
Cisco Common Data Layer

• Overview, on page 1
• Architecture, on page 2
• Remote Site Monitoring, on page 12
• CDL Deployment Models, on page 13
• CDL Zone Upgrade, on page 41
• CDL Overload Protection, on page 43
• CDL Rack Conversion, on page 47
• FindAll and FindAllNotify Query Enhancements for CDL, on page 56
• Network Policy Configuration, on page 58
• Troubleshooting Information, on page 59
• Monitoring, on page 66

Overview
The Cisco Common Data Layer (CDL) is a high-performance next generation Key-value (KV) data store
layer for all the Cloud Native applications. These applications use the CDL as a state management with High
Availability (HA) and Geo HA functions. The CDL provides:

• A Common Data Store Layer across different Network Functions (NFs) - such as AMF, SMF and PCF
- Microservices.

• Multi-primary support to achieve low latency read and write.

• Pure in-memory storage.

• Runs session related timers to notify NF on timer expiry.

• High Availability and Geo Redundancy with fast failover

Cisco Common Data Layer
1

Revision History
Table 1: Revision History

ReleaseRevision Details

2020.02.3• CDL supports identifying and taking necessary
action on stale index records.

• Allows the peer site to process GR failover
notifications of the isolated site.

• CDL provides a utility to sync the indexes with
its remote peers.

• The Grafana dashboard is enhanced to show the
GR Connection status.

Architecture
You can deploy CDL in the following modes:

• HA Only

• Geo HA

For HA Only deployments, redundancy is provided for blade failures at the local site. However, session
redundancy is not provided for HA Only deployments, when the complete site or K8s cluster is unreachable.

Note

The following figures depict the high-level architecture of the CDL deployment models.

Cisco Common Data Layer
2

Cisco Common Data Layer
Revision History

Figure 1: CDL Deployment Model

Cisco Common Data Layer
3

Cisco Common Data Layer
Architecture

Figure 2: CDL Microservices

The following figures depict the CDL high-level architecture:

Figure 3: CDL Architecture

The following figures depict the CDL high-level architecture with primary components:

Cisco Common Data Layer
4

Cisco Common Data Layer
Architecture

Figure 4: CDL Architecture with Primary Components

CDL Endpoint
The CDL endpoint pod is the front-end for receiving requests from NF application towards CDL. The CDL
endpoint exposes gRPC over HTTP2 interface towards the NF client's for processing database service requests.
Each pod starts with the following attributes:

• systemID: This parameter specifies the site ID (For instance: Site).

• clusterID: This parameter specifies the unique datastore ID within a site (For instance: X, Y).

The CDL endpoint receives the Create, Read, Update, Delete (CRUD) requests from the NF applications. It
communicates with the CDL Index and Slot pods over GRPC to perform these operations.

The CDL endpoint learns about the other pods within a site automatically using the etcd. Also, the Cisco Data
Store K8s pod is stateless in nature and does not maintain any session stickiness. The CDL endpoint receives
the request from NF application and communicates with Slot and Index pods internally through GRPC to
handle the request accordingly. It returns the response after the processing is complete.

When the CDL endpoint receives a Create, Delete, or Update session, the receiving container replicates it to
the Slot and Index pods and sends a response only when 'n' number of writes are acknowledged (ACKed) by
the Index and Slot microservices.

A maximum of four virtual CPUs (vCPUs) is required for deploying the CDL endpoint pod in production
environment.

Note

Single Compute or Node Failure
When a single compute or node fails, one of the cdl-ep pods goes down and tries to schedule on the other
session nodes. If all the other session nodes already have a cdl-ep, pod scheduling will not take place since
there is node anti-affinity defined for cdl-ep pods. So, with single node failure, the remaining cdl-ep pods
handle the traffic and might get loaded with the many requests. After recovering from the node failure, the

Cisco Common Data Layer
5

Cisco Common Data Layer
CDL Endpoint

cdl-ep pod, which was in the pending state earlier, starts scheduling on the recovered node to process the
requests.

Multiple Compute or Node Failures
If all the session nodes fails, it brings down all the cdl-ep pods along with it. When Geo High Availability
(GeoHA) is configured, the NF application talks to the remote site to continue processing the sessions on the
local site. But, in High Availability (HA) scenario, this leads to a complete downtime.

Slot
The CDL Slot pod stores the actual session data. The CDL endpoint connects to all the Slot pods within the
cluster to replicate the session data to all the pods. These microservices are K8s pod deployed for exposing
internal gRPC interface towards the Cisco Data Store. Each pod starts with the following attributes:

• systemID: This parameter specifies the site ID (For instance: Site-1).

• clusterID: This parameter specifies the unique datastore ID within a site (For instance: Session).

• mapID: This parameter specifies the replica set ID within the cluster. (For instance: map-1,
map-2,..map-n).

• instanceID:This parameter specifies the instance ID within the replica set. (For instance:
map-1.instance-1,map-1.instance-2)

Each Slot pod holds a finite number of sessions and pre-allocated memory for the storing session data. Also,
each replica within the replica set (mapID) has a defined anti affinity rule, which prevents the same blade
form hosting multiple member or instances of the same replica set (for high availability in case of a blade or
node failure). Each Slot pod maintains a timer and last updated ts. The Slot pod generates the notification
callback to the client NF for taking action when the timer expires of if a conflict is detected.

A maximum of two vCPUs is required for deploying the Slot pod in production environment.Note

In the event of pod failover and recovery, the Slot pod recovers from:

• Local Replica Member: The Slot directly reads from the gRPC stream in bulk directly to recover data.

• Remote Replica Member: When there is no local replica available for synchronization, the Slot reads
the data from the remote site instances for the same map.

The following figures depict the Slot recovery process from local and remote peers:

Cisco Common Data Layer
6

Cisco Common Data Layer
Multiple Compute or Node Failures

Figure 5: Slot Recovery from Local Peer

Figure 6: Slot Recovery from Remote Peer

Data Slicing

Data slicing logically separates CDL as slices and stores the session data based on the slice name received
from the Network Functions (NF).

With data slicing, one or more NFs can store different types of session data in dedicated slices of CDL.

A default slice name called session is used if the slice names are not configured.

Cisco Common Data Layer
7

Cisco Common Data Layer
Slot

The configuration is as follows:
cdl datastore <datastore name> slice-names [<sliceName 1> <sliceName 2> ... <sliceName n>
]

The sample configuration is as follows:
cdl datastore session slice-names [session1 session2]

• If the slice names are configured at the NF's ops-center or CDL's ops-center, every request from the NF
must have a valid slice name. If the slice name is different from what is configured or empty, then the
request is rejected with an error code.

• If the slice names are not configured, then the NF requests are routed to the default session.

• The slice names cannot be updated in a running system post deployment.

Note

Deleting CDL Slot Data

In certain scenarios, the CDL records are found on Slot but not in the index pods. The notifications from Slot
towards the application for such records do not receive the values correctly. The record in the slot is not
deleted, if the index data is not deleted.

Ensure the following before deleting the CDL Slot Data:

• If the number of notifications to an application crosses a threshold value (default value of 3), a record is
suspected to be stale.

• This triggers a validation check to find the corresponding record in any of the index pods (local or on
any geo remote sites).

• If there is a mismatch in map ID from index, or if the map ID is not found in all index pods, then a
clean-up is invoked to delete the record on local as well as remote sites.

The following parameters are introduced to delete stale records:

disable-auto-deletion:When set to true, the stale CDL records are not deleted. Auto deletion of stale records
is enabled by default.

notification-retry-count:Specifies the minimum number of timer expiry notification retries sent to application
without receiving an update from application. If there are no updates received even after notification-retry-count
times, cdl proceeds to check if slot record is stale. The default number is 3.

The sample CDL configurations are as follows:

To disable the stale slot record auto deletion feature:

cdl datastore session
features slot-stale-session-detection disable-auto-deletion true
exit

You can change the notification-retry-count to a new value, for example 5. This indicates that the timer expiry
notification tries 5 times, after which it proceeds for checking whether the data is stale.

cdl datastore session

Cisco Common Data Layer
8

Cisco Common Data Layer
Slot

features slot-stale-session-detection notification-retry-count 5
exit

Troubleshooting

To enable troubleshooting logs for Stale CDL Slot Data on endpoint and slot pods, use the following
configuration:

cdl logging logger ep.staleRecord.session
level info
exit

cdl logging logger slot.staleRecord.session
level info
exit

Single Compute or Node Failure
When there is a single compute failure, the CDL continues to function with one less cdl-ep pod and replica
for some Slots and Index pods. With a single replica, the CDL Slot map continues to process all the requests.
When the out of service node is brought back to service, the Slot pods on the node syncs with its respective
peer, as depicted in the figure Figure 5: Slot Recovery from Local Peer.

Multiple Compute or Node Failures
In case of multiple compute failures, all the replicas for a Slot map goes down. For instance, If two nodes are
down, both the replicas of a Slot map goes down (the default value of Slot replica count is two). This leads
to an entire local replica-set failure and triggers a shutdown of all the cdl-ep pods. Also, a CDLGeo Replication
(GR) is triggered, if GeoHA is configured. The NF application talks to the remote site cdl-ep to process the
requests when GeoHA is configured. When there is no GeoHA configuration, it ultimately leads to a service
downtime.

When the failed nodes recover, the Slot pods and Slot replica set recovers and synchronizes from the remote
site (if both the replicas were down during the failure). This will happen only if GeoHA is configured. The
Figure 6: Slot Recovery from Remote Peer figure depicts the initial synchronization from the remote peer
when the entire local replica set was down.

Indexing
The Indexing containers contain indexing data. There are two key pieces of information stored in the Index
pod:

• Primary key to Slot Map ID.

• Unique secondary key to primary key mapping.

The index entries are created (an example use case) at the time of session connect and removed at the time of
disconnect. Using the in-memory KV store, Indexing stores the keys in memory and provides a multi-primary
write. The indexing write log (set and delete operations) are also written to Kafka pods for remote site
replication. One of the Index pods writes the logs in Kafka, which are then received at the remote site. The
corresponding operations are also performed at the remote site.

Cisco Common Data Layer
9

Cisco Common Data Layer
Single Compute or Node Failure

A maximum of two vCPUs is required for deploying the Index pod in production environment.Note

In the event of pod failover and recovery, the Index pod recovers from:

• Local Replica Member - The Index directly reads from the gRPC stream in bulk directly to recover
data.

• Remote Replica Member - If there is no local replica available for synchronization, the Index reads the
data from the remote site instances for the same map.

The following figures depict the Index recovery process from local and remote peers:

Figure 7: Index Recovery from Local Peer

Cisco Common Data Layer
10

Cisco Common Data Layer
Indexing

Figure 8: Index Recovery from Remote Peer

Single Compute or Node Failure
When there is a single compute failure, the CDL continues to function with one less cdl-ep pod and replica
for some Slots and Index pods. With a single replica, the CDL Slot map continues to process all the requests.
When the out of service node is brought back to service, the Index pods on the node syncs with its respective
peer, as depicted in the figure Figure 7: Index Recovery from Local Peer.

Multiple Compute Failures
In case of multiple compute failures, all the replicas for a Slot map goes down. For instance, If two nodes are
down, both the replicas of a Slot map goes down (the default value of Slot replica count is two). This leads
to an entire local replica-set failure and triggers a shutdown of all the cdl-ep pods. Also, a CDLGeo Replication
(GR) is triggered, if GeoHA is configured. The NF application talks to the remote site cdl-ep to process the
requests when GeoHA is configured. When there is no GeoHA configuration, it ultimately leads to a service
downtime.

When the failed nodes recover, the Index pods and Index replica set recovers and synchronizes from the
remote site (if both the replicas were down during the failure). This will happen only if GeoHA is configured.
The Index Recovery from Remote Peer figure depicts the initial synchronization from the remote peer when
the entire local replica set was down.

ETCD
The CDL uses the etcd (an open-source key-value store) as the DB service discovery. When the CDL pods
(Endpoint, Slot or Index) is started, killed or shutdown, it results in updating the event to etcd by publishing
the state.

Cisco Common Data Layer
11

Cisco Common Data Layer
Single Compute or Node Failure

The CDL endpoint is interested in knowing when a Slot or Index pod comes up or goes down. Therefore, it
subscribes to the notifications for Slot and Index pod events in etcd.

Similarly, the CDL Slot or Index pod is interested in knowing when its peer replica pod (with the samemap-id)
comes up or goes down. Therefore, it subscribes to the notifications for corresponding Slot or Index (with
same map-id) pod events in etcd.

Thus, the notifications are sent to each of the pods subscribed to these events. In addition, when a key event
is added or removed, it refreshes the local map. The etcd cache is only applicable for local site events.

Kafka
The Kafka pod replicates data between the local replicas and across sites for Indexing. For replication across
sites, Kafak uses MirrorMaker. The Kafka pods are deployed on the session vms with the replica count set to
a minimum of two for high availability.

Zookeeper
Kafka uses the Zookeeper pod for managing Kafka clusters and coordinating with Kafka brokers.

Mirror Maker
The Mirror Maker pod geo-replicates the indexing data to the remote CDL sites. It takes data from the remote
sites and publishes it to the local Kafka site for the appropriate Indexing instances to pick up.

Remote Site Monitoring

Feature Description
CDL endpoint monitors the remote site connection (replication connection and internal operational connection)
using the CDL Ping RPC every 30 seconds. If ping fails three times for any of the connections, then recreate
that connection and close the old connection.

Remote site monitoring is configurable and it is enabled by default. Use the cdl datastore session features
remote-site-connection-monitoring enable CLI command to enable or disable remote site connections.

Configuring Remote Site Connection
To enable or disable remote site connection, use the following CLI command:

config
cdl datastore session features remote-site-connection-monitoring enable

[true | false]
exit

Troubleshooting Information
To view the logs for remote site connection on an endpoint, use the following configuration:

Cisco Common Data Layer
12

Cisco Common Data Layer
Kafka

cdl logging logger ep.remoteConnection.session
level trace
exit

CDL Deployment Models
This section describes the different CDL deployment models, namely:

• CDL HA.

• Geo HA deployment.

The CDL HA deployment involves the following:

1. Each CDL pod consists of a minimum of two replicas for high availability.

2. The CDL endpoint pod discovers the local Slots and Indexes using etcd for service discovery.

3. 3. The Index and Slot pod data is distributed across maps (or shards) for write scalability and each maps
have at least one replica for high availability. The default and recommended number of replicas for Slot
and Index replica is two.

4. The CDL endpoint on receiving request selects the Slot shard to which the data is written to or read from.
For new record creation, it selects the Slot map in a round robin manner. For existing sessions, the slot
map is selected after looking up the primary key in indexing.

5. If new keys (primary or unique) are added or removed for a session, the CDL endpoint sends the key to
the Indexing pods. The Index map selection takes place by hashing of the key and sending it to the
appropriate Index map for updating the key in the Index. For primary key, the Indexing pod stores the
Slot map-id where the session is stored. For unique-key, the Indexing pod stores the primary-key where
the session is stored.

6. The CDL endpoint forwards the Create, Update, Delete, or Find request to the selected Slot(s) for writing
or reading the data from the Slot memory. The slot generates an appropriate response towards the endpoint
on successful processing of the request.

7. Each Indexing shard contains a leader which publishes the indexing operations to Kafka bus for guaranteed
local and remote replication.

8. Each Indexing pod instance listens to the Kafka bus for Indexing events. On receipt of a set or delete
event, it compares the time stamp of the event with the time stamp of the Index already present. If the
Kafka event time stamp is greater than the current Index time stamp, it applies the operation to the Indexing
pod, else the event from Kafka is ignored.

Cisco Common Data Layer
13

Cisco Common Data Layer
CDL Deployment Models

Figure 9: CDL HA Deployment

The CDL Geo HA deployment involves the following:

1. For CDL Geo HA deployment, each site is configured with a remote site for achieving geo redundancy.

2. In addition to sending the data to local Slots and Indexes, the CDL endpoint also sends the request to
remote site cdl-endpoint over GRPC to replicate Slot data on the remote sites.

3. On receiving the Create,Update, or Delete request on the remote site, the CDL endpoint forwards the
request to Slots with the same map-id as selected in the original site.

4. The Indexing data replication is achieved through the Mirror-maker. The Mirror-maker on the remote site
consumes the data from the Kafka of other site and pushes the data to its local Kafka bus for replicating
it to the local Index pods.

For Geo HA deployments, the round-trip time (RTT) recommended between two geo sites is 50ms.Note

Cisco Common Data Layer
14

Cisco Common Data Layer
CDL Deployment Models

Figure 10: CDL Geo HA Deployment

Call Flows
This section describes the following call flows:

• Finding Record by Primary Key

• Finding Record by Unique Key

• Creating a Record

• Updating a Record

• Deleting a Record

• Notification to NF on Timer Expiry

• Geo Replication - Create (GEO)

• Geo Replication - Update (GEO)

• Geo Replication - Delete (GEO)

Finding Record by Primary Key
This section describes the call flow of finding a record by primary key.

Cisco Common Data Layer
15

Cisco Common Data Layer
Call Flows

Figure 11: Finding Record by Primary Key - Call Flow

Finding Record by Unique Key
This section describes the call flow of finding a record by unique key.

Cisco Common Data Layer
16

Cisco Common Data Layer
Finding Record by Unique Key

Figure 12: Finding Record by Unique Key - Call Flow

Creating a Record
This section describes the call flow of creating a record.

Cisco Common Data Layer
17

Cisco Common Data Layer
Creating a Record

Figure 13: Creating a Record - Call Flow

Updating a Record
This section describes the call flow of updating a record.

Cisco Common Data Layer
18

Cisco Common Data Layer
Updating a Record

Figure 14: Updating a Record - Call Flow

Deleting a Record
This section describes the call flow of deleting a record.

Cisco Common Data Layer
19

Cisco Common Data Layer
Deleting a Record

Figure 15: Deleting a Record - Call Flow

Notification to NF on Timer Expiry
This section describes the call flow of session notification to NF on timer expiry.

Figure 16: Session Notification to NF - Call Flow

Cisco Common Data Layer
20

Cisco Common Data Layer
Notification to NF on Timer Expiry

Geo Replication - Create
This section describes the call flow of creating primary and unique keys for Geo Replication.

Figure 17: Geo Replication Call Flow - Creating Geo

Geo Replication - Update
This section describes the call flow of updating primary and unique keys for Geo Replication.

Cisco Common Data Layer
21

Cisco Common Data Layer
Geo Replication - Create

Figure 18: Geo Replication Call Flow - Updating Geo

Geo Replication - Delete
This section describes the call flow of deleting primary and unique keys for Geo Replication.

Cisco Common Data Layer
22

Cisco Common Data Layer
Geo Replication - Delete

Figure 19: Geo Replication Call Flow - Deleting Geo

Identifying Stale Index Records
In certain scenarios, the unique keys in index pods of the CDL are stale (presumed to be deleted). The NFs
may try to use these unique keys for another record, as the CDL does not show the stale record details to the
NFs.

The CDL allows the operator to enable a parameter to detect the stale records and perform the necessary action
on such stale records.

To detect the stale records and perform actions:

1. Identify the stale records. When a new record is created, the unique key is overwritten. To identify such
records, enable the index-overwrite-detection parameter, and ensure that the unique-keys-prefixmatches
the prefix pattern.

2. Perform the necessary action (notify, delete or log) on the identified stale records.

The CDL detects any unique key that is overwritten and performs one of the following actions:

Cisco Common Data Layer
23

Cisco Common Data Layer
Identifying Stale Index Records

• Deletes the stale record or the entire record. The delete action is triggered only if the PurgeOnEval
flag is set to false for the stale record.

• Notifies the NF about the stale record. The notify action sends the
STALE_INDEX_NOTIFICATION to the NF.

• Logs the overwritten unique key. For the log action, the stale record is logged with the WARN log
level.

If there are two different unique keys pointing to the same primary key; one with notify action and the other
with delete action, then the notify action is performed.

Note

Use the following configuration:

features index-overwrite-detection max-tps variable

features index-overwrite-detection queue-size variable

features index-overwrite-detection unique-keys-prefix uk
action [delete-record, notify-record, log-record]

where,

• max-tps: Controls the rate of notification for stale records. The default is 200.

• queue-size: Controls the processing queue size of the stale records. The default is 1000.

The queue-size parameter is for both delete and notify actions. The max-tps
parameter is only for the notify action.

Note

• unique-keys-prefix: Specifies the unique-key prefix pattern along with the action that needs to be
performed.

Example:

cdl datastore session
features index-overwrite-detection max-tps 250
features index-overwrite-detection queue-size 2000
features index-overwrite-detection unique-keys-prefix uk
action notify-record
exit
exit

Troubleshooting

To troubleshoot the stale index records, set the index.overwrite.session logger to INFO level. The logs from
the endpoint pods as well as the index pods help in troubleshooting.

CDL configuration:

Cisco Common Data Layer
24

Cisco Common Data Layer
Identifying Stale Index Records

cdl logging logger index.overwrite.session
level info
exit

The following metrics are introduced:

• overwritten_index_records_deleted–maintains the total number of records deleted due to stale records
identified at index.

• overwritten_index_records_skipped–maintains the total number of records detected as stale, but
dropped when the queue is full while processing the records for notify or delete.

Deploying CDL through Network Functions (NFs)
You can deploy CDL through the Network Functions (NFs) – Session Management Function (SMF) and
Policy Control Function (PCF) – Ops Center.

For deploying CDL through SMF Ops Center, see Cisco Common Data Layer in SMF chapter in Ultra Cloud
Core 5G Session Management Function - Configuration and Administration Guide

For deploying CDL through PCF Ops Center, see Cisco Common Data Layer in PCF chapter in Ultra Cloud
Core 5G Policy Control Function -Configuration and Administration Guide

CDL Geo Replication (GR) Deployment
This section describes how to deploy CDL for Geo Replication (GR).

Prerequisites for CDL GR
Before deploying CDL GR, configure the following:

• CDL Session Database and define the base configuration.

• Kafka for CDL.

• Zookeeper for CDL.

Configuring the CDL Session Database and Defining the Base Configuration

This section describes how to configure the CDL session database and define the base configuration through
the NF (SMF or PCF) Ops Center.

1. Open the NF Ops Center console and navigate to the datastore CLI.

2. To configure the session database and define the base configurations for the failover of the CDL operations,
use the following configuration.

configure
cdl system-id system_id

cdl node-type node_type

cdl enable-geo-replication boolean_value

cdl remote-site remote_system_id db-endpoint host host_ip_address

db-endpoint port port

kafka-server remote_kafka_host remote_port

end exit

Cisco Common Data Layer
25

Cisco Common Data Layer
Deploying CDL through Network Functions (NFs)

cdl datastore session
endpoint replica num_replica

endpoint external-ip ip_address

endpoint external-ip port

slot replica num_replica

slot map num_map/shards

slot write-factor write_factor

slot notification host host

slot notification port port

slot notification limit tps

index replica num_replica

index map num_map/shards

index write-factor write_factor

end exit

Notes:

• cdl system-id system_id: Specifies the system or Kubernetes cluster identity. The default value is 1.

• cdl node-type node_type: Indicates the Kubernetes node label to configure the node affinity. The default
value is session. node_type must be a string of length 0-64 characters.

• cdl enable-geo-replication boolean_value: This is an optional CLI. Specifies the geo replication status
as enable or disable. The default value is false.

• cdl remote-site remote_system_id: Specifies the endpoint’s IP address for the remote site endpoint.
Configure this command only when you have set the cdl enable-geo-replication to true.

• db-endpoint host host_ip_address: Specifies the endpoint IP address for the remote site. Configure this
command only when you have set the cdl enable-geo-replication to true.

• db-endpoint port port_number: Denotes the endpoint port for the remote site endpoint. The default port
number is 8882. Configure this command only when you have set the cdl enable-geo-replication to
true.

• kafka-server remote_kafka_host remote_port: Indicates the Kafka server’s external ip and port of the
remote site, which the remote-system-id identifies. You can configure multiple host and ports per Kafka
instance at the remote site. Configure this command only when you have set the cdl enable-geo-replication
to true.

• endpoint replica num_replica: Indicates the number of replicas to be created. The default value is 1.
num_replica must be in the range of 1 to 16.

• endpoint external-ip ip_address: This is an optional CLI. Specifies the external ip address to expose
the database endpoint. Configure this command only when you have set the cdl enable-geo-replication
to true.

• endpoint external-port port: Specifies the external Port to expose the database endpoint. Configure this
command only when you have set the cdl enable-geo-replication to true. The default value is 8882.

• slot replica num_replica: Specifies the number of replicas to be created. The default value is 1.
num_replica must be in the range of 1 to 16.

• slot map num_map/shards: Specifies the number of partitions in a slot. The default value is 1.
num_map/shards must be in the range of 1 to 1024.

Cisco Common Data Layer
26

Cisco Common Data Layer
Configuring the CDL Session Database and Defining the Base Configuration

• slot write-factor write_factor: Specifies the number of copies to be written before a successful response.
The default value is 1. write_factor must be in the range of 0 to 16. Make sure that the value is less than
or equal to the number of replicas.

• slot notification host host: Specifies the notification server hostname or IP address. The default value
is datastore-notification-ep.

• slot notification port port: Specifies the notification server port number. The default value is 8890.

• slot notification limit tps: Specifies the notification limit per second. The default value is 2000.

• index replica num_replica: Specifies the number of replicas to be created. The default value is 2.
num_replica must be in the range of 1 to 16.

• index map num_map/shards: Specifies the number of partitions in a Slot. The default value is 1. The
accepted range is 1–1024. Avoid modifying this value after deploying the CDL.

• index write-factor write_factor: Specifies the number of copies to be written before a successful response.
The default value is 1. write_factor must be in the range of 0 to 16.

Configuring Kafka for CDL

This section describes how to configure Kafaka for the CDL.

1. Open the NF Ops Center console and navigate to the datastore CLI.

2. Use the following configuration.

configure
cdl kafka replica num_replicas

enable-JMX-metrics boolean_value

external-ip ip_address port_number

retention-time retention_period

retention-size retention_size

end
exit

• cdl kafka replica num_replicas: Specifies the number of replicas to be created. The default value is 3.
num_replicas must be in the range of 1 to 16.

• enable-JMX-metrics boolean_value: Specifies the status of the JMX metrics. The default value is true.

• external-ip ip_address port_number: Specifies the external IPs to expose to the Kafka service. Configure
this command when you have set the enable-geo-replication parameter to true. You are required to
define an external ip address and port number for each instance of the Kafka replica. For example, if the
cdl kafka replica parameter is set to 3, then youmust define three external ip addresses and port numbers.

• retention-time retention_period: Specifies the duration (in hours) for which the data must be retained.
The default value is 3. retention_period must be in the range of 1 to 168.

• retention-size retention_size: Specifies the data retention size in MB. The default value is 5120 MB.

Note

Cisco Common Data Layer
27

Cisco Common Data Layer
Configuring Kafka for CDL

Configuring Zookeeper for CDL

This section describes how to configure the Zookeeper for CDL.

To configure Zookeeper for CDL, use the following configuration:

1. Open the NF Ops Center console and navigate to the datastore CLI.

2. Execute the following commands

configure
cdl zookeeper data_storage_size_in_gb

log-storage-size size_in_gb

replica num_replicas

enable-JMX-metrics boolean_value

enable-persistence boolean_value

end
exit

• cdl zookeeper data_storage_size_in_gb: Specifies the size of the Zookeeper data storage in GB. The
default value is 20 GB. data_storage_size_in_gb must be in the range of 1 to 64.

• log-storage-size size_in_gb: Indicates the size of the Zookeeper data log’s storage in GB. The default
value is 20 GB. size_in_gb must be in the range of 1to 64.

• replica num_replicas: Indicates the number of replicas that must be created. The default value is 3.
num_replicas must be in the range of 1 to 16.

• enable-JMX-metrics boolean_value: Indicates the status of the JMX metrics. The default value is set
to true.

• enable-persistence boolean_value: Specifies the status of the persistent storage for Zookeeper data. The
default value is false.

Note

Deploying CDL for Geo Replication (GR)
For Geo Replication (GR), you have to create two separate HA systems independently and configure the Geo
HA for communications with the remote sites. By default, CDL is deployed with two replicas for db-ep, one
slot map (with two replicas per map) and one index map (with two replicas per map).

• It is recommended to configure CDL containers in YANG model.

• It is recommended to configure the Geo HA only after the two HA systems become active.

Important

To deploy the CDL GR, use the following configuration:

Cisco Common Data Layer
28

Cisco Common Data Layer
Configuring Zookeeper for CDL

Procedure

Step 1 Deploy HA on site-1.

Deploy site-1 HA system without any Geo HA related configuration parameters and set the system-id parameter to 1 in
the configuration.

configure
cdl system-id system_id

cdl node-type node_label

cdl datastore datastore_name

endpoint replica number_of_HA_instances

index map number_of_index_partitions

index replica number_of_HA_instances

slot map number_of_slot_partitions

slot replica number_of_HA_instances

exit

Example:
cdl# configure terminal
cdl(config)# cdl system-id 2
cdl(config)# cdl node-type session
cdl(config)# cdl datastore session
cdl(config-datastore-session)# endpoint replica 2
cdl(config-datastore-session)# slot map 4
cdl(config-datastore-session)# slot replica 2
cdl(config-datastore-session)# index map 3
cdl(config-datastore-session)# index replica 2
cdl(config-datastore-session)# exit
cdl(config)#

Step 2 Apply the HA configuration on site-1.

Commit the configurations and deploy the pods on site-1.

Step 3 Deploy HA on site-2.
Deploy site-2 HA system (in parallel) without any Geo HA related configuration parameters and set the system-id
parameter to 2 in the configuration.

configure
cdl system-id system_id

cdl node-type node_label

cdl datastore datastore_name

endpoint replica number_of_HA_instances

index map number_of_index_partitions

index replica number_of_HA_instances

slot map number_of_slot_partitions

slot replica number_of_HA_instances

exit

Example:
cdl# configure terminal
cdl(config)# cdl system-id 2

Cisco Common Data Layer
29

Cisco Common Data Layer
Deploying CDL for Geo Replication (GR)

cdl(config)# cdl node-type session
cdl(config)# cdl datastore session
cdl(config-datastore-session)# endpoint replica 2
cdl(config-datastore-session)# slot map 4
cdl(config-datastore-session)# slot replica 2
cdl(config-datastore-session)# index map 3
cdl(config-datastore-session)# index replica 2
cdl(config-datastore-session)# exit
cdl(config)#

Step 4 Apply HA configuration on site-2.

Commit the configuration and deploy the pods on site-2.

Step 5 Verify whether site-1 and site-2 are active.

Verify whether the CDL, Kafka, and Zookeeper pods are active before proceeding to Geo HA configuration.

Step 6 Configure external IP address on site-1 for site-2 communication.
a) Enable Geo Replication on site-1 and configure the remote site as 2 for site-1.

configure
cdl enable-geo-replication true/false

cdl datastore session geo-remote-site list_of_geo_replication_sites

Example:
cdl# configure terminal
cdl(config)# cdl enable-geo-replication true
cdl(config)# cdl datastore session geo-remote-site 2

b) Configure the external IP address for CDL endpoints so that site-2 can access it.

configure
cdl datastore session endpoint external-ip site_1_external_ip_address

c) Configure the external IP address and port for all Kafka replicas.

For instance, if two replicas (default) are configured for Kafka, provide two different pairs of IP address and port
numbers.

configure
cdl kafka external-ip site_1_external_ip_address port1

cdl kafka external-ip site_1_external_ip_address port2

d) (Optional) Configure the SSL/TLS certificate to enable TLS support for the local site.

Configuring TLS certificates enable the local site to accept both secure and non-secure connections. Similarly,
configuring SSL certificates enable the local site to establish a secure connection with the remote sites.

All the certificates are in multi-line raw text format. If the certificates are invalid, the server continues
with the non-secure connection.

Note

configure
cdl ssl-config enable true

cdl ssl-config ip site_1_external_ip_address

cdl ssl-config certs site_1_external_ip_address ssl-key ssl_key

cdl ssl-config certs site_1_external_ip_address ssl-crt ssl_crt

Cisco Common Data Layer
30

Cisco Common Data Layer
Deploying CDL for Geo Replication (GR)

Step 7 Configure external IP address on site-2 for site-1 communication.
a) Enable Geo Replication on site-2 and configure the remote site as 1 for site-2.

configure
cdl enable-geo-replication true/false

cdl datastore session geo-remote-site list_of_geo_replication_sites

Example:
cdl# configure terminal
cdl(config)# cdl enable-geo-replication true
cdl(config)# cdl datastore session geo-remote-site 1

b) Configure the external IP address for CDL endpoints so that site-1 can access it.

configure
cdl datastore session endpoint external-ip site_2_external_ip_address

c) Configure the external IP address and port for all Kafka replicas.

For instance, if two replicas (default) are configured for Kafka, provide two different pairs IP addresses and port
numbers.

configure
cdl kafka external-ip site_2_external_ip_address port1

cdl kafka external-ip site_2_external_ip_address port2

d) (Optional) Configure the SSL/TLS certificate to enable TLS support for the local site.

Configuring TLS certificates enable the local site to accept both secure and non-secure connections. Similarly,
configuring SSL certificates enable the local site to establish a secure connection with the remote sites.

All the certificates are in multi-line raw text format. If the certificates are invalid, the server continues
with the non-secure connection.

Note

configure
cdl ssl-config enable true

cdl ssl-config ip site_1_external_ip_address

cdl ssl-config certs site_1_external_ip_address ssl-key ssl_key

cdl ssl-config certs site_1_external_ip_address ssl-crt ssl_crt

Step 8 Add the remote site information in each of the sites.
a) Configure remote site cdl-ep (CDL endpoint) configuration on site-1.

configure
cdl remote-site 2 db-endpoint host site_2_cdl_ep_ip

b) Configure remote site Kafka configuration on site-1.

configure
cdl remote-site 2 kafka-server site_2_kafka1_ip_address site_2_kafka1_port

cdl remote-site 2 kafka-server site_2_kafka2_ip_address site_2_kafka2_port

c) (Optional) Configure the SSL certificates to establish a secure connection with remote site on site-1.

All the certificates are in multi-line raw text format. If the certificates are invalid, the server continues
with the non-secure connection.

Note

Cisco Common Data Layer
31

Cisco Common Data Layer
Deploying CDL for Geo Replication (GR)

configure
cdl ssl-config certs site_2_external_ip_address ssl-key ssl_key

cdl ssl-config certs site_2_external_ip_address ssl-crt ssl_crt

Commit the configuration on site-1.

d) Configure remote site cdl-ep configuration on site-2.

configure
remote-site 1 db-endpoint host site_1_cdl_ep_ip_address

e) Configure remote site Kafka configuration on site-2.

configure
cdl remote-site 1 kafka-server site_1_kafka1_ip_address site_1_kafka1_port

cdl remote-site 1 kafka-server site_1_kafka2_ip_address site_1_kafka2_port

f) (Optional) Configure the SSL certificates to establish a secure connection with remote site on site-2.

All the certificates are in multi-line raw text format. If the certificates are invalid, the server continues
with the non-secure connection.

Note

configure
cdl ssl-config certs site_1_external_ip_address ssl-key ssl_key

cdl ssl-config certs site_1_external_ip_address ssl-crt ssl_crt

Commit the configuration on site-2.

Step 9 Verify whether Mirror Maker pod is deployed and all the other pods are active.

NOTES:

• cdl kafka external-ip - Specifies the external IP address and port for all Kafka replicas.

• site_external_ip_address - Specifies the external IP address of the remote site.

• port_number - Specifies the port number of the remote site.

• cdl ssl-config certs - Specifies the SSL certificates to establish a secure connection with remote site.

• site_external_ip_address - Specifies the external IP address of the remote site.

• ssl-keyssl_key - Specifies the generated SSL key.

Geo Replication (GR) Failover Notification
The CDL is equipped with Geo Replication (GR) failover notifications, which can notify the timer expiry of
session data and bulk notifications to the currently active site. The CDL uses Border Gateway Protocol (BGP)
through App-Infra for the GR failover notifications.

The CDL subscribes to the key value on both the GR sites. The App-Infra sends notifications to the CDL
when there is any change in these key values. A key value indicates the state of the CDL System ID or the
GR instance. The GR instance is mapped to the CDL slices using the CDL system ID or the GR instance ID
in the key.

Cisco Common Data Layer
32

Cisco Common Data Layer
Geo Replication (GR) Failover Notification

The following parameters are introduced for CDL GR failover notification:

• instance-aware-notification enable true or false - Set this to true to enable GR failover notification.

• instance-aware-notification system-id - The system-id maps to the sliceName, that is, the primary
system-id maps to the primary site ID of that particular sliceName. This information must be configured
on all the geo sites. The FindAllNotify and TimerExpiry notifications use the system ID details for bulk
processing tasks.

The system ID is mandatory on both the sites. The GR instance ID in the NF configuration must match the
CDL system ID.

In the following example, the GR failover notification is set to true. The system-id 1 is the primary site ID
for sliceNames sgw1 and smf1while system-id 2 is the primary site for slicesNames sgw2 and smf1.
cdl datastore session
features instance-aware-notification enable true
features instance-aware-notification system-id 1
slice-names [sgw1 smf1]
exit
features instance-aware-notification system-id 2
slice-names [sgw2 smf2]
exit
exit

GR Failover Notification Records of Peer Site
The CDL sends notification about records only to its local application. The notification is based on the system-id
and Timer Expiry parameters of the records. In a GR setup, when a site is isolated for maintenance, the records
of that site are not sent to its peer site.

With the remote-system-id parameter, CDL allows the peer site to process notifications of the isolated site.
The remote-system-id of the peer site is configured with the site ID of the isolated site. The CDL processes
records when the system-id of any record matches the remote-system-id. The notifications are sent based on
the Timer Expiry, or for the records that have the notifyOnPurge enabled.

The remote-system-idmust be removed from the CDL configuration after the isolated site resumes its function.Note

The following procedure explains the configuration of remote-system-id with an example:

In the example below, the GR setup has 2 sites: site-1 and site-2. The site-1 is disconnected for an upgrade,
and the remote-system-id of site-2 is configured with the site ID of site-1.

1. Shutdown or disconnect the site-1.

2. To configure the remote-system-id of site-2 with site ID of site-1, run the following command:

cdl datastore session
slot notification remote-system-id [1]

exit

Note that the value [1] for remote-system-id in the above command is the site ID of site-1, which is
isolated.

3. The site-2 starts notifying records of site-1 to the local application.

Cisco Common Data Layer
33

Cisco Common Data Layer
GR Failover Notification Records of Peer Site

4. Before bringing up site-1, remove the site ID of site-1 from the remote-system-id list of site-2.

The remote-system-id is mutually exclusive with the instance-aware-notification-system-id. For more
information, refer to the Geo Replication (GR) Failover Notification topic.

Triggering Remote Index Sync
The CDL provides a utility to sync the indexes with its remote peers. The utility can be used in the scenarios
such as post site isolation, where there is a huge difference in the number of index records between the sites.
The CDL also supports a command to check the status of the remote index sync.

• It is recommended to use the remote sync only if there is a huge difference in the index records between
the sites as this might impact the performance.

• The geo-remote-site should be configured to view the commands.

Note

Trigger remote index sync for,

• a list of index mapIDs or all mapIDs from the cli.

• a list of sliceNames or all the sliceNames.

Note the following:

• Ensure the conditions below are met to avoid errors while triggering a remote sync for index with its
peers.

• The custom map-ids and slice-names should be unique.

• Only valid index map-ids and slice-names are allowed.

• Remote site is reachable.

• Internally, CDL retries a maximum of 3 times to sync with its remote peer.

• The remote index sync skips the index instance if the sync is already ongoing for that instance.

Cisco Common Data Layer
34

Cisco Common Data Layer
Triggering Remote Index Sync

Output Parameter

triggered-instances

Shows the list of index instances for which the remote
index sync has been started.

Command

cdl actions remote-index-sync start
[options]

Options

• map-id

Index map-id for which the remote index sync
should start. The map-id is optional. If included,
triggers remote index sync for all the instances
of that index map-id. A maximum of 5 map-ids
can be given using this option.

• slice-name

The slice-name for which the remote index sync
starts. The slice-name is optional. If included,
triggers remote index sync for all the
slice-names. There is no limit for the number of
slice-names.

Output

triggered-instances
'index-mapID-1-instanceID-1,

index-mapID-1-instanceID-2,
index-mapID-2-instanceID-1, index-m

Example

cdl actions remote-index-sync start
map-id { 1 } map-id { 2 }

slice-name { session-1 } slice-name
{ session-2 }

Check the Remote Sync Status

The remote sync status shows the index instances for which the remote index sync is in progress.

The remote sync status does not show the sync status per sliceName. If the sync status shows that a particular
index instance is syncing with the remote site, it means all the sliceNames or the listed sliceNames are syncing
one after the other.

Note

Output parameter

syncing-instances

List of index instances for which the remote index
sync is in progress.

Command

cdl actions remote-index-sync status

Output

syncing-instances
'index-mapID-1-instanceID-1,
index-mapID-1-instanceID-2,
index-mapID-2-instanceID-1,
index-mapID-2-instanceID-2’

Example

cdl actions remote-index-sync status

Cisco Common Data Layer
35

Cisco Common Data Layer
Triggering Remote Index Sync

Troubleshooting

The following warning or error logs in Index pods show the status of the remote index sync.

• The sync is successful with the following:

Log:

Bulk Sync done from Remote Indexes(s) for isInitSync = false

Example:
[datastore.index.session] Bulk Sync done from Remote Indexes(s) for isInitSync = false
sliceName = session via DBApp

Log:

Sync finished successfully with Remote MemoryMap App isInitSync: false

Example:
[datastore.index.session] Sync finished successfully with Remote MemoryMap App isInitSync:
false count: 100 Time taken: 16.699031ms sliceName: session

• The sync fails with the following error log:

Example:
Error! Remote Bulk Read failed 3 times for isInitSync = false

Feature Summary and Revision History

Summary Data

PCF 2021.04.0 and laterApplicable Product (s) or Functional Area

Bare Metal, OpenStack, VMwareApplicable Platforms

Disabled – Configuration RequiredFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

ReleaseRevision Details

CDL 1.6First introduced.

Feature Description
In this release, the CDL supports IPv6, thus enabling the dual stack support for its endpoints in a GR enabled
setup. Dual stack enables networking devices to be configured with both IPv4 and IPv6 addresses.

This feature provides the following functionality:

• IPv6 support for the CDL endpoints.

Cisco Common Data Layer
36

Cisco Common Data Layer
Feature Summary and Revision History

• IPv6 support for communicating between Mirror Maker and Kafka brokers.

• TLS support for CDL and Kafka IPv6 endpoints.

To get IPv6 support in CDL, the K8s cluster must support dual stack and it must be enabled in the cluster.Note

Configuring the IPv6 Support
To configure IPv6 support for CDL in a GR enabled setup, use the CLI commands or configuration in the
following steps:

1. Expose the CDL IPv6 endpoint and connect to remote site IPv6 endpoint.

a. Enable CDL geo replication.

config
cdl enable-geo-replication true

b. Configure the external IP address for CDL endpoints. In addition to the endpoint external-ip, configure
the endpoint external-ipv6 parameter too.

config
cdl datastore session endpoint external-ipv6 IPv6_address

c. Configure the CDL endpoints for remote site.

config
cdl remote-site system_id

db-endpoint host IPv6_address

db-endpoint port 8882

exit

The IPv4 and IPv6 endpoints can be accessed over the same port (default value is 8882).Note

Currently, the CDL can connect to remote site endpoints using either IPv4 or IPv6, but not both. However, it
can simultaneously expose both the IPv4 and IPv6 endpoints for the remote site to connect to either one of
them.

Note

2. Expose the CDL Kafka and connect to remote site Kafka over IPv6.

a. Configure the external IP address and port for all Kafka replicas.

config
cdl kafka external-ipv6 IPv6_address port_address

exit

Cisco Common Data Layer
37

Cisco Common Data Layer
Configuring the IPv6 Support

You must configure IPv6 for each broker separately. It is possible to simultaneously expose the Kafka brokers
over IPv4 and IPv6, but the ports used must be different. Currently, the Kafka listeners do not support using
the same port for different IP addresses.

Note

b. Configure the remote site Kafka configuration.

Mirror Maker can connect to both local site and remote site Kafka brokers either over IPv4 and IPv6
or only one of them.

Configure the remote kafka-server separately using the following CLI command:

config
cdl remote-site system_id

kafka-server IPv6_address port_address

exit

3. (Optional step) Configure the SSL/TLS certificates to enable TLS support for both local and remote sites.
These certificates help to establish a secure connection between the local and remote sites.

Use the same configuration to configure the certificates on each site.

a. Enable SSL for CDL endpoint.

config
cdl ssl-config enable true

b. Configure the certificates.

config
cdl ssl-config certs external_ipv6_address

ssl-key ssl_key

ssl-crt ssl_crt

ssl-ca ssl_ca

exit

NOTES:

• ssl-key ssl_key - Specify the Private key of server.

• ssl-crt ssl_crt - Specify the CA signed server certificate.

• ssl-ca ssl_ca - Specify the Public CA certificate.

4. (Optional step) Configure the SSL/TLS certificates to enable TLS support for Kafka endpoints.

a. Enable SSL for CDL endpoint.

config
cdl ssl-config enable true

b. Enable SSL for Kafka endpoint.

config
cdl kafka ssl-settings enable-ssl true
cdl kafka ssl-settings disable-host-name-verification true

Cisco Common Data Layer
38

Cisco Common Data Layer
Configuring the IPv6 Support

c. Configure the certificates for Kafka endpoints on both local and remote sites.

config
cdl ssl-config certs external_ipv6_address

ssl-key ssl_key

ssl-crt ssl_crt

ssl-ca ssl_ca

exit

The following sample configuration is used to connect to remote site IPv6 TLS endpoints and IPv6/IPv4
TLS Kafka:

Site-1 Configuration

cdl remote-site 2
db-endpoint host 2001:DB8:54ff:a4::139:250
db-endpoint port 8882
kafka-server 10.106.139:250 10092
ssl-port 10094
exit
kafka-server 10.106.139:250 10093
ssl-port 10095
exit
kafka-server 2001:DB8:54ff:a4::139:250 10096
ssl-port 10098
exit
kafka-server 2001:DB8:54ff:a4::139:250 10097
ssl-port 10099
exit
exit
cdl ssl-config enable true
cdl ssl-config certs 2001:DB8:54ff:a4::139:250

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl ssl-config certs 192.0.2.2

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl ssl-config certs 192.0.2.1

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl ssl-config certs 2001:DB8:54ff:a4::139:249

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl datastore session
geo-remote-site [2]
endpoint external-ip 192.0.2.1 endpoint external-ipv6 2001:DB8:54ff:a4::139:249
exit
cdl kafka ssl-settings enable-ssl true
cdl kafka ssl-settings disable-host-name-verification true
cdl kafka external-ipv6 2001:DB8:54ff:a4::139:249 10096
ssl-port 10098
exit
cdl kafka external-ipv6 2001:DB8:54ff:a4::139:249 10097
ssl-port 10099
exit

Cisco Common Data Layer
39

Cisco Common Data Layer
Configuring the IPv6 Support

cdl kafka external-ip 10.106.139.249 10092
ssl-port 10094
exit
cdl kafka external-ip 10.106.139.249 10093
ssl-port 10095
exit

Site-2 Configuration

cdl remote-site 1
db-endpoint host 2001:DB8:54ff:a4::139:249
db-endpoint port 8882
kafka-server 10.106.139:249 10092
ssl-port 10094
exit
kafka-server 10.106.139:249 10093
ssl-port 10095
exit
kafka-server 2001:DB8:54ff:a4::139:249 10096
ssl-port 10098
exit
kafka-server 2001:DB8:54ff:a4::139:249 10097
ssl-port 10099
exit
exit
cdl ssl-config enable true
cdl ssl-config certs 2001:DB8:54ff:a4::139:249

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl ssl-config certs 192.0.2.1

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl ssl-config certs 192.0.2.1

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl ssl-config certs 2001:DB8:54ff:a4::139:250

ssl-key “<server-key>”
ssl-crt “<signed-certificate>”
ssl-ca “<ca-certificate>”

exit
cdl datastore session
geo-remote-site [1]
endpoint external-ip 192.0.2.1
endpoint external-ipv6 2001:DB8:54ff:a4::139:250
exit
cdl kafka ssl-settings enable-ssl true
cdl kafka ssl-settings disable-host-name-verification true
cdl kafka external-ipv6 2001:DB8:54ff:a4::139:250 10096
ssl-port 10098
exit
cdl kafka external-ipv6 2001:DB8:54ff:a4::139:250 10097
ssl-port 10099
exit
cdl kafka external-ip 192.0.2.1 10092
ssl-port 10094
exit
cdl kafka external-ip 192.0.2.1 10093
ssl-port 10095
exit

Cisco Common Data Layer
40

Cisco Common Data Layer
Configuring the IPv6 Support

CDL Alarms
This section describes the alarms in the CDL deployment.

The following alarms are introduced to detect failure:

Table 2: Alarms

DescriptionSeverityAlarm

This alarm is triggered if the local request success
rate is less than 90%, for more than 5 minutes.

criticalcdlLocalRequestFailure

This alarm is triggered if the active connections from
the endpoint pod to the remote site reaches 0, for
longer than 5 minutes. This alarm is for GR
deployment only.

criticalcdlRemoteConnectionFailure

This alarm is triggered if the incoming remote request
success rate is less than 90%, for more than 5
minutes. This alarm is for GR deployment only.

criticalcdlRemoteRequestFailure

If the ratio of outgoing replication requests to the
local requests in cdl-global namespace is below 90%,
for more than 5 minutes. This alarm is for GR
deployment only.

criticalcdlReplicationError

This alarm is triggered if the kafka replication delay
to the remote site crosses 10 seconds, for longer than
5 minutes. This alarm is for GR deployment only.

criticalcdlKafkaRemoteReplicationDelay

CDL Zone Upgrade

Feature Description
CNDP supports zone-based upgrades where all the nodes in an upgrade zone are upgraded in parallel. This
avoids the time that is taken to upgrade large clusters. CDL utilizes the K8s Topology Spread Constraints
feature to spread the pods across upgrade zones.

To support this in-service for CDL, the pods must be aware of upgrade zones and ensure that all replicas for
a slot, index, or Kafka do not get scheduled in the same upgrade zone. For example, if both slot replicas of
the same map are in the same upgrade zone, both replicas go down at the same time and cause session loss
in a non-GR scenario. The CDL endpoint stops serving requests until one replica is back.

Ensure that at least three upgrade zones are present. Any node failure can result in Pending state for pods even
if another zone has space to schedule the pod.

There is no explicit configuration that is required in CDL or NF Ops Center to enable this feature. The cluster
deployer itself passes the configuration.

Cisco Common Data Layer
41

Cisco Common Data Layer
CDL Alarms

Topology Spread Constraint
CDL uses the K8s topology spread constraints feature to spread pods across upgrade zones so that if an upgrade
zone is down, all the redundant pods are not lost at the same time.

The following fields are defined for the topology spread constraint:

• maxSkew—Defines the maximum permitted difference between the number of matching pods in the
target topology and the global minimum (the minimum number of pods that match the label selector in
a topology domain). For example, if you have 3 zones with 2, 4, and 5 matching pods respectively, then
the global minimum is 2 and maxSkew is compared relative to that number.

• whenUnsatisfiable—Indicates how to deal with a pod if it does not satisfy the spread constraint:

• DoNotSchedule (default) indicates the scheduler not to schedule the pod.

• ScheduleAnyway indicates the scheduler to schedule the pod while prioritizing nodes that minimize
the skew.

• topologyKey is the key of node labels. If two nodes are labelled with this key and have identical values
for that label, the scheduler treats both nodes as being in the same topology. The scheduler tries to place
a balanced number of pods into each topology domain.

• labelSelector is used to find matching pods. Pods that match this label selector are counted to determine
the number of pods in their corresponding topology domain.

For CDL pods, the following is an example of the fields defined for topology spread constraint:

• topologyKey: smi.cisco.com/upgrade-zone

• maxSkew: 1

• whenUnsatisfiable: DoNotSchedule

• labelSelector: Selects all pods matching the deployment or stateful set

Based on this constraint, the K8s scheduler attempts to distribute the pods evenly in a deployment or stateful
set across zones with maxSkew of 1.

• For slot or index pods that have two replicas, then the two replicas are always in separate upgrade zones.

• For cdl-ep or Kafka pods, the pods will be distributed almost evenly with a maxSkew of 1.

• If the pod is unable to satisfy the maxSkew: 1 constraint, the pod will remain in Pending state as the
whenUnsatisfiable field is set to DoNotSchedule. This constraint does not allow the maxSkew to be
violated.

The topology spread constraints are only added for cdl-ep, cdl-slot, index, Kafka, or stateful sets deployment.
There is no change for etcd and zookeeper as they are scheduled on primary or OAM nodes which will be
upgraded one by one.

Note

Limitations and Restrictions
This section describes the known limitations and restrictions for CDL zone upgrade:

Cisco Common Data Layer
42

Cisco Common Data Layer
Topology Spread Constraint

• CDL supports NF deployments with Kafka replica 2 or Kafka replica 3. For deployments with Kafka
replica 3, CDL defines at least three upgrade zones. If there are three replicas and two upgrade zones,
then one upgrade zone will have two replicas and the other will have one replica. In this scenario where
the upgrade zone having two replicas goes down, only one replica will be available to serve traffic.

• If the nodes in an upgrade zone are fully utilized and if one or more nodes in that zone go down, the pods
on one or more nodes that went down may be in Pending state.

The following conditions apply for same zone nodes and different zone nodes:

• Same zone nodes—Nodes in the same zone do not have the requested CPU or memory resources
for the pod to be scheduled on it.

• Different zone nodes—One of the following conditions applies for different zone nodes:

• Nodes in another zone do not have the requested CPU or memory resources for the pod to be
scheduled on it.

• Nodes in another zone have the requested CPU ormemory resources for the pod to be scheduled.
With scheduling, the pod will violate the maxSkew:1 constraint.

CDL Overload Protection
The CDL offers overload protection at endpoints whenever the system reaches its full capacity. With overload
protection at endpoints, the CDL can:

• Reject create requests if maximum soft limit is reached.

• Reject update requests if maximum hard limit is reached.

• Trigger alarms when the system reaches 80% and 90% of its maximum capacity.

• Configure overload protection (enable or disable) at endpoints.

CDL Maximum Capacity
You can define the maximum capacity per shard in CDL using the following parameters:

• slotRecordCapacity (Default value: 1M/shard)

• indexRecordCapacity (Default value: 10M/shard)

• slotRecordsSizeCapacityInBytes (Default value: 5GB/shard)

You cannot change the default capacity per shard.Note

Based on the following calculations, the CDL determines the maximum capacity:

Soft Limit

1. cdl_slot_record_capacity = No of shards * slotRecordCapacity

Cisco Common Data Layer
43

Cisco Common Data Layer
CDL Overload Protection

2. cdl_index_record_capacity = No of shards * indexRecordCapacity

3. cdl_slot_size_capacity = No of shards * slotRecordsSizeCapacityInBytes

Hard Limit

1. cdl_slot_record_capacity = No of shards * slotRecordCapacity * 105%

2. cdl_index_record_capacity = No of shards * indexRecordCapacity * 105%

3. cdl_slot_size_capacity = No of shards * slotRecordsSizeCapacityInBytes * 105%

Triggering Alerts for Overloading in CDL
The CDL is overloaded whenever the system reaches its maximum capacity. Also, the CDL triggers the
following alerts to protect the system from overloading:

• cdlOverloaded - major - This alert is triggered when the CDL system reaches 80% of its capacity.

• cdlOverloaded – critical - This alert is triggered when the CDL system reaches 90% of its capacity.

In addition to the alerts, the CDL endpoint rejects all the create requests with the following error:
error code 507: Datastore reached its full capacity

However, the CDL processes all the update requests till the hard limit capacity is reached. When the hard
limit capacity is exceeded, the CDL rejects all the update requests.

Configuring Overload Protection
The the existing CDL overload protection configuration is replaced with a new configuration.

Earlier, the overload protection was enabled by default with hard coded limits of 1 million records per slot,
10 million records per index and 5 gb record size per slot. However, in this release, the feature is disabled by
default and requires configuration to enable this feature and to configure the appropriate overload limits
(optional) for each parameter.

Note

Table 3: CDL Overload Data Protection

ChangesCommand

The old CDL overload protection command is
deprecated.

The command is not functional but is
available only for backward compatibility.

Note

Old command:

cdl datastore session
overload-protection disable true

Cisco Common Data Layer
44

Cisco Common Data Layer
Triggering Alerts for Overloading in CDL

ChangesCommand

The overload protection configuration is moved under
cdl datastore session features configuration to
configure overload-protection and alerts.

CDL is now equipped to configure:

• record-capacity per slot/index

• record-capacity in bytes per slot

• configure major and critical alarm %

New command:

cdl datastore session features
overload-protection enable <true/false>

If the overload protection is enabled then the alerts are also enabled. The prometheus-rules-cdl pod is spawned.
If overload-protection is disabled then the alerts are disabled. The prometheus-rules-cdl pod is removed.

Configuring Overload Protection Parameter

The following parameters are configured to set limits for overload-protection:

• cdl datastore session features overload-protection
index-max-record-count <value>

• cdl datastore session features overload-protection slot-max-record-count
<value>

• cdl datastore session features overload-protection slot-max-size <value>

• cdl datastore session features overload-protection hard-limit-percentage
<value>

The table below lists the configuration details:

Table 4: Overload Protection Parameter Configuration

DescriptionCLI Command

(Optional) CDL overload-protection is disabled by
default. The default value is false.

cdl datastore session features
overload-protection enable <true/false>

(Optional) Maximum number of records that can be
stored in the Index shard.

The default value is 60000000 (60M).

The range is 100k to 100M.

The range from 100 to 1000 is applicable
only for testing in the lab environment. It is
not recommended for production
environment.

Note

cdl datastore session features
overload-protection
index-max-record-count <value>

Cisco Common Data Layer
45

Cisco Common Data Layer
Configuring Overload Protection

DescriptionCLI Command

(Optional) Maximum number of records that can be
stored in Slot shard.

The default value is 2500000 (2.5M).

The range is either 100 or 100k to 10M.

The value 100 is applicable only for testing
in the lab environment. It is not
recommended for production environment.

Note

cdl datastore session features
overload-protection
slot-max-record-count <value>

(Optional)Maximum size of Slot shard in mega bytes.

The default value is 16384 (16GB).

The range is 1GB to 96GB.

cdl datastore session features
overload-protection slot-max-size
<value>

(Optional) Additional capacity (percentage) in
addition to the soft limit. This is used to determine
when to reject the update requests at CDL endpoint.
For eg: if index shard = 1, index-record-capacity =
100 and hard-limit-percentage = 5, then the create
requests are rejected when number of index records
= 100 and update requests are rejected only when it
reaches 105.

The default value is 5. The range is 0-10.

cdl datastore session features
overload-protection
hard-limit-percentage <value>

(Optional) Threshold (percentage) at which CDL
triggers an alert cdlOverloaded-major.

The default value is 80.

The range is 40-100.

cdl datastore session features
overload-protection
major-alert-threshold <value>

(Optional) Threshold (percentage) at which CDL
triggers an alert cdlOverloaded-critical.

The default value is 90.

The range is 40-100.

cdl datastore session features
overload-protection
critical-alert-threshold <value>

To configure the alert percentage, run the following command:

cdl datastore session features overload-protection critical-alert-threshold
<percentage>

cdl datastore session features overload-protection major-alert-threshold
<percentage>

Verifying the Alerts
You can verify the alerts using the following command in CEE Ops Center CLI:

show alerts active { detail | summary }

Cisco Common Data Layer
46

Cisco Common Data Layer
Verifying the Alerts

Also, you can filter the alerts in CEE Ops Center CLI using the following command:

show alerts active detail sumary "CDL is overloaded."

In the following example, the cdlOverloaded - major alert is triggered when the system capacity is greater
than or equal to 80%
alerts active detail cdlOverloaded-major 5446095ab264
severity major
type "Processing Error Alarm"
startsAt 2020-10-15T15:09:00.425Z
source System
summary "CDL is overloaded."

In the following example, the cdlOverloaded - critical alert is triggered when the system capacity is greater
than or equal to 90%
alerts active detail cdlOverloaded-critical 5446095ab264
severity critical
type "Processing Error Alarm"
startsAt 2020-10-15T15:09:16.425Z
source System
summary "CDL is overloaded."

CDL Rack Conversion

Feature Description
CDL supports rack conversion from half height to full height without draining traffic using the rebalancing
method.

This rebalancing method doesn’t affect the existing and new calls during migration. This feature addresses
index map rebalancing for CDL.

MOP for CDL Conversion
Use the following procedure to migrate CDL half-rack configuration to full-rack configuration.

1. Set rack-1 as Active and rack-2 as Standby.

Cisco Common Data Layer
47

Cisco Common Data Layer
CDL Rack Conversion

Prerequisite: Both sites must have full-rack resources though CDL is running using half-rack
configuration.

Action: Make rack-1 as Active and rack-2 as Standby. No configuration change in CDL.

Post-validation: Traffic lands only on rack-1.

2. Set the system mode shutdown in rack-2.

Cisco Common Data Layer
48

Cisco Common Data Layer
MOP for CDL Conversion

Prerequisite: Rack-1 must be on active mode and rack-2 must be on standby mode.

Action: Do system mode shutdown in rack-2.

Post-validation: The mirror-maker on site-1 is not in running state.

3. Configure rack-2 as Standby. Configure full-rack CDL along with new configuration to enable the
scale-up mode with prev-map-count configured.

The following is a sample configuration:

configure
cdl datastore session mode scale-up
cdl datastore session index prev-map-count 2

Half-rack configuration without scaleup mode:

cdl datastore session
label-config session

index map 2
slot map 4
exit

Full-rack configuration with scaleup mode:

Cisco Common Data Layer
49

Cisco Common Data Layer
MOP for CDL Conversion

cdl datastore session
label-config session
mode scale-up

index map 4
index prev-map-count 2
slot map 8
exit

4. Enable system mode running of rack-2.

Prerequisite: Rack-1 must be active and rack-2 must be on standby with full-rack CDL configuration.

Action: Execute the system mode running in rack-2.

Post-validation: The mirror-maker in both sites must be in running state. The old indexes or slots in
site-2 must be able to do initial sync with remote peers.

5. Switch the traffic to rack-2.

Cisco Common Data Layer
50

Cisco Common Data Layer
MOP for CDL Conversion

Prerequisite: Rack-1 must be active and have full-rack resources with CDL running on half-rack
configuration. Rack-2 must be on standby and have full-rack resources with CDL running on full -ack
configuration.

Action: Make rack-1 as standby and rack-2 as active. No configuration change is required in CDL.

Post-validation: The traffic lands on rack-2 only.

6. Enable system mode shutdown of rack-1.

Cisco Common Data Layer
51

Cisco Common Data Layer
MOP for CDL Conversion

Prerequisite: Rack-2 must be on active and rack-1 must be on standby.

Action:Do system mode shutdown in rack-1.

Post-validation: The mirror-maker on site-2 is not in running state.

7. Configure rack-1 as Standby. Configure full-rack CDL with the new configuration to enable scale-up
mode with premap-count configured.

The following is a sample configuration:

configure
cdl datastore session mode scale-up
cdl datastore session index prev-map-count 2

The full configuration updates the slot maps count and index maps count. The label configuration is
added for newly added slots and indexes.

8. Enable system mode running of rack-1.

Cisco Common Data Layer
52

Cisco Common Data Layer
MOP for CDL Conversion

Prerequisite: Rack-2 must be active and rack-1 must be on standby with full-rack CDL configuration.

Action: Do system mode running in rack-1.

Post-validation: The mirror-maker in both sites must be in a running state. All indexes and slots in
site-1 must be able to do initial sync with remote peers. Check in CEE alerts for CDL replication errors
if any.

9. Trigger index rebalances using the CLI on rack-1 (Standby).

Cisco Common Data Layer
53

Cisco Common Data Layer
MOP for CDL Conversion

Prerequisite: The CDL must be in a healthy state at both sites. Rack-1 must be on standby and rack-2
must be on active. Both sites must have scale-up mode configured with index prev-map-count.

Index rebalancing through the CLI on rack-1 triggers copying the index from the old calculated map
(as per the old map count) to the newly calculated map (as per the new map count). This is done after
deleting index from the old calculated map once the copying is complete.

Action: Trigger the rebalance-index run using the following command in standby site(rack1):

cdl rebalance-index run tps tps_value

Post-validation: To track the rebalancing status, use the following steps:

• Monitor the rebalance status using the following CLI command:

cdl rebalance-index status

• Validate the rebalance run using the following CLI command:

cdl rebalance-index validate

10. Switch the instances to Active-Active.

Cisco Common Data Layer
54

Cisco Common Data Layer
MOP for CDL Conversion

Prerequisite: The rebalancing must be done successfully.

Action: Enable rack-1 and rack-2 as active.

Post-validation: The traffic must land on both sites.

11. Remove the CDL scale-up mode configuration from both sites.

Prerequisite: Both rack-1 and rack-2 must be active.

Action: Configure the following command on both sites:

no cdl datastore session mode

Post-validation: CDL must be running in a healthy state. The mirror-maker restarts after scale-up
mode is disabled.

Troubleshooting
To view the rebalancing logs, configure the following logger in CLI:

cdl logging logger datastore.idx-rebalance.session
level warn
exit

Cisco Common Data Layer
55

Cisco Common Data Layer
Troubleshooting

The following metric is introduced in the index pod to know the total number of index keys that are rebalanced.

LabelMetric

cdl_slice, shardIdindex_rebalanced_keys_total

FindAll and FindAllNotify Query Enhancements for CDL

Feature Description
In this release, the CDL supports enhancements for the FindAll and FindAllNotify queries.

New query filters are introduced to support the following operations:

• A maximum of 20 IN filters in the FindAllNotify query. The CDL retreives all sessions from a slot and
then matches each session with the passed filters. If the session keys match with any one of the passed
filters, then notify the same to the NF with the matched IN filter condition.

• A NOT-MATCH operation with more than one condition.

• The IN and NOT operations in the CDL CLI.

• IPC streaming for the notifications.

In the previous releases, the CDL used a unary RPC for sending notifications to the application. With
this release, the CDL supports the bidirectional streaming RPC for optimizing IPCs between it and the
application.

How it Works
This section describes the sequence of operations for CDL to support the different filter conditions in FindAll
and FindAllNotify queries.

Support IN Filters

1. The system checks for all the AND and IN conditions inside the query parameter.

• If both the AND and IN query filters are in the query, then it's processed in the following manner:

• The CDL first checks all the AND filters. If any of the AND filter fails, then it skips the other
AND filters and IN filters because the key did not match the filter.

• After all the AND filters are matched, then check the IN filters. If any of the IN filters is matched,
then the CDL skips the other IN filters because the key already matched the filter.

• If only the IN filters are in the query and any of the IN filter is matched, then the CDL skips processing
the other IN conditions.

2. If there are more than 20 IN filters in the query request, then respond back with a 400 Bad Request message.

3. The CDL sends the matched IN filter condition along with the notification only when it is enabled in the
FindAllNotify query request.

Cisco Common Data Layer
56

Cisco Common Data Layer
FindAll and FindAllNotify Query Enhancements for CDL

If more IN filters are passed in the request, the query performance is impacted.Note

Support NOT-MATCH Operation with More than One Condition

The CDL supports the additional conditions for this query filtering:

• not-match

• not-starts-with

• not-ends-with

• not-contains

If any key (pk/uk/nuk) in a session satisfies the match, contains, starts-with, or ends-with condition, then
that session will not be for selected for the filter corresponding to the not-match, not-contains, not-starts-with,
or not-ends-with condition respectively.

Note

Support the IN and NOT Operations in the CDL CLI

• Support the following additional conditions for filtering the sessions in CLI:

• contains

• not-contains

• not-ends-with

• not-starts-with

• not-match

• Support the in-filter filter in addition to the AND filter filter for the IN operations in CLI

The following code snippet is a sample CLI command:
cdl show sessions summary filter { condition ends-with key 6 } in-filter { in-condition
starts-with key key-1 } in-filter { in-condition starts-with key key-2 }

The filter and in-filter filters are a list of conditions. The query supports a
maximum of 20 in-filters filters. The order of the filters, filter and in-filter does
not matter as the filters mentioned with filter are grouped together. Likewise, the
filters mentioned with in-filter are also grouped together.

Note

• The following CDL operations are supported for filtering with filter and in-filter:

• cdl show sessions count summary

• cdl show sessions count detailed

Cisco Common Data Layer
57

Cisco Common Data Layer
How it Works

• cdl show sessions detailed

• cdl show sessions summary

• cdl clear sessions

Support Streaming Notifications

• The CDL uses bi-directional streaming RPC to send the notifications over a stream with a transaction
ID to the application. The response is sent in a different stream from the application to the datastore with
the transaction ID for correlation.

• By default, the CDL uses unary RPC and the streaming functionality is disabled. Streaming is enabled
only when the feature flag use-stream is configured in the CDL CLI. If the streaming is enabled, then
all the CDL notifications are sent using the streaming.

To enable the streaming for notification functionality, use the following CLI command:
cdl datastore session slot notification use-stream true

• If the streaming is enabled, then by default there are four stream connections from the CDL to a notification
endpoint. The connection count can be configured by using the CDL CLI. The stream connections are
used in the round robin manner.

• Support metrics to check the number of active stream connections from the slot or endpoint to the
notification endpoint. Use these metrics to generate alerts when there is no active stream connection.

Network Policy Configuration

Feature Summary and Revision History

Summary Data

CloudNative BroadbandNetwork Gateway (cnBNG)
2022.02 and later

Applicable Product (s) or Functional Area

Bare Metal, OpenStack, VMwareApplicable Platforms

Disabled – Configuration RequiredFeature Default Setting

Not ApplicableRelated Changes in this Release

UCC CDL Configuration and Administration Guide,
Release 1.8

Related Documentation

Revision History

ReleaseRevision Details

CDL 1.8.0First introduced.

Cisco Common Data Layer
58

Cisco Common Data Layer
Network Policy Configuration

Feature Description
In this release, the CDL enables you to configure its network policy to override the global network policy
configuration. If the configuration is enabled, then the network policy for CDL endpoint, index, slot, Kafka,
and Zookeeper are applied.

You can also configure the network policy for etcd to override the global network policy configuration. If the
configuration is enabled, then the network policy for etcd is applied.

Configuring the CDL Network Policy
To configure the CDL network policy, use the following CLI commands:

config
cdl network-policy enable <true/false>

To configure the etcd network policy, use the following CLI commands:

config
etcd network-policy enable <true/false>

Troubleshooting Information
This section describes how to resolve some of the known issues in CDL configuration. Before proceeding
with troubleshooting CDL configurations, consider the following:

• system-id is unique across the site.

• cluster-id (datastore id) is unique within the site.

• You cannot change the replica of Index after deploying the CDL. To change the replica:

1. Set the system mode to "shutdown".

2. Change the replica.

3. Set the system mode to "running".

• The replica of Endpoint, Index, Slot and Kafka pods must be less than or equal to the number of k8 nodes
with the following label and value:

• Label: smi.cisco.com/node-type.

• Value: Value of cdl/node-type. In a multi-node setup, the default value is session.

• The replica of Zookeeper and ETCD pods must be less than or equal to the number of k8 nodes with the
following label and value:

• Label: smi.cisco.com/node-type.

• Value: oam.

• In a Geo-replication setup (across the sites cluster-id), the replicas, and maps of the Index and Slot pods
must be identical. Otherwise data replication may fail.

Cisco Common Data Layer
59

Cisco Common Data Layer
Feature Description

CDL Index are not Replicated Accurately
This section describes how to replicate the CDL Index pods accurately.

Issue Description

The session data is not replicated properly to the remote site.

Identifying the Issue

The data added at one site is inaccessible at the other site.

Possible Causes

The incorrect Geo-replication configuration may cause this issue.

Resolution

To resolve this issue:

• Verify the local system-id and remote site configuration.

• Verify whether CDL endpoints and Kafka between each site are reachable.

• Verify the map, replica of index and slot at each site. They must be identical across all the sites.

CDL Operations are Failing but the Connection is Successful
This section describes how to resolve the CDL operation failure issue.

Issue Description

The NF connects to the CDL, but the session operations such as find, create, update, and delete fail.

Identifying the Issue

You can view the NF log files to identify the call failure.

Possible Causes

You might encounter this issue when the CDL Index and Slot pods are not ready.

Resolution

To resolve this issue:

• Verify whether all the pods are in ready and running state.

• The Index pods move to the ready state only if the synchronization is complete with peer replica (local
or remote if available).

• The Slot pods move to the ready state only if the synchronization is complete with peer replica (local or
remote if available).

Cisco Common Data Layer
60

Cisco Common Data Layer
CDL Index are not Replicated Accurately

• At least one slot and index pod must be available for the Endpoint to move to ready state. Even when it
isn’t ready, the client accepts the GRPC connection.

CDL Pods are Down
This section describes how to bring up the CDL pods when they are down.

Issue Description

The CDL pods are not in the "running" state because of incorrect CDL configuration.

Identifying the Issue

Verify the "describe pods" output (Containers, Member, State, Reason, or Events) to identify whether the
pods are down with the following command:

kubectl describe pods -n <namespace> <failed pod name>

Possible Causes

The possible causes are:

• Pods are in "pending" state.

• Pods are in "CrashLoopBackOff" failure state.

• Pods are in "ImagePullBack" failure state.

Resolution

• When the pods are in "pending" state:

• Verify whether the k8s nodes with the label value cdl/node-type are present. Also, ensure that the
number of replicas are less than or equal to the number of k8s nodes with the label value
cdl/node-type.
kubectl get nodes -l smi.cisco.com/node-type=<value of cdl/node-type, default value
is 'session' in multi node setup)

• When the pods are in "CrashLoopBackOff" failure state:

• Verify the status of the ETCD pods.
kubectl describe pods -n <namespace> <etcd pod name>

If the ETCD pods are not running, resolve the ETCD issues to bring up the pods.

• When the pods are in "ImagePullBack" failure state:

• Verify whether the helm repository and image registry are accessible.

• Verify whether the required proxy and DNS servers are configured.

Cisco Common Data Layer
61

Cisco Common Data Layer
CDL Pods are Down

Mirror Maker Pod is in Not Ready State
This section describes how to move the Mirror Maker pods that remain in the "Not Ready" state.

Issue Description

The Mirror Maker pods are not in running state because of connectivity issues on the remote site.

Identifying the Issue

Verify the Describe pod's output and pod logs with the following command:
kubectl describe pods -n <namespace> <failed pod name>
kubectl logs -n <namespace> <failed pod name> [-c <container name>]

Possible Causes

Connectivity issues with remote site Kafka brokers may cause this issue.

Resolution

To resolve this issue:

• Verify whether the external IPs configured for Kafka are accurate.

• Verify whether the remote sites of Kafka are reachable through the external IPs.

Early or Delayed Notification for Purging Record from CDL
This section describes how to resolve the early or delayed notification sent for purging record from CDL.

Issue Description

The notification sent for purging record from CDL is either early or delayed.

Identifying the Issue

While purging record from CDL, the notification comes either early or delayed.

Possible Causes

The nodes in the Kubernetes cluster are not time synchronized.

Resolution

To resolve this issue:

• Verify whether all the nodes in the k8s cluster are time synchronized.

• Verify the synchronization status on all the k8s nodes.
chronyc tracking
chronyc sources -v
chronyc sourcestats -v

Cisco Common Data Layer
62

Cisco Common Data Layer
Mirror Maker Pod is in Not Ready State

Sessions Piling Up or Overloading on CDL
This section describes how to resolve the sessions pile up on CDL.

Issue Description

The number of sessions pile up because of some network issues or an unexpected number of sessions on CDL,
which does not match with the peer session count.

Identifying the Issue

The session count from the CLI or Grafana dashboard displays a higher session count than expected or the
sessions are rising constantly.

Possible Causes

The Create request received at CDL are more than the Delete request. Consequently, the session count keeps
on growing.

Resolution

To resolve this issue, the respective NF must take appropriate action for triggering clear for the subscribers.

User-Defined Scheduling and Pod Placement
This section describes how to resolve unschedulable pods issue that may arise by using single node label for
scheduling, node affinity, and pod placement in CDL pods.

Issue Description

The nodeType parameter controls scheduling, node affinity, and pod placement in CDL. Currently, this
parameter is configured with a single node label value smi.cisco.com/node-type. When CDL is configured to
its full node capacity, the pods are marked as unschedulable (sometimes) because of the single node label
usage.

Identifying the Issue

The CDL pods are marked as unschedulable.

Possible Causes

The usage of single node label for scheduling, node affinity, and pod placement.

Resolution

You can control different CDL pod types using separate node labels. To create separate node labels:

1. (Mandatory) Create smi.cisco.com/node-type label on all the nodes used for CDL through SMI Cluster
Manager Ops Center CLI.

2. Create labels for CDL pods as specified in the following table:

Cisco Common Data Layer
63

Cisco Common Data Layer
Sessions Piling Up or Overloading on CDL

ValueLabelPods

truesmi.cisco.com/cdl-epCDL Endpoint pods

truesmi.cisco.com/cdl-slot-<MAP Id
1..n>

CDL Slot pods

truesmi.cisco.com/cdl-index-<MAP
Id 1..n>

CDL Index pods

This configuration is required only for user-defined scheduling.Note

Example

The following example shows how to create separate node labels for CDL which uses four different nodes
with two endpoint replicas, four Slot maps (with two replicas each) and two Index maps (with two replicas
each).

Node-4Node-3Node-2Node 1

Pod: slot-2-1Pod: slot-2-0Pod: slot-1-1Pod: slot-1-0

Label: cdl-slot-2Label: cdl-slot-2Label: cdl-slot-1Label: cdl-slot-1

Pod: slot-4-1Pod: slot-4-0Pod: slot-3-1Pod: slot-3-0

Label: cdl-slot-4Label: cdl-slot-4Label: cdl-slot-3Label: cdl-slot-3

Pod: index-2-1Pod: index-2-0Pod: index-1-1Pod: index-1-0

Label:
cdl-index-2

Label:
cdl-index-2

Label:
cdl-index-1

Label:
cdl-index-1

Pod: ep-2Pod: ep-0

Label: cdl-epLabel: cdl-epLabel: cdl-epLabel: cdl-ep

Sample Configuration: SMI Cluster Manager

clusters user-k8s
nodes session1
k8s node-labels smi.cisco.com/cdl-ep true
exit
k8s node-labels smi.cisco.com/cdl-index-1 true
exit
k8s node-labels smi.cisco.com/cdl-slot-1 true
exit
k8s node-labels smi.cisco.com/cdl-slot-3 true
exit
k8s node-labels smi.cisco.com/node-type session
exit
exit

exit
clusters user-k8s
nodes session2
k8s node-labels smi.cisco.com/cdl-ep true
exit

Cisco Common Data Layer
64

Cisco Common Data Layer
User-Defined Scheduling and Pod Placement

k8s node-labels smi.cisco.com/cdl-index-1 true
exit
k8s node-labels smi.cisco.com/cdl-slot-1 true
exit
k8s node-labels smi.cisco.com/cdl-slot-3 true
exit
k8s node-labels smi.cisco.com/node-type session
exit
exit

exit
clusters user-k8s
nodes session3
k8s node-labels smi.cisco.com/cdl-ep true
exit
k8s node-labels smi.cisco.com/cdl-index-2 true
exit
k8s node-labels smi.cisco.com/cdl-slot-2 true
exit
k8s node-labels smi.cisco.com/cdl-slot-4 true
exit
k8s node-labels smi.cisco.com/node-type session
exit
exit

exit
clusters user-k8s
nodes session3
k8s node-labels smi.cisco.com/cdl-ep true
exit
k8s node-labels smi.cisco.com/cdl-index-2 true
exit
k8s node-labels smi.cisco.com/cdl-slot-2 true
exit
k8s node-labels smi.cisco.com/cdl-slot-4 true
exit
k8s node-labels smi.cisco.com/node-type session
exit
exit

exit

Sample Configuration: CDL

cdl label-config session
endpoint key smi.cisco.com/cdl-ep
endpoint value true
slot map 1
key smi.cisco.com/cdl-slot-1
value true

slot map 2
key smi.cisco.com/cdl-slot-2
value true

slot map 3
key smi.cisco.com/cdl-slot-3
value true

slot map 4
key smi.cisco.com/cdl-slot-4
value true

index map 1
key smi.cisco.com/cdl-index-1
value true

index map 2
key smi.cisco.com/cdl-index-2
value true

cdl datastore session
label-config session
endpoint replica 2

Cisco Common Data Layer
65

Cisco Common Data Layer
User-Defined Scheduling and Pod Placement

index replica 2
index map 2
slot replica 2
slot map 4

exit

Monitoring
This section describes how to monitor the status and records in CDL. You can also monitor CDL through
Grafana dashboards.

Monitoring CDL through Grafana Dashboards
You can monitor various activities in CDL through the Grafana dashboard called CDL Dashboard, which is
bundled by default. The CDL Dashboard displays the TPS towards CDL for various pods like cdl-endpoint,
Slot, Index and the response time taken for each operation.

A sample Grafana CDL Summary dashboard displaying the total records by Type, SliceName, SystemID and
so on is shown below:

Figure 20: Grafana CDL Dashboard - Summary

A sample Grafana CDL dashboard displaying the CDL TPS and response time graphs is shown below:

Cisco Common Data Layer
66

Cisco Common Data Layer
Monitoring

Figure 21: Grafana CDL Dashboard - CDL TPS and Response Time

The Grafana CDL dashboard is enhanced to show the Geo Replication status. A sample Grafana dashboard
displaying the Geo Replication status and other details is shown below.

Cisco Common Data Layer
67

Cisco Common Data Layer
Monitoring CDL through Grafana Dashboards

Figure 22: Grafana CDL Dashboard - GR Connection

Status

The GR connection, Index replication and slot replication panels, and their descriptions are listed in the table
below:

Table 5: GR Connection Status

DescriptionPanel

The remote site connections active per endpoint pod
(in percentage). If it reaches 0 for more than 5
minutes, an alert is triggered.

Remote Site connection status

The average kafka connections currently active from
each index pod.

Index to Kafka connection status

The readiness status of Kafka pod and mirrorMaker
pods.

Kafka Pod status

The ratio of replication requests sent to the remote
site vs the local requests received by the NF. If the
ratio goes below 90% for more than 5 minutes, an
alert is triggered.

Replication Requests Sent/Local Requests Received
%

Cisco Common Data Layer
68

Cisco Common Data Layer
Monitoring CDL through Grafana Dashboards

DescriptionPanel

The total delay for replicating records to the partner
site via Kafka. If the delay is more than 10 seconds
in replicating the records for more than 5 minutes,
then an alert is triggered.

Kafka Remote Replication delay per pod

The total number of remote requests that have been
dropped due to the queue being full.

Total Remote requests dropped

Table 6: Index Replication

DescriptionPanel

The per index pod total rate of kafka write requests
(publish).

Kafka Publish TPS per pod

The per index pod total rate of incoming kafka
requests (consume) from the partner site.

Kafka Remote Replication TPS per pod

Table 7: Slot Replication

DescriptionPanel

The total rate of replication requests from cdl-ep
to remote site per operation.

Slot Geo Replication Requests Sent

The total rate of replication requests received by the
slot pods per operation type.

Slot Geo Replication Requests Received

The total rate of slot checksum mismatch.Slot Checksum Mismatch

The total rate of slot reconciliation due to slot data
checksum mismatch.

Slot Reconciliation

Verifying the Status and Records in CDL
You can verify the status of the CDL and inspect the data inserted by the client using the cdl show status
command in the CDL Ops Center. For more information on cdl show status command, see the UCC CDL
Command Reference Guide.

The following example displays the status of all the CDL components and client's data.
[unknown] cdl# cdl show status
message params: {cmd:status mode:cli dbName:session sessionIn:{mapId:0 limit:10000
filters:[]}}
site {

system-id 1
cluster-id 1
db-endpoint {

state STARTED
}
slot {

map-id 1

Cisco Common Data Layer
69

Cisco Common Data Layer
Verifying the Status and Records in CDL

instance-id 2
records 100
capacity 1000000
state STARTED

}
slot {

map-id 1
instance-id 1
records 100
capacity 1000000
state STARTED

}
index {

map-id 1
instance-id 2
records 500
capacity 2500000
state ONLINE

}
index {

map-id 1
instance-id 1
records 500
capacity 2500000
state ONLINE

}
}
[unknown] cdl#

Cisco Common Data Layer
70

Cisco Common Data Layer
Verifying the Status and Records in CDL

	Cisco Common Data Layer
	Overview
	Revision History

	Architecture
	CDL Endpoint
	Single Compute or Node Failure
	Multiple Compute or Node Failures

	Slot
	Single Compute or Node Failure
	Multiple Compute or Node Failures

	Indexing
	Single Compute or Node Failure
	Multiple Compute Failures

	ETCD
	Kafka
	Zookeeper
	Mirror Maker

	Remote Site Monitoring
	Feature Description
	Configuring Remote Site Connection
	Troubleshooting Information

	CDL Deployment Models
	Call Flows
	Finding Record by Primary Key
	Finding Record by Unique Key
	Creating a Record
	Updating a Record
	Deleting a Record
	Notification to NF on Timer Expiry
	Geo Replication - Create
	Geo Replication - Update
	Geo Replication - Delete

	Identifying Stale Index Records
	Deploying CDL through Network Functions (NFs)
	CDL Geo Replication (GR) Deployment
	Prerequisites for CDL GR
	Configuring the CDL Session Database and Defining the Base Configuration
	Configuring Kafka for CDL
	Configuring Zookeeper for CDL

	Deploying CDL for Geo Replication (GR)
	Geo Replication (GR) Failover Notification
	GR Failover Notification Records of Peer Site
	Triggering Remote Index Sync
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	Configuring the IPv6 Support

	CDL Alarms

	CDL Zone Upgrade
	Feature Description
	Topology Spread Constraint
	Limitations and Restrictions

	CDL Overload Protection
	CDL Maximum Capacity
	Triggering Alerts for Overloading in CDL
	Configuring Overload Protection
	Verifying the Alerts

	CDL Rack Conversion
	Feature Description
	MOP for CDL Conversion
	Troubleshooting

	FindAll and FindAllNotify Query Enhancements for CDL
	Feature Description
	How it Works

	Network Policy Configuration
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	Configuring the CDL Network Policy

	Troubleshooting Information
	CDL Index are not Replicated Accurately
	CDL Operations are Failing but the Connection is Successful
	CDL Pods are Down
	Mirror Maker Pod is in Not Ready State
	Early or Delayed Notification for Purging Record from CDL
	Sessions Piling Up or Overloading on CDL
	User-Defined Scheduling and Pod Placement

	Monitoring
	Monitoring CDL through Grafana Dashboards
	Verifying the Status and Records in CDL

