF energy was already detected. This condition is usually caused by another radio transmitting a packet or by some other RF source jamming the signal (such as a microwave oven).</td>
</tr>
<tr>
<td>_packets Retry Long</td>
<td>The number of normal data packets that were retransmitted.</td>
</tr>
<tr>
<td>_packets Retry Short</td>
<td>The number of request-to-send (RTS) packets that were retransmitted.</td>
</tr>
<tr>
<td>_packets Max Retries</td>
<td>The number of packets that failed to be transmitted successfully after exhausting the maximum number of retries.</td>
</tr>
<tr>
<td>_packets Ack Received</td>
<td>The number of transmitted packets that had their corresponding acknowledgment (Ack) packet received successfully.</td>
</tr>
<tr>
<td>_packets No Ack Received</td>
<td>The number of transmitted packets that did not have their corresponding Ack packet received successfully.</td>
</tr>
<tr>
<td>_packets CTS Received</td>
<td>The number of clear-to-send (CTS) packets that were received in response to an RTS packet.</td>
</tr>
<tr>
<td>_packets No CTS Received</td>
<td>The number of packets for which no CTS packet was received in response to an RTS packet.</td>
</tr>
<tr>
<td>_packets Aged</td>
<td>The number of packets that were discarded by the client adapter because they were not transmitted successfully within 5 seconds.</td>
</tr>
</tbody>
</table>
The Link Status Meter screen provides a graphical display of the following:

- **Signal strength**—The strength of the client adapter’s radio signal at the time packets are being received. It is displayed as a percentage along the vertical axis.

- **Signal quality**—The quality of the client adapter’s radio signal at the time packets are being received. It is displayed as a percentage along the horizontal axis.

The combined result of the signal strength and signal quality is represented by a diagonal line (see Figure 7-5). Where the line falls on the graphical display determines whether the RF link between your client adapter and its associated access point is poor, fair, good, or excellent. The name, IP address, and MAC address of the access point that is associated to your client adapter are indicated at the bottom of the display.

Note
The access point name and IP address are shown only if the client adapter is in infrastructure mode, the access point was configured with a name and an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later).

Note
The access point MAC address is shown only if the client adapter is in infrastructure mode. This field displays the MAC address of the access point’s Ethernet port (for access points that do not run Cisco IOS) or the MAC address of the access point’s radio (for access points that run Cisco IOS). The MAC address of the Ethernet port on access points that run Cisco IOS is printed on a label on the back of the device.
Running an RF Link Test

ACU’s link test tool sends out pings to assess the performance of the RF link. The test is designed to be performed multiple times at various locations throughout your area and is run at the data rate set on ACU’s RF Network Properties screen (see the Data Rate parameter in Table 5-3). The results of the link test can be used to determine RF network coverage and ultimately the required number and placement of access points in your network. The test also helps you to avoid areas where performance is weak, thereby eliminating the risk of losing the connection between your client adapter and its associated access point.

Because the link test operates above the RF level, it does more than test the RF link between two network devices. It also checks the status of wired sections of the network and verifies that TCP/IP and the proper drivers have been loaded.

The following prerequisites are required before you can run an RF link test:

- The TCP/IP protocol must be installed on your system.

 Note See the Help section of your Windows operating system for information on installing and setting up TCP/IP.

- An IP address must be configured for the access point (or other computer in ad hoc mode).

Follow these steps to run an RF link test.

Step 1 Open ACU; then click the Link Test icon or choose Linktest from the Commands drop-down menu. The Linktest screen appears (see Figure 7-6).

Note The name of the current profile appears in parentheses at the top of the screen.
Figure 7-6 Linktest Screen

![Linktest Screen Image]

Step 2 In the IP Address of Access Point field, enter the IP address of the access point or other wireless device with which you want to test the RF link.

Step 3 You can set the link test to run until it has attempted to send a specific number of packets or to run until you stop it. Follow one of these steps to determine how long the link test will run:

- Choose the number of packets that the link test should attempt to send. You can type a number in the Number of Packets field or use the slider to set this value. (The Number of Packets parameter is ignored if the Continuous Linktest check box is checked.)
 - **Range:** 1 to 1000
 - **Default:** 4
- Check the Continuous Linktest check box to allow the link test to run continuously.
 - **Default:** Unchecked

Step 4 Choose the size of the data packet that is to be sent to the access point. You can type a number in the Packet Size field or use the slider to set this value.

- **Range:** 64 to 2048
- **Default:** 100
Note: The Windows TCP/IP stack fragments (splits up) packets that are greater than 512 bytes. Therefore, the number of transmitted packets does not match the number of received packets (even if none are lost) if the packet size is greater than 512 bytes.

Step 5: Click the **Start** button to run the link test. While the test is running, statistics are displayed and updated periodically.

Figure 7-7 shows the Linktest screen with the signal strength values displayed as percentages, and Figure 7-8 shows the bottom of the same screen with the signal strength values displayed in dBm.

Figure 7-7 Linktest Screen (with Test Running and Signal Strength as a Percentage)

Figure 7-8 Bottom of Linktest Screen (with Test Running and Signal Strength in dBm)
Table 7-5 interprets the statistics that are displayed on the Linktest screen while the link test is running.

Table 7-5 Linktest Statistics

<table>
<thead>
<tr>
<th>Linktest Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received OK</td>
<td>The number of packets of the specified size that have been received successfully.</td>
</tr>
<tr>
<td>Packets Transmitted OK</td>
<td>The number of packets of the specified size that have been transmitted successfully.</td>
</tr>
<tr>
<td>Status</td>
<td>The operational mode of your client adapter. Value: Error, Configured, Associated, Not Associated, or Ad Hoc Mode</td>
</tr>
<tr>
<td>Current Link Speed</td>
<td>The rate at which your client adapter is currently transmitting data packets. Value: 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters); 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)</td>
</tr>
<tr>
<td>Associated Access Point Name</td>
<td>The name of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note: This field shows up to 15 characters although the name of the access point may be longer.</td>
</tr>
<tr>
<td>Associated Access Point MAC Address</td>
<td>The MAC address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode. Note: This field displays the MAC address of the access point’s Ethernet port (for access points that do not run Cisco IOS) or the MAC address of the access point’s radio (for access points that run Cisco IOS). The MAC address of the Ethernet port on access points that run Cisco IOS is printed on a label on the back of the device.</td>
</tr>
<tr>
<td>Current Signal Strength</td>
<td>The signal strength for all received packets. The higher the value and the more green the bar graph is, the stronger the signal. Range: 0 to 100% or –95 to –45 dBm</td>
</tr>
<tr>
<td>Current Signal Quality</td>
<td>The signal quality for all received packets. The higher the value and the more green the bar graph is, the clearer the signal. Range: 0 to 100% Note: This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed as a percentage. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
</tbody>
</table>
Running an RF Link Test

Step 6 If you did not set the link test to run continuously, the test ends after the specified number of packets is sent, and the Stop button changes back to the Start button. To stop the link test at any time, click Stop, OK, or Cancel.

Table 7-5 Linktest Statistics (continued)

<table>
<thead>
<tr>
<th>Linktest Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Noise Level (2.4-GHz client adapters)</td>
<td>The level of background radio frequency energy in the 2.4-GHz band. The lower the value and the more green the bar graph is, the less background noise present.</td>
</tr>
<tr>
<td></td>
<td>Range: –100 to –45 dBm</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
<tr>
<td>Current Beacons Received (5-GHz client adapters)</td>
<td>The percentage of beacon packets received versus those expected to be received. The higher the value and the more green the bar graph is, the clearer the signal.</td>
</tr>
<tr>
<td></td>
<td>Example: The access point sends out 10 beacons per second, so you would expect the client adapter to receive 50 beacon packets in 5 seconds. If it receives only 40 packets, the percentage of beacons received would be 80%.</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 100%</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 5-GHz client adapters.</td>
</tr>
<tr>
<td>Overall Link Quality</td>
<td>The client adapter’s ability to communicate with the access point, which is determined by the combined result of the adapter’s signal strength and signal quality.</td>
</tr>
<tr>
<td></td>
<td>Value: Not Associated, Poor, Fair, Good, or Excellent</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears for 2.4-GHz client adapters (but only if you selected signal strength to be displayed as a percentage) and for 5-GHz client adapters. See the Signal Strength Display Units parameter in Table 7-2 for information.</td>
</tr>
<tr>
<td>Signal to Noise Ratio (2.4-GHz client adapters)</td>
<td>The difference between the signal strength and the current noise level. The higher the value, the better the client adapter’s ability to communicate with the access point.</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 90 dB</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the “Signal Strength Display Units” parameter in Table 7-2 for information.</td>
</tr>
</tbody>
</table>
Using the Aironet Client Monitor (ACM)

This chapter explains how to use the Aironet Client Monitor (ACM) to access status information about your client adapter and perform basic tasks.

The following topics are covered in this chapter:

- Overview of ACM, page 8-2
- The ACM Icon, page 8-2
- Tool Tip Window, page 8-3
- Pop-Up Menu, page 8-5
Overview of ACM

ACM is an optional application that provides a small subset of the features available through ACU. Specifically, it enables you to access status information about your client adapter and perform basic tasks. ACM is accessible from an icon in the Windows system tray, making it easily accessible and convenient to use.

The ACM icon appears only if a client adapter is installed in your computer and you did not disable ACM during installation. If more than one client adapter is installed, an ACM icon appears in the system tray for each adapter.

ACM provides information and options in the following ways:

- In the appearance of the icon itself
- Through a tool tip window that appears when you hover the cursor over the icon
- Through a pop-up menu that appears when you right-click the icon

The ACM Icon

The appearance of the ACM icon indicates the connection status of your client adapter. ACM reads the client adapter status and updates the icon every 2 seconds. Table 8-1 interprets the different appearances of the ACM icon.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The client adapter’s radio is turned off.</td>
</tr>
<tr>
<td></td>
<td>The client adapter is not associated to an access point.</td>
</tr>
<tr>
<td></td>
<td>The client adapter is associated to an access point, but the user is not authenticated.</td>
</tr>
<tr>
<td></td>
<td>The client adapter is associated to an access point, and the link quality is excellent or good.</td>
</tr>
<tr>
<td></td>
<td>The client adapter is associated to an access point, and the link quality is fair.</td>
</tr>
<tr>
<td></td>
<td>The client adapter is associated to an access point, and the link quality is poor.</td>
</tr>
</tbody>
</table>

Note

Windows 2000 and XP may display their own wireless network connection status icon in the system tray. Cisco recommends that you turn off the Windows icon and use the ACM icon to monitor your wireless connection.
Tool Tip Window

When you hover the cursor over the ACM icon, the Tool Tip window appears (see Figure 8-1).

Figure 8-1 Tool Tip Window

This window provides information on the current status of your client adapter. Table 8-2 lists and describes each element of the Tool Tip window.

Table 8-2 Tool Tip Window Elements

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
</table>
| Active profile | The network configuration (or profile) that your client adapter is currently using.
Note If auto profile selection is enabled, the profile name is preceded by the word *Auto.*
Note If an application other than ACU was used to configure the client adapter, *Other Configuration Application* appears. |
| SSID | The name of the network to which your client adapter is currently associated.
Note Refer to the SSID1 parameter in Table 5-2 for information on setting the client adapter’s SSID. |
Table 8-2 Tool Tip Window Elements (continued)

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection status</td>
<td>The operational mode of your client adapter.</td>
</tr>
<tr>
<td>Value: Radio Off, Not Associated, Associated, Authenticating, Authenticated, or Authentication Failed</td>
<td></td>
</tr>
<tr>
<td>Connection Status</td>
<td>Description</td>
</tr>
<tr>
<td>Radio Off</td>
<td>The client adapter’s radio is turned off.</td>
</tr>
<tr>
<td>Not Associated</td>
<td>The client adapter has not established a connection to an access point.</td>
</tr>
<tr>
<td>Associated</td>
<td>The client adapter has established a connection to an access point.</td>
</tr>
<tr>
<td>Authenticating</td>
<td>The client adapter is associated to an access point, and the authentication process has begun but not yet succeeded.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>The client adapter is associated to an access point, and the user is authenticated.</td>
</tr>
<tr>
<td>Authentication Failed</td>
<td>The client adapter is associated to an access point, but the attempt to authenticate the user has failed.</td>
</tr>
<tr>
<td>Note: This status may appear very briefly or not all as the authentication failure may result in the client adapter becoming disassociated, in which case the status reads “Not Associated.”</td>
<td></td>
</tr>
<tr>
<td>Link quality</td>
<td>The client adapter’s ability to communicate with the access point, which is determined by the combined result of the adapter’s signal strength and signal quality.</td>
</tr>
<tr>
<td>Value: Excellent, Good, Fair, or Poor</td>
<td></td>
</tr>
<tr>
<td>Link speed</td>
<td>The rate at which your client adapter is currently transmitting data packets.</td>
</tr>
<tr>
<td>Value: 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters); 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)</td>
<td></td>
</tr>
<tr>
<td>Client adapter type</td>
<td>A description of your client adapter.</td>
</tr>
<tr>
<td>Client adapter IP address</td>
<td>The IP address of your client adapter.</td>
</tr>
</tbody>
</table>
Pop-Up Menu

When you right-click the ACM icon, the ACM pop-up menu appears (see Figure 8-2).

![ACM Pop-Up Menu]

The following sections describe each ACM pop-up menu option.

Note

If you used the Aironet Client Monitor Preferences screen or your system administrator used an administrative tool to deactivate certain ACM menu options, these options do not appear in the menu and therefore cannot be selected.

About

When you choose this option, the About screen appears (see Figure 8-3).

![ACM About Screen]

The About screen displays the version number of ACM that your computer is running and enables you to access the online help. To access the online help, click the Help button. An overview of ACM appears.
Chapter 8 Using the Aironet Client Monitor (ACM)

Exit

This option closes ACM for all client adapters.

Note: To reactivate ACM, use Windows Explorer to find the path where the ACM software is installed. (The default location is C:\Program Files\Cisco Systems\Aironet Client Monitor.) Then double-click ACUMon.exe.

Launch Aironet Client Utility

This option activates ACU. It is available only if ACU is installed. If more than one ACM icon appears in the Windows system tray, ACU initializes itself to use the client adapter associated with the icon that initiated the launch.

Troubleshooting

This option activates the Cisco Wireless LAN Adapter Troubleshooting Utility, which enables you to identify and resolve configuration and association problems with your client adapter. Refer to the “Using the Troubleshooting Utility” section on page 10-4 for detailed instructions on using this utility.

Preferences

When you choose this option, the Aironet Client Monitor Preferences screen appears (see Figure 8-4).

Figure 8-4 Aironet Client Monitor Preferences Screen

![Aironet Client Monitor Preferences Screen](image-url)
This screen enables you to determine when ACM runs and to choose the options that appear on the ACM pop-up menu. The selections you make apply to every instance of ACM. For example, if you deselect the Troubleshooting option, it will not appear in the pop-up menu for any ACM icon.

Follow these steps to make your selections.

Step 1
If you want ACM to run automatically when Windows starts, make sure the **Run the program automatically when Windows starts** check box is checked. Otherwise, uncheck this check box.

Note
If you do not choose this option and later want to run ACM, you must use Windows Explorer to find the path where the ACM software is installed. (The default location is C:\Program Files\Cisco Systems\Aironet Client Monitor.) Then double-click **ACUMon.exe**.

Step 2
In the Menu Options portion of the screen, make sure the check boxes of all the options that you want to appear in the ACM pop-up menu are checked. Any options that are not checked will not be included in the menu.

Note
The Preferences option cannot be deselected. It always appears in the ACM pop-up menu.

Step 3
Click **OK** to save your changes.

Turn Radio On/Off

This option enables you to turn the client adapter’s radio on or off. Turning the radio off prevents the adapter from transmitting RF energy. You might want to turn off the client adapter’s radio in the following situations:

- You are not transmitting data and want to conserve battery power.
- You have EAP-SIM authentication set up to occur transparently (the SIM card is left in the reader and the PIN is stored in the computer), and you do not want to be billed for air time upon entering an area that enables the client to authenticate.
- You are using a laptop on an airplane and want to prevent the adapter’s transmissions from potentially interfering with the operation of certain devices.

When the radio is on, it periodically sends out probes even if it is not associated to an access point, as required by the 802.11 specification. Therefore, it is important to turn it off around devices that are susceptible to RF interference.

Note
Your client adapter is not associated while the radio is off.

Note
If your client adapter’s radio is turned off before your computer enters standby or hibernate mode or before you reboot the computer, the radio remains off when the computer resumes. You must turn the radio back on to resume operation.
If the radio is on, choose **Turn Radio Off** to turn off the radio.
If the radio is off, choose **Turn Radio On** to turn on the radio.

Reauthenticate

This option enables you to force your client adapter to try to reauthenticate using the username and password of the current profile.

If your client adapter was unable to authenticate using the specified username and password and you have exhausted the retry limit (for example, LEAP and EAP-FAST try only once to prevent you from being locked out of the system), the current profile is disabled until you change the username or password, reboot your computer, eject and reinsert the client adapter, or choose the Reauthenticate option.

Select Profile

This option enables you to select the active profile for your client adapter.

Note

Because EAP-TLS, PEAP, and EAP-SIM authentication are enabled in the operating system, you cannot switch between these authentication types simply by switching profiles in ACM. You can select a profile in ACM that uses host-based EAP, but you must enable the specific authentication type in Windows (provided Windows is using the Microsoft 802.1X supplicant). In addition, Windows can be set for only one authentication type at a time; therefore, if more than one profile in ACM uses host-based EAP and you want to use another authentication type, you must change authentication types in Windows after switching profiles in ACM.

When you choose Select Profile from the ACM pop-up menu, a profiles submenu appears (see Figure 8-5).

Figure 8-5 Profiles Submenu

<table>
<thead>
<tr>
<th>Use Other Configuration Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Auto Profile Selection</td>
</tr>
</tbody>
</table>

- **Office1**
- **Airport**
- **Office2**
- **Home**

From this menu, you can choose among the following options:

- **Use Other Configuration Application**—Enables an application other than ACU to configure the client adapter. Examples of such applications include Windows XP and Boingo.

- **Use Auto Profile Selection**—Causes the client adapter’s driver to automatically select a profile from the list of profiles that were set up in ACU to be included in auto profile selection.

If the client adapter loses association for more than 10 seconds (or for more than the time specified by the authentication timeout value on the LEAP Settings screen if LEAP is enabled or the EAP-FAST Settings screen if EAP-FAST is enabled), the driver switches automatically to another...
profile that is included in auto profile selection. The adapter will not switch profiles as long as it remains associated or reassociates within 10 seconds (or within the time specified by the authentication timeout value). To force the client adapter to associate to a different access point, you must select a new profile.

Note This option is available only if two or more profiles are included in auto profile selection.

Note Login scripts are not reliable if you use auto profile selection with LEAP or EAP-FAST. If you authenticate and achieve full network connectivity before or at the same time as you log into the computer, the login scripts will run. However, if you authenticate and achieve full network connectivity after you log into the computer, the login scripts will not run.

- **A specific profile**—When you select a profile from the list of available profiles, the client adapter attempts to establish a connection to an access point using the parameters that were configured for that profile.

 If the client adapter cannot associate to the access point or loses association while using the selected profile, the adapter does not attempt to associate using another profile. To associate, you must select a different profile or choose Use Auto Profile Selection.

Simply click the desired profile to select it. A check mark appears beside the profile, and the client adapter attempts to establish a connection using the selected profile.

Show Connection Status

When you choose this option, the Connection Status screen appears (see Figure 8-6).

Figure 8-6 Connection Status Screen

<table>
<thead>
<tr>
<th>350 Series Connection Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Profile:</td>
</tr>
<tr>
<td>Auto Profile Selection:</td>
</tr>
<tr>
<td>Other Configuration Application:</td>
</tr>
<tr>
<td>Connection Status:</td>
</tr>
<tr>
<td>Link Quality:</td>
</tr>
<tr>
<td>SSID:</td>
</tr>
<tr>
<td>Access Point Name:</td>
</tr>
<tr>
<td>Access Point IP Address:</td>
</tr>
<tr>
<td>Link Speed:</td>
</tr>
<tr>
<td>Client Adapter IP Address:</td>
</tr>
</tbody>
</table>
This screen provides information on the current status of your client adapter. Table 8-3 interprets each element of the Connection Status screen.

You can also access the Connection Status screen by double-clicking the ACM icon.

Table 8-3 Connection Status Screen Elements

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Profile</td>
<td>The network configuration (or profile) that your client adapter is currently using.</td>
</tr>
<tr>
<td>Auto Profile Selection</td>
<td>Indicates whether your client adapter is using auto profile selection.</td>
</tr>
<tr>
<td>Value: Enabled or Disabled</td>
<td></td>
</tr>
<tr>
<td>Other Configuration Application</td>
<td>Indicates whether an application other than ACU is being used to configure your client adapter.</td>
</tr>
<tr>
<td>Value: Enabled or Disabled</td>
<td></td>
</tr>
<tr>
<td>Connection Status</td>
<td>The operational mode of your client adapter.</td>
</tr>
<tr>
<td>Value: Radio Off, Not Associated, Associated, Authenticating, Authenticated, or Authentication Failed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Off</td>
<td>The client adapter’s radio is turned off.</td>
</tr>
<tr>
<td>Not Associated</td>
<td>The client adapter has not established a connection to an access point.</td>
</tr>
<tr>
<td>Associated</td>
<td>The client adapter has established a connection to an access point.</td>
</tr>
<tr>
<td>Authenticating</td>
<td>The client adapter is associated to an access point, and the authentication process has begun but not yet succeeded.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>The client adapter is associated to an access point, and the user is authenticated.</td>
</tr>
<tr>
<td>Authentication Failed</td>
<td>The client adapter is associated to an access point, but the attempt to authenticate the user has failed.</td>
</tr>
</tbody>
</table>

Note This status may appear very briefly or not at all as the authentication failure may result in the client adapter becoming disassociated, in which case the status reads “Not Associated.”

<table>
<thead>
<tr>
<th>Link Quality</th>
<th>The client adapter’s ability to communicate with the access point, which is determined by the combined result of the adapter’s signal strength and signal quality.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value:</td>
<td>Excellent, Good, Fair, or Poor</td>
</tr>
</tbody>
</table>

Table 8-3 Connection Status Screen Elements (continued)

<table>
<thead>
<tr>
<th>Status Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID</td>
<td>The name of the network to which your client adapter is currently associated. Note: Refer to the SSID1 parameter in Table 5-2 for information on setting the client adapter’s SSID.</td>
</tr>
<tr>
<td>Access Point Name</td>
<td>The name of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note: This field shows up to 15 characters although the name of the access point may be longer.</td>
</tr>
<tr>
<td>Access Point IP Address</td>
<td>The IP address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note: If Aironet Extensions are disabled, the IP address of the associated access point is shown as 0.0.0.0.</td>
</tr>
<tr>
<td>Link Speed</td>
<td>The rate at which your client adapter is currently transmitting data packets. Value: 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters); 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)</td>
</tr>
<tr>
<td>Client Adapter IP Address</td>
<td>The IP address of your client adapter.</td>
</tr>
</tbody>
</table>
Routine Procedures

This chapter provides procedures for common tasks related to the client adapter. The following topics are covered in this chapter:

- Inserting and Removing a Client Adapter, page 9-2
- Client Adapter Software Procedures, page 9-5
- Restarting the Client Adapter, page 9-15
- Turning Your Client Adapter’s Radio On or Off, page 9-16
- Turning Quiet Mode On or Off, page 9-16
Inserting and Removing a Client Adapter

This section provides instructions for inserting and removing PC cards, PC-Cardbus cards, and PCI cards. Instructions are not provided for LM cards and mini PCI cards because they are pre-installed inside computing devices and are not meant to be installed or removed by the user.

Caution

These procedures and the physical connections they describe apply generally to conventional PC card slots, Cardbus slots, and PCI expansion slots. In cases of custom or nonconventional equipment, be alert to possible differences in PC card slot, Cardbus slot, and PCI expansion slot configurations.

Inserting a Client Adapter

Follow the instructions in one of the sections below to insert a PC card, PC-Cardbus card, or PCI card into a computing device.

Inserting a PC Card or PC-Cardbus Card

Step 1
Before you begin, examine the card. One end has a dual-row, 68-pin connector. The card is keyed so it can be inserted only one way into the PC card slot or Cardbus slot.

Caution

The PC card slot or Cardbus slot is on the left or right side of the computer, depending on the model.

Step 2
Perform one of the following:

- Turn on your computer, let the operating system boot up completely, and follow the remaining steps in this section to insert the card.
- Turn off your computer, follow the remaining steps in this section to insert the card, and reboot your computer.

Caution

Do not force the card into your computer’s PC card slot or Cardbus slot. Forcing it will damage both the card and the slot. If the card does not insert easily, remove the card and reinsert it.

Step 3
Hold the card with the Cisco logo facing up and insert it into the PC card slot or Cardbus slot, applying just enough pressure to make sure it is fully seated (see Figure 9-1).
Figure 9-1 Inserting a PC Card or PC-Cardbus Card into a Computing Device

![Image](image1.png)

Note
The profiles for PC-Cardbus cards are tied to the slot in which the card is inserted. Therefore, you must always insert your PC-Cardbus card into the same slot or create profiles for both slots.

Inserting a PCI Card

Step 1
Turn off the PC and all its components.

Step 2
Remove the computer cover.

Note
On most Pentium PCs, PCI expansion slots are white. Refer to your PC documentation for slot identification.

Step 3
Remove the screw from the top of the CPU back panel above an empty PCI expansion slot. This screw holds the metal bracket on the back panel.

Caution
Static electricity can damage your PCI card. Before removing the adapter from the anti-static packaging, discharge static by touching a metal part of a grounded PC.

Step 4
Examine the PCI card. The antenna connector and the LEDs face out of your computer and are visible when you put the cover back on. The bottom edge of the card is the connector you will insert into an empty expansion slot in your computer. See Figure 9-2.
Inserting and Removing a Client Adapter

Figure 9-2 Inserting a PCI Card into a PC

- **Step 5** Tilt the card to allow the antenna connector and LEDs to slip through the opening in the CPU back panel.
- **Step 6** Press the card into the empty slot until the connector is firmly seated.

Caution Do not force the card into the expansion slot as this could damage both the card and the slot. If the card does not insert easily, remove it and reinsert it.

- **Step 7** Reinstall the screw on the CPU back panel and replace the computer cover.
- **Step 8** Attach the 2-dBi antenna to the card’s antenna connector until it is finger-tight. Do **not** overtighten.
- **Step 9** For optimal reception, position the antenna so it is straight up.
- **Step 10** Boot up your PC.

Removing a Client Adapter

Follow the instructions in one of the sections below to remove a PC card, PC-Cardbus card, or PCI card from a computing device, when necessary.

Removing a PC Card or PC-Cardbus Card

To remove a PC card or PC-Cardbus card after it is successfully installed and configured (such as when your laptop is to be transported), completely shut down your computer and pull the card directly out of the PC card slot or Cardbus slot. When the card is reinserted and the computer is rebooted, your connection to the network should be re-established.

Note If you need to remove your PC card or PC-Cardbus card but do not want to shut down your computer, double-click the **Unplug or Eject Hardware** icon in the Windows system tray, choose the Cisco Aironet client adapter you want to remove under Hardware devices, click **Stop**, and click **OK** twice. Then pull the card directly out of the card slot.
Removing a PCI Card

Because PCI client adapters are installed inside desktop computers, which are not designed for portable use, you should have little reason to remove the adapter. However, instructions are provided below in case you ever need to remove your PCI card.

Step 1 Completely shut down your computer.

Step 2 Disconnect the client adapter’s antenna.

Step 3 Remove the computer cover.

Step 4 Remove the screw from the top of the CPU back panel above the PCI expansion slot that holds your client adapter.

Step 5 Pull up firmly on the client adapter to release it from the slot and carefully tilt the adapter to allow it to clear the opening in the CPU back panel.

Step 6 Reinstall the screw on the CPU back panel and replace the computer cover.

Client Adapter Software Procedures

This section provides instructions for the following procedures:

- Finding the Install Wizard version, see below
- Upgrading the client adapter software, page 9-6
- Uninstalling the client adapter software, page 9-6
- Finding the driver version, page 9-8
- Firmware procedures, page 9-8
- ACU procedures, page 9-12
- ACM procedures, page 9-15

Finding the Install Wizard Version

Follow the instructions in this section to find the version of the Install Wizard that is currently installed for your client adapter.

Step 1 Open Windows Explorer.

Step 2 Find the Install Wizard files.

Step 3 Right-click the IWSetup.exe file.

Step 4 Click Properties.

Step 5 Click the Version tab. The File version field shows the version of the currently installed Install Wizard file.
Upgrading the Client Adapter Software

The same procedure that is used to initially install client adapter software can also be used to upgrade to a more recent version. Refer to Chapter 3 for instructions on upgrading your client adapter's software.

Note

The client adapter's firmware can also be upgraded through ACU. Refer to the “Upgrading the Firmware” section on page 9-8 for details.

Uninstalling the Client Adapter Software

This section provides instructions for uninstalling any Cisco Aironet client adapter drivers, utilities, and security modules that are installed on your computer. Only the client adapter’s firmware remains installed. This procedure is necessary if you want to remove any installed client adapter software components from your computer or downgrade to previous versions.

Note

If you want to downgrade to earlier versions of client adapter software, follow these steps to uninstall the current software components. Then install the older software.

Note

When you uninstall the client adapter software, any existing profiles are removed. If you want to save your profiles for later use, follow the instructions in Chapter 4 to export your profiles before uninstalling the software components.

Note

This procedure does not uninstall the PC, LM, or PCI card driver that was bundled with Windows XP. It uninstalls only drivers to which you have upgraded. When you follow these steps to uninstall an upgraded driver and then eject and reinsert the card, Windows finds the original driver and reinstalls it automatically.

Step 1

Perform one of the following:

- If you want to remove the client adapter from your computer, shut down your computer, remove the client adapter, and reboot your computer.
- If you want to leave your client adapter inserted in your computer or if your client adapter is an LM or mini PCI card and cannot be removed, go to Step 2.

Step 2

Click **Start > Run**.

Step 3

Browse to the location of the Install Wizard software, click the **IWSetup.exe** file, and click **Open** and **OK**.

The Cisco Aironet Wireless LAN Client Adapter Installation Wizard screen appears (see Figure 9-3).
Step 4 Choose **Uninstall All Components** and click **Next**.

Step 5 When prompted to confirm your decision, click **Yes**. The process to uninstall the files begins. You are notified throughout the process as each component is uninstalled.

Step 6 When prompted, click **Yes** to reboot your computer.

Note To ensure that your client adapter software is uninstalled properly, Cisco recommends that you click **Yes** to reboot your computer now.

Step 7 If you did not remove the client adapter from your computer, the Found New Hardware Wizard screen appears after your computer reboots. Click **Cancel**.

Step 8 This procedure does not remove the Install Wizard file or its uncompressed files. If you want to remove them from your computer, find the files using Windows Explorer and delete them.
Finding the Driver Version

Follow the instructions in this section to find the version of the driver that is currently installed for your client adapter.

Step 1 Open ACU.

Step 2 Click the Status icon or choose Status from the Commands drop-down menu. The Status screen displays the current version of your client adapter’s driver in the NDIS Driver Version field.

Firmware Procedures

This section provides instructions for the following procedures:
- Finding the Firmware Version, see below
- Upgrading the Firmware, see below
- Preventing the Driver from Upgrading the Firmware, page 9-11

Finding the Firmware Version

Follow the instructions in this section to find the version of firmware that is currently installed for your client adapter.

Step 1 Open ACU.

Step 2 Click the Status icon or choose Status from the Commands drop-down menu. The Status screen displays the current version of your client adapter’s firmware in the Firmware Version field.

Upgrading the Firmware

⚠️ **Caution**
To minimize the risk of a power failure during the firmware flashing process, which could render your client adapter inoperable, Cisco recommends that your computer be plugged into AC power or have a fully charged battery at the start of flashing. If a power failure does occur, follow the instructions in the “Technical Assistance Center” section of the Preface to contact TAC for assistance.

You can upgrade your client adapter’s firmware using either the Install Wizard or ACU. If you use the wizard, the firmware loads from the Install Wizard file and is installed along with other software components. If you use ACU, the firmware installs from an image (*.img) file that contains only firmware.

Note
To ensure compatibility between software components, Cisco recommends that you use the Install Wizard to upgrade the firmware along with the other software components.
Using the Install Wizard

To upgrade the firmware using the Install Wizard, follow the instructions in the “Installing or Upgrading the Client Adapter Software” section on page 3-2.

Using ACU

Note When you upgrade your client adapter’s firmware using ACU, the Automatically Load New Firmware When NDIS Driver Is Updated parameter on the Aironet Client Utility Preferences screen becomes disabled (or unchecked) automatically to prevent the newly loaded firmware from being overwritten by the driver. If you ever want to enable this parameter, you must recheck the check box.

To upgrade the firmware using ACU, follow these steps.

Step 1 Use the computer’s web browser to access the following URL:

Step 2 Choose Option #2: Aironet Wireless Software Display Tables.

Note You can download software from the Software Selector tool instead of the display tables. To do so, choose Option #1: Aironet Wireless Software Selector, follow the instructions on the screen, and go to Step 7.

Step 3 Choose Cisco Aironet Wireless LAN Client Adapters.

Step 4 Under Individual Files, find the client adapter firmware.

Step 5 Click the link that corresponds to your client adapter’s model number (such as 350 series or CB20A).

Step 6 Click the latest firmware file for your specific client adapter type (such as MPI or CB).

Note The firmware for PC, LM, and PCI cards is labeled PCMCIA-LMC-PCI, the firmware for mini PCI cards is labeled mini PCI or MPI, and the firmware for PC-Cardbus cards is labeled CB.

Note If your wireless network uses EAP authentication, access points to which your client adapter will attempt to authenticate must use the following firmware versions or later: 11.23T (340 and 350 series access points), Cisco IOS Release 12.2(4)JA (1100 series access points), or 11.54T (1200 series access points).

Step 7 Complete the encryption authorization form; then read and accept the terms and conditions of the Software License Agreement.

Step 8 Click the firmware file again to download it.

Step 9 Save the file to a floppy disk or to your computer’s hard drive.
Step 10 Find the file using Windows Explorer, double-click it, and extract the image file to a folder.

Note To extract the file, click Browse on the WinZip Self-Extractor screen, choose the folder in which you want the file to be placed, and click OK and Unzip. After the file is extracted, click OK to close the screen.

Step 11 Make sure the client adapter is installed in your computer and is operational.

Step 12 Open ACU; click the Load Firmware icon or choose Load New Firmware from the Commands drop-down menu. The Load New Firmware screen appears (see Figure 9-4).

Figure 9-4 Load New Firmware Screen

![Load New Firmware Screen](image)

Step 13 Find the location of the new firmware in the Look in box.

Step 14 Click the firmware image file (*.img) so that it appears in the File name box at the bottom of the screen.

Step 15 Click the Open button. A progress bar appears while the selected image is loaded into the client adapter's Flash memory.

Step 16 Click OK when the “Firmware Upgrade Complete!” message appears. The OK button cannot be selected until the process is complete or an error occurs. If an error occurs, refer to the “Error Messages” section in Chapter 10.
Preventing the Driver from Upgrading the Firmware

The Automatically Load New Firmware When NDIS Driver Is Updated parameter on the Aironet Client Utility Preferences screen affects the firmware that is bundled with the driver, not the firmware that is included in the Install Wizard. This parameter controls whether the driver (whenever it loads) installs the firmware with which it is bundled. (The driver loads each time you insert a client adapter or reboot your computer.)

Note
To complete this procedure, you must have used the Install Wizard to install ACU.

Note
The Automatically Load New Firmware When NDIS Driver Is Updated parameter is functionally equivalent to the Disable Firmware Checking parameter in the Install Wizard. The parameter that is set last is the one that governs how the driver behaves. Refer to Chapter 3 for additional information.

Step 1 Open ACU.

Step 2 Click the Preferences icon or choose Preferences from the Options drop-down menu. The Aironet Client Utility Preferences screen appears (see Figure 9-5).

Figure 9-5 Aironet Client Utility Preferences Screen

![Aironet Client Utility Preferences Screen](image)
Step 3 If you want to prevent the driver (when it loads) from installing the firmware with which it is bundled, thereby allowing the client adapter to retain its current firmware version, make sure the **Automatically Load New Firmware When NDIS Driver Is Updated** check box is not checked.

Note If you want the driver (when it loads) to install the firmware with which it is bundled if it is newer than the firmware that is currently installed in the client adapter, make sure the **Automatically Load New Firmware When NDIS Driver Is Updated** check box is checked.

Note When you upgrade your client adapter’s firmware using ACU, the **Automatically Load New Firmware When NDIS Driver Is Updated** parameter becomes unchecked automatically to prevent the newly loaded firmware from being overwritten by the driver. If you want to enable this parameter, you must recheck the check box.

Note The **Automatically Load New Firmware When NDIS Driver Is Updated** parameter is dependent on the radio type (and the Cardbus slot for PC-Cardbus cards). Therefore, if you insert a client adapter of a different card type (such as a 350 instead of a CB20A) or insert the same PC-Cardbus card into a different slot, whether or not the driver installs the firmware with which it is bundled depends on how this parameter (or the Disable Firmware Checking parameter) was last set for that card type or card slot.

Step 4 Click OK.

ACU Procedures

This section provides instructions for the following procedures:

- Opening ACU, below
- Exiting ACU, page 9-13
- Modifying ACU installation settings, page 9-13
- Finding the version of ACU, page 9-14
- Adding the ACU icon to or removing it from the desktop, page 9-14
- Accessing online help, page 9-15

Opening ACU

To open ACU, perform one of the following:

- Double-click the Aironet Client Utility (ACU) icon on your desktop.
- Choose Aironet Client Utility (ACU) from the folder in the Windows Start Menu that you chose during installation [the default location is **Start > Program Files > Cisco Systems > Aironet Client Utility (ACU)**].
- Double-click My Computer > Control Panel > Aironet Client Utility.
Exiting ACU

To exit ACU, choose **Exit** from the Commands drop-down menu (see **Figure 9-6**).

Figure 9-6 Commands Drop-Down Menu

![Commands Drop-Down Menu](image)

Modifying ACU Installation Settings

If you need to change any of the settings that you selected during installation (for example, placing the ACU icon on the desktop or allowing a saved LEAP username and password), you must run the Install Wizard again and modify the parameter values. Refer to **Chapter 3** for instructions.
Finding the Version of ACU

Follow the instructions in this section to find the version of ACU that is currently installed.

Step 1 Open ACU.
Step 2 Click the About icon or choose the About Aironet Client Utility option from the Help drop-down menu. The About Aironet Client Utility screen appears (see Figure 9-7).

Figure 9-7 About Aironet Client Utility Screen

Adding the ACU Icon to or Removing it from the Desktop

By default, an ACU icon is added to your computer’s desktop when you install the Install Wizard.

- If you wish to remove the ACU icon from the desktop, run the Install Wizard again and set the Place Icon on Desktop parameter to No or right-click the icon, click Delete, and click Yes to confirm your decision.
- If you want to add the ACU icon to the desktop, set the Place Icon on Desktop parameter to Yes in the Install Wizard.
Accessing Online Help

To access ACU’s online help, open ACU. Then click the Help icon or choose Contents from the Help drop-down menu. An overview of ACU appears.

From the Overview of the Aironet Client Utility screen, you can access additional information.

- To access information on specific menu options, click Contents. Double-click Aironet Client Utility Commands, the desired menu (such as Options Menu), and the desired topic (such as Preferences).
- To access information on specific parameters, click Contents. Double-click Configurable Parameters, the client adapter, a parameter category (such as System Parameters), and the desired parameter (such as SSID).
- To access information on specific diagnostic topics, click Contents. Double-click Run Time Diagnostic Information, a diagnostic category (such as Running a Linktest), and the desired topic (such as Packet Size).
- To search for a specific topic, click Index, choose an index entry, and click Display.
- To search for a specific word or phrase, click Contents or Index, click the Find tab, and follow the instructions in the Find Setup Wizard window.

ACM Procedures

Refer to Chapter 8 for instructions on using ACM.

Restarting the Client Adapter

ACU enables you to reinitialize (or restart) the client adapter without having to reboot your computer or eject and reinsert the adapter. For instance, if your client adapter is experiencing poor throughput, you might want to restart the client adapter to try to force it to disassociate from the access point to which it is currently associated in the hope that it reassociates to an access point with a stronger signal.

Note: Restarting the client adapter may cause you to lose your wireless network connection.

Follow these steps to restart the client adapter.

Step 1 Open ACU.

Step 2 Choose the Restart Card option from the Commands drop-down menu (see Figure 9-6).

Step 3 When prompted to confirm your decision, click Yes. The driver stops the client adapter’s radio, writes the configuration (although no parameter settings have been changed), and restarts the radio. The status bar at the bottom of the ACU screen shows the client adapter losing association and then reassociating.
Turning Your Client Adapter’s Radio On or Off

Your client adapter’s radio can be turned on or off. Turning the radio off prevents the adapter from transmitting RF energy. You might want to turn off the client adapter’s radio in the following situations:

- You are not transmitting data and want to conserve battery power.
- You have EAP-SIM authentication set up to occur transparently (the SIM card is left in the reader and the PIN is stored in the computer), and you do not want to be billed for air time upon entering an area that enables the client to authenticate.
- You are using a laptop on an airplane and want to prevent the adapter’s transmissions from potentially interfering with the operation of certain devices.

When the radio is on, it periodically sends out probes even if it is not associated to an access point, as required by the 802.11 specification. Therefore, it is important to turn it off around devices that are susceptible to RF interference.

Note

Your client adapter is not associated while its radio is off.

Note

If your client adapter’s radio is turned off before your computer enters standby or hibernate mode or before you reboot the computer, the radio remains off when the computer resumes. You must turn the radio back on to resume operation.

You can use ACU or ACM to turn the client adapter’s radio on or off. Follow the instructions below to use ACU or refer to the “Turn Radio On/Off” section on page 8-7 to use ACM.

If your client adapter’s radio is on, open ACU and choose **Turn Radio Off** from the Commands drop-down menu (see Figure 9-6) to turn off the radio. The status bar at the bottom of the ACU screen indicates that the radio is turned off.

If your client adapter’s radio is off, open ACU and choose **Turn Radio On** from the Commands drop-down menu (see Figure 9-6) to turn on the radio.

Turning Quiet Mode On or Off

The client adapter’s quiet mode feature, which is available in the software included in Install Wizard version 1.3 or later, can be turned on or off. Turning it on forces the client to become quiet (to passively scan or listen) when its associated access point is turned off. In quiet mode, the client generates radio frequency energy only in direct response to an access point transmission. When the access point is turned back on, it starts sending beacons, which the client hears and can now respond to.

If quiet mode is on, open ACU and choose **Turn Quiet Mode Off** from the Commands drop-down menu (see Figure 9-6) to disable quiet mode.

If quiet mode is off, open ACU and choose **Turn Quiet Mode On** from the Commands drop-down menu (see Figure 9-6) to enable quiet mode.

Note

The quiet mode feature applies to individual cards rather than profiles. It can be set differently for different cards and remains in effect across ACU sessions and computer reboots.
Troubleshooting

This chapter provides information for diagnosing and correcting common problems that may be encountered when installing or operating the client adapter.

The following topics are covered in this chapter:

- Accessing the Latest Troubleshooting Information, page 10-2
- Interpreting the Indicator LEDs, page 10-2
- Troubleshooting the Client Adapter, page 10-3
- Error Messages, page 10-12
Accessing the Latest Troubleshooting Information

This chapter provides basic troubleshooting tips for your client adapter. For more up-to-date and complex troubleshooting information, refer to the TAC web site. To access this site, go to Cisco.com, click Technical Support > Hardware Support > Wireless Devices. Then choose your product and Troubleshooting to find information on the problem you are experiencing.

Interpreting the Indicator LEDs

Mini PCI cards do not have LEDs.

The client adapter shows messages and error conditions through its two LEDs:

- **Link Integrity/Power LED (green)**—This LED lights when the client adapter is receiving power and blinks slowly when the adapter is linked with the network.

- **Link Activity LED (amber)**—This LED blinks quickly when the client adapter is receiving or transmitting data and blinks in a repeating pattern to indicate an error condition.

Table 10-1 interprets the LED messages during normal operation. Table 10-2 interprets the LED error condition messages.

Table 10-1 LED Normal Operating Messages

<table>
<thead>
<tr>
<th>Green LED</th>
<th>Amber LED</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinking quickly</td>
<td>Blinking quickly</td>
<td>Power is on, self-test is OK, and client adapter is scanning for a network.</td>
</tr>
<tr>
<td>Blinking slowly</td>
<td>Blinking quickly</td>
<td>Client adapter is associated to an access point.</td>
</tr>
<tr>
<td>Continuously on or blinking slowly</td>
<td>Blinking quickly</td>
<td>Client adapter is transmitting or receiving data while associated to an access point.</td>
</tr>
<tr>
<td>Off</td>
<td>Blinking quickly</td>
<td>Client adapter is in power save mode.</td>
</tr>
<tr>
<td>On continuously</td>
<td>Blinking quickly</td>
<td>Client adapter is in ad hoc mode.</td>
</tr>
</tbody>
</table>

Table 10-2 LED Error Condition Messages

<table>
<thead>
<tr>
<th>Green LED</th>
<th>Amber LED</th>
<th>Condition/Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Client adapter is not receiving power, or an error has occurred.</td>
</tr>
<tr>
<td>Off</td>
<td>1 blink at 2-second rate</td>
<td>RAM failure. Refer to the “Obtaining Technical Assistance” section in the Preface for technical support information.</td>
</tr>
<tr>
<td>Off</td>
<td>2-second pause, 2 fast blinks, 1-second pause, 1 blink</td>
<td>A configuration error has occurred (for example, static WEP is enabled in ACU, but the client adapter has not been programmed with a valid WEP key). Recheck your client adapter’s configuration settings.</td>
</tr>
</tbody>
</table>
Troubleshooting the Client Adapter

This section provides troubleshooting tips should you encounter problems with your client adapter. Use Table 10-3 to quickly locate specific troubleshooting information.

Table 10-3 Locating Troubleshooting Information

<table>
<thead>
<tr>
<th>Troubleshooting Information</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the troubleshooting utility</td>
<td>10-4</td>
</tr>
<tr>
<td>Client adapter recognition problems</td>
<td>10-7</td>
</tr>
<tr>
<td>Resolving resource conflicts</td>
<td>10-8</td>
</tr>
<tr>
<td>Problems associating to an access point</td>
<td>10-9</td>
</tr>
<tr>
<td>Problems authenticating to an access point</td>
<td>10-10</td>
</tr>
<tr>
<td>Problems connecting to the network</td>
<td>10-10</td>
</tr>
<tr>
<td>Prioritizing network connections</td>
<td>10-10</td>
</tr>
<tr>
<td>Parameters missing from Profile Manager screen</td>
<td>10-10</td>
</tr>
<tr>
<td>Windows Wireless Network Connection icon shows unavailable connection (Windows XP only)</td>
<td>10-11</td>
</tr>
<tr>
<td>Creating strong passwords</td>
<td>10-11</td>
</tr>
</tbody>
</table>
Using the Troubleshooting Utility

The Cisco Wireless LAN Adapter Troubleshooting Utility enables you to identify and resolve configuration and association problems with your client adapter. It is meant to be used only when the client adapter is in infrastructure mode as it assesses the connection between the adapter and an access point.

Follow the instructions in one of the subsections below to use the utility to diagnose your client adapter’s operation, save a detailed report to a text file, or access online help.

Diagnosing Your Client Adapter’s Operation

Step 1

Perform one of the following to activate the troubleshooting utility:

- Open ACU; choose **Troubleshooting** from the Options drop-down menu.
- Right-click the ACM icon; choose **Troubleshooting** from the pop-up menu.

The Cisco Wireless LAN Adapter Troubleshooting screen appears (see **Figure 10-1**).

Figure 10-1 Cisco Wireless LAN Adapter Troubleshooting Screen

![Cisco Wireless LAN Adapter Troubleshooting Screen](image-url)
Step 2 Click **Start**. The utility performs the following series of eight tests to check the operation of your client adapter and to pinpoint specific problems if they exist:

1. Checking driver installation
2. Checking client adapter insertion
3. Checking the client adapter’s radio (to see if it is turned on)
4. Checking the client adapter’s association to an access point
5. Checking authentication
6. Checking the receive interrupt
7. Checking network settings
8. Checking the client adapter’s connection to the access point

The utility runs until it completes successfully or a problem is discovered. It then displays the results (see **Figure 10-2**).

Figure 10-2 Cisco Wireless LAN Adapter Troubleshooting Screen (with Test Results)

![Cisco Wireless LAN Adapter Troubleshooting Screen](image)
One of the following status messages appears for each test:

- **GOOD**—The test completed successfully.
- **ERROR**—The test failed because the client adapter is not configured properly to establish a connection with an access point.
- **WARNING**—The test failed for one of the following reasons:
 - The utility is unable to access the client’s IP address. Either an incorrect IP address was entered, or an IP address was not received from the DHCP server. Contact your system administrator.
 - The utility is unable to access the access point’s IP address. Contact your system administrator.
 - The exact cause cannot be determined. Contact your system administrator.

Note You can click Stop at any time to stop the testing process, or you can click Restart once the testing process has stopped to run the test again.

Note If auto profile selection is enabled but the client adapter is not associated or authenticated, the utility repeats the testing process continually so the client adapter can be tested with new profiles.

Step 3 To view more detailed information, click Detailed Report. A report appears that explains the purpose of each test and the results for your client adapter.

Note The report contains valuable information that, if necessary, could be used by TAC to analyze any problems. Follow the instructions in the next section if you want to save the report to a text file.

Step 4 If a problem is discovered, the report provides some possible repair suggestions. Follow the repair instructions carefully and run the troubleshooting utility again.

Step 5 Click Close to exit the detailed report.

Step 6 Click Cancel to exit the troubleshooting utility.

Saving the Detailed Report to a Text File

Follow these steps to save the detailed troubleshooting report to your computer’s hard drive.

Step 1 Click Save on the detailed report screen. The Save As screen appears. A filename of the following format appears automatically in the File name field: TSyymmddhhmm, where yymmddhhmm represents the date and time that the troubleshooting utility was started. For example, TS0211211230 indicates that the utility was started on 11/21/02 at 12:30.

Note You can change the filename by typing a new name in the File name field.
Chapter 10 Troubleshooting

Troubleshooting the Client Adapter

Step 2 Use the Save in box at the top of the screen to specify the location on your computer’s hard drive where the file will be saved. The default location is My Documents.

Note If you specify a different location, the new location becomes the default location going forward.

Step 3 Click Save. The file is saved as a text file in the location specified.

Accessing Online Help

Follow these steps to access general troubleshooting information about your client adapter.

Step 1 Click Help on the Cisco Wireless LAN Adapter Troubleshooting screen. An overview of the troubleshooting utility appears.

Step 2 Click Help Topics at the top of the screen. From the Help Topics screen, you can access additional information.

- To access information on specific topics, double-click Troubleshooting Tips on the Contents page, the desired topic (such as Radio LEDs), and the desired subtopic (such as LED Error Condition Messages).

- To search for a specific topic, click the Index tab, choose an index entry, and click Display.

- To search for a specific word or phrase, click the Find tab, and follow the instructions in the Find Setup Wizard window.

Step 3 Click Cancel to exit the Help Topics screen.

Client Adapter Recognition Problems

Note This section does not apply to mini PCI cards.

If your client adapter is not being recognized by your computer’s PCMCIA adapter, check your computer’s BIOS and make sure that the PC card controller mode is set to PCIC compatible.

Note A computer’s BIOS varies depending on the manufacturer. For support on BIOS-related issues, consult your computer’s manufacturer.
Resolving Resource Conflicts

Note
This section does not apply to mini PCI cards.

If you encounter problems while installing your client adapter on a computer running a Windows operating system, you may need to specify a different interrupt request (IRQ) or I/O range for the adapter.

The default IRQ for the client adapter is IRQ 10, which may not work for all systems. Follow the steps for your specific operating system to obtain an available IRQ.

During installation the adapter’s driver installation script scans for an unused I/O range. The installation can fail if the I/O range found by the driver installation script is occupied by another device but not reported by Windows. An I/O range might not be reported if a device is physically present in the system but not enabled under Windows. Follow the steps for your specific operating system to obtain an available I/O range.

Resolving Resource Conflicts in Windows 2000

Step 1 Double-click My Computer, Control Panel, and System.
Step 2 Click the Hardware tab and Device Manager.
Step 3 Double-click Network Adapters and the Cisco Systems Wireless LAN Adapter.
Step 4 In the General screen, the Device Status field indicates if a resource problem exists. If a problem is indicated, click the Resources tab.
Step 5 Uncheck the Use automatic settings check box.
Step 6 Under Resource Settings or Resource Type, click Input/Output Range.
Step 7 Look in the Conflicting Device list at the bottom of the screen. If it indicates that the range is being used by another device, click the Change Setting button.
Step 8 Scroll through the ranges in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the screen indicates if the range is already being used.
Step 9 Click OK.
Step 10 Under Resource Settings or Resource Type, click Interrupt Request.
Step 11 Look in the Conflicting Device list at the bottom of the screen. If it indicates that the IRQ is being used by another device, click the Change Setting button.
Step 12 Scroll through the IRQs in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the screen indicates if the IRQ is already being used.
Step 13 Click OK.
Step 14 Reboot your computer.
Chapter 10 Troubleshooting

Resolving Resource Conflicts in Windows XP

Note

These instructions assume you are using Windows XP’s classic view, not its category view.

Step 1
Double-click My Computer, Control Panel, and System.

Step 2
Click the Hardware tab and Device Manager.

Step 3
Under Network Adapters, double-click the Cisco Systems Wireless LAN Adapter.

Step 4
In the General screen, the Device Status field indicates if a resource problem exists. If a problem is indicated, click the Resources tab.

Step 5
Uncheck the Use automatic settings check box.

Step 6
Under Resource Settings, click I/O Range.

Step 7
Look in the Conflicting Device list at the bottom of the screen. If it indicates that the range is being used by another device, click the Change Setting button.

Step 8
Scroll through the ranges in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the screen indicates if the range is already being used.

Step 9
Click OK.

Step 10
Under Resource Settings, click IRQ.

Step 11
Look in the Conflicting Device list at the bottom of the screen. If it indicates that the IRQ is being used by another device, click the Change Setting button.

Step 12
Scroll through the IRQs in the Value dialog box and choose one that does not conflict with another device. The Conflict Information window at the bottom of the screen indicates if the IRQ is already being used.

Step 13
Click OK.

Step 14
Reboot your computer.

Problems Associating to an Access Point

Follow the instructions below if your client adapter fails to associate to an access point.

• If possible, move your workstation a few feet closer to an access point and try again.
• Make sure that the client adapter is securely inserted in your computer’s client adapter slot.
• If you are using a PCI client adapter, make sure that the antenna is securely attached.
• Make sure that the access point is turned on and operating.
• Check that all parameters are set properly for both the client adapter and the access point. These include the SSID, EAP authentication, WEP activation, network type, channel, etc.
• If the client adapter still fails to establish contact, refer to the “Obtaining Technical Assistance” section in the Preface for technical support information.
Problems Authenticating to an Access Point

If your client adapter is a 40-bit card and EAP is enabled, the adapter can associate but not authenticate to access points using 128-bit encryption. To authenticate to an access point using 128-bit encryption, you have two options:

- Purchase a 128-bit client adapter. This is the most secure option.
- Disable static WEP for the client adapter and configure the adapter and the access point to associate to mixed cells. This option presents a security risk because your data is not encrypted as it is sent over the RF network.

Problems Connecting to the Network

After you have installed the appropriate firmware, driver, client utilities, and security modules, contact your IS department if you have a problem connecting to the network. Proxy server, network protocols, and further authentication information might be needed to connect to the network.

Prioritizing Network Connections

If you have more than one network adapter enabled (such as a Cisco Aironet client adapter and an Ethernet card), you can choose which one to use by assigning a priority to your network connections. Follow these steps to prioritize your network connections.

- **Step 1** Right-click the **My Network Places** icon on your desktop.
- **Step 2** Click **Properties**.
- **Step 3** Choose the **Advanced** menu option at the top of the screen.
- **Step 4** Choose **Advanced Settings**. Your network connections are listed in the Connections box on the Adapters and Bindings tab.
- **Step 5** Use the arrows beside the Connections box to move the network connection that you want to use to the top.
- **Step 6** Click **OK**.

Parameters Missing from Profile Manager Screen

If some parameters are unavailable on the Profile Manager screen, your system administrator may have used an administrative tool to deactivate these parameters. In this case, these parameters cannot be selected.
Windows Wireless Network Connection Icon Shows Unavailable Connection (Windows XP Only)

If your computer is running Windows XP and you configured your client adapter using ACU, the Windows Wireless Network Connection icon in the Windows system tray may be marked with a red X and show an unavailable connection even though a wireless connection exists. This condition is caused by a conflict between ACU and Windows XP’s wireless network settings. Simply ignore the Windows icon and use the ACM icon to check the status of your client adapter’s wireless connection.

Creating Strong Passwords

Cisco recommends the use of strong passwords for LEAP authentication. Because strong passwords are difficult to guess, they minimize the risk of successful attacks by rogue access points. Some characteristics of strong passwords include:

- A minimum of 10 characters
- A mixture of uppercase and lowercase letters
- At least one numeric character or one non-alphanumeric character, such as !#$@%
- No form of your username or user ID
- A word that is not found in the dictionary (domestic or foreign)

Some examples of strong passwords include:

- cnw84FriDAY, which comes from “Cannot wait for Friday”
- 4yosc10cP!, which comes from “For your own safety, choose a 10-character password!”

Note: Cisco recommends that you create your own strong passwords rather than use these sample passwords.
Error Messages

This section provides a list of error messages that may appear during the installation, configuration, or use of your client adapter. The error messages are divided into six sections (general, installation, LEAP authentication, EAP-FAST authentication, PEAP authentication, and EAP-SIM authentication). The messages are listed in alphabetical order within each section, and an explanation as well as a recommended user action are provided for each message. Table 10-4 enables you to quickly locate the error messages you need.

Table 10-4 Locating Error Messages

<table>
<thead>
<tr>
<th>Error Message Category</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>10-12</td>
</tr>
<tr>
<td>Installation</td>
<td>10-16</td>
</tr>
<tr>
<td>LEAP authentication</td>
<td>10-18</td>
</tr>
<tr>
<td>EAP-FAST authentication</td>
<td>10-21</td>
</tr>
<tr>
<td>PEAP authentication</td>
<td>10-30</td>
</tr>
<tr>
<td>EAP-SIM authentication</td>
<td>10-35</td>
</tr>
</tbody>
</table>

General Error Messages

This section lists general error messages that may appear at any time and are not related to authentication attempts.

Error Message Bad Firmware Image File (filename)

Explanation The selected firmware file is corrupt and will not be sent to the client adapter.

Recommended Action Choose a different firmware file and try to load it.

Error Message Card Removed at xx:xx

Explanation The client adapter was ejected from the computer.

Recommended Action Reinsert the client adapter if you wish to resume wireless communications.

Error Message An error occurred while trying to make the selected profile active.

Explanation An error occurred when you selected a profile in ACM.

Recommended Action Check the profile’s configuration parameters in ACU or select a new profile.
Error Message Error Reading filename

Explanation A problem occurred while the computer was reading the firmware file from the disk.

Recommended Action Re-copy the firmware file to a floppy disk or to your computer’s hard drive and try to load it again or select a different firmware file and try to load it.

Error Message Error Writing to Flash Memory

Explanation A problem occurred while the firmware was being flashed.

Recommended Action Eject the client adapter and reinsert it. If the client adapter functions properly, the firmware was flashed successfully. If the client adapter does not function or functions improperly, your client adapter may need to be returned for service. Refer to the “Technical Assistance Center” section in the Preface for information on contacting TAC.

Error Message Firmware Incompatible with Hardware

Explanation The selected firmware file does not work with the client adapter.

Recommended Action Choose a different firmware file and try to load it.

Error Message Firmware Upgrade Failed

Explanation A problem occurred while the firmware was being flashed.

Recommended Action Eject the client adapter and reinsert it. If the client adapter functions properly, the firmware was flashed successfully. If the client adapter does not function or functions improperly, your client adapter may need to be returned for service. Refer to the “Technical Assistance Center” section in the Preface for information on contacting TAC.

Error Message The installation will complete and applications will be installed when a wireless LAN client adapter is inserted. If an adapter is already inserted, remove and reinsert the adapter or reboot the machine.

Explanation The installation program was most likely run without a client adapter inserted in the computer.

Recommended Action Insert a client adapter into your computer’s client adapter slot. The installation program will then complete. If a client adapter was already inserted in your computer, eject and reinsert the adapter or reboot your computer.

Error Message LEAP support has not been installed on this computer. You will not be able to authenticate with this or any other profile configured to use LEAP.

Explanation A LEAP profile was selected for use in ACM, but the LEAP security module was not selected during installation. Therefore, the client adapter will not be able to authenticate using this profile (or any other profile that is configured for LEAP).

Recommended Action Run the installation program again and enable the LEAP security module.
Error Message Maximum power save mode will be temporarily disabled while you are running this application!

Explanation The client adapter cannot be run in Max PSP mode while ACU is running.

Recommended Action No user action is required. The client adapter automatically runs in Fast PSP mode while ACU is running.

Error Message No Cisco Aironet client adapters have been installed on this computer.

Explanation ACM started but found no installed client adapters.

Recommended Action Follow the instructions in Chapter 3 to install a client adapter.

Error Message No Wireless LAN Client Adapters Found

Explanation A client adapter is not inserted in the computer.

Recommended Action Insert a client adapter if you wish to start wireless communications.

Error Message No Wireless LAN Client Adapters Installed!

Explanation An attempt was made to start ACU without a client adapter being inserted in the computer. ACU cannot execute if a client adapter is not inserted because it needs to be able to read from and write to the adapter.

Recommended Action Insert a client adapter and start ACU.

Error Message Please close ACU in order to use it with the Wireless LAN Adapter you selected using the System Tray Icon.

Explanation Only one instance of ACU can be running at a time. However, an attempt was made to activate ACU for a second client adapter when ACU was already running.

Recommended Action Click OK, close ACU, and then activate ACU for the desired adapter.

Error Message This program is already running.

Explanation ACM started when another instance of ACM was already running.

Recommended Action No action is required. The new instance of ACM exits.

Error Message Reauthenticate Failed

Explanation The Reauthenticate option was selected from the Commands drop-down menu in ACU, but the reauthentication attempt failed.

Recommended Action Re-enter your username and password and try to authenticate again or select another EAP profile.
Error Message: Restarting the client adapter will cause you to lose your network connection. Are you sure you want to restart your client adapter?

Explanation: The Restart Card option was selected from the Commands drop-down menu in ACU, which may cause you to lose your network connection.

Recommended Action: If you want to reinitialize your client adapter, click Yes. Otherwise, click No.

Error Message: Unable to Open filename

Explanation: The selected firmware file cannot be found.

Recommended Action: Re-copy the firmware file to a floppy disk or to your computer’s hard drive and try to load it again or select a different firmware file and try to load it.

Error Message: Wireless Connection Unavailable. (Windows XP only)

Explanation: ACU was used to configure the client adapter on Windows XP, but the Use Windows to configure my wireless network settings check box in Windows XP is checked. This message appears even if the client adapter is associated to an access point.

Recommended Action: Uncheck the Use Windows to configure my wireless network settings check box in Windows XP to force Windows to display the correct status.

Error Message: You cannot run a link test because your client adapter is not associated.

Explanation: An attempt was made to run a link test while the client adapter was not associated to an access point or other wireless device.

Recommended Action: Run the link test after the client adapter is associated to an access point or another wireless device.

Error Message: You cannot run a link test because your client adapter’s radio is turned off.

Explanation: An attempt was made to run a link test while the client adapter’s radio was off.

Recommended Action: Turn on the client adapter’s radio by choosing Radio On from the Commands drop-down menu in ACU; then run the link test.

Error Message: You must enter WEP key 1! (Press the "Static WEP Keys" button to open the Static WEP Keys dialog box.)

Explanation: Static WEP was selected on the Network Security screen, but a WEP key was not entered.

Recommended Action: Click Static WEP Keys on the Network Security screen. Then follow the instructions in the “Entering a New Static WEP Key” section on page 5-35 to enter a static WEP key.
Error Message: You must specify an IP address before running a link test.

Explanation: An attempt was made to run a link test although the IP address of the access point or other wireless device with which to test the RF link was not specified.

Recommended Action: In the Linktest screen’s IP Address of Access Point field, enter the IP address of the access point or other wireless device with which you want to test the RF link.

Error Message: You need to be an administrator or a user with administrative rights to install Aironet Client Utility. Please log on as a different user and try again.

Explanation: A non-administrative user attempted to install ACU. The ACU installation process terminates.

Recommended Action: Log on as a different user and attempt the installation process again.

Error Message: Your Wireless LAN Adapter is not inserted!

Explanation: One of two conditions is present: 1) a client adapter is not inserted in your computer or 2) ACU was started with one variety of client adapter inserted (such as a PCM352), the adapter was subsequently ejected, and another variety was inserted (such as a CB20A).

Recommended Action: Perform one of the following: 1) insert a client adapter into your computer if one is not present or 2) shut down ACU and restart it.

Installation Error Messages

This section lists error messages that may appear during installation of the client adapter’s software components.

Error Message: Administrator privileges are required to run the installation. Please log in as an administrator to run this installation. Select OK to exit.

Explanation: Administrative privileges are required to run the Install Wizard.

Recommended Action: Log in as an administrator and run the Install Wizard again.

Error Message: Failed to copy files to hard drive: Aborting now

Explanation: An error occurred while the Install Wizard attempted to copy files to the computer’s hard drive.

Recommended Action: Make sure your hard drive has sufficient room for the installation files. If it does, download and run a new copy of the Install Wizard.
Error Message HardwareList found no drivers to load

Explanation The driver installer could not find the driver files, so the files were not copied to the computer’s hard drive or were deleted after being copied.

Recommended Action Rerun the Install Wizard.

Error Message InstallData.txt file not found: aborting now

Explanation Some of the installation files are missing.

Recommended Action Download and run a new copy of the Install Wizard.

Error Message InstallData.txt has a bad checksum. Please replace it with the original.

Explanation A checksum error has occurred.

Recommended Action Download and run a new copy of the Install Wizard.

Error Message An InstallShield process is running. Stop the process or reboot.

Explanation Another InstallShield application is currently running. Conflicts can arise when multiple InstallShield applications are run simultaneously.

Recommended Action Close the applications and run them separately.

Error Message Invalid configuration binary, aborting now

Explanation The configuration binary has been corrupted due to a bad checksum.

Recommended Action Download and run a new copy of the Install Wizard.

Error Message RPC server is not enabled. Please enable RPC service and rerun the installation.

Explanation The Remote Process Call (RPC) service, which runs on Windows 2000 and XP computers, is not enabled.

Recommended Action Enable the RPC service and rerun the Install Wizard.

Error Message This installation package does not support Windows 95.

Explanation An attempt was to install the client adapter software on a computer running Windows 95, which is not a supported operating system.

Recommended Action Install the client adapter software on a computer running Windows 2000 or XP.
LEAP Authentication Error Messages

This section lists error messages that may occur during LEAP authentication.

Error Message The combination of domain name and user name exceeds the maximum number of characters (64) that is supported. Please uncheck Include Windows Logon Domain with User Name in ACU or use shorter names.

Explanation The combination of characters entered for the username and domain name in the Windows login screen or the Enter Wireless Network Password screen exceeds the maximum number supported by LEAP, which is 64.

Recommended Action Perform one of the following:
- Uncheck the Include Windows Logon Domain with User Name check box in the LEAP Settings screen of ACU.
- Enter a set of credentials (username, password, and domain name) with fewer characters.

Error Message The current profile does not require any user credentials to be entered.

Explanation The Manual Login option was selected in ACU, but the active profile is not configured for LEAP. The LEAP authentication process aborts.

Recommended Action If you want the client adapter to LEAP authenticate, select a profile that is configured for LEAP.

Error Message The password entered exceeds the maximum number of characters (32) that is supported. Please use a shorter password.

Explanation The password that was entered exceeds the maximum number of characters supported by LEAP, which is 32.

Recommended Action Re-enter the password, making sure it contains no more than 32 characters.
Chapter 10 Troubleshooting

Error Message The profile will be disabled until you select the Reauthenticate option, log off and on, reboot your system, or eject and reinsert the client adapter. Are you sure?

Explanation The username and password for your current profile have expired or are no longer valid. When the Enter Wireless Network Password screen appeared, prompting you to enter your new username and password, you chose Cancel. The profile was disabled to prevent accidental authentication attempts in the future.

Recommended Action Click No, enter your new username and password when the Enter Wireless Network Password screen reappears, and click OK. The client adapter should authenticate using your new credentials. If the profile uses saved credentials, edit the profile in ACU by changing the username and password on the LEAP Settings screen and save your changes. (If you click Yes, the profile is disabled until you choose Reauthenticate from ACM or the Commands drop-down menu in ACU, log off and on, reboot your system, or eject and reinsert the card.)

Caution If your backend server is set to allow only a limited number of failed authentication attempts, your user account may be locked if you continue trying with an invalid set of user credentials.

Error Message A recently installed program has disabled the Welcome screen and Fast User Switching. To restore these features, you must uninstall the program. The following file name might help you identify the program that made the change: cswhGina.dll. (Windows XP only)

Explanation The LEAP security module was selected during installation on a Windows XP computer; then the Change the Way Users Log On or Off option was selected under Windows XP’s User Accounts.

Recommended Action If the LEAP security module is selected during installation, you cannot use Windows XP’s fast user switching feature. If you want to use fast user switching and do not want to use LEAP, you must run the installation program again and deselect the LEAP security module.

Error Message The saved user name and password entered for this profile are no longer valid and have failed LEAP authentication. Enter a new user name and password. Remember to change them permanently in the profile using Aironet Client Utility’s Profile Manager.

Explanation The username and password for your current profile, which uses saved credentials, have expired or are no longer valid; therefore, your client adapter is unable to LEAP authenticate.

Recommended Action When the Enter Wireless Network Password screen appears, enter your new username and password and click OK. The client adapter should authenticate using your new credentials. Then edit the profile in ACU by changing the username and password on the LEAP Settings screen and save your changes.
Error Message The system timed out while attempting to authenticate the wireless user. You can increase the LEAP timeout value for this profile and try again. If authentication continues to time out, it can indicate that a portion of the network is down. Do you want to try this profile again?

Explanation The client adapter was unable to LEAP authenticate within the amount of time specified by the LEAP authentication timeout value.

Recommended Action Click Yes to try again to authenticate using this profile or click No to cancel the operation. If the authentication attempt fails again, increase the authentication timeout value on the LEAP Settings screen and try again.

Error Message The user name and password entered are no longer valid and have failed LEAP authentication. Please enter a new user name and password.

Explanation The username and password for your current profile have expired or are no longer valid; therefore, your client adapter is unable to LEAP authenticate.

Recommended Action When the Enter Wireless Network Password screen appears, enter your new username and password and click OK. The client adapter should authenticate using your new credentials.

Error Message The user name entered is not valid.

Explanation The username that was entered is not valid.

Recommended Action Re-enter the username.

Error Message The user name exceeds the maximum number of characters (64) that is supported.

Explanation The username that was entered exceeds the maximum number of characters supported by LEAP, which is 64.

Recommended Action Re-enter the username, making sure it contains no more than 64 characters.

Error Message The wireless adapter doesn’t support LEAP. Please make sure that you have installed the correct client adapter and updated your adapter’s firmware.

Explanation LEAP authentication failed because the client adapter’s firmware does not support LEAP.

Recommended Action Make sure that you have installed the correct client adapter and are using the firmware included in the Install Wizard file.
Chapter 10 Troubleshooting

Error Messages

Error Message Wireless authentication failed. Re-enter your username and password.

Explanation LEAP authentication failed.

Recommended Action Perform one of the following:
- Re-enter the LEAP username and password or cancel the LEAP authentication.
- To start another LEAP authentication process, choose Reauthenticate from ACM or the Commands drop-down menu in ACU, log off and log in again, or choose Manual Login from the Commands drop-down menu in ACU.

EAP-FAST Authentication Error Messages

This section lists error messages that may occur during EAP-FAST authentication.

Error Message The AP (MAC xx:xx:xx:xx:xx:xx) failed to authenticate itself while attempting to provide you with a valid credential. This can indicate an attack on your password. Using a strong password will reduce the chance of your password being compromised. If this failure happens again, contact your system administrator to report a rogue access point. Try again with your current password?

Explanation The access point failed to authenticate while attempting to provision your PAC. This can indicate an attack on your password by a rogue access point.

Recommended Action Click Yes to attempt to authenticate again using your current password or click No to cancel the operation. If the authentication attempt fails again, contact your system administrator to report a rogue access point, and use strong passwords in the future to reduce the chance of your password being compromised. Refer to the “Creating Strong Passwords” section on page 10-11 for tips on creating strong passwords.

Error Message The AP (MAC xx:xx:xx:xx:xx:xx) timed out while attempting to provide you with a valid credential. This can indicate an attack on your password. Using a strong password will reduce the chance of your password being compromised. If this timeout happens again, contact your system administrator to report a potential rogue access point. Try again with your current password?

Explanation The access point timed out while attempting to provision your PAC. This could be caused by a server outage or the radio being out of range, or it could indicate an attack on your password by a rogue access point.

Recommended Action Click Yes to attempt to authenticate again using your current password or click No to cancel the operation. If the timeout occurs again, contact your system administrator to report a potential rogue access point, and use strong passwords in the future to reduce the chance of your password being compromised. Refer to the “Creating Strong Passwords” section on page 10-11 for tips on creating strong passwords.
Error Message The combination of domain name and user name exceeds the maximum number of characters (64) that is supported. Please uncheck Include Windows Logon Domain with User Name in ACU or use shorter names.

Explanation The combination of characters entered for the username and domain name in the Windows login screen or the Enter Wireless Network Password screen exceeds the maximum number supported by EAP-FAST, which is 64.

Recommended Action Perform one of the following:
- Uncheck the **Include Windows Logon Domain with User Name** check box in the EAP-FAST Settings screen of ACU.
- Enter a set of credentials (username, password, and domain name) with fewer characters.

Error Message Could not find a valid credential for username xxx. Re-enter your username. If the username is correct, use Aironet Client Utility to manually import a credential (e.g., PAC) file or turn on “Allow Automatic PAC Provisioning for This Profile.”

Explanation A valid PAC was not found for your username.

Recommended Action Click **OK**. Then perform one of the following:
- Re-enter your username.
- If the username is correct, use the EAP-FAST Settings screen in ACU to either enable automatic PAC provisioning or import a PAC file.

Error Message The credential authority listed in your profile (xxx) does not match the server to which you are trying to connect. There is a matching credential authority on your system (yyy). Use this matching credential authority and save it to the profile?

Explanation The PAC that you selected for this profile does not match the server to which the client adapter is connecting. However, a matching PAC has been found in your PAC database.

Recommended Action Click **Yes** to use the matching PAC and to update the profile with this new PAC or click **No** to cancel the operation and to leave the profile as is. If you click No, the client adapter is unable to authenticate using the existing profile.

Error Message The current profile does not require any user credentials to be entered.

Explanation The Manual Login option was selected in ACU, but the active profile is not configured for EAP-FAST. The EAP-FAST authentication process aborts.

Recommended Action If you want the client adapter to EAP authenticate, select a profile that is configured for EAP-FAST.
Error Message: The entered passwords do not match.

Explanation: You entered different values in the New Password and Confirm New Password fields on the Change Password screen. They must be identical.

Recommended Action: Re-enter your new password in both fields.

Explanation: An error occurred while a PAC file was being imported. The operation was not completed.

Recommended Action: Try again to import the PAC file. If the same message appears, obtain a new PAC file from your system administrator and import it using the EAP-FAST Settings screen.

Explanation: An error occurred while a PAC file was being imported. The operation was not completed.

Recommended Action: Try again to import the PAC file. If the same message appears, obtain a new PAC file from your system administrator and import it using the EAP-FAST Settings screen.

Error Message: An error was encountered while changing your password. Please try again.

Explanation: An error occurred when you attempted to change your EAP-FAST password.

Recommended Action: Re-enter your password on the Change Password screen.

Error Message: The file contains a PAC that will replace an existing PAC already provisioned on your system. Would you like to replace the existing PAC?

Explanation: You tried to import a PAC file with the same PAC ID as a previously imported PAC file.

Recommended Action: Click Yes to replace the existing PAC with the new one from the imported file or click No to cancel the operation.

Error Message: The file does not contain a valid PAC: <filename>.

Explanation: An error occurred while a PAC file was being imported. The operation was not completed.

Recommended Action: Try again to import the PAC file. If the same message appears, obtain a new PAC file from your system administrator and import it using the EAP-FAST Settings screen.
Error Message The file is not a valid PAC file: `<filename>`.

Explanation The PAC file that you tried to import has an incorrect format or cannot be decrypted.

Recommended Action Try again to import the PAC file. If the same message appears, obtain a new PAC file from your system administrator and import it using the EAP-FAST Settings screen.

Error Message In order to correctly update your local account with the new password, log out and then in using your new password.

Explanation Windows did not recognize the new password with which you attempted to log in.

Recommended Action Log out. Then log in again using your new password.

Error Message Insufficient memory or other system error.

Explanation An error occurred while a PAC file was being imported. The operation was not completed.

Recommended Action Try again to import the PAC file. If the same message appears, obtain a new PAC file from your system administrator and import it using the EAP-FAST Settings screen.

Error Message An internal error occurred.

Explanation An error occurred while a PAC file was being imported. The operation was not completed.

Recommended Action Try again to import the PAC file. If the same message appears, obtain a new PAC file from your system administrator and import it using the EAP-FAST Settings screen.

Error Message Invalid PAC found for one or more authorities listed in the local PAC database.

Explanation An error occurred while the PAC authority drop-down list was being initialized. One or more PAC files could not be read successfully.

Recommended Action Obtain new PAC files from your system administrator and import them using the EAP-FAST Settings screen.

Error Message The old password does not match the password previously entered.

Explanation The password entered in the Old Password field on the Change Password screen does not match the password that was used previously.

Recommended Action Re-enter your old password in the Old Password field.
Error Message: The PAC Authority selection was reset due to a change in the settings.

Explanation: You changed one of the settings that controls whether global or per-user PAC authorities are listed (that is, the Use Saved User Name and Password option or the No Network Connection Unless User Is Logged In check box), and the currently selected PAC authority does not have a PAC provisioned in the other list.

For example, if you changed the No Network Connection Unless User Is Logged In check box from checked to unchecked, the PAC authority drop-down list would change from per user to global. If the PAC authority selection in the per-user list was XYZ but you had never provisioned a PAC from XYZ in the global list, then after switching to the global list the PAC authority would be set to None and this message would appear.

Recommended Action: Either return the setting that you changed to its previous value in order to maintain the PAC authority list as it was (per user or global) or import a new PAC file if the PAC authority list is now set to None.

Error Message: The PAC file you are about to import will be made accessible to all users of this system. Do you wish to continue?

Explanation: You imported a PAC file for a profile that was configured for global PACs. Global PACs are enabled when you choose the Use Saved User Name and Password option, uncheck the No Network Connection Unless User Is Logged In check box on the EAP-FAST Settings screen, or use the Novell Network login prompt or any other third-party login application that does not share its credentials with the EAP-FAST supplicant.

Recommended Action: Click Yes to import the PAC file, which will be accessible to all users of your system, or click No to cancel the operation.

Error Message: The password entered exceeds the maximum number of characters (32) that is supported. Please use a shorter password.

Explanation: The password that was entered exceeds the maximum number of characters supported by EAP-FAST, which is 32.

Recommended Action: Re-enter the password, making sure it contains no more than 32 characters.
Error Message The profile will be disabled until you select the Reauthenticate option, log off and on, reboot your system, or eject and reinsert the client adapter. Are you sure?

Explanation The username and password for your current profile have expired or are no longer valid. When the Enter Wireless Network Password screen appeared, prompting you to enter your new username and password, you chose Cancel. The profile was disabled to prevent accidental authentication attempts in the future.

Recommended Action Click No, enter your new username and password when the Enter Wireless Network Password screen reappears, and click OK. The client adapter should authenticate using your new credentials. If the profile uses saved credentials, edit the profile in ACU by changing the username and password on the EAP-FAST Settings screen and save your changes. (If you click Yes, the profile is disabled until you choose Reauthenticate from ACM or the Commands drop-down menu in ACU, log off and on, reboot your system, or eject and reinsert the card.)

⚠️ **Caution** If your backend server is set to allow only a limited number of failed authentication attempts, your user account may be locked if you continue trying with an invalid set of user credentials.

Error Message The profile will be disabled until you select the Reauthenticate option, log off and on, reboot your system, or eject and reinsert the client adapter. Are you sure?

Explanation The username and password for your current profile have expired or are no longer valid. When the Enter Wireless Network Password screen appeared, prompting you to enter your new username and password, you chose Cancel. The profile was disabled to prevent accidental authentication attempts in the future.

Recommended Action Click No, enter your new username and password when the Enter Wireless Network Password screen reappears, and click OK. The client adapter should authenticate using your new credentials. If the profile uses saved credentials, edit the profile in ACU by changing the username and password on the EAP-FAST Settings screen and save your changes. (If you click Yes, the profile is disabled until you choose Reauthenticate from ACM or the Commands drop-down menu in ACU, log off and on, reboot your system, or eject and reinsert the card.)

⚠️ **Caution** If your backend server is set to allow only a limited number of failed authentication attempts, your user account may be locked if you continue trying with an invalid set of user credentials.

Error Message A recently installed program has disabled the Welcome screen and Fast User Switching. To restore these features, you must uninstall the program. The following file name might help you identify the program that made the change: cswGina.dll. (Windows XP only)

Explanation The EAP-FAST security module was selected during installation on a Windows XP computer; then the Change the Way Users Log On or Off option was selected under Windows XP’s User Accounts.

Recommended Action If the EAP-FAST security module is selected during installation, you cannot use Windows XP’s fast user switching feature. If you want to use fast user switching and do not want to use EAP-FAST, you must run the installation program again and deselect the EAP-FAST security module.
Error Message Registration requires that this device be initialized with a new security credential. Do you wish to obtain a security credential?

Explanation The client adapter’s authentication attempt failed because a valid PAC was not found.

Recommended Action Click Yes to provision a new PAC for this server using your existing credentials or click No to cancel the operation. If you click No, the client adapter is unable to authenticate using the existing profile.

Error Message Registration requires that this device be initialized with a security credential, but the attempt to issue a valid credential has failed. Contact your administrator.

Explanation PAC provisioning has failed, most likely due to a configuration issue on the server. No PAC has been provisioned for this profile.

Recommended Action Contact your system administrator for assistance.

Error Message The system timed out while attempting to authenticate the wireless user. You can increase the EAP-FAST timeout value for this profile and try again. If authentication continues to time out, it can indicate that a portion of the network is down. Do you want to try this profile again?

Explanation The client adapter was unable to EAP authenticate within the amount of time specified by the EAP-FAST authentication timeout value.

Recommended Action Click Yes to try again to authenticate using this profile or click No to cancel the operation. If the authentication attempt fails again, increase the authentication timeout value on the EAP-FAST Settings screen and try again.

Error Message Unable to access a PAC for one or more authorities listed in the local PAC database.

Explanation An error occurred while the PAC authority drop-down list was being initialized. One or more PAC files could not be read successfully.

Recommended Action Obtain new PAC files from your system administrator and import them using the EAP-FAST Settings screen.

Error Message The user name entered is not valid.

Explanation The username that was entered is not valid.

Recommended Action Re-enter the username.
Error Message: The user name exceeds the maximum number of characters (64) that is supported.

Explanation: The username that was entered exceeds the maximum number of characters supported by EAP-FAST, which is 64.

Recommended Action: Re-enter the username, making sure it contains no more than 64 characters.

Error Message: The wireless adapter doesn’t support EAP-FAST. Please make sure that you have installed the correct client adapter and updated your adapter’s firmware.

Explanation: EAP-FAST authentication failed because the client adapter’s firmware does not support EAP-FAST.

Recommended Action: Make sure that you have installed the correct client adapter and are using the firmware included in Install Wizard version 1.3 or later.

Error Message: Wireless authentication failed. Re-enter your username and password. Warning: If you are sure that you have typed in the right user name and password, you may have connected to a rogue AP. This can indicate an attack on your password. Using a strong password will reduce the chance of your password being compromised. If this failure happens again, contact your system administrator to report a potential rogue access point (MAC 00:40:96:e2:b1:78).

Explanation: The client adapter’s authentication attempt failed either because the wrong user credentials were entered or the username does not match the provisioned PAC.

Recommended Action: Click OK; then perform one of the following:

- If you are sure you entered the correct credentials, contact your system administrator to report a potential rogue access point, and use strong passwords in the future to reduce the chance of your password being compromised. Refer to the “Creating Strong Passwords” section on page 10-11 for tips on creating strong passwords.
- If the wrong credentials were entered, re-enter your EAP-FAST credentials when the Enter Wireless Network Password screen appears.
- If the username does not match the provisioned PAC and automatic provisioning is enabled for this profile, the following message appears: “You do not appear to be registered with the authentication server. Registration requires that this device be initialized with a security credential. Do you wish to obtain a security credential?” Perform one of the recommended actions for this message below.
- If the username does not match the provisioned PAC and manual provisioning is enabled for this profile, use the EAP-FAST Settings screen in ACU to either enable automatic PAC provisioning or import a PAC file.

Note: To start another EAP-FAST authentication process, choose Reauthenticate from ACM or the Commands drop-down menu in ACU, log off and log in again, or choose Manual Login from the Commands drop-down menu in ACU.
Error Message You do not appear to be registered with the authentication server. Registration requires that this device be initialized with a security credential. Do you wish to obtain a security credential?

Explanation Automatic PAC provisioning is enabled for this profile. However, a valid PAC matching the server to which the client adapter is connecting could not be found.

Recommended Action Click Yes to provision a new PAC for this server using your existing credentials or click No to cancel the operation. If you click No, the client adapter is unable to authenticate using the existing profile.

Caution To prevent possible attacks from rogue access points, do not reprovision a PAC unless necessary.

Error Message You must re-enter the saved password! (Press the “Configure” button to open the EAP-FAST Settings dialog box.)

Explanation You changed an old LEAP profile (one that was created using ACU version 6.2 or earlier) with a saved username and password to EAP-FAST.

Recommended Action Re-enter your saved password on the EAP-FAST Settings screen or click Cancel to cancel the operation.

Error Message You must select a PAC for this profile! (Press the “Configure” button to open the EAP-FAST Settings dialog box.)

Explanation Automatic provisioning was disabled during installation or by your system administrator, and no PAC authority was selected on the EAP-FAST Settings screen in ACU.

Recommended Action Choose a PAC authority from the drop-down list on the EAP-FAST Settings screen. If the list is empty, import a PAC file.

Error Message You must select a PAC when using manual PAC provisioning.

Explanation You clicked OK on the EAP-FAST Settings screen when automatic provisioning was disabled and no PAC authority was selected.

Recommended Action Either enable automatic provisioning or choose a PAC authority from the drop-down list. If the list is empty, import a PAC file.
PEAP Authentication Error Messages

This section lists error messages that may occur during PEAP authentication. The messages are divided into six subsections based on the type of database that is used with PEAP. Use Table 10-5 to quickly locate the error messages for your database.

Table 10-5 Locating PEAP Authentication Error Messages

<table>
<thead>
<tr>
<th>Error Message Category</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>All PEAP-supported databases</td>
<td>10-30</td>
</tr>
<tr>
<td>Windows NT or 2000 domain databases</td>
<td>10-31</td>
</tr>
<tr>
<td>All OTP databases</td>
<td>10-31</td>
</tr>
<tr>
<td>OTP databases using Secure Computing SoFToken version 1.3</td>
<td>10-32</td>
</tr>
<tr>
<td>OTP databases using Secure Computing SoFToken II version 2.0</td>
<td>10-34</td>
</tr>
<tr>
<td>OTP databases using RSA SecurID version 2.5</td>
<td>10-34</td>
</tr>
</tbody>
</table>

For All PEAP-Supported Databases

Error Message PEAP failed initialization. Please make sure that PEAP is installed correctly and Trusted Root Certificate Authority certificate is installed correctly.

Explanation The PEAP authentication process failed during initialization, most likely because the specified root certificate is missing from the system.

Recommended Action Make sure that PEAP and the Trusted Root Certificate Authority certificate are installed correctly.

Error Message You have connected to a server that is signed by Root Certification Authority xxx, which is different than the specified trusted CA. Do you want to accept this connection? Warning: Connecting to a server signed with untrusted CA might compromise your security.

Explanation The client adapter has established a connection to a certificate server other than the specified trusted CA.

Recommended Action If you want the client adapter to connect to this server even though it may present a security risk, click Yes. Otherwise, click No.

Error Message You have connected to server xxx. Do you want to accept the connection? Warning: Connecting to an unsecured server might compromise your security.

Explanation The client adapter has established a connection to the server specified.

Recommended Action If you want the client adapter to connect to this server even though it may present a security risk, click Yes. Otherwise, click No.
For Windows NT or 2000 Domain Databases

Error Message New Password and Confirm New Password entered do not match. Please try it again.

Explanation You entered different values in the New Password and Confirm New Password fields on the Change Password screen. They must be identical.

Recommended Action Re-enter your new password in both fields.

Error Message The old password you supplied doesn’t match what you entered previously. Please try it again.

Explanation The password entered in the Old Password field on the Change Password screen does not match the password that was used previously.

Recommended Action Re-enter your old password in the Old Password field.

Error Message Your domain password has been successfully changed on the server. To synchronize any Windows password that might be locally cached, you must also manually change the password in Windows.

Explanation You have successfully changed your domain password using the Static Password screen. However, if you also have a locally cached Windows password, you must manually change it to synchronize it with your domain password.

Recommended Action Press Ctrl-Alt-Delete, choose Change Password, and enter your old password once and your new password twice.

For All OTP Databases

Error Message Failed to change your PIN. Error code xxx. Run Software Token program to fix it.

Explanation Your attempt to change your PIN using the Change PIN screen failed due to a problem with the software token program.

Recommended Action Run the software token program and then try to change your PIN again.

Error Message Invalid PIN. Please try again.

Explanation The PIN that you entered is invalid.

Recommended Action Re-enter your PIN.
Error Message New PIN and Confirm New PIN do not match. Please try them again.

Explanation You entered different values in the New PIN and Confirm New PIN fields on the Change PIN screen. They must be identical.

Recommended Action Re-enter your new PIN in both fields.

Error Message New PIN is invalid. Please try it again.

Explanation The PIN that you entered in the New PIN field on the Change PIN screen is invalid.

Recommended Action Re-enter your new PIN.

Error Message The old PIN you supplied is invalid. Please try it again.

Explanation The old PIN that you entered on the Change PIN screen is invalid.

Recommended Action Re-enter your old PIN.

Error Message Please check either Support Hardware Token or Support Software Token. One of them must be selected.

Explanation While the client adapter was being configured for PEAP authentication, the One Time Password option was selected on the Generic Token Card Properties screen, but neither the Support Hardware Token nor the Support Software Token option was selected.

Recommended Action Check either the Support Hardware Token check box or the Support Software Token check box or both.

Error Message Your PIN has expired. Please change your PIN.

Explanation The PIN that you have been using to authenticate has expired.

Recommended Action Follow the instructions in the “After Your PIN Expires (OTP Databases Only)” section on page 6-27 to change your PIN.

For OTP Databases Using Secure Computing SofToken Version 1.3

Error Message Could not find SofToken.exe in the program path specified. Please make sure SofToken is installed correctly and the correct program path is entered.

Explanation SofToken.exe is not located at the path you entered on the Generic Token Card Properties screen.

Recommended Action Make sure that SofToken is installed correctly; then re-enter the program path.
Error Message Error getting data from SofToken server. Please make sure SofToken is installed correctly and the correct program path is entered.

Explanation An error occurred while attempting to get data from the SofToken server.

Recommended Action Make sure that SofToken is installed correctly and the correct program path is entered.

Error Message Initialization of SofToken library failed. Please make sure SofToken is installed correctly and the correct program path is entered.

Explanation An error occurred with the SofToken program.

Recommended Action Make sure that SofToken is installed correctly and the correct program path is entered.

Error Message The program path entered exceeds the maximum length allowed (255).

Explanation The program path entered on the Generic Token Card Properties screen contains more characters than the field allows.

Recommended Action Re-enter the path using a maximum of 255 characters. If necessary, move SofToken.exe to a directory with a shorter path.

Error Message Program path must be specified for SofToken Version 1.3.

Explanation Secure Computing SofToken Version 1.3 was selected from the Supported Type drop-down box on the Generic Token Card Properties screen, but the SofToken program path was not entered.

Recommended Action Enter the path to the SofToken program in the SofToken Program Path field.

Error Message SofToken is not set up to allow processing from SofToken calls. Calls have been disabled from the SofToken Manager, the SofToken program does not have any valid users yet, or the last person to use SofToken was not initialized correctly.

Explanation The SofToken program is not set up to process SofToken API calls.

Recommended Action Make sure that SofToken is configured to enable SofToken calls and verify that you are set up as a valid user.

Error Message Unable to launch SofToken.exe. Please make sure SofToken is installed correctly and the correct program path is entered.

Explanation An error occurred with the SofToken program.

Recommended Action Make sure that SofToken is installed correctly and the correct program path is entered.
Error Message Unable to load SofToken library. Please make sure that SofToken is installed correctly.

Explanation An error occurred with the SofToken program.

Recommended Action Make sure that SofToken is installed correctly and the correct program path is entered.

For OTP Databases Using Secure Computing SofToken II Version 2.0

Error Message Error getting the OTP password for the user. Run SofToken II to ensure the user is set up correctly.

Explanation An error occurred while attempting to obtain the OTP password for the user.

Recommended Action Run the SofToken II program to make sure that the user is set up properly.

Error Message Failed to load data from the OTP database for User ID: xxxx. Run SofToken II to ensure the user is set up correctly.

Explanation An error occurred while attempting to load data from the OTP database for the specified user.

Recommended Action Run the SofToken II program to make sure that the specified user is set up properly.

Error Message Here is the hint you entered when you created your PIN: xxxx.

Explanation You entered an invalid PIN.

Recommended Action Use the hint to help you remember your PIN; then re-enter it.

Error Message Unable to load SofToken II library. Please make sure that SofToken II is installed correctly.

Explanation An error occurred with the SofToken II program.

Recommended Action Make sure that SofToken II is installed correctly.

For OTP Databases Using RSA SecurID Version 2.5

Error Message Error getting password from RSA SecurID Software Token.

Explanation An error occurred while attempting to obtain the user password from the RSA SecurID program.

Recommended Action Run the RSA SecurID program to make sure that the user is set up properly.
Error Message Unable to load RSA library. Please make sure that RSA SecurID Software Token is installed correctly.

Explanation An error occurred with the RSA SecurID program.

Recommended Action Make sure that RSA SecurID is installed correctly.

Error Message Unable to open RSA Token service.

Explanation An error occurred with the RSA SecurID program.

Recommended Action Make sure that RSA SecurID is installed correctly.

EAP-SIM Authentication Error Messages

This section lists error messages that may occur during EAP-SIM authentication.

Error Message Client_handleResponseIdentity error.

Explanation When asked to perform an authentication, the EAP-SIM supplicant encountered an error retrieving your network username from the SIM card. This error may occur if an invalid SIM card (such as one intended for mobile phone use) is inserted in the card reader or if Windows encounters a processing error.

Note The eight-digit hexadecimal error code in the message may assist technical support in troubleshooting your problem.

Recommended Action Make sure that you have a valid SIM card that was provided to you for wireless network access and that it is inserted properly. If the problem occurs several times in a row, reboot your computer.

Error Message For the changes to take effect, please restart your WLAN card (or your computer) NOW.

Explanation The changes you made on the SIM Authentication Properties screen can take effect only if you perform a complete reauthentication. Otherwise, your wireless network connection may appear to be stuck in the “Validating identity” state.

Recommended Action Turn off your client adapter’s radio, wait a few seconds, and then turn the radio back on. Refer to the “Turning Your Client Adapter’s Radio On or Off” section on page 9-16 for instructions.
Error Message GetUserPin returned error.

Explanation Windows encountered an error while prompting for or retrieving the PIN.

Note The eight-digit hexadecimal error code in the message may assist technical support in troubleshooting your problem.

Recommended Action Wait until the system tries to authenticate the client adapter again (approximately 30 to 60 seconds) and enter a valid PIN. Do not click Cancel or otherwise interfere with the normal operation of Windows. If the problem persists, reboot your computer.

Error Message Maximum length of PIN is 8 characters.

Explanation You tried to enter a PIN that is longer than eight characters. SIM card PINs are restricted to a maximum length of eight alphanumeric characters.

Recommended Action Delete one or more characters from the PIN field or delete all of the characters you entered and retype the complete PIN.

Error Message Network authentication aborted.

Explanation When you were asked to enter a PIN, you clicked the Cancel button and cancelled the authentication process. The EAP-SIM supplicant will not attempt to authenticate to the network.

Note The system will try to authenticate automatically within 30 to 60 seconds.

Recommended Action If you want to authenticate to the network and establish a wireless network connection, enter the valid PIN for your SIM card. If you do not want to establish a connection, consider turning off or ejecting the client adapter; otherwise, the system will reprompt you every 30 to 60 seconds.

Error Message Network rejected user authentication.

Explanation The service provider’s network has rejected your authentication attempt. This is most likely due to an expired or invalid SIM card or an invalidated account. However, it could also occur if the service provider at your current location does not allow access to the network for subscribers of your service provider.

Recommended Action Make sure that your account is in good standing and that you have a valid SIM card. Switch to a SIM card that is valid at the current location and try again.
Error Message Please check your smartcard reader and insert your SIM card.

Explanation When asked to perform an authentication, the EAP-SIM supplicant could not get the smartcard reader to initialize within a reasonable time (that is, 90 seconds for the first try and 5 minutes for subsequent tries). Most likely, the reader is not plugged in correctly, or the computer no longer recognizes it.

Note The eight-digit hexadecimal error code in the message may assist technical support in troubleshooting your problem.

Recommended Action Follow these steps.

Step 1 Install a smartcard reader if you have not done so.

Step 2 If a reader is installed, make sure that it is inserted completely into the PCMCIA slot (PCMCIA model) or that the connector cable is inserted properly into the serial or USB connector (serial/USB port model).

Step 3 Make sure that the system recognizes your reader. It should be listed under Smart card readers in Windows device manager. If your reader is not listed, eject and reinsert the reader (PCMCIA model) or disconnect and reconnect the cable (serial/USB port model).

Step 4 If the computer still does not recognize your reader, reboot the computer with the reader installed.

Error Message Please check your smartcard reader and SIM card, then try again.

Explanation The EAP-SIM supplicant has detected a general smartcard-related error (that is, not one of the specific errors included in this section) and has aborted the authentication process.

Note The eight-digit hexadecimal error code in the title may assist technical support in troubleshooting your problem.

Recommended Action Follow these steps.

Step 1 Make sure that your smartcard reader is installed properly and that your SIM card is inserted properly.

Step 2 Follow the Recommended Action instructions for the “Please check your smartcard reader and try again” error message below.

Step 3 Follow the Recommended Action instructions for the “Please insert your SIM card and try again” error message on page 10-39.

Step 4 If you are sure that the reader and card are both inserted properly, wait until the system tries to authenticate again. This should occur within 30 to 60 seconds.

Caution Never remove your SIM card until the system has completed the authentication process.

Step 5 If the problem persists, try restarting the client adapter or rebooting your computer.
Error Message: Please check your smartcard reader and try again.

Explanation: Windows could not detect a smartcard reader in the system. You may not have installed a reader, or this may happen after resuming Windows from suspend or hibernation.

Recommended Action: Follow these steps.

Step 1: Install a smartcard reader if you have not done so.
Step 2: If a reader is installed, make sure that it is inserted completely into the PCMCIA slot (PCMCIA model) or that the connector cable is inserted properly into the serial or USB connector (serial/USB port model).
Step 3: Make sure that the system recognizes your reader. It should be listed under Smart card readers in Windows device manager. If your reader is not listed, eject and reinsert the reader (PCMCIA model) or disconnect and reconnect the cable (serial/USB port model).
Step 4: If the computer still does not recognize your reader, reboot the computer with the reader installed.

Error Message: Please contact your service provider to unblock your card.

Explanation: You have exceeded your SIM card’s retry limit by entering too many incorrect PINs in a row.

Recommended Action: Contact your service provider’s customer service center to get the card unblocked. The phone number may be printed on your SIM card.

Error Message: Please do not switch SIM cards after authenticating.

Explanation: The EAP-SIM supplicant has detected that the network username stored on the currently inserted SIM card differs from the username that was used in a previous authentication. Due to this mismatch, authentication may fail.

Recommended Action: If the currently inserted SIM card is recognized by the network, authentication may succeed or fail, depending on the network configuration. If your client adapter is authenticated, you may ignore this message. Otherwise, replace the SIM card currently inserted with the SIM card that was used for your first authentication and wait until the system tries to authenticate your client adapter again (approximately 30 to 60 seconds). You may also restart the client adapter or reboot your computer with the new SIM card to try again.

Error Message: Please enter a PIN (1 to 8 characters).

Explanation: When you were prompted for a PIN, you clicked the OK button before entering the PIN.

Recommended Action: Enter the PIN required to access your SIM card. If you do not want to authenticate at this time or do not have your PIN available, click the Cancel button instead.
Error Message Please insert your SIM card and try again.

Explanation The system could not detect a SIM card in the smartcard reader.

Recommended Action Make sure that your SIM card is inserted into the reader properly. It should be inserted into the reader all the way and not into the empty space in the PCMCIA slot. Try removing and reinserting the card. You should feel it latch into place and notice a slight resistance when attempting to remove it.

Error Message SimOpenSession error.

Explanation When asked to retrieve your network username, the EAP-SIM supplicant was unable to establish a connection to the SIM card. This can occur if a SIM card is not inserted in the reader, the SIM card is not inserted properly, or the wrong SIM card is inserted.

Recommended Action Make sure that you are using a valid SIM card (that is, the SIM card provided to you for wireless network access, not a SIM card intended for mobile phone use). If that does not correct the error, make sure that your SIM card is inserted into the reader properly. It should be inserted into the reader all the way and not into the empty space in the PCMCIA slot. Try removing and reinserting the card. You should feel it latch into place and notice a slight resistance when attempting to remove it.

Error Message Time-out waiting for smartcard reader initialization.

Explanation When asked to perform an authentication, the EAP-SIM supplicant could not get the smartcard reader to initialize within a reasonable time (90 seconds for the first try and 5 minutes for subsequent tries). Most likely, the reader is not plugged in correctly, or the computer no longer recognizes it.

Note The eight-digit hexadecimal error code in the message may assist technical support in troubleshooting your problem.

Recommended Action Follow these steps.

Step 1 Install a smartcard reader if you have not done so.

Step 2 If a reader is installed, make sure that it is inserted completely into the PCMCIA slot (PCMCIA model) or that the connector cable is inserted properly into the serial or USB connector (serial/USB port model).

Step 3 Make sure that the system recognizes your reader. It should be listed under Smart card readers in Windows device manager. If your reader is not listed, eject and reinsert the reader (PCMCIA model) or disconnect and reconnect the cable (serial/USB port model).

Step 4 If the computer still does not recognize your reader, reboot the computer with the reader installed.
Error Message Wrong PIN entered (X tries left).

Explanation The SIM card could not validate the PIN you have entered. You must have entered the wrong PIN.

Recommended Action Make sure that you enter the correct PIN. If your PIN contains letters, enter them in the correct case as the PIN is case sensitive. Check that the Caps Lock key has not been pressed inadvertently. Also, make sure that you have inserted the correct SIM card.

Note Most SIM cards limit the number of times in a row that you can enter an incorrect PIN. The error message indicates how many attempts you have left. Entering the correct PIN resets the limit to its original value. However, if the number of retries is exhausted, the SIM card locks up and becomes useless.
Technical Specifications

This appendix provides technical specifications for the Cisco Aironet 350 and CB20A Wireless LAN Client Adapters.

The following topics are covered in this appendix:

- Physical Specifications, page A-2
- Radio Specifications, page A-3
- Power Specifications, page A-5
- Safety and Regulatory Compliance Specifications, page A-6
Table A-1 lists the technical specifications for the Cisco Aironet 350 and CB20A Wireless LAN Client Adapters.

If a distinction is not made between radio or client adapter type, the specification applies to all Cisco Aironet 350 and CB20A Wireless LAN Client Adapters.

Table A-1 Technical Specifications for Cisco Aironet 350 and CB20A Wireless LAN Client Adapters

Physical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>PC card and PC-Cardbus card: 4.5 in. L x 2.1 in. W x 0.2 in. H (11.3 cm L x 5.4 cm W x 0.5 cm H)</td>
</tr>
<tr>
<td></td>
<td>LM card: 3.4 in. L x 2.1 in. W x 0.2 in. H (8.6 cm L x 5.4 cm W x 0.5 cm H)</td>
</tr>
<tr>
<td></td>
<td>PCI card: 5.8 in. L x 3.2 in. W x 0.5 in. H (14.7 cm L x 8.1 cm W x 1.3 cm H)</td>
</tr>
<tr>
<td></td>
<td>Mini PCI card: 2.3 in. L x 2.0 in. W x 0.2 in. H (6.0 cm L x 5.1 cm W x 0.5 cm H)</td>
</tr>
<tr>
<td>Weight</td>
<td>PC card and LM card: 1.3 oz (0.037 kg)</td>
</tr>
<tr>
<td></td>
<td>PCI card: 4.6 oz (0.13 kg)</td>
</tr>
<tr>
<td></td>
<td>Mini PCI card: 0.5 oz (0.014 kg)</td>
</tr>
<tr>
<td></td>
<td>PC-Cardbus card: 1.5 oz (0.043 kg)</td>
</tr>
<tr>
<td>Enclosure</td>
<td>PC card and PC-Cardbus card: Extended Type II PC card</td>
</tr>
<tr>
<td></td>
<td>LM card: Standard Type II PC card with RF connectors</td>
</tr>
<tr>
<td>Connector</td>
<td>PC card and LM card: 68-pin PCMCIA</td>
</tr>
<tr>
<td></td>
<td>PCI card: PCI card edge</td>
</tr>
<tr>
<td></td>
<td>PC-Cardbus card: 68-pin Cardbus</td>
</tr>
<tr>
<td>Status indicators</td>
<td>Green and amber LEDs (except mini PCI card); see Chapter 10</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>350 series client adapters: –22°F to 158°F (–30°C to 70°C)</td>
</tr>
<tr>
<td></td>
<td>5-GHz client adapters: –22°F to 158°F (–30°C to 70°C)</td>
</tr>
<tr>
<td></td>
<td>Storage temperature: –40°F to 185°F (–40°C to 85°C)</td>
</tr>
<tr>
<td></td>
<td>Humidity (non-operational): 95% relative humidity</td>
</tr>
<tr>
<td></td>
<td>ESD: 15 kV (human body model)</td>
</tr>
</tbody>
</table>
Table A-1 Technical Specifications for Cisco Aironet 350 and CB20A Wireless LAN Client Adapters

<table>
<thead>
<tr>
<th>Radio Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>2.4-GHz client adapters</td>
</tr>
<tr>
<td>5-GHz client adapters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note Refer to Appendix D for limitations on radiated power (EIRP) levels in the European community and other countries.</td>
</tr>
<tr>
<td>Note If you are using an older version of a 350 series client adapter, your power level options may be different than those listed here.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>350 series client adapters</th>
<th>100 mW (20 dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 mW (17 dBm)</td>
</tr>
<tr>
<td></td>
<td>30 mW (15 dBm)</td>
</tr>
<tr>
<td></td>
<td>20 mW (13 dBm)</td>
</tr>
<tr>
<td></td>
<td>5 mW (7 dBm)</td>
</tr>
<tr>
<td></td>
<td>1 mW (0 dBm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC-Cardbus card</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mW (13 dBm)</td>
</tr>
<tr>
<td>10 mW (10 dBm)</td>
</tr>
<tr>
<td>5 mW (7 dBm)</td>
</tr>
</tbody>
</table>

| **Note** These values are based on the FCC peak measurement method as defined in FCC 15.407(a)(4). |

<table>
<thead>
<tr>
<th>Operating frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-GHz client adapters</td>
</tr>
<tr>
<td>5-GHz client adapters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usable channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-GHz client adapters</td>
</tr>
<tr>
<td>5-GHz client adapters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interference rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-GHz client adapters</td>
</tr>
<tr>
<td>5-GHz client adapters</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table A-1 Technical Specifications for Cisco Aironet 350 and CB20A Wireless LAN Client Adapters

<table>
<thead>
<tr>
<th>Data rates</th>
<th>2.4-GHz client adapters</th>
<th>5-GHz client adapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-GHz client adapters</td>
<td>1, 2, 5.5, and 11 Mbps</td>
<td>6, 9, 12, 18, 24, 36, 48, and 54 Mbps</td>
</tr>
<tr>
<td>Modulation</td>
<td>Binary phase shift keying (BPSK) - 1 Mbps</td>
<td>Quaternary phase shift keying (QPSK) - 2 Mbps</td>
</tr>
<tr>
<td></td>
<td>Complementary code keying (CCK) - 5.5 and 11 Mbps</td>
<td>Orthogonal frequency division multiplexing (OFDM) - 6 to 54 Mbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>350 series client adapters</th>
<th>5-GHz client adapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor</td>
<td>2000 ft (609.6 m) @ 1 Mbps</td>
<td>1200 ft (365.8 m) @ 6 Mbps</td>
</tr>
<tr>
<td></td>
<td>1500 ft (457.2 m) @ 2 Mbps</td>
<td>700 ft (213.4 m) @ 18 Mbps</td>
</tr>
<tr>
<td></td>
<td>1000 ft (304.8 m) @ 5.5 Mbps</td>
<td>120 ft (36.6 m) @ 54 Mbps</td>
</tr>
<tr>
<td></td>
<td>800 ft (243.8 m) @ 11 Mbps</td>
<td>Indoor</td>
</tr>
<tr>
<td>Indoor</td>
<td>350 ft (106.7 m) @ 1 Mbps</td>
<td>200 ft (61 m) @ 5.5 Mbps</td>
</tr>
<tr>
<td></td>
<td>250 ft (76.2 m) @ 2 Mbps</td>
<td>150 ft (45.7 m) @ 11 Mbps</td>
</tr>
<tr>
<td></td>
<td>200 ft (61 m) @ 5.5 Mbps</td>
<td>Note: The above range numbers assume the use of a snap-on antenna with the LM card.</td>
</tr>
<tr>
<td></td>
<td>150 ft (45.7 m) @ 11 Mbps</td>
<td>Note: The above range numbers assume that the client adapter is being used with a Cisco Aironet 1200 Series Access Point with a patch antenna. Different range characteristics are likely when using the client adapter with a non-Cisco access point or a Cisco Aironet 1200 Series Access Point with an omni-directional antenna.</td>
</tr>
</tbody>
</table>
Table A-1 Technical Specifications for Cisco Aironet 350 and CB20A Wireless LAN Client Adapters

<table>
<thead>
<tr>
<th>Receiver sensitivity</th>
<th>350 series client adapters</th>
<th>5-GHz client adapters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-94 dBm @ 1 Mbps</td>
<td>-85 dBm @ 6 Mbps</td>
</tr>
<tr>
<td></td>
<td>-91 dBm @ 2 Mbps</td>
<td>-84 dBm @ 9 Mbps</td>
</tr>
<tr>
<td></td>
<td>-89 dBm @ 5.5 Mbps</td>
<td>-82 dBm @ 12 Mbps</td>
</tr>
<tr>
<td></td>
<td>-85 dBm @ 11 Mbps</td>
<td>-80 dBm @ 18 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-77 dBm @ 24 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-73 dBm @ 36 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-69 dBm @ 48 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-68 dBm @ 54 Mbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver delay spread (multipath)</th>
<th>2.4-GHz client adapters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 ns @ 1 Mbps</td>
</tr>
<tr>
<td></td>
<td>400 ns @ 2 Mbps</td>
</tr>
<tr>
<td></td>
<td>300 ns @ 5.5 Mbps</td>
</tr>
<tr>
<td></td>
<td>140 ns @ 11 Mbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna</th>
<th>PC card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Integrated diversity antenna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna</th>
<th>LM card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two MMCX antenna connectors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna</th>
<th>PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RP-TNC connector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Mini PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ultra-miniature SMT U.FL antenna connectors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna</th>
<th>PC-Cardbus card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Integrated patch antenna</td>
</tr>
</tbody>
</table>

Power Specifications

<table>
<thead>
<tr>
<th>Operational voltage</th>
<th>PC, LM, and PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0 V (± 0.25 V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receive current steady state</th>
<th>Mini PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0 to 3.6 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receive current steady state</th>
<th>PC-Cardbus card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3 V (± 0.33 V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>PC card and LM card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 250 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 350 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>Mini PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 330 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>PC-Cardbus card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 580 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>350 series PC card and LM card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 450 mA @ 20 dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>350 series PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 550 mA @ 20 dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>350 series mini PCI card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 570 mA @ 20 dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit current steady state</th>
<th>PC-Cardbus card</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typically 520 mA</td>
</tr>
</tbody>
</table>
Table A-1 Technical Specifications for Cisco Aironet 350 and CB20A Wireless LAN Client Adapters

Sleep mode steady state

<table>
<thead>
<tr>
<th>Adapter Type</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 series PC card, LM card, and mini PCI card</td>
<td>Typically 15 mA</td>
</tr>
<tr>
<td>350 series PCI card</td>
<td>Typically 115 mA</td>
</tr>
<tr>
<td>PC-Cardbus card</td>
<td>Typically 20 mA</td>
</tr>
</tbody>
</table>

Safety and Regulatory Compliance Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Designed to meet:</td>
</tr>
<tr>
<td></td>
<td>• UL 1950 Third Ed.</td>
</tr>
<tr>
<td></td>
<td>• CSA 22.2 No. 950-95</td>
</tr>
<tr>
<td></td>
<td>• IEC 60950 Second Ed., including Amendments 1-4 with all deviations</td>
</tr>
<tr>
<td></td>
<td>• EN 60950 Second Ed., including Amendments 1-4</td>
</tr>
<tr>
<td>EMI and susceptibility</td>
<td>FCC Part 15.107 & 15.109 Class B</td>
</tr>
<tr>
<td></td>
<td>ICES-003 Class B (Canada)</td>
</tr>
<tr>
<td></td>
<td>EN 55022 B</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 3548 Class B</td>
</tr>
<tr>
<td></td>
<td>VCCI Class B</td>
</tr>
<tr>
<td></td>
<td>EN 55024</td>
</tr>
<tr>
<td></td>
<td>EN 301.489-1 and EN-301.489-17</td>
</tr>
<tr>
<td>Radio approvals</td>
<td>FCC Part 15.247 (2.4-GHz client adapters)</td>
</tr>
<tr>
<td></td>
<td>FCC Part 15.407 (5-GHz client adapters)</td>
</tr>
<tr>
<td></td>
<td>Canada RSS-139-1 (2.4-GHz client adapters), RSS-210</td>
</tr>
<tr>
<td></td>
<td>Japan Telec 33B (2.4-GHz client adapters)</td>
</tr>
<tr>
<td></td>
<td>Japan ARIB STD-T71 (5-GHz client adapters)</td>
</tr>
<tr>
<td></td>
<td>EN 300.328 (2.4-GHz client adapters)</td>
</tr>
<tr>
<td></td>
<td>EN 301.893 (5-GHz client adapters)</td>
</tr>
<tr>
<td>RF exposure</td>
<td>OET-65C</td>
</tr>
<tr>
<td></td>
<td>RSS-102</td>
</tr>
<tr>
<td></td>
<td>ANSI C95.1</td>
</tr>
</tbody>
</table>
Translated Safety Warnings

This appendix provides translations of the safety warnings that appear in this publication. The following topics are covered in this appendix:

- Explosive Device Proximity Warning, page B-2
- Antenna Installation Warning, page B-3
- Warning for Laptop Users, page B-4
Explosive Device Proximity Warning

<table>
<thead>
<tr>
<th>Language</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>Do not operate your wireless network device near unshielded blasting caps or in an explosive environment unless the device has been modified to be especially qualified for such use.</td>
</tr>
<tr>
<td>Waarschuwing</td>
<td>Gebruik dit draadloos netwerkapparaat alleen in de buurt van onbeschermdes ontstekers of in een omgeving met explosieven indien het apparaat speciaal in aangepast om aan de eisen voor een dergelijk gebruik te voldoen.</td>
</tr>
<tr>
<td>Varoitus</td>
<td>Älä käytä johdotonta verkkolaitetta suojaamattomien räjäytysnallien läheisyydessä tai räjäytysalueella, jos laitetta ei ole erityisesti muunnettu sopivaksi sellaiseen käyttöön.</td>
</tr>
<tr>
<td>Attention</td>
<td>Ne jamais utiliser un équipement de réseau sans fil à proximité d’un détonateur non blindé ou dans un lieu présentant des risques d’explosion, sauf si l’équipement a été modifié à cet effet.</td>
</tr>
<tr>
<td>Warnung</td>
<td>Benutzen Sie Ihr drahtloses Netzwerkgerät nicht in der Nähe ungeschützter Sprengkapseln oder anderer explosiver Stoffe, es sei denn, Ihr Gerät wurde eigens für diesen Gebrauch modifiziert und bestimmt.</td>
</tr>
<tr>
<td>Avvertenza</td>
<td>Non utilizzare la periferica di rete senza fili in prossimità di un detonatore non protetto o di esplosivi a meno che la periferica non sia stata modificata a tale proposito.</td>
</tr>
<tr>
<td>Advarsel</td>
<td>Ikke bruk den trådløse nettverksenheten nær inntil uisolerte fenghetter eller i et eksplosivt miljø med mindre enheten er modifisert slik at den tåler slik bruk.</td>
</tr>
<tr>
<td>Aviso</td>
<td>Não opere o dispositivo de rede sem fios perto de cápsulas explosivas não protegidas ou num ambiente explosivo, a não ser que o dispositivo tenha sido modificado para se qualificar especialmente para essa utilização.</td>
</tr>
<tr>
<td>¡Advertencia!</td>
<td>No utilizar un aparato de la red sin cable cerca de un detonador que no esté protegido ni tampoco en un entorno explosivo a menos que el aparato haya sido modificado con ese fin.</td>
</tr>
<tr>
<td>Warning!</td>
<td>Använd inte den trådlösa nätverksenheten i närheten av oskyddade tändhållar eller i en explosiv miljö om inte enheten modifierats för att kunna användas i sådana sammanhang.</td>
</tr>
</tbody>
</table>
Antenna Installation Warning

In order to comply with FCC radio frequency (RF) exposure limits, antennas should be located at a minimum of 7.9 inches (20 cm) or more from the body of all persons.

Om te voldoen aan de FCC radiofrequentie (RF) blootstellingslimieten dienen antennes zich minstens 20 cm of meer van de lichamen van alle personen bevinden.

FCC:n antamien radiotaajuksille altistumista koskevien rajoitusten mukaan antennien on sijaittava vähintään 20 cm:n päässä kaikista henkilöistä.

Pour se conformer aux limites d’exposition à la fréquence radio préconisées par la FCC (Federal Communications Commission), les antennes doivent se situer à un minimum de 20 cm de toute personne.

Um die in den FCC-Richtlinien festgelegten Expositionshöchstgrenzen für Radiofrequenzen (RF) nicht zu überschreiten, sollten antennen mindestens 20 cm (7,9 Zoll) vom Körper aller Person entfernt aufgestellt werden.

Per conformarsi ai limiti FCC di esposizione a radiofrequenza (RF), le antenne a devono stare ad una distanza minima di 20 cm dal corpo di ogni persona.

I henhold til eksponeringsgrensene for radiofrekvenser (RF), skal antenner befinne seg på en avstand av minst 20 cm eller mer fra mennesker.

Para estar de acordo com as normas FCC de limites de exposição para frequência de rádio (RF), as antenas devem estar distantes no mínimo 20 cm (7,9 pol) do corpo de qualquer pessoa.

Para cumplir con los límites de exposición de radio frecuencia (RF) de la Comisión Federal de Comunicaciones (FCC) es preciso ubicar las antenas a un mínimo de 20 cm (7,9 pulgadas) o más del cuerpo de las personas.

För att följa FCC-exponeringsgränserna för radiofrekvens (RF), bör antenner placeras på minst 20 cm avstånd från alla människor.
Warning for Laptop Users

A Warning In order to comply with RF exposure limits established in the ANSI C95.1 standards, it is recommended when using a laptop with a PC card client adapter that the adapter's integrated antenna is positioned more than 2 inches (5 cm) from your body or nearby persons during extended periods of transmitting or operating time. If the antenna is positioned less than 2 inches (5 cm) from the user, it is recommended that the user limit exposure time.

Waarschuwing In het kader van een in de ANSI C95.1 norm vastgelegde limiet voor blootstelling aan straling veroorzaakt door radiofrequenties, dient u bij langdurig gebruik van een laptop met client adapter pc-kaart een afstand van meer dan 5 centimeter aan te houden tussen de geïntegreerde antenne van de adapter en uzelf en enige andere personen. Als deze afstand niet kan worden aangehouden, dient u de tijd dat het apparaat gebruikt wordt te beperken.

Varoitus ANSI C95.1-standardin radiotaajuksille asettamien altistumisrajojen mukaisesti on suositeltavaa, että käytettäessä kannettavaa tietokonetta, jossa on PC-kortti-asiakas-adapteri, adapterin integroitu antenne on käännetty yli viisi cm pois vartalosta tai lähellä olevista henkilöistä pitkäkaikaistenlähetys- tai käyttöjaksojen aikana. Jos antenne on käännetty alle viisi 5 cm käyttäjästä, on suositeltavaa, että käyttäjä rajoittaa altistumisaikaa.

Attention Afin de respecter les limitations en matière d'exposition aux fréquences radioélectriques définies par les normes ANSI C95.1, il est recommandé aux utilisateurs d'ordinateurs portables dotés d'adaptateurs client pour carte PC ou aux personnes se trouvant à proximité de se placer à plus de 5 cm de l'antenne de l'adaptateur lors de longues périodes de transmission ou de fonctionnement. Si l'utilisateur se trouve à moins de 5 cm de l'antenne, il est préférable de limiter le temps d'exposition.

Warnung In Übereinstimmung mit den in den Sicherheitsstandards ANSI C95.1 verzeichneten Höchstwerten für den Kontakt mit Radiofrequenz (RF) wird für die Benutzung eines Laptops mit PC-Adapterkarten für Clients empfohlen, bei längerer Inbetriebnahme oder Datenübertragung die integrierte Antenne des Adapters mindestens 5 cm vom Benutzer und anderen sich in der Nähe aufhaltenden Personen entfernt aufzustellen. Befindet sich die Antenne weniger als 5 cm vom Benutzer entfernt, sollte die Benutzungsdauer des Geräts eingeschränkt werden.

Avvertenza In conformità con i limiti sull’esposizione a frequenze radio stabiliti nelle direttive ANSI C95.1, quando si utilizza un computer portatile con una scheda PC dotata di adattatore client è consigliabile mantenere l’antenna integrata dell’adattatore a più di 5 cm di distanza durante periodi di esposizione prolungati. Se l’antenna è posizionata a meno di 5 cm di distanza dall’utente, è consigliabile limitare i tempi di esposizione alle frequenze.

Advarsel Du må overholde begrensningene for RF-eksponering som er fastsatt i ANSI C95.1-standardene. Derfor anbefaler vi, når du bruker en bærbar PC med et klientkort i PC-format, at kortets innebygde antenne plasseres mer enn 5 cm fra deg eller personer i nærheten under lengre perioder med overføring eller bruk. Hvis antennen er plassert mindre enn 5 cm fra brukeren, anbefaler vi at brukeren begrenser eksponeringstiden.
Warning for Laptop Users

Translated Safety Warnings

Aviso Para estar em conformidade com os limites de exposição RF estabelecidos nas normas ANSI C95.1 recomenda-se que, aquando da utilização de um laptop com um adaptador de cliente PC card, a antena integrada do adaptador esteja posicionada a mais de 5 cm do seu corpo ou de pessoas na vizinhança durante longos períodos de tempo de transmissão ou operação. Se a antena estiver posicionada a menos de 5 cm do utilizador, recomenda-se que o utilizador limite o tempo de exposição.

¡Advertencia! Para cumplir los límites de exposición a radiofrecuencia (RF) que se establecen en la norma ANSI C95.1, al utilizar un equipo portátil con un adaptador cliente de tarjeta PC, sitúe la antena del adaptador al menos a 2 pulgadas (5 cm) del usuario o de las personas adyacentes durante períodos largos de transmisión o funcionamiento. Si la distancia es inferior a 2 pulgadas (5 cm), se recomienda limitar el tiempo de exposición.

Warning! För att följa de regler för radiosändare som utfärdats enligt ANSI-standarden C95.1, rekommenderar vi att PC Card-adapterns inbyggda antenn befinner sig minst 5 cm från dig själv och andra personer när du använder en bärbar dator med PC Card-adapter under en längre tid. Om antennen befinner sig mindre än 5 cm från användaren, rekommenderar vi inte användning under längre tid.
Warning for Laptop Users
Declarations of Conformity and Regulatory Information

This appendix provides declarations of conformity and regulatory information for the Cisco Aironet Wireless LAN Client Adapters.

The following topics are covered in this appendix:

- Department of Communications – Canada, page C-3
- European Community, Switzerland, Norway, Iceland, and Liechtenstein, page C-4
- Declaration of Conformity for RF Exposure, page C-6
- Guidelines for Operating Cisco Aironet Wireless LAN Client Adapters in Japan, page C-6
- Administrative Rules for Cisco Aironet Wireless LAN Client Adapters in Taiwan, page C-7
- Declaration of Conformity Statements, page C-8
Manufacturer’s Federal Communication Commission Declaration of Conformity Statement

FCC Certification Number: LDK102040 (AIR-xxx35x), LDK102042 (AIR-MPI350), LDK102044 (AIR-CB20A)

Manufacturer: Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA

This device complies with Part 15 rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits of a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and radiates radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference. However, there is no guarantee that interference will not occur. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician.

Caution

The Part 15 radio device operates on a non-interference basis with other devices operating at this frequency when using integrated antennas or those listed in Table C-1. Any changes or modification to the product not expressly approved by Cisco could void the user’s authority to operate this device.

Caution

Within the 5.15-to-5.25-GHz band, UNII devices are restricted to indoor operations to reduce any potential for harmful interference to co-channel Mobile Satellite Systems (MSS) operations.
Department of Communications - Canada

Canadian Compliance Statement

This Class B Digital apparatus meets all the requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numerique de la classe B respecte les exigences du Reglement sur le material broilleur du Canada.

This device complies with Class B Limits of Industry Canada. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and

2. This device must accept any interference received, including interference that may cause undesired operation.

Cisco Aironet 2.4-GHz 11-Mbps client adapters are certified to the requirements of RSS-139-1 and RSS-210 for 2.4-GHz spread spectrum devices, and Cisco Aironet 5-GHz 54-Mbps client adapters are certified to the requirements of RSS-210 for 5-GHz devices. The use of these devices in a system operating either partially or completely outdoors may require the user to obtain a license for the system according to the Canadian regulations. For further information, contact your local Industry Canada office.

Table C-1 2.4-GHz Antennas

<table>
<thead>
<tr>
<th>Cisco Part Number</th>
<th>Model</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR-ANT3338</td>
<td>Parabolic dish</td>
<td>21</td>
</tr>
<tr>
<td>AIR-ANT1949</td>
<td>Yagi</td>
<td>13.5</td>
</tr>
<tr>
<td>AIR-ANT4121</td>
<td>Omni-directional</td>
<td>12.0</td>
</tr>
<tr>
<td>AIR-ANT3549</td>
<td>Patch</td>
<td>8.5</td>
</tr>
<tr>
<td>AIR-ANT2012</td>
<td>Spatial diversity</td>
<td>6.5</td>
</tr>
<tr>
<td>AIR-ANT1729</td>
<td>Patch</td>
<td>6.0</td>
</tr>
<tr>
<td>AIR-ANT2506</td>
<td>Omni-directional</td>
<td>5.1</td>
</tr>
<tr>
<td>AIR-ANT3213</td>
<td>Omni-directional</td>
<td>5.0</td>
</tr>
<tr>
<td>AIR-ANT1728</td>
<td>Omni-directional</td>
<td>5.0</td>
</tr>
<tr>
<td>AIR-ANT3195</td>
<td>Patch</td>
<td>3.0</td>
</tr>
<tr>
<td>AIR-ANT4941</td>
<td>Dipole</td>
<td>2.2</td>
</tr>
<tr>
<td>AIR-ANT5959</td>
<td>Omni-directional</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Note

AIR-ANT3338 is approved for use only with LM cards.
European Community, Switzerland, Norway, Iceland, and Liechtenstein

Declaration of Conformity with Regard to the R&TTE Directive 1999/5/EC

<table>
<thead>
<tr>
<th>Language</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>This equipment is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Dieses Gerät entspricht den grundlegenden Anforderungen und den weiteren entsprechenden Vorgaben der Richtlinie 1999/5/EU.</td>
</tr>
<tr>
<td>Dansk</td>
<td>Dette udstyr er i overensstemmelse med de væsentlige krav og andre relevante bestemmelser i Direktiv 1999/5/EF.</td>
</tr>
<tr>
<td>Español</td>
<td>Este equipo cumple con los requisitos esenciales así como con otras disposiciones de la Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Ελληνας</td>
<td>Αυτός ο εξοπλισμός συμμορφώνεται με τις ουσιώδεις απαιτήσεις και τις λοιπές διατάξεις της Οδηγίας 1999/5/ΕΚ.</td>
</tr>
<tr>
<td>Français</td>
<td>Cet appareil est conforme aux exigencies essentielles et aux autres dispositions pertinentes de la Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Íslenska</td>
<td>Þessi búnaður samrýmist lögboðnum kröfum og öðrum ákvæðum tilskipunar 1999/5/ESB.</td>
</tr>
<tr>
<td>Italiano</td>
<td>Questo apparato è conforme ai requisiti essenziali ed agli altri principi sanciti dalla Direttiva 1999/5/EC.</td>
</tr>
<tr>
<td>Nederlands</td>
<td>Deze apparatuur voldoet aan de belangrijkste eisen en andere voorzieningen van richtlijn 1999/5/EC.</td>
</tr>
<tr>
<td>Norsk</td>
<td>Dette utstyret er i samsvar med de grunnleggende krav og andre relevante bestemmelser i EU-directiv 1999/5/EC.</td>
</tr>
<tr>
<td>Português</td>
<td>Este equipamento satisfaz os requisitos essenciais e outras provisões da Directiva 1999/5/EC.</td>
</tr>
<tr>
<td>Suomalainen</td>
<td>Tämä laite täyttää direkttivin 1999/5/EY oleelliset vaatimukset ja on siinä asetettujen muidenkin ehtojen mukainen.</td>
</tr>
<tr>
<td>Svenska</td>
<td>Denna utrustning är i överensstämme med de väsentliga kraven och andra relevanta bestämmelser i Direktiv 1999/5/EC.</td>
</tr>
</tbody>
</table>
2.4-GHz Client Adapters

For the 350 series, the following standards were applied:

- Radio: EN 300.328-1, EN 300.328-2
- EMC: EN 301 489-1, EN 301 489-17
- Safety: EN 60950

The following CE mark is affixed to the 350 series equipment (except for the 350 series mini PCI card, or AIR-MPI350):

![CE mark]

The above CE mark is required as of April 8, 2000 but might change in the future.

The following CE mark is affixed to the 350 series mini PCI card (AIR-MPI350):

![CE mark]

Note

This equipment is intended to be used in all EU and EFTA countries. Outdoor use may be restricted to certain frequencies and/or may require a license for operation. For more details, contact your customer service representative.

Note

Combinations of power levels and antennas resulting in a radiated power level above 100 mW equivalent isotropic radiated power (EIRP) are considered as not compliant with the above mentioned directive and are not allowed for use within the European community and other countries that have adopted the European R&TTE directive 1999/5/EC or the CEPT recommendation Rec 70.03 or both. For more details on legal combinations of power levels and antennas, refer to the “Maximum Power Levels and Antenna Gains” section on page D-4.
5-GHz Client Adapters

For the 5-GHz client adapters, the following standards were applied:

- Radio: EN 301.893
- EMC: EN 301.489-1, EN 301.489-17
- Safety: EN 60950

The following CE mark is affixed to the 5-GHz equipment:

![CE mark]

Declaration of Conformity for RF Exposure

The radio module has been evaluated under FCC Bulletin OET 65C and found compliant to the requirements as set forth in CFR 47 Sections 2.1091, 2.1093, and 15.247 (b) (4) addressing RF Exposure from radio frequency devices.

Guidelines for Operating Cisco Aironet Wireless LAN Client Adapters in Japan

This section provides guidelines for avoiding interference when operating Cisco Aironet Wireless LAN Client Adapters in Japan. These guidelines are provided in both Japanese and English.

Japanese Translation

この機器の使用周波数帯では、電子レンジ等の産業・科学・医療用機器のほか工場の製造ライン等で使用されている移動体識別用の構内無線局（免許を要する無線局）及び特定小電力無線局（免許を要しない無線局）が運用されています。1. この機器を使用する前に、近くで移動体識別用の構内無線局及び特定小電力無線局が運用されていないことを確認して下さい。2. 万一、この機器から移動体識別用の構内無線局に対して電波干渉の事例が発生した場合には、速やかに使用周波数を変更するか又は電波の発射を停止した上で、下記連絡先にご連絡頂き、混信回避のための処置等（例えば、パーティションの設置等）についてご相談して下さい。3. その他、この機器から移動体識別用の特定小電力無線局に対して電波干渉の事例が発生した場合など何かお困りのことが起きたときは、次の連絡先へお問い合わせ下さい。

連絡先: 03-5549-6500
English Translation

This equipment operates in the same frequency bandwidth as industrial, scientific, and medical devices such as microwave ovens and mobile object identification (RF-ID) systems (licensed premises radio stations and unlicensed specified low-power radio stations) used in factory production lines.

1. Before using this equipment, make sure that no premises radio stations or specified low-power radio stations of RF-ID are used in the vicinity.

2. If this equipment causes RF interference to a premises radio station of RF-ID, promptly change the frequency or stop using the device; contact the number below and ask for recommendations on avoiding radio interference, such as setting partitions.

3. If this equipment causes RF interference to a specified low-power radio station of RF-ID, contact the number below.

Contact Number: 03-5549-6500

Administrative Rules for Cisco Aironet Wireless LAN Client Adapters in Taiwan

This section provides administrative rules for operating Cisco Aironet Wireless LAN Client Adapters in Taiwan. The rules are provided in both Chinese and English.

2.4- and 5-GHz Client Adapters

Chinese Translation

低功率電波輻射性電機管理辦法

第十四條 經型式認證合格之低功率射頻電機，非經許可，公司、商號或使用者均不得擅自變更頻率、加大功率或变更原設計之特性及功能。

第十七條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現象時，應立即停用，並改善至無干擾時方得繼續使用。前項合法通信，指依電信法規定作業之無線電信。

低功率射頻電機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。
English Translation

Administrative Rules for Low-power Radio-Frequency Devices:

Article 14
For those low-power radio-frequency devices that have already received a type-approval, companies, business units or users should not change its frequencies, increase its power or change its original features and functions.

Article 17
The operation of the low-power radio-frequency devices is subject to the condition that no harmful interference is caused to aviation safety and authorized radio station; and if interference is caused, the user must stop operating the device immediately and can't re-operate it until the harmful interference is clear.

The authorized radio station means a radio-communication service operating in accordance with COMMUNICATION ACT.

The operation of the low-power radio-frequency devices is subject to the interference caused by the operation of an authorized radio station, by another intentional or unintentional radiator, by industrial, scientific and medical (ISM) equipment, or by an incidental radiator.

5-GHz Client Adapters

Chinese Translation

本設備限於室內使用

English Translation

This equipment is limited for indoor use

Declaration of Conformity Statements

All the Declaration of Conformity statements related to this product can be found at the following URL:
http://www.ciscofax.com

Declaration of Conformity Statements for European Union Countries

The Declaration of Conformity statements for the European Union countries are listed below:
DECLARATION OF CONFORMITY

generated to EN 45014

Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
USA

Declare under our sole responsibility that the product,

AIR-CB20A-A-K9 / 5 GHz; 54 Mbps Wireless LAN Module (IEEE802.11a)

Fulfils the essential requirements of the Directives 1999/5/EC and 93/42/EEC.

The following standards were applied:

EMC EN 301.489-1: 2000-08; EN 301.489-17: 2000-09
EN 60601-1-2: 2001

Health & Safety EN60950: 1992+A1+A2+A3+A4

Radio Draft EN 301.893: 2002-07
(except for clause 4.6.3.1, see annex for details)

With regard to the Directive 93/42/EEC, the conformity procedure referred to in Article 11.5 and Annex VII has been followed.

With regard to the Directive 1999/5/EC, the conformity assessment procedure referred to in Article 10 and Annex IV has been followed in association with the notified body listed below:

Cetecom ICT Services GmbH, Saarbrucken - Germany

The product carries the CE Mark: CE 0682 A

Date & Place of Issue: 9 October 2003 - Paris

Signature:

Frank Dewachter
Manager Corporate Compliance EMEA
11, rue Camille Desmoulins
92782, Issy Les Moulineaux Cedex 9 France

DofC 236859rev2
DECLARATION OF CONFORMITY
with regard to the R&TTE Directive 1999/5/EC
according to EN 45014

Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
USA

Declare under our sole responsibility that the product,

AIR-LMC350 / 2.4 GHz 11 Mbps Wireless LAN Module
Variants: AIR-LMC351, AIR-LMC352, AIR-PCM350, AIR-PCM351, AIR-PCM352

Fulfils the essential requirements of Directive 1999/5/EC.

The following standards were applied:

EMC EN 301.489-1: 2000-08; EN 301.489-17: 2000-09
Health & Safety EN60950: 1992+A1+A2+A3+A4
Radio EN 300.328-1 and -2: 2000-7

The conformity assessment procedure referred to in Article 10 and Annex IV of Directive 1999/5/EC has been followed in association with the notified body listed below:

BelcomLab, Perronstraat 6, B 8400 Oostende – Belgium.

The product carries the CE Mark:

Date & Place of Issue: 30 July 2001 - Paris

Signature:

Frank Dewachter
Manager Corporate Compliance EMEA
11, rue Camille Desmoulins
92782, Issy Les Moulineaux Cedex 9 France

DofC 98741 rev1
DECLARATION OF CONFORMITY

with regard to the R&TTE Directive 1999/5/EC
according to EN 45014

Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
USA

Declare under our sole responsibility that the product,

AIR-PCI350 / 2.4 GHz 11 Mbps Wireless LAN Adapter (PCI)
Variants: AIR-PCI351, AIR-PCI352

Fulfils the essential requirements of Directive 1999/5/EC.

The following standards were applied:

EMC: EN 301.489-1: 2000-08; EN 301.489-17: 2000-09
Health & Safety: EN60950: 1992+A1+A2+A3+A4

The conformity assessment procedure referred to in Article 10 and Annex IV of Directive 1999/5/EC has been followed in association with the notified body listed below:

BelcomLab, Perronstraat 6, B 8400 Oostende – Belgium.

The product carries the CE Mark:

Date & Place of Issue: 24 January 2001 - Paris

Signature:

Frank Dewachter
Manager Corporate Compliance EMEA
11, rue Camille Desmoulins
92782, Issy Les Moulineaux Cedex 9 France

DofC 98742
Appendix C Declarations of Conformity and Regulatory Information

Declaration of Conformity Statements
This appendix lists the IEEE 802.11a and IEEE 802.11b channels supported by the world's regulatory domains as well as the maximum power levels and antenna gains allowed per domain.

The following topics are covered in this appendix:

- Channels, page D-2
- Maximum Power Levels and Antenna Gains, page D-4
Channels

IEEE 802.11a

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11a 20-MHz-wide channel are shown in Table D-1.

Table D-1 Channels for IEEE 802.11a

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (in MHz)</th>
<th>Americas (-A)</th>
<th>Japan (-J)</th>
<th>Singapore (-S)</th>
<th>Taiwan (-T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>5170</td>
<td>–</td>
<td>X</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>5180</td>
<td>X</td>
<td>–</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>38</td>
<td>5190</td>
<td>–</td>
<td>X</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>40</td>
<td>5200</td>
<td>X</td>
<td>–</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>42</td>
<td>5210</td>
<td>–</td>
<td>X</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>44</td>
<td>5220</td>
<td>X</td>
<td>–</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>46</td>
<td>5230</td>
<td>–</td>
<td>X</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>48</td>
<td>5240</td>
<td>X</td>
<td>–</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>52</td>
<td>5260</td>
<td>X</td>
<td>–</td>
<td>–</td>
<td>X</td>
</tr>
<tr>
<td>56</td>
<td>5280</td>
<td>X</td>
<td>–</td>
<td>–</td>
<td>X</td>
</tr>
<tr>
<td>60</td>
<td>5300</td>
<td>X</td>
<td>–</td>
<td>–</td>
<td>X</td>
</tr>
<tr>
<td>64</td>
<td>5320</td>
<td>X</td>
<td>–</td>
<td>–</td>
<td>X</td>
</tr>
<tr>
<td>149</td>
<td>5745</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>153</td>
<td>5765</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>157</td>
<td>5785</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>161</td>
<td>5805</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: All channel sets are restricted to indoor usage except the Americas (-A), which allows for indoor and outdoor use on channels 52 through 64 in the United States.
IEEE 802.11b

The channel identifiers, channel center frequencies, and regulatory domains of each IEEE 802.11b 22-MHz-wide channel are shown in Table D-2.

Table D-2 Channels for IEEE 802.11b

<table>
<thead>
<tr>
<th>Channel Identifier</th>
<th>Frequency (in MHz)</th>
<th>Regulatory Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Americas (-A)</td>
</tr>
<tr>
<td>1</td>
<td>2412</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>2417</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>2422</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>2427</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>2432</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>2437</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>2442</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>2447</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>2452</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>2457</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>2462</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>2467</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>2472</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>2484</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: Mexico is included in the Americas regulatory domain; however, channels 1 through 8 are for indoor use only while channels 9 through 11 can be used indoors and outdoors. Users are responsible for ensuring that the channel set configuration is in compliance with the regulatory standards of Mexico.
Maximum Power Levels and Antenna Gains

IEEE 802.11a

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table D-3 indicates the maximum power levels and antenna gains allowed for each IEEE 802.11a regulatory domain.

Table D-3 Maximum Power Levels Per Antenna Gain for IEEE 802.11a

<table>
<thead>
<tr>
<th>Regulatory Domain</th>
<th>Maximum Power Level (mW) with 6-dBi Antenna Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas (-A)</td>
<td></td>
</tr>
<tr>
<td>(160 mW EIRP maximum on channels 34-48, 800 mW EIRP maximum on channels 52-64)</td>
<td>20</td>
</tr>
<tr>
<td>Japan (-J)</td>
<td></td>
</tr>
<tr>
<td>(10 mW/MHz EIRP maximum)</td>
<td>20</td>
</tr>
<tr>
<td>Singapore (-S)</td>
<td></td>
</tr>
<tr>
<td>(100 mW EIRP maximum)</td>
<td>20</td>
</tr>
<tr>
<td>Taiwan (-T)</td>
<td></td>
</tr>
<tr>
<td>(800 mW EIRP maximum)</td>
<td>20</td>
</tr>
</tbody>
</table>

IEEE 802.11b

An improper combination of power level and antenna gain can result in equivalent isotropic radiated power (EIRP) above the amount allowed per regulatory domain. Table D-4 indicates the maximum power levels and antenna gains allowed for each IEEE 802.11b regulatory domain.

Table D-4 Maximum Power Levels Per Antenna Gain for IEEE 802.11b

<table>
<thead>
<tr>
<th>Regulatory Domain</th>
<th>Antenna Gain (dBi)</th>
<th>Maximum Power Level (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas (-A)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>(4 W EIRP maximum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>
Table D-4 Maximum Power Levels Per Antenna Gain for IEEE 802.11b (continued)

<table>
<thead>
<tr>
<th>Regulatory Domain</th>
<th>Antenna Gain (dBi)</th>
<th>Maximum Power Level (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEA (-E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100 mW EIRP maximum)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Israel (-I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100 mW EIRP maximum)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Japan (-J)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10 mW/MHz EIRP maximum)</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Configuring the Client Adapter through the Windows XP Operating System

This appendix explains how to configure and use the client adapter with Windows XP.

The following topics are covered in this appendix:

- Overview, page E-2
- Configuring the Client Adapter, page E-5
- Enabling Wi-Fi Multimedia, page E-19
- Associating to an Access Point Using Windows XP, page E-21
- Viewing the Current Status of Your Client Adapter, page E-21
Overview

This appendix provides instructions for minimally configuring the client adapter through Windows XP (instead of through ACU) as well as for enabling one of the security options that are available for use with this operating system. The “Overview of Security Features” section below describes each of these options so that you can make an informed decision before you begin the configuration process.

In addition, the appendix also provides basic information on using Windows XP to specify the networks to which the client adapter associates and to view the current status of your client adapter.

Note

If you require more information about configuring or using your client adapter with Windows XP, refer to Microsoft’s documentation for Windows XP.

Overview of Security Features

When you use your client adapter with Windows XP, you can protect your data as it is transmitted through your wireless network by encrypting it through the use of wired equivalent privacy (WEP) encryption keys. With WEP encryption, the transmitting device encrypts each packet with a WEP key, and the receiving device uses that same key to decrypt each packet.

The WEP keys used to encrypt and decrypt transmitted data can be statically associated with your adapter or dynamically created as part of the EAP authentication process. The information in the “Static WEP Keys” and “EAP (with Dynamic WEP Keys)” sections below can help you to decide which type of WEP keys you want to use. Dynamic WEP keys with EAP offer a higher degree of security than static WEP keys.

WEP keys, whether static or dynamic, are either 40 or 128 bits in length. 128-bit WEP keys offer a greater level of security than 40-bit WEP keys.

Static WEP Keys

Each device within your wireless network can be assigned up to four static WEP keys. If a device receives a packet that is not encrypted with the appropriate key (as the WEP keys of all devices that are to communicate with each other must match), the device discards the packet and never delivers it to the intended receiver.

Static WEP keys are write-only and temporary; therefore, they cannot be read back from the client adapter, and they are lost when power to the adapter is removed or the Windows device is rebooted. Although the keys are temporary, you do not need to re-enter them each time the client adapter is inserted or the Windows device is rebooted. This is because the keys are stored (in an encrypted format for security reasons) in the registry of the Windows device. When the driver loads and reads the client adapter’s registry parameters, it also finds the static WEP keys, unencrypts them, and stores them in volatile memory on the adapter.

EAP (with Dynamic WEP Keys)

The new standard for wireless LAN security, as defined by the Institute of Electrical and Electronics Engineers (IEEE), is called 802.1X for 802.11, or simply 802.1X. An access point that supports 802.1X and its protocol, Extensible Authentication Protocol (EAP), acts as the interface between a wireless client and an authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) server, to which the access point communicates over the wired network.
Overview

Three 802.1X authentication types are available when configuring your client adapter through Windows XP:

- **EAP-TLS**—This authentication type is enabled or disabled through the operating system and uses a dynamic session-based WEP key, which is derived from the client adapter and RADIUS server, to encrypt data.

 RADIUS servers that support EAP-TLS include Cisco Secure ACS version 3.0 or later and Cisco Access Registrar version 1.8 or later.

 Note EAP-TLS requires the use of a certificate. Refer to Microsoft’s documentation for information on downloading and installing the certificate.

- **Protected EAP** (or PEAP)—PEAP authentication is designed to support One-Time Password (OTP), Windows NT or 2000 domain, and LDAP user databases over a wireless LAN. It is based on EAP-TLS authentication but uses a password or PIN instead of a client certificate for authentication. PEAP is enabled or disabled through the operating system and uses a dynamic session-based WEP key, which is derived from the client adapter and RADIUS server, to encrypt data. If your network uses an OTP user database, PEAP requires you to enter either a hardware token password or a software token PIN to start the EAP authentication process and gain access to the network. If your network uses a Windows NT or 2000 domain user database or an LDAP user database (such as NDS), PEAP requires you to enter your username, password, and domain name in order to start the authentication process.

 RADIUS servers that support PEAP authentication include Cisco Secure ACS version 3.1 or later and Cisco Access Registrar version 3.5 or later.

 Note To use PEAP authentication, you must install the PEAP supplicant during installation or Windows XP Service Pack 1. This Service Pack includes Microsoft’s PEAP supplicant, which supports a Windows username and password only and does not interoperate with Cisco’s PEAP supplicant. To use Cisco’s PEAP supplicant, install ACU after Windows XP Service Pack 1. Otherwise, Cisco’s PEAP supplicant is overwritten by Microsoft’s PEAP supplicant.

- **EAP-SIM**—EAP-SIM authentication is designed for use in public wireless LANs and requires clients equipped with PCSC-compliant smartcard readers. The EAP-SIM supplicant included in the Install Wizard file supports only Gemplus SIM+ cards; however, an updated supplicant is available that supports standard GSM-SIM cards as well as more recent versions of the EAP-SIM protocol. The new supplicant is available for download from Cisco.com at the following URL:

 http://www.cisco.com/cgi-bin/tablebuild.pl/access-registrar-encrypted

 Please note that the above requirements are necessary but not sufficient to successfully perform EAP-SIM authentication. Typically, you are also required to enter into a service contract with a WLAN service provider, who must support EAP-SIM authentication in its network. Also, while your PCSC smartcard reader may be able to read standard GSM-SIM cards or chips, EAP-SIM authentication usually requires your GSM cell phone account to be provisioned for WLAN service by your service provider.

 EAP-SIM is enabled or disabled through the operating system and uses a dynamic session-based WEP key, which is derived from the client adapter and RADIUS server, to encrypt data. EAP-SIM requires you to enter a user verification code, or PIN, for communication with the SIM card. You can choose to have the PIN stored in your computer or to be prompted to enter it after a reboot or prior to every authentication attempt.
RADIUS servers that support EAP-SIM include Cisco Access Registrar version 3.0 or later. When you enable Require EAP on your access point and configure your client adapter for EAP-TLS, PEAP, or EAP-SIM using Windows XP, authentication to the network occurs in the following sequence:

1. The client adapter associates to an access point and begins the authentication process.

| Note | The client does not gain full access to the network until authentication between the client and the RADIUS server is successful. |

2. Communicating through the access point, the client and RADIUS server complete the authentication process, with the password (PEAP), certificate (EAP-TLS), or internal key stored on the SIM card and in the service provider’s Authentication Center (EAP-SIM) being the shared secret for authentication. The password or internal key is never transmitted during the process.

3. If authentication is successful, the client and RADIUS server derive a dynamic, session-based WEP key that is unique to the client.

4. The RADIUS server transmits the key to the access point using a secure channel on the wired LAN.

5. For the length of a session, or time period, the access point and the client use this key to encrypt or decrypt all unicast packets (and broadcast packets if the access point is set up to do so) that travel between them.

| Note | Refer to the IEEE 802.11 Standard for more information on 802.1X authentication and to the following URL for additional information on RADIUS servers: http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/secur_c/scprt2/scrad.htm |

Wi-Fi Protected Access (WPA)

Wi-Fi Protected Access (WPA) is a standards-based, interoperable security enhancement that greatly increases the level of data protection and access control for existing and future wireless LAN systems. It is derived from and will be compatible with the upcoming IEEE 802.11i standard. WPA leverages Temporal Key Integrity Protocol (TKIP) and Michael message integrity check (MIC) for data protection and 802.1X for authenticated key management.

WPA supports two mutually exclusive key management types: WPA and WPA-Pre-shared key (WPA-PSK). Using WPA key management, clients and the authentication server authenticate to each other using an EAP authentication method, and the client and server generate a pairwise master key (PMK). Using WPA, the server generates the PMK dynamically and passes it to the access point. Using WPA-PSK, however, you configure a pre-shared key on both the client and the access point, and that pre-shared key is used as the PMK.

Windows XP Service Pack 1 and Microsoft support patch 815485 must be installed in order to use WPA. They can be downloaded from the following URLs:

Only 350 series and CB20A cards that are running EAP authentication can be used with WPA. WPA must also be enabled on the access point.

Note

Access points must use Cisco IOS Release 12.2(11)JA or later to enable WPA. Refer to the documentation for your access point for instructions on enabling this feature.

Configuring the Client Adapter

Follow these steps to configure your client adapter using Windows XP.

Note

If you installed ACU but intend to use Windows XP to configure the client adapter, open ACU and make sure the **Use Another Application to Configure My Wireless Settings** option is selected on the Select Profile screen.

Note

These instructions assume you are using the following:
- Windows XP Service Pack 1 and Microsoft support patch 815485
- Windows XP’s classic view rather than its category view

If you do not use Service Pack 1 and the 815485 support patch, the screens you see will look different than those shown in this section. Refer to version OL-1394-06 of this manual if you need instructions on configuring a client adapter through Windows XP without these software upgrades.

1. **Step 1**
 Make sure the client adapter’s firmware and driver have been installed and the client adapter is inserted in the Windows XP device.

2. **Step 2**
 Double-click **My Computer**, **Control Panel**, and **Network Connections**.

3. **Step 3**
 Right-click **Wireless Network Connection**.

4. **Step 4**
 Click **Properties**. The Wireless Network Connection Properties screen appears.

5. **Step 5**
 Choose the **Wireless Networks** tab. The following screen appears (see **Figure E-1**).
Figure E-1 Wireless Network Connection Properties Screen (Wireless Networks Tab)

Step 6 Make sure that the Use Windows to configure my wireless network settings check box is checked.

Step 7 Click the SSID of the access point to which you want the client adapter to associate from the list of available networks and click Configure. If the SSID of the access point you want to use is not listed or you are planning to operate the client adapter in an ad hoc network (a computer-to-computer network without access points), click Add.

Note The Allow Broadcast SSID to Associate option on the access point must be enabled for the SSID to appear in the list of available networks.

The Wireless Network Properties screen appears (see Figure E-2).
Figure E-2 Wireless Network Properties Screen (Association Tab)

Step 8 Perform one of the following:

- If you chose an SSID from the list of available networks, make sure the SSID appears in the Network name (SSID) field.
- If you clicked Add, enter the case-sensitive SSID of the access point or the ad hoc network to which you want the client adapter to associate in the Network name (SSID) field.

Step 9 Check the **This is a computer-to-computer (ad hoc mode) network; wireless access points are not used** check box at the bottom of the screen if you are planning to operate the client adapter in an ad hoc network.

Step 10 Choose one of the following options from the Network Authentication drop-down list:

- **Open**—Enables your client adapter, regardless of its WEP settings, to authenticate and attempt to communicate with an access point. This option is recommended if you want to use static WEP or EAP authentication without WPA.
- **Shared**—Enables your client adapter to communicate only with access points that have the same WEP key. Cisco recommends that shared key authentication not be used because it presents a security risk.
EAP-TLS does not work with shared key authentication because shared key authentication requires the use of a WEP key, and a WEP key is not set for EAP-TLS until after the completion of EAP authentication.

- **WPA**—Enables WPA, which enables your client adapter to associate to access points using WPA.
- **WPA-PSK**—Enables WPA Pre-shared key (WPA-PSK), which enables your client adapter to associate to access points using WPA-PSK.
- **WPA-None**—Enables WPA for your client adapter when the client is set for ad hoc mode.

Refer to the “Wi-Fi Protected Access (WPA)” section on page E-4 for more information on WPA and WPA-PSK.

Step 11

Choose one of the following options from the Data encryption drop-down list:

- **Disabled**—Disables data encryption for your client adapter. This option is available only when Open or Shared has been selected for Network Authentication.
- **WEP**—Enables static or dynamic WEP for your client adapter. This option is recommended for use with open authentication.
- **TKIP**—Enables Temporal Key Integrity Protocol (TKIP) for your client adapter. This option is recommended for use with WPA and WPA-PSK.

Step 12

Follow these steps to enter a static WEP key if you are planning to use static WEP.

- Make sure the The key is provided for me automatically check box is unchecked.
- Obtain the WEP key for the access point (in an infrastructure network) or other clients (in an ad hoc network) from your system administrator and enter it in both the Network key and Confirm network key fields. Follow the guidelines below to enter a new static WEP key:
 - WEP keys must contain the following number of characters:
 - 10 hexadecimal characters or 5 ASCII text characters for 40-bit keys
 Example: 5A5A313859 (hexadecimal) or ZZ18Y (ASCII)
 - 26 hexadecimal characters or 13 ASCII text characters for 128-bit keys
 Example: 5A583135333554595549333534 (hexadecimal) or ZX1535TYUI354 (ASCII)

You must enter hexadecimal characters for 5-GHz client adapters if these adapters will be used with Cisco Aironet 1200 Series Access Points.

- Your client adapter’s WEP key must match the WEP key used by the access point (in infrastructure mode) or clients (in ad hoc mode) with which you are planning to communicate.
c. In the Key index (advanced) field, choose the number of the WEP key you are creating (1, 2, 3, or 4).

 Note The WEP key must be assigned to the same number on both the client adapter and the access point (in an infrastructure network) or other clients (in an ad hoc network).

d. Click OK to save your settings and to add this SSID to the list of preferred networks (see Figure E-1). The configuration is complete for static WEP. The client adapter automatically attempts to associate to the network(s) in the order in which they are listed.

Step 13 If you enabled WPA-PSK or WPA-None, obtain the pre-shared key for the access point (in an infrastructure network) or other clients (in an ad hoc network) from your system administrator and enter it in both the Network key and Confirm network key fields. Follow the guidelines below to enter a pre-shared key:

- Pre-shared keys must contain 8 to 63 ASCII text characters or 64 hexadecimal characters.

 Note You must enter hexadecimal characters for 5-GHz client adapters if these adapters will be used with Cisco Aironet 1200 Series Access Points.

- Your client adapter’s pre-shared key must match the pre-shared key used by the access point (in infrastructure mode) or clients (in ad hoc mode) with which you are planning to communicate.

Step 14 Check the **The key is provided for me automatically** check box if you are planning to use EAP-TLS, PEAP, or EAP-SIM, which uses dynamic WEP keys.

 Note This parameter is not available if you enabled WPA or WPA-PSK.

Step 15 Perform one of the following if you are planning to use EAP authentication:

- If you are planning to use EAP-TLS authentication, follow the instructions in the “Enabling EAP-TLS Authentication” section below.

- If you are planning to use PEAP authentication, follow the instructions in the “Enabling PEAP Authentication” section on page E-13.

- If you are planning to use EAP-SIM authentication, follow the instructions in the “Enabling EAP-SIM Authentication” section on page E-16.
Enabling EAP-TLS Authentication

Follow these steps to prepare the client adapter to use EAP-TLS authentication, provided you have completed the initial configuration.

Step 1 Click the **Authentication** tab on the Wireless Network Properties screen. The following screen appears (see Figure E-3).

Figure E-3 Wireless Network Properties Screen (Authentication Tab)

- **Step 2** Check the **Enable IEEE 802.1x authentication for this network** check box if you did not enable WPA or WPA-PSK on the Association screen.
- **Step 3** For EAP type, choose **Smart Card or other Certificate**.
- **Step 4** Click **Properties**. The Smart Card or Other Certificate Properties screen appears (see Figure E-4).
Step 5: Choose the **Use a certificate on this computer** option.

Step 6: Check the **Use simple certificate selection (Recommended)** check box.

Step 7: Check the **Validate server certificate** check box if server certificate validation is required.

Step 8: If you want to specify the name of the server to connect to, check the **Connect to these servers** check box and enter the server name in the field below.

Note
If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note
If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.
Step 9 In the Trusted Root Certification Authorities field, check the check box beside the name of the certificate authority from which the server certificate was downloaded.

Note If you leave all check boxes unchecked, you are prompted to accept a connection to the root certification authority during the authentication process.

Step 10 Click OK three times to save your settings. The configuration is complete.

Step 11 If a pop-up message appears above the system tray informing you that you need to accept a certificate to begin the EAP authentication process, click the message and follow the instructions provided to accept the certificate.

Note You should not be prompted to accept a certificate for future authentication attempts. After you accept one, the same certificate is used subsequently.

Step 12 If a message appears indicating the root certification authority for the server’s certificate, and it is the correct certification authority, click OK to accept the connection. Otherwise, click Cancel.

Step 13 If a message appears indicating the server to which your client adapter is connected, and it is the correct server to connect to, click OK to accept the connection. Otherwise, click Cancel.

The client adapter should now EAP authenticate.

Note Whenever the computer reboots and you enter your Windows username and password, the EAP authentication process begins automatically and the client adapter should EAP authenticate.

Step 14 To verify authentication, double-click My Computer, Control Panel, and Network Connections. The status appears to the right of your Wireless Network Connection. Click View and Refresh to obtain the current status. If the client adapter is authenticated, the status reads Authentication succeeded.
Enabling PEAP Authentication

Follow these steps to prepare the client adapter to use PEAP authentication, provided you have completed the initial configuration.

Step 1
Click the Authentication tab on the Wireless Network Properties screen. The following screen appears (see Figure E-5).

Figure E-5 Wireless Network Properties Screen (Authentication Tab)

Step 2
Check the Enable IEEE 802.1x authentication for this network check box if you did not enable WPA or WPA-PSK on the Association screen.

Step 3
For EAP type, choose PEAP. Click Properties. The PEAP Properties screen appears (see Figure E-6).
Step 4 Check the Validate server certificate check box if server certificate validation is required (recommended).

Step 5 If you want to specify the name of the server to connect to, check the Connect only if server name ends with check box and enter the appropriate server name suffix in the field below.

Note If you enter a server name and the client adapter connects to a server that does not match the name you entered, you are prompted to accept or cancel the connection during the authentication process.

Note If you leave this field blank, the server name is not verified, and a connection is established as long as the certificate is valid.

Step 6 Make sure that the name of the certificate authority from which the server certificate was downloaded appears in the Trusted root certificate authority (CA) field. If necessary, click the arrow on the drop-down menu and choose the appropriate name.

Note If you leave this field blank, you are prompted to accept a connection to the root certification authority during the authentication process.

Step 7 Check the Connect only if server is signed by specified trusted root CA check box if you want to ensure that the certificate server uses the trusted root certificate specified in the field above. This prevents the client from establishing connections to rogue access points.
Step 8 Perform one of the following:

- Check the **Always try to resume secure session** check box if you want the PEAP protocol to always attempt to resume the previous session before prompting you to re-enter your credentials.

- Uncheck the **Always try to resume secure session** check box if you want to be prompted to re-enter your username and password whenever your client adapter’s radio becomes disassociated (for example, when the card is ejected, the radio is turned off, you wander out of range of an access point, you switch profiles, and so on).

 Note Checking this check box gives you the convenience of not having to re-enter your username and password when your client adapter experiences momentary losses of association. The PEAP Session Timeout setting on the Cisco Secure ACS System Configuration - Global Authentication Setup screen controls how long the resume feature is active (that is, the amount of time during which the PEAP session can be resumed without re-entering user credentials). If you leave your device unattended during this timeout period, be aware that someone can resume your PEAP session and access the network.

Step 9 Currently Generic Token Card is the only second phase EAP type available. Click **Properties**. The Generic Token Card Properties screen appears (see Figure E-7).

Figure E-7 Generic Token Card Properties Screen

Step 10 Choose either the **Static Password** (Windows NT/2000, LDAP) or the **One Time Password** option, depending on your user database.
Configuring the Client Adapter through the Windows XP Operating System

Appendix E

Configuring the Client Adapter through the Windows XP Operating System

Step 11 Perform one of the following:

- If you selected the **Static Password (Windows NT/2000, LDAP)** option in **Step 10**, go to **Step 12**.
- If you selected the **One Time Password** option in **Step 10**, check one or both of the following check boxes to specify the type of tokens that will be supported for one-time passwords:

 - **Support Hardware Token**—A hardware token device obtains the one-time password. You must use your hardware token device to obtain the one-time password and enter the password when prompted for your user credentials.

 - **Support Software Token**—The PEAP supplicant works with a software token program to retrieve the one-time password. You have to enter only the PIN, not the one-time password. If you check this check box, you must also choose from the Supported Type drop-down box the software token software that is installed on the client (such as Secure Computing SofToken Version 1.3, Secure Computing SofToken II 2.0, or RSA SecurID Software Token v 2.5), and if Secure Computing SofToken Version 1.3 is selected, you must find the software program path using the Browse button.

 Note The SofToken Program Path field is unavailable if a software token program other than Secure Computing SofToken Version 1.3 is selected.

Step 12 Click **OK** four times to save your settings. The configuration is complete.

Step 13 Refer to the “Using PEAP” section on page 6-23 for instructions on authenticating using PEAP.

Enabling EAP-SIM Authentication

Follow these steps to prepare the client adapter to use EAP-SIM authentication, provided you have completed the initial configuration.

Step 1 Click the **Authentication** tab on the Wireless Network Properties screen. The following screen appears (see Figure E-8).
Step 2 Check the **Enable IEEE 802.1x authentication for this network** check box if you did not enable WPA or WPA-PSK on the Association screen.

Step 3 For EAP type, choose **SIM Authentication**.

Step 4 Click **Properties**. The SIM Authentication Properties screen appears (see Figure E-9).
Step 5 To access any resources (data or commands) on the SIM, the EAP-SIM supplicant must provide a valid PIN to the SIM card, which must match the PIN stored on the SIM. Choose one of the following options to specify how the EAP-SIM supplicant should handle the SIM card’s PIN:

- **Ask for my PIN once after I turn my computer on (recommended)** — The software does not permanently store the PIN. It prompts you for the PIN once, on the first authentication of every session, where a session is defined as the time between power-up and shutdown or reboot.

- **Ask for my PIN every time the network asks for authentication** — The software never stores the PIN; it prompts you for the PIN every time an EAP-SIM authentication is performed. This option is not recommended if your client will be roaming between access points or if session timeouts are implemented (such as for accounting and security purposes).

- **Let me give my PIN to the computer now and never ask me again; PIN will be encrypted and stored on computer (not recommended)** — You need to enter the PIN only once, in the Enter PIN edit box below this option. The software stores the PIN in the registry and retrieves it from there when required. If you choose this option, you must enter the PIN now. The PIN is validated when an authentication attempt is made.

Note This option is not recommended because it enables others to use the SIM without knowing the PIN.
Enabling Wi-Fi Multimedia

Wi-Fi Multimedia (WMM) is a component of the IEEE 802.11e wireless LAN standard for quality of service (QoS). It specifically supports priority tagging and queuing. QoS is an access point feature that enables networking professionals to provide preferential treatment to certain traffic at the expense of other traffic. Without QoS, the access point offers best-effort service to each packet, regardless of the packet contents or size. Implementing QoS in a wireless LAN makes network performance more predictable and bandwidth usage more effective.

Cisco recommends that you enable WMM if your computer is running a time-sensitive application for QoS-aware clients such as voice or video (for example, Cisco IP SoftPhone).

QoS and WMM must be enabled on the access point to which the client will associate. These features are supported on the access point in Cisco IOS Release 12.3(2)JA or later. Refer to the documentation for your access point for instructions on enabling these features.

WMM is supported automatically in client adapter firmware version 5.60.08, PC/LM/PCI card driver version 8.6, and mini PCI/CB20A card driver version 3.9, which are included in Install Wizard version 1.5 or later. However, you must enable the Windows QoS Packet Scheduler to ensure WMM support.

Step 6

Click **OK** three times to save your settings. The configuration is complete.

If you chose to store the PIN in the computer’s registry, the EAP authentication process begins automatically, and the client adapter should EAP authenticate and use the saved PIN to access the SIM card.

Note

If the stored PIN is wrong and therefore rejected by the SIM, the EAP-SIM supplicant temporarily changes the prompt mode to the default setting (Ask for my PIN once after I turn my computer on) in order to prevent the SIM from locking up. Unless changed manually, this setting stays in effect until your computer is powered off. Change your stored PIN on the SIM Authentication Properties screen.

If you chose to be prompted for the PIN after a power-up or reboot or at every authentication request, a pop-up message appears above the Windows system tray informing you that you need to enter your credentials to access the network. Click the message, enter your PIN, and click **OK**. The client adapter should now EAP authenticate.

Step 7

To verify authentication, double-click **My Computer**, **Control Panel**, and **Network Connections**. The status appears to the right of your Wireless Network Connection. Click **View** and **Refresh** to obtain the current status. If the client adapter is authenticated, the status reads **Authentication succeeded**.

Note

ACU and the Windows Wireless Network Connection icon in the Windows XP system tray may indicate a connection status when authentication is still in the pending state or the authentication server fails to respond.
Follow these steps to enable the QoS Packet Scheduler on a computer running Windows XP.

Step 1 Double-click **Control Panel**.
Step 2 Click **Network Connections**.
Step 3 Right-click your wireless network connection.
Step 4 Click **Properties**. The Wireless Network Connection Properties screen appears (see **Figure E-10**).

Figure E-10 Wireless Network Connection Properties Screen

![Wireless Network Connection Properties Screen](image)

Step 5 Check the **QoS Packet Scheduler** check box, which appears in the list of items that this connection uses.
Step 6 Click **OK**.
Associating to an Access Point Using Windows XP

Windows XP causes the client adapter’s driver to automatically attempt to associate to the first network in the list of preferred networks (see Figure E-1). If the adapter fails to associate or loses association, it automatically switches to the next network in the list of preferred networks. The adapter does not switch networks as long as it remains associated to the access point. To force the client adapter to associate to a different access point, you must choose a different network from the list of available networks (and click Configure and OK).

Viewing the Current Status of Your Client Adapter

To view the status of your client adapter, click the icon of the two connected computers in the Windows system tray. The Wireless Network Connection Status screen appears (see Figure E-11).

Figure E-11 Wireless Network Connection Status Screen
Viewing the Current Status of Your Client Adapter
Performing a Site Survey

This appendix explains how ACU’s site survey tool can be used when conducting a site survey. The following topics are covered in this appendix:

- Overview, page F-2
- Specifying Signal Strength Units, page F-3
- Using Passive Mode, page F-3
- Using Active Mode, page F-7
- Forcing the Client Adapter to Reassociate, page F-13
Overview

Note
This appendix applies only to people who are responsible for conducting a site survey to determine the best placement of infrastructure devices within a wireless network.

ACU’s site survey tool can assist you in conducting a site survey. The tool operates at the RF level and is used to determine the best placement and coverage (overlap) for your network’s infrastructure devices. During a site survey, the current status of the network is read from the client adapter and displayed four times per second so you can accurately gauge network performance. The feedback that you receive can help you to eliminate areas of low RF signal levels that can result in a loss of connection between the client adapter and its associated access point (or other infrastructure device).

The site survey tool can be operated in two modes:

- **Passive Mode**—This is the default site survey mode. It does not initiate any RF network traffic; it simply listens to the traffic that the client adapter hears and displays the results. Follow the instructions in the “Using Passive Mode” section on page F-3 to activate the passive mode.

- **Active Mode**—This mode causes the client adapter to actively send or receive low-level RF packets to or from its associated access point and provides information on the success rate. It also enables you to set parameters governing how the site survey is performed (such as the data rate). Follow the instructions in the “Using Active Mode” section on page F-7 to activate the active mode.

Guidelines

Keep the following guidelines in mind when preparing to perform a site survey:

- Perform the site survey when the RF link is functioning with all other systems and noise sources operational.
- Execute the site survey entirely from the mobile station.
- When using the active mode, conduct the site survey with all variables set to operational values.

Additional Information

Also consider the following operating and environmental conditions when performing a site survey:

- **Data rates**—Sensitivity and range are inversely proportional to data bit rates. Therefore, the maximum radio range is achieved at the lowest workable data rate, and a decrease in receiver threshold sensitivity occurs as the radio data increases.

- **Antenna type and placement**—Proper antenna configuration is a critical factor in maximizing radio range. As a general rule, range increases in proportion to antenna height.

- **Physical environment**—Clear or open areas provide better radio range than closed or filled areas. Also, the less cluttered the work environment, the greater the range.
Obstructions—A physical obstruction such as metal shelving or a steel pillar can hinder the performance of wireless devices. Avoid placing these devices in a location where a metal barrier is between the sending and receiving antennas.

Building materials—Radio penetration is greatly influenced by the building material used in construction. For example, drywall construction allows greater range than concrete blocks, and metal or steel construction is a barrier to radio signals.

Note
Refer to the documentation for your infrastructure device for additional information on factors affecting placement.

Specifying Signal Strength Units

Follow these steps to specify how signal strength units are displayed on the site survey screens.

Step 1 Open ACU.
Step 2 Click the Preferences icon or choose Preferences from the Options drop-down menu. The Aironet Client Utility Preferences screen appears.
Step 3 Under Signal Strength Display Units, choose one of the following options:
 • Percent—Displays the signal strength as a percentage.
 • dBm—Displays the signal strength in decibels with respect to milliwatts.
Step 4 Click OK to save your changes.

Using Passive Mode

Step 1 Open ACU; then click the Site Survey icon or choose Site Survey from the Commands drop-down menu. The Site Survey - Passive Mode screen appears, provided a client adapter is installed in your computer and is running.

Figure F-1 shows the Site Survey - Passive Mode screen with the signal strength values displayed as percentages, and Figure F-2 shows the top of the same screen with the signal strength values displayed in dBm.

Note
The name of the current profile appears in parentheses at the top of the screen.
Using Passive Mode

Figure F-1 Site Survey - Passive Mode Screen (with Signal Strength as a Percentage)

- **Signal Strength**: 97%
- **Signal Quality**: 84%
- **Link Speed**: 11 Mbps
- **Overall Link Quality**: Excellent
- **Associated Access Point**: AP340-3836b7
- **Access Point IP Address**: 0.0.0.0
- **Channel (Frequency)**: 6 (2437 MHz)

Figure F-2 Top of Site Survey - Passive Mode Screen (with Signal Strength in dBm)

- **Signal Strength**: > -45 dBm
- **Noise Level**: -90 dBm
- **Link Speed**: 11 Mbps
- **Signal to Noise Ratio**: 44 dB
Table F-1 interprets the information that is displayed on the Site Survey - Passive Mode screen.

Table F-1 Site Survey Passive Mode Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Strength</td>
<td>The signal strength for all received packets. The higher the value and the more green the bar graph is, the stronger the signal. The histogram below the bar graph provides a visual interpretation of the current signal strength. Differences in signal strength are indicated by the following colors: green (strongest), yellow (middle of the range), and red (weakest).</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 100% or –95 to –45 dBm</td>
</tr>
<tr>
<td>Note</td>
<td>This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed as a percentage. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Quality (2.4-GHz client adapters)</td>
<td>The signal quality for all received packets. The higher the value and the more green the bar graph is, the clearer the signal. The histogram below the bar graph provides a visual interpretation of the current signal quality. Differences in signal quality are indicated by the following colors: green (highest quality), yellow (average), and red (lowest quality).</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>Note</td>
<td>This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed as a percentage. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Level (2.4-GHz client adapters)</td>
<td>The level of background radio frequency energy in the 2.4-GHz band. The lower the value and the more green the bar graph is, the less background noise present. The histogram below the bar graph provides a visual interpretation of the current level of background noise. Differences in background noise level are indicated by the following colors: green (low noise), yellow (middle of the range), and red (high noise).</td>
</tr>
<tr>
<td>Range:</td>
<td>–100 to –45 dBm</td>
</tr>
<tr>
<td>Note</td>
<td>This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacons Received (5-GHz client adapters)</td>
<td>The percentage of beacon packets received versus those expected to be received. The higher the value and the more green the bar graph is, the clearer the signal.</td>
</tr>
<tr>
<td>Example:</td>
<td>The access point sends out 10 beacons per second, so you would expect the client adapter to receive 50 beacon packets in 5 seconds. If it receives only 40 packets, the percentage of beacons received would be 80%.</td>
</tr>
<tr>
<td>Range:</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>Note</td>
<td>This setting appears only for 5-GHz client adapters.</td>
</tr>
</tbody>
</table>
Table F-1 Site Survey Passive Mode Statistics (continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Speed</td>
<td>In passive mode, the site survey tool monitors transmitted network traffic, and the data rate reflects the rate at which the packets are being transmitted. The Link Speed histogram provides a visual interpretation of the current rate at which your client adapter is transmitting packets. Differences in link speed are indicated by the following colors: green (fastest), yellow (middle of the range), and red (slowest). Value: 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters); 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)</td>
</tr>
<tr>
<td>Overall Link Quality</td>
<td>The client adapter’s ability to communicate with the access point. Value: Not Associated, Poor, Fair, Good, or Excellent Note This setting appears for 2.4-GHz client adapters (but only if you selected signal strength to be displayed as a percentage) and for 5-GHz client adapters. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>The difference between the signal strength and the noise level. The higher the value, the better the client adapter’s ability to communicate with the access point. Range: 0 to 90 dB Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
<tr>
<td>Associated Access Point</td>
<td>The access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note This field shows up to 15 characters although the name of the access point may be longer.</td>
</tr>
<tr>
<td>Access Point IP Address</td>
<td>The IP address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note If Aironet Extensions are disabled, the IP address of the associated access point is shown as 0.0.0.0.</td>
</tr>
</tbody>
</table>
Using Active Mode

Follow these steps to activate the site survey active mode and obtain current information about your client adapter’s ability to transmit and receive RF packets.

Step 1
From the Site Survey - Passive Mode screen (see Figure F-1), click the **Setup** button. The Site Survey Active Mode Setup screen appears (see Figure F-3).

Figure F-3 Site Survey Active Mode Setup Screen

- **Destination MAC Address**: 00:40:36:30:6F:07
- **Continuous Link Test**: Check
- **Destination Is Another Cisco Device**: Check
- **Number of Packets**: 100
- **Packet Size**: 512
- **Data Rate**: 11 Mbps
- **Delay Between Packets (milliseconds)**: 1
- **Percent Success Threshold**: 75
- **Packet Tx Type**: Unicast

Using Active Mode

If you want to activate the site survey active mode, go to the “Using Active Mode” section on page F-7. Otherwise, click **OK** or **Cancel** to exit the site survey application.

Table F-1 Site Survey Passive Mode Statistics (continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel (Frequency)</td>
<td>The frequency that your client adapter is currently using as the channel for communications. Value: Dependent on client adapter radio and regulatory domain</td>
</tr>
</tbody>
</table>
Table F-2 lists and describes the parameters that affect how the site survey is performed. Follow the instructions in the table to set any parameters.

Table F-2 Site Survey Active Mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC Address</td>
<td>The MAC address of the access point (in infrastructure mode) or other clients (in ad hoc mode) that are used in the test.</td>
</tr>
<tr>
<td>Default:</td>
<td>The MAC address of the access point (in infrastructure mode) to which your client adapter is associated</td>
</tr>
<tr>
<td>Note</td>
<td>During the test, the client adapter does not roam to other access points so that the size of a single cell can be determined.</td>
</tr>
<tr>
<td>Continuous Link Test</td>
<td>Checking this check box causes the test to run until you click OK or Stop. The test loops repeatedly for the number of packets specified in the Number of Packets field.</td>
</tr>
<tr>
<td>Default:</td>
<td>Unchecked</td>
</tr>
<tr>
<td>Destination Is Another Cisco/Aironet Device</td>
<td>Checking this check box indicates that the device you named in the Destination MAC Address field is a Cisco Aironet access point (in infrastructure mode) or client (in ad hoc mode). In this case, packets sent to the client from the Cisco Aironet device contain additional information, such as lost to source, lost to target, and percent retries, and this information is displayed in the Site Survey - Active screen. If the device specified in the Destination MAC Address field is not a Cisco Aironet device, do not check this check box. In this case, the test sends out loopback packets, which originate from and return to the client adapter.</td>
</tr>
<tr>
<td>Default:</td>
<td>Checked</td>
</tr>
<tr>
<td>Number of Packets</td>
<td>The number of packets that are sent during the test.</td>
</tr>
<tr>
<td>Range:</td>
<td>1 to 999</td>
</tr>
<tr>
<td>Default:</td>
<td>100</td>
</tr>
<tr>
<td>Packet Size</td>
<td>The size of the packets that are sent during the test.</td>
</tr>
<tr>
<td>Range:</td>
<td>30 to 1450</td>
</tr>
<tr>
<td>Default:</td>
<td>512</td>
</tr>
<tr>
<td>Data Retries</td>
<td>The number of times a transmission is retried if an acknowledgment (Ack) is not returned by the destination device.</td>
</tr>
<tr>
<td>Default:</td>
<td>None</td>
</tr>
<tr>
<td>Retry Value</td>
<td>Description</td>
</tr>
<tr>
<td>None</td>
<td>No retries will occur.</td>
</tr>
<tr>
<td>Default Retries</td>
<td>The firmware’s default value for retries (16 for 2.4-GHz client adapters; 32 for 5-GHz client adapters) will be used.</td>
</tr>
</tbody>
</table>
Table F-2 Site Survey Active Mode Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>The bit rate at which packets are transmitted. Rate shifting does not occur during the test because the echo test built into the radio firmware does not support it.</td>
</tr>
<tr>
<td></td>
<td>Value: 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters); 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)</td>
</tr>
<tr>
<td></td>
<td>Default: 11 Mbps (2.4-GHz client adapters); 54 Mbps (5-GHz client adapters)</td>
</tr>
<tr>
<td>Delay Between Packets</td>
<td>The delay (in milliseconds) between successive transmissions.</td>
</tr>
<tr>
<td></td>
<td>Range: 1 to 2048 ms</td>
</tr>
<tr>
<td></td>
<td>Default: 50 ms</td>
</tr>
<tr>
<td>Percent Success Threshold</td>
<td>The percentage of packets that are not lost. This parameter controls the red line on the Percent Successful histogram. Percentages greater than or equal to this value are displayed as green bars; percentages below this value are displayed as yellow bars.</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 100%</td>
</tr>
<tr>
<td></td>
<td>Default: 75</td>
</tr>
<tr>
<td>Packet Tx Type</td>
<td>The packet type that is transmitted during the test.</td>
</tr>
<tr>
<td></td>
<td>Default: Unicast</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
<td>When unicast packets are used, the system expects to receive an acknowledgment from the destination, and retries can occur.</td>
</tr>
<tr>
<td>Multicast</td>
<td>When multicast packets are used, no packet retries occur during the test.</td>
</tr>
</tbody>
</table>

Step 2 After setting any parameters, click **OK** to save the settings. The Site Survey - Passive Mode screen appears (see **Figure F-1**).

Step 3 Click the **Start** button to run the site survey test. The Site Survey - Active Mode screen appears. **Figure F-4** shows the Site Survey - Active Mode screen with the signal strength values displayed as percentages, and **Figure F-5** shows the top of the same screen with the signal strength values displayed in dBm.
Figure F-4 Site Survey - Active Mode Screen (with Signal Strength as a Percentage)

Figure F-5 Top of Site Survey - Active Mode Screen (with Signal Strength in dBm)
Table F-3 interprets the information that is displayed on the Site Survey - Active Mode screen while the site survey test is running.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Strength</td>
<td>The signal strength for all received packets. The higher the value and the more green the bar graph is, the stronger the signal.</td>
</tr>
<tr>
<td></td>
<td>The histogram below the bar graph provides a visual interpretation of the current signal strength. Differences in signal strength are indicated by the following colors: green (strongest), yellow (middle of the range), and red (weakest).</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 100% or –95 to –45 dBm</td>
</tr>
<tr>
<td>Signal Quality (2.4-GHz client adapters)</td>
<td>The signal quality for all received packets. The higher the value and the more green the bar graph is, the clearer the signal.</td>
</tr>
<tr>
<td></td>
<td>The histogram below the bar graph provides a visual interpretation of the current signal quality. Differences in signal quality are indicated by the following colors: green (highest quality), yellow (average), and red (lowest quality).</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 100%</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed as a percentage. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
<tr>
<td>Noise Level (2.4-GHz client adapters)</td>
<td>The level of background radio frequency energy in the 2.4-GHz band. The lower the value and the more green the bar graph is, the less background noise present.</td>
</tr>
<tr>
<td></td>
<td>The histogram below the bar graph provides a visual interpretation of the current level of background noise. Differences in background noise level are indicated by the following colors: green (low noise), yellow (middle of the range), and red (high noise).</td>
</tr>
<tr>
<td></td>
<td>Range: –100 to –45 dBm</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
<tr>
<td>Beacons Received (5-GHz client adapters)</td>
<td>The percentage of beacon packets received versus those expected to be received. The higher the value and the more green the bar graph is, the clearer the signal.</td>
</tr>
<tr>
<td></td>
<td>Example: The access point sends out 10 beacons per second, so you would expect the client adapter to receive 50 beacon packets in 5 seconds. If it receives only 40 packets, the percentage of beacons received would be 80%.</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 100%</td>
</tr>
<tr>
<td></td>
<td>Note This setting appears only for 5-GHz client adapters.</td>
</tr>
</tbody>
</table>
Table F-3 Site Survey Active Mode Statistics (continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Speed</td>
<td>The rate at which your client adapter is transmitting packets to or from its associated access point. The Link Speed histogram provides a visual interpretation of the current rate at which your client adapter is transmitting packets. Differences in link speed are indicated by the following colors: green (fastest), yellow (middle of the range), and red (slowest). Value: 1, 2, 5.5, or 11 Mbps (2.4-GHz client adapters); 6, 9, 12, 18, 24, 36, 48, or 54 Mbps (5-GHz client adapters)</td>
</tr>
<tr>
<td>Overall Link Quality</td>
<td>The client adapter’s ability to communicate with the access point. Value: Not Associated, Poor, Fair, Good, or Excellent Note This setting appears for 2.4-GHz client adapters (but only if you selected signal strength to be displayed as a percentage) and for 5-GHz client adapters. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
<tr>
<td>Signal to Noise Ratio (2.4-GHz client adapters)</td>
<td>The difference between the signal strength and the noise level. The higher the value, the better the client adapter’s ability to communicate with the access point. Range: 0 to 90 dB Note This setting appears only for 2.4-GHz client adapters and only if you selected signal strength to be displayed in dBm. See the “Specifying Signal Strength Units” section on page F-3 for information.</td>
</tr>
<tr>
<td>Associated Access Point</td>
<td>The access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with a name, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note This field shows up to 15 characters although the name of the access point may be longer.</td>
</tr>
<tr>
<td>Access Point IP Address</td>
<td>The IP address of the access point to which your client adapter is associated. It is shown only if the client adapter is in infrastructure mode, the access point was configured with an IP address, and Aironet Extensions are enabled (on access points running Cisco IOS Release 12.2(4)JA or later). Note If Aironet Extensions are disabled, the IP address of the associated access point is shown as 0.0.0.0.</td>
</tr>
<tr>
<td>Channel (Frequency)</td>
<td>The frequency that your client adapter is currently using as the channel for communications. Value: Dependent on client adapter radio and regulatory domain</td>
</tr>
</tbody>
</table>
Forcing the Client Adapter to Reassociate

The client adapter will attempt to maintain its association to an access point for as long as it can. Therefore if you are on a fringe area while conducting a site survey, you may want to reinitialize (or restart) the client adapter in an attempt to force it to disassociate from the access point to which it is currently associated and reassociate to another access point.

Note

Restarting the client adapter may cause you to lose your wireless network connection.

Follow these steps to attempt to force the client adapter to disassociate from its current access point and reassociate to another during a site survey.

Step 1
Click the Restart Card button on the bottom of the Site Survey screen.

Step 2
When prompted to confirm your decision, click Yes. The driver stops the client adapter’s radio, writes the configuration (although no parameter settings have been changed), and restarts the radio.
GLOSSARY

802.1X
Also called 802.1X for 802.11. 802.1X is the new standard for wireless LAN security, as defined by the Institute of Electrical and Electronics Engineers (IEEE). An access point that supports 802.1X and its protocol, Extensible Authentication Protocol (EAP), acts as the interface between a wireless client and an authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) server, to which the access point communicates over the wired network.

802.11
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 1- and 2-megabit-per-second (Mbps) 2.4-GHz wireless LANs.

802.11a
The IEEE standard that governs the deployment of 5-GHz OFDM systems. It specifies the implementation of the physical layer for wireless UNII bands (see UNII, UNII 1, and UNII 2) and provides four channels per 100 MHz of bandwidth.

802.11b
The IEEE standard that specifies carrier sense media access control and physical layer specifications for 5.5- and 11-Mbps 2.4-GHz wireless LANs.

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>access point</td>
<td>A wireless LAN data transceiver that uses radio waves to connect a wired network with wireless stations.</td>
</tr>
<tr>
<td>ad hoc network</td>
<td>A wireless network composed of stations without access points.</td>
</tr>
<tr>
<td>alphanumeric</td>
<td>A set of characters that contains both letters and numbers.</td>
</tr>
<tr>
<td>associated</td>
<td>A station is configured properly to allow it to wirelessly communicate with an access point.</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>Specifies the amount of the frequency spectrum that is usable for data transfer. It identifies the maximum data rate that a signal can attain on the medium without encountering significant power loss.</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary phase shift keying. A modulation technique used by IEEE 802.11-compliant wireless LANs for transmission at 1 Mbps.</td>
</tr>
<tr>
<td>broadcast key rotation</td>
<td>A security feature for use with dynamic WEP keys. If your client adapter uses LEAP, EAP-FAST, EAP-TLS, PEAP, or EAP-SIM authentication and you enable this feature, the access point changes the dynamic broadcast WEP key that it provides at the interval you choose.</td>
</tr>
</tbody>
</table>
C

CCK
Complementary code keying. A modulation technique used by IEEE 802.11b-compliant wireless LANs for transmission at 5.5 and 11 Mbps.

CCKM
Cisco Centralized Key Management. Using CCKM, authenticated client devices can roam from one access point to another without any perceptible delay during reassociation. An access point on your network provides wireless domain services (WDS) and creates a cache of security credentials for CCKM-enabled client devices on the subnet. The WDS access point's cache of credentials dramatically reduces the time required for reassociation when a CCKM-enabled client device roams to a new access point.

CKIP
Cisco Key Integrity Protocol. Cisco’s WEP key permutation technique based on an early algorithm presented by the IEEE 802.11i security task group.

client
A radio device that uses the services of an access point to communicate wirelessly with other devices on a local area network.

CSMA
Carrier sense multiple access. A wireless LAN media access method specified by the IEEE 802.11 specification.

cyclic redundancy check (CRC)
A method of checking for errors in a received packet.

D

data rates
The range of data transmission rates supported by a device. Data rates are measured in megabits per second (Mbps).

dBi
A ratio of decibels to an isotropic antenna that is commonly used to measure antenna gain. The greater the dBi value, the higher the gain and the more acute the angle of coverage.

DHCP
Dynamic Host Configuration Protocol. A protocol available with many operating systems that automatically issues IP addresses within a specified range to devices on the network. The device retains the assigned address for a specific administrator-defined period.

dipole
A type of low-gain (2.2-dBi) antenna consisting of two (often internal) elements.

DSSS
Direct-sequence spread spectrum. A type of spread spectrum radio transmission that spreads its signal continuously over a wide frequency band.

duplicate packets
Packets that were received twice because an acknowledgement got lost and the sender retransmitted the packet.
Glossary

E

EAP
Extensible Authentication Protocol. EAP is the protocol for the optional IEEE 802.1X wireless LAN security feature. An access point that supports 802.1X and EAP acts as the interface between a wireless client and an authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) server, to which the access point communicates over the wired network.

EAP-FAST
Extensible Authentication Protocol - Flexible Authentication via Secure Tunneling. An 802.1X authentication type that is available for use with Windows 2000 and XP. Support for EAP-FAST is provided in the client adapter’s firmware and the Cisco software that supports it, rather than in the operating system. With EAP-FAST, a username, password, and PAC are used by the client adapter to perform mutual authentication with the RADIUS server through an access point.

Ethernet
The most widely used wired local area network. Ethernet uses carrier sense multiple access (CSMA) to allow computers to share a network and operates at 10, 100, or 1000 megabits per second (Mbps), depending on the physical layer used.

F

file server
A repository for files so that a local area network can share files, mail, and programs.

firmware
Software that is programmed on a memory chip and kept in a computer’s semi-permanent memory.

fragmentation threshold
The size at which packets are fragmented and transmitted a piece at a time instead of all at once. The setting must be within the range of 64 to 2312 bytes.

full duplex
A means of communication whereby each node receives and transmits simultaneously (two-way). See also half duplex.

G

gateway
A device that connects two otherwise incompatible networks together.

GHz
Gigahertz. One billion cycles per second. A unit of measure for frequency.

H

half duplex
A means of communication whereby each node receives and transmits in turn (one-way). See also full duplex.

hexadecimal
A set of characters consisting of ten numbers and six letters (0-9, A-F, and a-f).
IEEE
Institute of Electrical and Electronics Engineers. A professional society serving electrical engineers through its publications, conferences, and standards development activities. The body responsible for the Ethernet 802.3 and wireless LAN 802.11 specifications.

infrastructure
The wired Ethernet network.

infrastructure device
A device (such as an access point, bridge, or base station) that connects client adapters to a wired LAN.

IP address
The Internet Protocol (IP) address of a station.

IP subnet mask
The number used to identify the IP subnetwork, indicating whether the IP address can be recognized on the LAN or if it must be reached through a gateway.

IPX
Internetwork Packet Exchange. The NetWare network layer protocol used for transferring data from servers to workstations.

isotropic
An antenna that emits its signal in a spherical pattern.

LEAP
LEAP, or EAP-Cisco Wireless, is an 802.1X authentication type that is available for use with operating systems that do not have EAP support. Support for LEAP is provided in the client adapter’s firmware and the Cisco software that supports it, rather than in the operating system. With LEAP, a username and password are used by the client adapter to perform mutual authentication with the RADIUS server through an access point.

MAC address
The Media Access Control (MAC) address is a unique serial number assigned to a networking device by the manufacturer.

MIC
Message integrity check. MIC prevents bit-flip attacks on encrypted packets. During a bit-flip attack, an intruder intercepts an encrypted message, alters it slightly, and retransmits it, and the receiver accepts the retransmitted message as legitimate. The client adapter’s driver must support MIC functionality, and MIC must be enabled on the access point.

modulation
Any of several techniques for combining user information with a transmitter’s carrier signal.

multicast packets
Packets transmitted to multiple stations.

multipath
The echoes created as a radio signal bounces off of physical objects.
Orthogonal frequency division multiplexing. A multicarrier modulation method for broadband wireless communications.

Packets that were discarded because the access point had a temporary overload of packets to handle.

Protected access credentials. Credentials that are either automatically or manually provisioned and used to perform mutual authentication with the RADIUS server during EAP-FAST authentication. PACs are created by the Cisco Secure ACS server and are identified by an ID. The user obtains his or her own copy of the PAC from the server, and the ID links the PAC to the profile created in ACU. When manual PAC provisioning is enabled, the PAC file is manually copied from the server and imported onto the client device.

A basic message unit for communication across a network. A packet usually includes routing information, data, and sometimes error detection information.

Quality of Service. QoS on wireless LANs provides prioritization of traffic from the access point over the WLAN based on traffic classification. The benefits of QoS become more obvious as the load on the wireless LAN increases, keeping the latency, jitter, and loss for selected traffic types within an acceptable range.

Quadruple phase shift keying. A modulation technique used by IEEE 802.11-compliant wireless LANs for transmission at 2 Mbps.

The frequency at which a radio operates.

A linear measure of the distance that a transmitter can send a signal.

A measurement of the weakest signal a receiver can receive and still correctly translate it into data.

Radio frequency. A generic term for radio-based technology.

A feature of some access points that allows users to move through a facility while maintaining an unbroken connection to the LAN.

A connector type unique to Cisco Aironet radios and antennas. Part 15.203 of the FCC rules covering spread spectrum devices limits the types of antennas that may be used with transmission equipment. In compliance with this rule, Cisco Aironet, like all other wireless LAN providers, equips its radios and antennas with a unique connector to prevent attachment of non-approved antennas to radios.

The packet size at which an access point issues a request to send (RTS) before sending the packet.
spread spectrum

A radio transmission technology that spreads the user information over a much wider bandwidth than otherwise required in order to gain benefits such as improved interference tolerance and unlicensed operation.

SSID

Service set identifier. A unique identifier that stations must use to be able to communicate with an access point. The SSID can be any alphanumeric entry up to a maximum of 32 characters.

TKIP

Temporal Key Integrity Protocol. Also referred to as WEP key hashing. A security feature that defends against an attack on WEP in which the intruder uses the initialization vector (IV) in encrypted packets to calculate the WEP key. TKIP removes the predictability that an intruder relies on to determine the WEP key by exploiting IVs.

transmit power

The power level of radio transmission.

unicast packets

Packets transmitted in point-to-point communication.

UNII

Unlicensed National Information Infrastructure. An FCC regulatory domain for 5-GHz wireless devices. UNII bands are 100 MHz wide and divided into four channels when using 802.11a OFDM modulation.

UNII 1

A UNII band dedicated to in-building wireless LAN applications. UNII 1 is located at 5.15 to 5.25 GHz and allows for a maximum transmit power of 40 mW (or 16 dBm) with an antenna up to 6 dBi. UNII 1 regulations require a nonremovable, integrated antenna.

UNII 2

A UNII band dedicated to in-building wireless LAN applications. UNII 2 is located at 5.25 to 5.35 GHz and allows for a maximum transmit power of 200 mW (or 23 dBm) with an antenna up to 6 dBi. UNII 2 regulations allow for an auxiliary, user-installable antenna.

WDS

Wireless domain services (WDS). An access point providing WDS on your wireless LAN maintains a cache of credentials for CCKM-capable client devices on your wireless LAN. When a CCKM-capable client roams from one access point to another, the WDS access point forwards the client's credentials to the new access point with the multicast key. Only two packets pass between the client and the new access point, greatly shortening the reassociation time.

WEP

Wired equivalent privacy. An optional security mechanism defined within the 802.11 standard designed to protect your data as it is transmitted through your wireless network by encrypting it through the use of encryption keys.
WMM Wi-Fi Multimedia. WMM is a component of the IEEE 802.11e wireless LAN standard for quality of service (QoS). It specifically supports priority tagging and queuing.

workstation A computing device with an installed client adapter.

WPA Wi-Fi Protected Access. A standards-based, interoperable security enhancement that greatly increases the level of data protection and access control for existing and future wireless LAN systems. It is derived from and will be compatible with the upcoming IEEE 802.11i standard. WPA leverages Temporal Key Integrity Protocol (TKIP) for data protection and 802.1X for authenticated key management.
Numerics

802.1X
 authentication types
 in ACU 5-23 to 5-26
 in Windows XP E-3
 defined 5-23, E-2

A

About Aironet Client Utility
 ACU menu option 9-14
 screen 9-14

About icon 9-14

access point
 currently associated to 7-10, 8-11
 in wireless infrastructure 1-9

IP address
 current 7-10, 8-11
 in link test 7-19
 in site survey active mode F-12
 in site survey passive mode F-6

MAC address
 current 7-10
 in link test 7-21
 in site survey active mode F-8
 specifying 5-16

mismatches 7-14

name
 current 7-10, 8-11
 in link test 7-21
 in site survey active mode F-12
 in site survey passive mode F-6

problems
 associating to 10-9
 authenticating to 10-10
 role in wireless network 1-8
 security settings 5-31 to 5-35

Access Point Authentication parameter 5-37

access points, reporting those that fail LEAP or EAP-FAST authentication 5-29, 5-34

Ack packets
 number received 7-16
 number transmitted 7-15

ACM
 See Aironet Client Monitor (ACM)

ACU
 See Aironet Client Utility (ACU)

ad hoc network
 defined E-6
 parameters 5-18 to 5-21
 selecting in ACU 5-6
 selecting in Windows XP E-7
 wireless LAN configuration 1-8

Advanced (Ad Hoc) screen 5-18

Advanced (Infrastructure) screen 5-14

advanced ad hoc parameters
 described 5-2, 5-18
 setting 5-18 to 5-21

advanced infrastructure parameters
 described 5-2, 5-14
 setting 5-14 to 5-17

aged packets 7-14, 7-16

Aironet Client Monitor (ACM)
 About screen 8-5
 accessing help 8-5
described 1-6
exiting 8-6
finding version 8-5
icon 8-2
overview 8-2
pop-up menu 8-5 to 8-11
selecting the active profile 8-8 to 8-9
setting preferences 8-6 to 8-7
specifying pop-up menu options 8-7
specifying when it runs 8-7
Tool Tip window 8-3 to 8-4
using 8-1 to 8-11
Aironet Client Monitor parameter (Install Wizard) 3-8
Aironet Client Monitor Preferences screen 8-6
Aironet Client Utility (ACU)
 About icon 9-14
 accessing help 9-15
 described 1-6 to 1-7
 diagnostic tools
 overview 7-2
 setting parameters 7-3 to 7-4
 using 7-4 to 7-22
 exiting 9-13
 feature comparison to Windows XP 3-14 to 3-15
 finding version 9-14
 icon
 adding to desktop 9-14
 deleting from desktop 9-14
 parameter to place on desktop 3-7
 using to open ACU 9-12
 installation program settings, modifying 9-13
 launching from ACM 8-6
 opening 9-12
 overview 1-6 to 1-7
 Properties screens, overview 5-2
 screens, buttons described 1-7
 selecting among several installed client adapters 3-15 to 3-16
 Aironet Client Utility parameter (Install Wizard) 3-7
Aironet Client Utility Preferences screen 4-10, 7-3, 9-11
Aironet Client Utility screen 1-6 to 1-7
 Allow Association to both WPA and non-WPA authenticators parameter 5-41, 5-48
 Allow Association to Mixed Cells parameter 5-22
 Allow Automatic PAC Provisioning for This Profile parameter 5-45
 Allow Auto-Provisioning? parameter (Install Wizard) 3-12
 Allow Fast Roaming (CCKM) parameter 5-41, 5-48
 Allow Non-Administrator Users to Save Profiles to the Registry parameter 4-11
 Allow Non-Administrator Users to Save Settings to the Registry parameter (Install Wizard) 3-7
 Allow Saved EAP-FAST User Name and Password parameter (Install Wizard) 3-11
 Allow Saved LEAP User Name and Password parameter (Install Wizard) 3-10
antenna
 2.4-GHz options C-3
 described 1-4
 gains
 IEEE 802.11a D-4
 IEEE 802.11b D-4 to D-5
 installation warning 2-3, B-3
 mode currently being used 7-8
 placement F-2
 specifications A-5
 Antenna Mode (Receive) parameter
 ad hoc mode 5-19
 infrastructure mode 5-15
 Antenna Mode (Transmit) parameter
 ad hoc mode 5-19
 infrastructure mode 5-15
 Apply button, function association
 rejections 7-14
 time-outs 7-14
 audience of document xii
 authentication process 5-26, E-4
rejections 7-14

time-outs 7-14
type, status of 7-8

Authentication Timeout Value parameter
for EAP-FAST 5-45
for LEAP 5-41

Automatically Load New Firmware When NDIS Driver Is Updated parameter 9-12

Automatically Prompt for User Name and Password option
for EAP-FAST 5-44
for LEAP 5-40

auto profile selection
including a profile in 4-4 to 4-6
prioritizing profiles 4-6
removing a profile from 4-5
restrictions 4-5
using 4-7, 8-8

Auto Profile Selection Management screen 4-5

Auto Start parameter for ACM (Install Wizard) 3-8

B

beacon packets
number received 7-13
number transmitted 7-15

beacon period, status of 7-10

Beacon Period parameter 5-21

beacons received
current 7-11, 7-22
in site survey active mode F-11
in site survey passive mode F-5

boot block firmware, current version of 7-6

broadcast encryption type, status of 7-8

broadcast key rotation
described 5-30
setting on client and access point 5-35

broadcast packets
encryption type used 7-8
number received 7-13
number transmitted 7-15

broadcast SSIDs 5-4, E-6
bytes
number received 7-13
number transmitted 7-15

C

CAM
See Constantly Awake Mode (CAM)

Canadian compliance statement C-3

Cancel button, function 1-7

Card and Socket Services 2-4
carrier/correlation (Car/Cor) 5-12
cautions, defined xiv

CCKM
See fast roaming (CCKM)

Change Password screen 6-6, 6-12, 6-19, 6-21, 6-26

Change PIN screen 6-27

channel
current 7-9
determining if clear 5-12
in site survey active mode F-12
in site survey passive mode F-7

Channel parameter 5-10

channels, supported by regulatory domains
IEEE 802.11a D-2
IEEE 802.11b D-3

channel set, for which client adapter is configured 7-8

Cisco.com
obtaining documentation xv
obtaining technical assistance xvi

Cisco Aironet Wireless LAN Client Adapter Installation Wizard screen 3-3, 9-7

Cisco Centralized Key Management (CCKM)
See fast roaming

Cisco Wireless LAN Adapter Troubleshooting screen 10-4, 10-5
CKIP, status of 7-8
Clear Channel Assessment parameter 5-12
client name 7-9
Client Name parameter 5-4
client utilities
See Aironet Client Utility (ACU) and Aironet Client Monitor (ACM)
clock, setting to display seconds 1-7
collisions, multiple/single 7-16
Commands drop-down menu 6-14, 6-16, 9-13
Configure button 5-39, 5-43
configuring client adapter
deciding between ACU and Windows XP 3-14 to 3-15
in ACU 5-1 to 5-61
in Windows XP E-5 to E-19
Connection Status screen (ACM) 8-9
Constantly Awake Mode (CAM) 5-9
Contents ACU menu option 9-15
Continuous Link Test parameter
in RF link test 7-19
in site survey active mode F-8
c onc evants of document xiii to xv
CRC error
in packet 7-13
in PLCP header 7-13
CTS packets
number received 7-16
number transmitted 7-15
Custom Installation screen (Install Wizard) 3-4

D

Data Encryption parameter 5-35, 5-38, 5-50
data encryption type, status of 7-8
data rate
for which client adapter is configured 7-9
mismatches 7-14
 specifications A-4
when performing a site survey F-2

Data Rate parameter
in RF network 5-8
in site survey active mode F-9
Data Retries parameter
in RF network 5-13
in site survey active mode F-8
dBm
signal strength units in site survey F-3
signal strength units on Status and Linktest screens 7-4
dclarations of conformity
European community, Switzerland, Norway, Iceland,
and Liechtenstein C-4 to C-6
FCC C-2 to C-3
RF exposure C-6
Defaults button, function 1-7
default values, displaying 1-7
Delay Between Packets parameter F-9
Destination Is Another Cisco/Aironet Device parameter F-8
Destination MAC Address parameter F-8
diagnosing client adapter operation 10-4 to 10-6
dipole antenna 1-4
Disable Firmware Checking parameter (Install Wizard) 3-6
Display Seconds on Clock parameter 1-7
diversity antenna 1-4
diversity mode 5-10, 5-19
document
 audience xii
c onventions xiii to xv
organization xii to xiii
 purpose xii
 software versions covered xii
documentation
 feedback xvi
obtaining xv to xvi, xvii to xviii
ordering xvi
domain name
including in Windows login
for EAP-FAST 5-45
for LEAP 5-40
specifying for saved EAP-FAST user name and password 5-44
specifying for saved LEAP user name and password 5-40

driver
current version 7-6
described 1-5
finding version 9-8

Drivers parameter (Install Wizard) 3-6
duplicate packets, number received 7-13
dynamic WEP keys, overview 5-23 to 5-27, E-2 to E-4
Dynamic WEP option 5-50

E

EAP authentication
described E-4
overview 5-23 to 5-27, 6-2, E-2 to E-4
using 6-1 to 6-29

EAP-Cisco Wireless
See LEAP authentication

EAP-FAST authentication
authenticating after a reboot/logon
with automatically prompted login 6-9 to 6-11
with saved username and password 6-20
with Windows username and password 6-4 to 6-5

authenticating after a reboot/logon/card insertion
with manually prompted login 6-16 to 6-18

authenticating after profile selection
with manually prompted login 6-13 to 6-15

authenticating after profile selection/card insertion
with automatically prompted login 6-7 to 6-9
with saved username and password 6-19
with Windows username and password 6-4

authenticating after your EAP-FAST credentials expire
with automatically prompted login 6-12
with manually prompted login 6-19
with saved username and password 6-21

with Windows username and password 6-6
described 5-24 to 5-25
disabling 5-61
enabling 5-42 to 5-49
error messages 10-21 to 10-29
overview 6-2 to 6-4
requirements 5-42
setting on client and access point 5-31
stages of 6-3
user databases supported 5-25
EAP-FAST Authentication Status screen displayed 6-3
minimizing 6-4

EAP-FAST option 5-43
EAP-FAST parameter (Install Wizard) 3-11
EAP-FAST security module 5-25, 5-43
EAP-FAST Settings screen 5-43

EAP-SIM authentication
authenticating if the PIN is stored on the computer 6-29
authenticating if you are prompted for the PIN 6-28
described 5-26 to 5-27, E-3, E-4
disabling 5-61
enabling
in Windows XP E-16 to E-19
through ACU 5-49 to 5-61
error messages 10-35 to 10-40
RADIUS servers supported 5-26, E-4
setting on client and access point 5-33

EAP-SIM parameter (Install Wizard) 3-10

EAP-TLS authentication
authenticating after a reboot/logon 6-22
authenticating after profile selection/card insertion 6-22
described 5-25 to 5-27, E-3, E-4
disabling 5-61
enabling
in Windows XP E-10 to E-12
through ACU 5-49 to 5-57
RADIUS servers supported 5-25, E-3
Index

- **setting on client and access point** 5-32
- **EIRP**, maximum 1-4, D-4 to D-5
- **Enable Radio Management Support parameter** 5-17
- energy detect (ED) 5-12
- **Enter PAC File Password screen** 5-47
- **Enter PIN screen** 6-28
- **Enter Wireless Network Password screen** 6-8, 6-9, 6-13, 6-17
- **error messages** 10-12 to 10-40
 - **errors**
 - MAC CRC 7-13
 - overrun 7-13
 - PLCP 7-13

F

- **Fast PSP** 5-5
- fast roaming
 - described 5-28
 - enabling 5-41, 5-48
 - setting on client and access point 5-34
 - status of 7-8
- **FCC**
 - declaration of conformity statement C-2 to C-3
 - safety compliance statement 2-2
- **firmware**
 - current version 7-6
 - finding version 9-8
 - preventing from being installed with driver 9-11 to 9-12
 - upgrading 9-8 to 9-10
- **Firmware parameter (Install Wizard)** 3-6
- forcing client adapter to reassociate F-13
- fragmented packets 5-13
- **Fragment Threshold parameter** 5-13
- **frequencies** D-2, D-3
- **frequency**
 - currently being used 7-9
 - in site survey active mode F-12
 - in site survey passive mode F-7
- **setting** 5-10

G

- **Generic Token Card Properties screen - Windows** 5-59, 5-63, 5-65, E-15, E-20
- **global PACs** 5-24, 5-47

H

- **hardware components of client adapter** 1-3 to 1-4
- **Help**
 - button, function 1-7
 - drop-down menu 9-15
 - icon 9-15
- **history of RF performance, displayed** 7-4
- **Host Based EAP (802.1x) option** 5-50
- **Host Based EAP (WPA) option** 5-50
- **host-based EAP authentication**
 - described 5-25 to 5-27
 - disabling 5-61
 - enabling 5-49 to 5-61
 - requirements 5-49
- **host devices** 2-4

I

- **I/O range** 10-8
- **Import button** 5-46
- **Import Protected Access Credentials (PAC) File screen** 5-46
- **Include Windows Logon Domain with User Name parameter**
 - for EAP-FAST 5-45
 - for LEAP 5-40
- **infrastructure device, defined** 1-3
- **infrastructure network**
 - parameters 5-14 to 5-17
 - selecting in ACU 5-6
wireless LAN configuration 1-9
inserting client adapter 9-2 to 9-4
installation error messages 10-16 to 10-17
Installation Path parameter
for ACM (Install Wizard) 3-8
for ACU (Install Wizard) 3-7
Install Wizard file
described 1-5
finding version 9-5
installing 3-2 to 3-13
name 3-2
interference 2-6
interrupt request (IRQ) 10-8
introduction to client adapters 1-2 to 1-3
IP address
of access point in link test 7-19
of access point in site survey active mode F-12
of access point in site survey passive mode F-6
of associated access point 7-10, 8-11
of client adapter 7-9, 8-4, 8-11

J
Japan, guidelines for operating client adapters C-6 to C-7

L
LEAP authentication
authenticating after a reboot/logon
with automatically prompted login 6-9 to 6-11
with saved username and password 6-20
with Windows username and password 6-4 to 6-5
authenticating after a reboot/logon/card insertion
with manually prompted login 6-16 to 6-18
authenticating after profile selection
with manually prompted login 6-13 to 6-15
authenticating after profile selection/card insertion
with automatically prompted login 6-7 to 6-9
with saved username and password 6-19
with Windows username and password 6-4
authenticating after your LEAP credentials expire
with automatically prompted login 6-11
with manually prompted login 6-18
with saved username and password 6-20
with Windows username and password 6-6
described 5-23 to 5-24, 5-26
disabling 5-61
enabling 5-38 to 5-42
error messages 10-18 to 10-21
overview 6-2 to 6-4
RADIUS servers supported 5-23
requirements 5-38
setting on client and access point 5-31
stages of 6-3
LEAP Authentication Status screen
displayed 6-3
minimizing 6-4
LEAP option 5-39
LEAP parameter (Install Wizard) 3-10
LEAP security module 5-24, 5-39
LEAP Settings screen 5-39
LEDs
described 1-4
interpreting 10-2 to 10-3
using to verify installation 3-14
link quality
in link test 7-22
in site survey active mode F-12
in site survey passive mode F-6
overall 7-11, 8-4, 8-10
link speed
currently being used 7-9, 8-4, 8-11
in link test 7-21
in site survey active mode F-12
in site survey passive mode F-6
Link Status Meter
ACU menu option 7-16
icon 7-16
screen 7-17
viewing 7-16 to 7-18

Linktest
ACU menu option 7-18
screen 7-19, 7-20
statistics 7-21

Link Test icon 7-18

LM card
antenna 1-4, 5-15, 5-19
described 1-2
Load Firmware icon 1-5, 9-10

Load New Firmware
ACU menu option 1-5, 9-10
screen 9-10

long radio headers, using 5-9

M

MAC address
of access point, specifying 5-16
of access point in link test 7-21
of access point in site survey active mode F-8
of associated access point 7-10
of client adapter 7-9
MAC CRC errors 7-13
Manual Login ACU menu option 6-13, 6-16
Manually Prompt for User Name and Password option
for EAP-FAST 5-44
for LEAP 5-40
Max Power Savings
See Max PSP
Max PSP 5-5

Menu Options (Defaults) parameter for ACM (Install Wizard) 3-9
message integrity check (MIC)
described 5-30, 7-7
setting on client and access point 5-35
statistics 7-14 to 7-15

status of 7-7
types of 7-7

Michael MIC 7-7
microcellular network 1-9
Microsoft 802.1X supplicant 5-49
mini PCI card
antenna 1-4, 5-15, 5-19
described 1-2
MMH MIC 7-7
multicast packets
encryption type used 7-8
in site survey active mode F-9
number received 7-13
number transmitted 7-15

N

network configurations 1-8 to 1-9
prioritizing connections 10-10
problems connecting to 10-10
security parameters
described 5-2, 5-21
setting 5-21 to 5-61
type, current 7-10

Network Authentication parameter 5-35, 5-38, 5-42, 5-61
network login screen 6-11
Network Security screen 5-21
Network Type parameter 5-6
noise level
current 7-11
in link test 7-22
in site survey active mode F-11
in site survey passive mode F-5
No Network Connection Unless User Is Logged In parameter
for EAP-FAST 5-45
for LEAP 5-40
note, defined xiii
Number of Packets parameter
 in link test 7-19
 in site survey active mode F-8

O
OK button, function 1-7
One Time Password screen 6-25
online help
 for ACM 8-5
 for ACU 9-15
 for troubleshooting utility 10-7
open authentication 5-37, E-7
Options drop-down menu 1-7, 4-10, 7-3, 9-11, F-3
organization of document xii to xiii
overrun errors 7-13

P
PAC authority
 choosing 5-45
 drop-down list 5-46
package contents 2-3
packets
 Ack 7-15
 aged 7-14, 7-16
 beacon 5-21, 7-10, 7-13, 7-15
 broadcast 7-8, 7-13, 7-15
 CTS 7-15, 7-16
 duplicate 7-13
 fragmented 5-13
 linktest statistics 7-21
 multicast 7-8, 7-13, 7-15, F-9
 RTS 5-16, 5-20, 7-15
 site survey active mode statistics F-11 to F-13
 site survey passive mode statistics F-5 to F-7
 statistics 7-13 to 7-16
 unicast 7-8, 7-13, 7-15
with MIC 7-14 to 7-15
Packet Size parameter 7-19, F-8
Packet Tx Type parameter F-9
PAC provisioning
 automatic 5-45
 enabling manual provisioning 5-46 to 5-47
 manual 5-45
PACs
 deleting 5-49
 described 5-24
 entering password 5-47
 importing 5-46 to 5-47
 rules for storage 5-24
 passwords, creating 10-11
PC card
 antenna 1-4, 5-15, 5-19
 described 1-2
 inserting 9-2 to 9-3
 removing 9-4
PC-Cardbus card
 antenna 1-4
 described 1-2
 inserting 9-2 to 9-3
 profiles tied to slot 4-3
 removing 9-4
PCI card
 antenna 1-4, 5-15, 5-19
 described 1-2
 inserting 9-3 to 9-4
 removing 9-5
PEAP authentication
 authenticating after profile selection/card insertion/reboot/logon 6-23 to 6-25
 authenticating after your password expires (Windows NT or 2000 domain databases) 6-26
 authenticating after your PIN expires (OTP databases) 6-27
 described 5-25 to 5-27, E-3, E-4
 disabling 5-61
 enabling
Index

in Windows XP E-13 to E-16
through ACU 5-49 to 5-59
error messages 10-30 to 10-35
RADIUS servers supported 5-26, E-3
setting on client and access point 5-32
PEAP parameter (Install Wizard) 3-11
PEAP Properties screen - Windows 5-57, E-14
peer-to-peer network 1-8, 5-6
percent
 signal strength units in site survey F-3
 signal strength units on Status and Linktest screens 7-4
Percent Successful histogram, in site survey active mode F-9, F-13
Percent Success Threshold parameter F-9
physical specifications A-2
Place Icon on Desktop parameter (Install Wizard) 3-7
PLCP
 CRC errors 7-13
 format errors 7-13
 length errors 7-13
power level
 current 7-9
 maximum D-4 to D-5
power levels, available 7-9
power save mode, currently being used 7-10
Power Save Mode parameter 5-5
power specifications A-5 to A-6
Preferences
 ACU menu option 1-7, 4-10, 7-3, 9-11, F-3
 icon 1-7, 4-10, 7-3, 9-11, F-3
profile
 active 8-3, 8-10
 current 7-6
 default 7-6
 displayed in ACU title bar 1-7
Profile Manager
 ACU menu option 4-2
 icon 4-2
 screen
displayed 4-2
 parameters missing 4-3, 10-10
profile manager
 auto profile selection feature 4-4 to 4-6
 creating a new profile 4-3
 deleting a profile 4-8
 editing a profile 4-7
 exporting a profile 4-9
 granting or denying access to non-administrative users 4-10 to 4-11
 importing a profile 4-9
 opening 4-2 to 4-3
 overview 4-2
 parameters missing 4-3, 10-10
 renaming a profile 4-8
 selecting the active profile 4-6 to 4-7
 setting a profile to default values 4-8
Profiles Submenu (ACM) 8-8
Program Feature Overrides parameter for ACM (Install Wizard) 3-9
Program Folder parameter
 for ACM (Install Wizard) 3-8
 for ACU (Install Wizard) 3-7
Protected EAP
 See PEAP authentication
purpose of document xii

Q
QoS, described 5-62, E-19
QoS Packet Scheduler
 enabling on Windows 2000 5-62 to 5-64
 enabling on Windows XP 5-65, E-20
quiet mode, turning on or off 3-7, 9-16

R
radio
described 1-3
specifications A-3 to A-5
turning on or off 8-7, 9-16
radio management (RM)
described 5-17
reports transmitted 7-15
requests received 7-13
RADIUS servers
additional information 5-27, E-4
defined 5-23, E-2
supported 5-23 to 5-26, E-3, E-4
range 5-8, 5-11
Reauthenticate
ACM menu option 8-8
ACU menu option 6-29
reauthentication process 6-29
receive statistics 7-13 to 7-15
regulatory
domains 5-10, 7-8
IEEE 802.11a D-2
IEEE 802.11b D-3
information C-2 to ??
specifications A-6
related publications xv
removing client adapter 9-4 to 9-5
Reset button 7-13, 7-15
resource conflicts, resolving
 in Windows 2000 10-8
 in Windows XP 10-9
Restart Card
ACU menu option 9-15
button, in site survey F-13
restarting client adapter 9-15, F-13
RF link test
prerequisites 7-18
running 7-18 to 7-22
stopping 7-22
RF network parameters
described 5-2, 5-7
setting 5-7 to 5-13
RF Network screen 5-7
RF obstructions 2-6, F-3
RM reports transmitted 7-15
RM requests received 7-13
roaming 1-9
RTS packets
 advanced ad hoc parameters 5-20
 advanced infrastructure parameters 5-16
 number retransmitted 7-16
 number transmitted 7-15
RTS Retry Limit parameter
 ad hoc mode 5-20
 infrastructure mode 5-16
RTS Threshold parameter
 ad hoc mode 5-20
 infrastructure mode 5-16
S
safety
 information 2-2 to 2-3
 specifications A-6
saved username and password
described
 for EAP-FAST 5-44
 for LEAP 5-39
 entering
 for EAP-FAST 5-44
 for LEAP 5-40
Screen Update Timer parameter 7-4
seamless roaming 1-9
security features
 overview 5-23 to 5-30
 synchronizing 5-31 to 5-35
Select a PAC Authority To Use with This Profile parameter 5-46
Select A Wireless LAN Adapter Card screen 3-15
Select Network Component Type screen 5-63
Select Network Service screen 5-64
Index

Select Profile
- ACM menu option 8-8 to 8-9
- ACU menu option 4-4
- icon 4-4
- screen 4-4

sensitivity A-5, F-2

serial number of client adapter 7-6

server-based authentication, status of 7-7

Set Quiet Mode? parameter (Install Wizard) 3-7

Setup button, in site survey F-7

shared authentication E-7

shared key authentication 5-37

short radio headers
- status of 7-6
- using 5-9

Show History parameter 7-4

signal quality
- current 7-11
- in link test 7-21
- in site survey active mode F-11
- in site survey passive mode F-5

on Link Status Meter screen 7-17

signal strength
- as a percentage 7-4, F-3
- current 7-11
- in dBm 7-4, F-3
- in link test 7-21
- in site survey active mode F-11
- in site survey passive mode F-5

on Link Status Meter screen 7-17

Signal Strength Display Units parameter 7-4

signal to noise ratio
- current 7-11
- in link test 7-22
- in site survey active mode F-12
- in site survey passive mode F-6

SIM Authentication Properties screen 5-60

SIM Authentication Properties screen - Windows XP E-18

site requirements for client devices 2-6

for infrastructure devices 2-5

Site Survey
- Active Mode screen F-10
- Active Mode Setup screen F-7
- ACU menu option F-3
- icon F-3
- Passive Mode screen F-4

site survey
- active mode
 - overview F-2
 - setting parameters F-8 to F-9
 - starting F-9
 - statistics F-11 to F-13
 - using F-7 to F-13

- exiting F-7, F-13

- passive mode
 - overview F-2
 - statistics F-5 to F-7
 - using F-3 to F-7

- specifying signal strength units F-3

Smart Card or other Certificate Properties screen - Windows 5-55, E-11

software
- installing 3-2 to 3-13
- procedures 9-5 to 9-15
- uninstalling 9-6 to 9-7
- verifying installation 3-14

software components
- custom installation parameters 3-6 to 3-12
- described 1-5 to 1-7

software required for WPA 2-4, 5-27, 5-49, E-4

software versions covered in document xii

specifications
- physical A-2
- power A-5 to A-6
- radio A-3 to A-5

regulatory compliance A-6
safety A-6

Specified Access Point 1-4 parameters 5-16

spread spectrum 1-3

SSID

 current 7-10, 8-3, 8-11
 mismatches 7-14

SSID1 parameter 5-4

SSID2 parameter 5-4

SSID3 parameter 5-4

Start After Install parameter for ACM (Install Wizard) 3-8

Start button

 function 1-7
 in RF link test 7-20
 in site survey F-9

Static Password screen 6-24

static WEP

 disabling 5-38
 procedures 5-35 to 5-38
 with open authentication, setting on client and access point 5-31
 with shared key authentication, setting on client and access point 5-31

Static WEP Keys

 button 5-35, 5-37
 screen 5-35

static WEP keys

 entering 5-35 to 5-37
 guidelines for entering
 in ACU 5-36
 in Windows XP E-8
 overview 5-23, E-2
 overwriting 5-37
 selecting transmit key 5-36
 size of 5-36

Static WEP option 5-35

Statistics

 ACU menu option 7-12
 icon 7-12
 screen 7-12

statistics

 client adapter, viewing 7-12 to 7-16
 link test 7-21
 receive 7-13 to 7-15
 site survey
 active mode F-11 to F-13
 passive mode F-5 to F-7
 transmit 7-15 to 7-16

Status

 ACU menu option 7-4, 9-8
 icon 7-4, 9-8
 screen 7-5

status of client adapter

 in ACM Connection Status screen 8-9 to 8-11
 in ACM Tool Tip window 8-4
 in ACU status bar 1-7
 in ACU Status screen 7-4 to 7-11
 in link test 7-21
 in Windows XP E-21

Stop button

 function 1-7
 in site survey active mode F-13

strong passwords, creating 10-11

system parameters

 described 5-2, 5-3
 setting 5-3 to 5-6

System Parameters screen 5-3

system requirements 2-4 to 2-5

T

Taiwan, administrative rules for client adapters C-7 to ??

technical assistance, obtaining xvi to xvii

Temporal Key Integrity Protocol (TKIP)

 described 5-30
 setting on client and access point 5-35
 status of 7-8

temporary username and password

 automatically prompt for
INDEX

for EAP-FAST 5-44
for LEAP 5-40
described
for EAP-FAST 5-44
for LEAP 5-39
manually prompt for
for EAP-FAST 5-44
for LEAP 5-40
selecting options
for EAP-FAST 5-44
for LEAP 5-40
using Windows credentials
for EAP-FAST 5-44
for LEAP 5-40
throughput 5-5, 5-8, 5-9, 5-13
TKIP option, in Windows XP 5-53, E-8
transmit key 5-36
Transmit Power parameter 5-11
transmit statistics 7-15 to 7-16
Troubleshooting ACU menu option 10-4
troubleshooting information, accessing 10-2
troubleshooting utility
accessing help 10-7
activating from ACM 8-6
saving detailed report to text file 10-6 to 10-7
using 10-4 to 10-7
Turn Quiet Mode Off, ACU menu option 9-16
Turn Quiet Mode On, ACU menu option 9-16
Turn Radio Off
ACM menu option 8-8
ACU menu option 9-16
Turn Radio On
ACM menu option 8-8
ACU menu option 9-16

U

unicast packets
encryption type used 7-8

in site survey active mode F-9
number received 7-13
number transmitted 7-15
uninstalling client adapter software 9-6 to 9-7
unpacking the client adapter 2-3
Unplug or Eject Hardware icon (Windows) 9-4
upgrading client adapter software 3-2 to 3-13
upgrading firmware 9-8 to 9-10
up time
statistic 7-15
status of 7-10
Use Another Application to Configure My Wireless Settings option 4-7
Use Auto Profile Selection option 4-7, 8-8
Use Other Configuration Application (ACM) 8-8
User Prompt screen 6-10, 6-15, 6-17
Use Saved User Name and Password option
for EAP-FAST 5-44
for LEAP 5-39
Use Selected Profile option 4-6
Use Short Radio Headers parameter 5-9
Use Temporary User Name and Password option
for EAP-FAST 5-44
for LEAP 5-39
Use Windows Logon User Name and Password option
for EAP-FAST 5-44
for LEAP 5-40
Use Windows to configure my wireless network settings parameter - Windows XP 5-52, E-6

W

Wake Duration parameter 5-20
warning
antenna 2-3, B-3
defined xiv to xv
explosive device proximity 2-3, B-2
laptop users 2-3, B-4 to B-5
WEP
designations in product model numbers 1-3
keys
 additional security features 5-29 to 5-30
defined 5-23, E-2
size of 5-23, E-2
types of 5-23, E-2
status of 7-8
WEP Key Entry Method parameter 5-36
WEP key hashing 5-30
WEP option, in Windows XP E-8
Wi-Fi Multimedia (WMM)
 See WMM
Wi-Fi Protected Access (WPA)
 See WPA
Wi-Fi Protected Access (WPA) parameter 5-38, 5-42, 5-50
Windows login screen 6-5
Windows Wireless Network Connection icon, shows unavailable connection 10-11
Windows XP
 configuring client adapter through E-5 to E-19
 enabling EAP-SIM authentication E-16 to E-19
 enabling EAP-TLS authentication E-10 to E-12
 enabling PEAP authentication E-13 to E-16
 feature comparison to ACU 3-14 to 3-15
 inability to use fast user switching 3-10, 3-11
 making a configuration decision 3-14 to 3-15
 security features E-2 to E-4
 viewing status of client adapter E-21
Wireless Cisco Connection Properties screen 5-63
wireless infrastructure 1-9
Wireless Network Connection Properties screen 5-65, E-20
Wireless Network Connection Properties screen (Authentication Tab) - Windows 5-54
Wireless Network Connection Properties screen (Wireless Networks Tab) - Windows 5-52, E-6
Wireless Network Connection Status screen - Windows XP E-21
Wireless Network Properties screen (Association Tab) - Windows 5-53
Wireless Network Properties screen (Authentication Tab) - Windows XP E-10, E-13, E-17
WMM
 described 5-62, E-19
 enabling 5-62 to 5-65, E-19 to E-20
workstation
 defined 1-3
 in wireless infrastructure 1-9
World Mode parameter 5-9
WPA
 described 5-27, E-4 to E-5
 enabling in Windows XP E-8
 enabling with EAP-FAST through ACU 5-42
 enabling with host-based EAP in ACU 5-50
 enabling with host-based EAP on Windows 2000 5-51
 enabling with host-based EAP on Windows XP 5-51 to 5-53
 enabling with LEAP through ACU 5-38
 mismatches 7-14
 requirements 5-38, 5-49
 software required 2-4, 5-27, 5-49, E-4
 status of authentication 7-8
WPA migration mode 5-28
WPA-None option, in Windows XP E-8
WPA option, in Windows XP 5-53, E-8
WPA-PSK, described 5-27, E-4
WPA-PSK option, in Windows XP E-8