
Pods and Services Reference

• Feature Summary and Revision History, on page 1
• Feature Description, on page 2
• Associating Pods to the Nodes, on page 11
• Viewing the Pod Details and Status, on page 12
• GTPC Protocol Endpoint Merge with UDP Proxy Bypass, on page 13
• UDP Proxy Functionality Merge into Protocol Micro-services, on page 13
• Runtime pod scales for server additions, on page 17
• All-in-One deployment models , on page 19

Feature Summary and Revision History

Summary Data
Table 1: Summary Data

SMFApplicable Products or Functional Area

SMIApplicable Platform(s)

Enabled – Always-onFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History
Table 2: Revision History

ReleaseRevision Details

2021.02.0The node-monitor pod is supported to enable monitoring
of all K8 pods.

Pods and Services Reference
1

ReleaseRevision Details

2021.02.3.t3The grafana-dashboard-app-infra pod is removed.

Pre-2020.02.0First introduced.

Feature Description
The SMF is built on the Kubernetes cluster strategy, which implies that it has adopted the native concepts of
containerization, high availability, scalability, modularity, and ease of deployment. To achieve the benefits
offered by Kubernetes, SMF uses the construct that includes the components, such as pods and services.

Depending on your deployment environment, the SMF deploys the pods on the virtual machines that you
have configured. Pods operate through the services that are responsible for the intrapod communications. If
the machine hosting the pods fails or experiences network disruption, the pods are terminated or deleted.
However, this situation is transient and Kubernetes spins new pods to replace the invalid pods.

The following workflow provides a high-level visibility into the host machines, and the associated pods and
services. It also represents how the pods communicate with each other. The representation may differ based
on your deployment infrastructure.

Figure 1: Communication Workflow of Pods

Kubernetes deployment includes the kubectl command-line tool to manage the Kubernetes resources in the
cluster. You can manage the pods, nodes, and services.

For information on the Kubernetes concepts, see the Kubernetes documentation.

Pods and Services Reference
2

Pods and Services Reference
Feature Description

For more information on the Kubernetes components in SMF, see the following:

• Pods

• Services

Pods
A pod is a process that runs on your Kubernetes cluster. Pod encapsulates a granular unit known as a container.
A pod contains one or multiple containers.

Kubernetes deploys one or multiple pods on a single node which can be a physical or virtual machine. Each
pod has a discrete identity with an internal IP address and port space. However, the containers within a pod
can share the storage and network resources.

The following table lists the SMF pod names and the hosts on which they are deployed depending on the
labels that you assign. For information on how to assign the labels, see Associating Pods to the Nodes.

Table 3: SMF Pods

Virtual
Machine
Name

DescriptionPod Name

OAMFunctions as the confD API pod for the SMF Ops Center.api-smf-ops-center

OAMSupports Smart Licensing feature.base-entitlement-smf

ProtocolDynamic routing for L3 route management and BFD
monitoring

bgpspeaker

ProtocolOperates as the pod to cache any sort of system information
that will be used by other pods as applicable.

cache-pod

SessionProvides an interface to the CDL.cdl-ep-session

SessionPreserves the mapping of keys to the session pods.cdl-index-session

SessionOperates as the CDL session pod to store the session data.cdl-slot-session

ProtocolOperates as DNS endpoint of SMFdns-proxy

ProtocolOperates as a Diameter endpoint to enable communication
between SMFand PCRF through Gx interface

diameter-ep-gx-client

ProtocolOperates as a Diameter endpoint to enable communication
between SMF and PCRF through Gy interface

diameter-ep-gy-client

OAMContains the documentation.documentation

OAMHosts the etcd for the SMF application to store information,
such as pod instances, leader information, NF-UUID,
endpoints, and so on.

etcd-smf-etcd-cluster

ProtocolResponsible for cache, etcd replication across sites, and
site role management

georeplication

OAMContains the default dashboard of CDLmetrics in Grafana.grafana-dashboard-cdl

Pods and Services Reference
3

Pods and Services Reference
Pods

Virtual
Machine
Name

DescriptionPod Name

OAMContains the default dashboard of SMF service metrics in
Grafana.

grafana-dashboard-smf

ProtocolOperates as GTPC endpoint of SMF.gtpc-ep

ProtocolHosts the Kafka details for the CDL replication.kafka

ProtocolOperates as Lawful Intercept endpoint of SMF.li-ep

ServicePerforms node level interactions, such as N4 link
establishment, management (heart-beat), and so on. Also,
generates unique identifiers, such as UE IP address, SEID,
CHF-ID, Resource URI, and so on.

nodemgr

NAMonitors all the K8 nodes and performs self-reboot on
encountering an issue, which in turn triggers an GR to other
rack.

node-monitor pod

OAMOperates as the pod to facilitate Ops Center actions like
show commands, configuration commands, monitor
protocol monitor subscriber, and so on.

oam-pod

OAMActs as the SMF Ops Center.ops-center-smf-ops-center

ProtocolOperates as encoder and decoder of application protocols
(PFCP, GTP, RADIUS, and so on) whose underlying
transport protocol is UDP.

protocol

ProtocolOperates as RADIUS endpoint of SMFradius-ep

ProtocolOperates as REST endpoint of SMF for HTTP2
communication.

rest-ep

ServiceContains main business logic of SMF.service

OAMOperates as the utility pod for the SMF Ops Center.smart-agent-smf-ops-center

ProtocolOperates as proxy for all UDPmessages. Owns UDP client
and server functionalities.

udp-proxy

OAMOperates as the utility pod for the SMF Ops Center.swift-smf-ops-center

OAMAssists Kafka for topology management.zookeeper

For details on UDP proxy, see the UDP Proxy Pod, on page 5 section.

These SMF pods communicate with the Common Execution Environment (CEE) pods. For the complete list
of CEE pods, see the UCC CEE Configuration and Administration Guide.

Replicas
Each pod runs on a single instance of an application. To provide more resources by running more instances,
you can use multiple Pods, one for each instance. This concept in Kubernetes is referred to as replication.

Pods and Services Reference
4

Pods and Services Reference
Replicas

Replicated Pods or replicas are usually created and managed as a group by a workload resource and its
controller.

With multiple replicas, Kubernetes can distribute the load between them. During node failures, replicas can
be used.

Replicas are based on the hardware and deployed call model.Note

UDP Proxy Pod

Feature Description
The SMF has UDP interfaces toward the UPF (N4) and SGW (s5 or s8 for EPS interworking). With the help
of the protocol layer pods (smf-protocol and gtp-ep), the messages are encoded and decoded and exchanged
on these UDP interfaces.

For achieving the functionalities mentioned on the 3GPP specifications:

• It is mandatory for the protocol layer pods to receive the original source and destination IP address and
port number. But the original IP and UDP header is not preserved when the incoming packets arrive at
the UDP service in the Kubernetes (K8s) cluster.

• Similarly, for the outgoing messages, the source IP set to the external IP address of the UDP service
(published to the peer node) is mandatory. But the source IP is selected as per the egress interface when
different instances of protocol layer pods send outgoing messages from different nodes of the K8s cluster.

The protocol layer POD spawns on the node, which has the physical interface configured with the external
IP address to achieve the conditions mentioned earlier. However, spawning the protocol layer pods has the
following consequences:

• It is not possible to achieve the node level HA (High Availability) because the protocol pods are spawned
on the same node of the K8s cluster. Any failure to that node may result in loss of service.

• The protocol pods (smf-protocol, gtp-ep, and radius-ep) must include their own UDP client and server
functionalities. In addition, each protocol layer pod may require labeling of the K8s nodes with the affinity
rules. This restricts the scaling requirements of the protocol layer pods.

The SMF addresses these issues with the introduction of a new K8s POD called "udp-proxy." The primary
objectives of this POD are:

• The “udp-proxy" POD acts as a proxy for all kinds of UDP messages. It also owns the UDP client and
server functionalities.

• The protocol pods perform the individual protocol (PFCP, GTP, Radius) encoding and decoding and
provide the UDP payload to the "udp-proxy" POD. The "udp-proxy" POD sends the UDP payload out
after it receives the payload from the protocol pods.

• The "udp-proxy" POD opens the UDP sockets on a virtual IP (VIP) instead of a physical IP. This ensures
that the "udp-proxy" POD does not have any strict affinity to a specific K8s node (VM). Thus, enabling
node level HA for the UDP proxy.

Pods and Services Reference
5

Pods and Services Reference
UDP Proxy Pod

One instance of the "udp-proxy" POD is spawned by default in all the worker nodes in the K8s cluster.

The UDP proxy for SMF feature has functional relationship with the Virtual IP Address feature.

Note

Architecture

The "udp-proxy" POD is placed in the worker nodes in the K8s cluster.

1. Each of the K8s worker node contains one instance of the "udp-proxy" POD. However, only one of the
K8s worker node owns the virtual IP at any time. The worker node that owns the virtual IP remains in the
active mode while all the other worker nodes remain in the standby mode.

2. The active "udp-proxy" POD binds to the virtual IP and the designated ports for listening to the UDP
messages from the peer nodes (UPF and SGW).

3. The UDP payload received from the peer nodes are forwarded to one instance of the protocol, gtp-ep, or
radius-ep pods. The payload is forwarded either on the same node or different node for further processing.

4. The response message from the protocol, gtp-ep, or radius-ep pods is forwarded back to the active instance
of the "udp-proxy" POD. The "udp-proxy" POD sends the response message back to the corresponding
peer nodes.

5. The SMF-initiated messages are encoded at the protocol, gtp-ep, or radius-ep pods. In addition, the UDP
payload is sent to the "udp-proxy" POD. Eventually, the "udp-proxy" POD comprises of the complete IP
payload and sends the message to the peer. When the response from the peer is received, the UDP payload
is sent back to the same smf-protocol, gtp-ep, or radius-ep POD from which the message originated.

Protocol Pod Selection for Peer-Initiated Messages

When the "udp-proxy" pod receives the peer node (for instance UPF) initiated messages, it is load balanced
across the protocol instances to select any instance of the protocol pod. An entry of this instance number is
stored along with the source IP and source port number of the peer node. This ensures that the messages form
the same source IP and source port are sent to the same instance that was selected earlier.

High Availability for the UDP Proxy

The UDP proxy's HA model is based on the keepalived virtual IP concepts. A VIP is designated to the N4
interface during deployment. Also, a keepalived instance manages the VIP and ensures that the IP address of
the VIP is created as the secondary address of an interface in one of the worker nodes of the K8s cluster.

The "udp-proxy" instance on this worker node binds to the VIP and assumes the role of the active "udp-proxy"
POD. All "udp-proxy" instances in other worker nodes remain in the standby mode.

Node Monitoring Pod
Node monitor pod runs on all Kubernetes nodes, such as master and worker nodes to periodically check the
operating state of other nodes. The nodes might become unreachable due to network issue or hardware transient
issue.

Depending on the operating state of nodes, the node monitor pod switches to different modes. SMF uses
nodemonitor CLI command in Global Configuration mode to switch between the modes.

The following configuration section provides more information on the command and modes.

Pods and Services Reference
6

Pods and Services Reference
Architecture

Configure Node Monitoring Pod
The node monitoring pod switches to different modes to resolve the hardware transient issues.

To switch between the modes, use the following sample configuration:

config
nodemonitor mode { 0 | 1 | 2 | 3 interval wait_time }
end

NOTES:

• nodemonitor mode { 0 | 1 | 2 | 3 interval wait_time }

• mode 0—Disables the node monitoring functionality.

• mode 1—Enables the node monitoring and performs self-reboot only after reaching a hardcoded
value of 2 seconds when two or more nodes are not reachable. This is the default setting.

• mode 2—Enables the node monitoring and performs self-reboot when two or more nodes are not
reachable but not all the nodes.

• mode 3 interval wait_time—Specify the time interval in seconds, after which the node monitoring
pod is rebooted when two or more nodes are not reachable.

wait_time must be an integer in the range of 5–300.

Configuration Example

The following is an example of node monitoring pod configuration.
config

nodemonitor mode 3 interval 15
end

As per this example, the node monitoring pod waits for 15 seconds and then performs self-reboot when two
or nodes are not reachable.

Configuration Verification

To verify the configuration, use the show running-config nodemonitor command.

The output of this show command displays the configuration related to mode of the node monitoring pod.
smf# show running-config nodemonitor
nodemonitor mode 3 interval 15

Services
The SMF configuration consists of several microservices that run on a set of discrete pods. Microservices are
deployed during the SMF deployment. SMF uses these services to enable communication between the pods.
When interacting with another pod, the service identifies the pod's IP address to initiate the transaction and
acts as an endpoint for the pod.

The following table describes the SMF services and the pod on which they run.

Pods and Services Reference
7

Pods and Services Reference
Configure Node Monitoring Pod

Table 4: SMF Services and Pods

DescriptionPod NameService Name

Supports Smart Licensing feature.base-entitlement-smfbase-entitlement-smf

Dynamic routing for L3 route management and
BFD monitoring

bgpspeakerbgpspeaker-pod

Responsible for the CDL session.cdl-ep-sessiondatastore-ep-session

Responsible for sending the notifications from the
CDL to the smf-service through smf-rest-ep.

smf-rest-epdatastore-notification-ep

Responsible for the secure CDL connection.cdl-ep-sessiondatastore-tls-ep-session

Responsible for sending gRPC messages to
Diameter endpoint for Credit Control messages,
which are converted to Diameter CCR messages
by Diameter endpoint and sent to the Gx server.

diameter-ep-gx-clientdiameter-ep-gx-client

Responsible for sending gRPC messages to
Diameter endpoint for Credit Control Messages,
which are converted to Diameter CCR messages
by Diameter endpoint and sent to the Gy server.

diameter-ep-gy-clientdiameter-ep-gy-client

Responsible for the SMF documents.documentationdocumentation

Responsible for pod discovery within the
namespace.

etcd-smf-etcd-cluster-0,
etcd-smf-etcd-cluster-1,
etcd-smf-etcd-cluster-2

etcd

Responsible for synchronization of data among the
etcd cluster.

etcd-smf-etcd-cluster-0etcd-smf-etcd-cluster-0

Responsible for synchronization of data among the
etcd cluster.

etcd-smf-etcd-cluster-1etcd-smf-etcd-cluster-1

Responsible for synchronization of data among the
etcd cluster.

etcd-smf-etcd-cluster-2etcd-smf-etcd-cluster-2

Responsible for the default dashboard of app-infra
metrics in Grafana.

grafana-dashboard-app-infragrafana-dashboard-app-infra

Responsible for the default dashboard of CDL
metrics in Grafana.

grafana-dashboard-cdlgrafana-dashboard-cdl

Responsible for the default dashboard of
SMF-service metrics in Grafana.

grafana-dashboard-smfgrafana-dashboard-smf

Responsible for inter-pod communication with
GTP-C pod.

gtpc-epgtpc-ep

Manages the Ops Center API.api-smf-ops-centerhelm-api-smf-ops-center

Processes the Kafka messages.kafkakafka

Responsible for lawful-intercept interactions.li-epli-ep

Pods and Services Reference
8

Pods and Services Reference
Services

DescriptionPod NameService Name

Responsible for leveraging Ops Center credentials
by other applications like Grafana.

ops-center-smf-ops-centerlocal-ldap-proxy-smf-ops-center

Responsible to facilitate Exec commands on the
Ops Center.

oam-podoam-pod

Manages the SMF Ops Center.ops-center-smf-ops-centerops-center-smf-ops-center

To access SMF Ops Center with external IP
address.

ops-center-smf-ops-centerops-center-smf-ops-center-expose-cli

Responsible for the SMF Ops Center API.smart-agent-smf-ops-centersmart-agent-smf-ops-center

Responsible for routing incomingHTTP2messages
to REST-EP pods.

smf-rest-epsmf-sbi-service

Responsible for routing incoming N10 messages
to REST-EP pods.

smf-rest-epsmf-n10-service

Responsible for routing incoming N11 messages
to REST-EP pods.

smf-rest-epsmf-n11-service

Responsible for routing incoming N40 messages
to REST-EP pods.

smf-rest-epsmf-n40-service

Responsible for routing incoming N7 messages to
REST-EP pods.

smf-rest-epsmf-n7-service

Responsible for routing incoming NRF messages
to REST-EP pod.

smf-rest-epsmf-nrf-service

Responsible for inter-pod communication with
smf-nodemgr pod.

smf-nodemgrsmf-nodemgr

Responsible for inter-pod communication with
smf-protocol pod

smf-protocolsmf-protocol

Responsible for inter-pod communication with
smf-radius-dns pod

smf-radius-dnssmf-radius-dns

Responsible for inter-pod communication with
smf-rest-ep pod

smf-rest-epsmf-rest-ep

Responsible for inter-pod communication with
smf-service pod

smf-servicesmf-service

Operates as the utility pod for the SMFOps Centerswiftswift-smf-ops-center

Assists Kafka for topology managementzookeeperzookeeper

Assists Kafka for topology managementzookeeperzookeeper-service

Open Ports and Services
The SMF uses different ports for communication purposes. The following table describes the default open
ports and the associated services.

Pods and Services Reference
9

Pods and Services Reference
Open Ports and Services

Table 5: Open Ports and Services

UsageServicePort

This is the default gRPC port for all the application pods that aren’t using the
host network.

gRPC9003

This is the default prometheus server port for all the application pods that
aren’t using the host network.

TCP/HTTP8080

SMF uses the HTTP2 REST endpoint for the SBI interface endpoint.TCP/HTTP8090

SMF Ops Center uses this port to provide the ConfD CLI access.SSH2024

SMF uses the etcd server client endpoint to store and retrieve system data.TCP2379-2380

This is the CDL session DB endpoint used by all other application pods.gRPC8882

Application REST endpoint uses this port to receive the call-back timer or
notification from the CDL.

gRPC8890

This is the TLS - CDL session DB endpoint used by all other application
pods.

gRPC8883

SMF uses the 3GPP standard GTP-C port for the signaling of GTP-C protocol
messages (control path).

UDP2123

SMF uses the 3GPP standard GTP-U port for the signaling of GTP-U protocol
messages (data path).

UDP2152

SMF uses the 3GPP standard PFCP port for the signaling of PFCP protocol
messages.

UDP8805

SMF uses this port as the readiness probe port for the UDP proxy pod.TCP68765

Pprof Server endpoint serves runtime profiling data from GTP-C endpoint
interface-specific pods, such as S11 and S5.

TCP/HTTP7179, 7189

SMF uses the TLS GRPC IPC server endpoint for the GTP-C endpoint
interface-specific pods.

TCP/gRPC23300,
23310

Non-TLS GRPC IPC server port for the GTP-C endpoint interface-specific
pods.

TCP/gRPC9005, 9015

SMF uses the KeepAliveD endpoint for GTP-C endpoint interface-specific
pods.

TCP27000,
27010

This port is the admin endpoint internal port that is used in the GTP-C endpoint
interface-specific pods. This port is used for liveness and readiness probe.

TCP7279, 7289

SMF uses the prometheus server port for theGTP-C endpoint interface-specific
pods.

TCP/HTTP7079, 7089

SMF uses the prometheus server port for the protocol pod.TCP/HTTP8083

SMF uses the non-TLS GRPC IPC Server endpoint for the protocol pod.TCP/gRPC9006

SMF uses the prometheus server port for the protocol pod.TCP/HTTP8003

SMF uses the TLS GRPC IPC server endpoint for the protocol pod.TCP/gRPC23100

Pods and Services Reference
10

Pods and Services Reference
Open Ports and Services

UsageServicePort

The Pprof server endpoint serves runtime profiling data from the protocol
pod.

TCP/HTTP7679

This port is the admin endpoint internal port that is used in the protocol pod.
This port is used for the liveness and readiness probe.

TCP7879

SMF uses this KeepAliveD endpoint for the protocol pod.TCP27500

SMF uses this KeepAliveD endpoint for the UDP proxy pod.TCP28000

SMF uses the TLS GRPC IPC server endpoint for the UDP proxy pod.TCP/gRPC23200

Non-TLS GRPC IPC server endpoint for the UDP proxy pod.TCP/gRPC9004

This port is the admin endpoint internal port that is used in the UDP proxy
pod. This port is used for the liveness and readiness probe.

TCP7879

The Pprof server endpoint serves runtime profiling data from the UDP proxy
pod.

TCP/HTTP8850

In addition to the preceding ports, SMF uses the ports that are destined for SMI for routing information between
hosts. For information on SMI ports, see the Ultra Cloud Core Subscriber Microservices Infrastructure
Operations Guide.

Associating Pods to the Nodes
This section describes how to associate a pod to the node based on their labels.

After you have configured a cluster, you can associate pods to the nodes through labels. This association
enables the pods to get deployed on the appropriate node based on the key-value pair.

Labels are required for the pods to identify the nodes where they must get deployed and to run the services.
For example, when you configure the protocol-layer label with the required key-value pair, the pods are
deployed on the nodes that match the key-value pair.

To associate pods to the nodes through the labels, use the following sample configuration:

config
k8 label vm_group key label_key value label_value

end

NOTES:

• k8 label vm_group key label_key value label_value: Configures the K8 node affinity label parameters.

• vm_group: Specify the VM group. It must be one of the following:

• cdl-layer

• oam-layer

• protocol-layer

• service-layer

• key label_key: Specify the label key. label_key must be a string.

Pods and Services Reference
11

Pods and Services Reference
Associating Pods to the Nodes

• value label_value: Specify the label value. label_value must be a string.

• If you choose not to configure the labels, then SMF assumes the labels with the default key-value pair.

Viewing the Pod Details and Status
If the service requires additional pods, SMF creates and deploys the pods. You can view the list of pods in
your deployment through the SMF Ops Center.

You can run the kubectl command from the master node to manage the Kubernetes resources.

The pod details are available in YAML format.

Use the following sample configuration to view the comprehensive pod details:

kubectl get pods -n smf pod_name -o yaml

The output of this command displays the following information:

• The IP address of the host where the pod is deployed.

• The service and application that is running on the pod.

• The ID and name of the container within the pod.

• The IP address of the pod.

• The current state and phase in which the pod is.

• The start time from when the pod is in the current state.

To view all the pods in the SMF namespace, use the following sample configuration:

kp get pods -n smf_namespace -o wide

States
Understanding the pod's state lets you determine the current health and prevent the potential risks. The following
table describes the pod's states.

Table 6: Pod States

DescriptionState

The pod is healthy and deployed on a node.

It contains one or more containers.

Running

The application is in the process of creating the container images for the pod.Pending

Indicates that all the containers in the pod are successfully terminated. These pods cannot be
restarted.

Succeeded

One ore more containers in the pod have failed the termination process. The failure occurred
as the container either exited with non zero status or the system terminated the container.

Failed

Pods and Services Reference
12

Pods and Services Reference
Viewing the Pod Details and Status

DescriptionState

The state of the pod could not be determined. Typically, this could be observed because the
node where the pod resides was not reachable.

Unknown

GTPC Protocol Endpoint Merge with UDP Proxy Bypass

Feature Description
Bypass proxy is introduced to enable this GTP packets directly land on gtpc-ep pod. This will avoid the
processing at udp-proxy and one hop will be reduced in packet forwarding.

All the features supported by existing gtpc-ep and udp-proxy are integrated in new merged path

following features are integrated from udp-proxy:

• Transaction SLA

• DSCP marking for GTP packets

• Adding BGP routes for roamer subscriber on the fly

• Supporting Dispatcher feature and incoming retransmission

• SGW Cache integration for DDN

• MBR cache integration

Following features are integrated from gtpc-ep:

• Retransmissions based on n3t3 config for outbound requests

• Monitor protocol and Monitor Subscriber

• Echo message handling

GTPC Endpoint with GR-Split

For handling scaled GTP traffic and for the optimal use of CPU, multiple active instances of GTPC-EP are
started, and traffic split is done based on GR Instances.

UDP Proxy Functionality Merge into Protocol Micro-services

Feature Description
The UDP Proxymicro-services provide UDP transport termination for protocols (PFCP, GTPC, and RADIUS)
that require UDP. The UDP proxy provides user space packet forwarding and IPC communication towards
protocol micro-services. It uses host networking for source IP address observability and operates in
Active/Standby mode.

Pods and Services Reference
13

Pods and Services Reference
GTPC Protocol Endpoint Merge with UDP Proxy Bypass

Multiple protocol micro-services depend on UDP proxy for UDP transport, therefore UDP proxy is a scale
bottleneck and single point of failure.Merging UDP Proxy functionality into respective protocol micro-services
will help mitigate the scale bottleneck and improve CPU usage by virtue of reducing one hop across
micro-services in the signaling path.

How it Works

PFCP Protocol Endpoint with UDP Proxy Bypass

Protocol endpoint bypasses UDP proxy and sends N4/Sxa messages towards UPF directly. Incoming N4/Sxa
messages from UPF also bypass UDP poxy and land on Protocol pod. (Subject to UPF support for Source IP
Address IE in heartbeat request message). Protocol pod continues to use non-host networkingmode of operation.

Kubernetes service starts to listen on the configured VIP IP address and standard port, ensuring incoming
N4/Sxa UDP packets are sent to Protocol pods. A separate Kubernetes service created for N4 & Sx with
separate target ports to identify the interface associated with the incoming message/packet. Kubernetes client
IP address affinity is availed to ensure retransmitted packets from UPF are sent to the same Protocol pod
instance to hit the retransmission cache successfully.

Current Mode (No Bypass)

In this mode of operation the message exchange for N4, Sxa, GTP-U happen through the UDP proxy. The
UDP proxy is responsible for connecting to or receiving connections from UPF.

All the node related messages, or session that is related on PFCP are initiated either by the service or from
the UPF and their responses pass through the UDP proxy.

Outbound Bypass Proxy Mode

This mode of operation is enabled by default for all messages that are initiated by S-GW or SMF service and
sent by the system toward UPF using PFCP through Kubernetes Pod environment variable
“OUTBOUND_PROXY_BYPASS”. The messages that are sent by SMF (Protocol pod) directly to UPF are
session that is related and as follows:

1. PFCP Session Establishment Request

2. PFCP Session Modification Request

3. PFCP Session Deletion Request

In this mode, the GTP-U messages from UPF or initiated by Service toward UPF continue to be exchanged
through the UDP proxy. In this mode, only the session related messages (that is, the ones initiated by SMF
Service) flow directly from Protocol towards the UPF.

Protocol pod receives the UPF IP address from the service, which is used to set up connection with UPF and
subsequently use the same for session related message exchange. The node related messages continue to take
the UDP proxy to protocol or Node Manager path.

Complete Bypass Mode (Inbound and Outbound)

In this mode, both inbound and outbound messages are sent and received by Protocol pod bypassing UDP
Proxy. The protocol pod will listen on N4 and GTPu or Sxa ports based on the configured VIPs. Protocol pod
ceases to be on a Kubernetes service network and remains in Host based networking mode. Protocol pods
gets the IP of the node or VM that it is on, this condition is triggered based on an environment variable present

Pods and Services Reference
14

Pods and Services Reference
How it Works

or available for both Protocol and UDP proxy pods (UDP_PROXY_BYPASS). By default, this variable is
false and UDP proxy and Protocol continue as they do today with UDP-Proxy exchanging messages with
UPF.

UDP_PROXY_BYPASS is set to true only if both the following conditions are met:

1. VIP is configured under endpoint PFCP interface N4 or interface Sxa.

2. There is no VIP configured under endpoint protocol interface N4 or interface Sxa.

With change in value of UDP_PROXY_BYPASS variable, both UDP proxy and Protocol pods are restarted
to enable this new mode of working or to fallback to earlier mode of message exchange trhough UDP proxy.

Triggering Bypass Mode using CLI

To trigger the bypass mode or protocol-proxymerged working, the VIP-IPs must be configured under endpoint
PFCP as shown here:
no instance instance-id 1 endpoint protocol interface n4
no instance instance-id 1 endpoint protocol interface gtpu
instance instance-id 1 endpoint pfcp interface n4 vip-ip X.X.X.X
instance instance-id 1 endpoint pfcp interface gtpu vip-ip X.X.X.X

With the preceding configuration the value of environment variable UDP_PROXY_BYPASS will change.
This triggers a restart of both pods UDP proxy and Protocol.

Important

Every feature that is present under endpoint→ protocol must be correspondingly configured under endpoint
→ PFCP andwhich include features like DSCP, SLA, andDispatcher related configurations. The configurations
for all features take effect only if internal VIP-IP is configured under endpoint→ PFCP and interface N4 or
interface Sxa. There should be interface N4 and VIP-IP or interface Sxa and VIP-IP present under endpoint
→ protocol.

Rendering CLI Values

Based on N4 and Sxa VIP configuration, the rendering logic calculates which values to publish under endpoint
protocol. The configuration is rendered in pods having the key as “endpointIp”. The configuration path in
each individual pod is located at /config/AppName/vip-ip/endpointIp.yaml. The affected pods are:

1. Protocol

2. Node Mgr

3. SMF-Service

4. SGW Service.

Having endpoint→ pfcp configurations render under endpoint→ protocol helps in avoiding changes to
background configuration read logic.

Node Management

In this case Protocol starts a PFCP endpoint for peers to connect with it. At the same time, it will also establish
connection with UPF as and when the app service initiates a PFCP message towards the UPF. Following
messages are included:

Pods and Services Reference
15

Pods and Services Reference
How it Works

1. PFCP Association Setup Request/Response

2. PFCP Association Update Request/Response

3. PFCP Session Report Request/Response

4. PFCP Node Report Request/Response

5. Heartbeat Request/Response

6. PFCP PFD Management Request/Response

Session Management

Session Management messages initiated by the service and sent directly to UPF through the Protocol pod.
The protocol pod initiates connection with UPF to send these messages, this is the reason protocol pod must
be in “Host networking” to take the IP address of the node on which it is on.

Standardized Port Numbers

While triggering the “Merged” mode, the protocol pod transitions into Host based networking. Protocol pod
takes the IP address of the Host or the Node much like the existing UDP proxy pod. It is essential that UDP
proxy, GTPC-EP, and Protocol do not share the same ports. The thumb rule for port calculation is:
Port_Value = Base_Port _Value + (Gr_Instance_Id_index *50) + (Logical_Instance_id mod 50)

Gr_Instance_id: The GR Instance ID supplied in the configurations using CLI.

Logical_Instance_id: Identifier for the logical SMF instance.

Prometheus Port:

With complete UDP proxy bypass the Prometheus port of 8080 is not used, instead the start port for Prometheus
8004 for instance 1. The "instance-Id” added with 8003 must be the port number.

Proxy Keep-Alive Port:

The proxy keepalive port starts from 27500+ “Instance-Id”.

1. GR Instance 1 & Logical Instance Id 0 :- 27500 + (0 * 50) + (0 % 50) = 27500

2. GR Instance 2 & Logical Instance Id 0 :- 27500 + (1 * 50) + (0 % 50) = 27550

Admin Port for Keepaive and Liveness Probe:

Admin Port will be 7879 + (Gr_Instance_Id_index *50) + (Logical_Instance_id mod 50)

Infra Diagnostics Port:

Infra Diag Port will be 7779 + (Gr_Instance_Id_index *50) + (Logical_Instance_id mod 50)

PProf port:

PProf Profiling port will be 7679 + (Gr_Instance_Id_index *50) + (Logical_Instance_id mod 50)

Pods and Services Reference
16

Pods and Services Reference
How it Works

Runtime pod scales for server additions
Table 7: Feature History

DescriptionRelease InformationFeature Name

This feature enables the dynamic
addition of servers to a running
cluster without disrupting existing
deployments. It allows seamless
scalability to meet growing
demands andminimizes downtime,
enhancing operational continuity.

2025.03.0Scaling Converged Core Cluster
with Node Labeling and Required
Affinity

The runtime pod scales feature manages scaling efficiently when a new server is added.

The key features and capabilities include:

• Enables dynamic recalibration of resources during new server addition.

• Utilizes new resources at runtime in a standalone converged core cluster.

• Supports Kubernetes version 1.33.

Key advantages of the pod scaling

The pod scaling feature has key advantages:

• Dynamic server addition.

• Usage of internal Kubernetes labels and affinity rules for workload management.

• Efficient load distribution.

Addition and scaling of runtime servers in converged core process
When a new server is added to the Kubernetes cluster using the cluster manager, ensure that the replica count
for the “smf service” and “sgw-service” endpoints is increased, resulting in application pods being scheduled
on the new node.

Complete these actions:

• Updating the Helm charts for both smf-service and sgw-service pods to use the required affinity rules.

• Labeling the new node.

• Increasing replica counts in the endpoint configuration.

• Removing the label and performing any other necessary cleanup

Prerequisite

The prerequisites for this feature are:

Pods and Services Reference
17

Pods and Services Reference
Runtime pod scales for server additions

• Decommission the CF or SF Node from VPC-DI.

• Clean up the Virtual Drive of this CF or SF node.

• Connect the node towards the 5G cluster by physically attaching PCIe slots.

• Ensure the SMI CNDP version is the July 2025 release version.

• Ensure that the SMF OpsCenter is set to the "large-all" deployment model before proceeding.

• Run Full Cluster Sync to get this node added to the cluster.

• Set the node count for the endpoint service and sgw-service to 0 or 1.

Configure new deployment

SMF supports a new deployment model "large-all". By default, "large" model is the default value used on
existing deployments.

Use these Day 1 configuration steps for new deployment.

1. Enter the configuration mode.

configure

2. Specify the deployment model using the deployment model deployment-model command.

Example
[dev-perf/smf] smf# config
[dev-perf/smf] smf(config)# deployment model large-all
[dev-perf/smf] smf(config)# commit

3. Enter commit to commit the changes.

Pod scaling processes

The process includes these steps:

1. Log into the Ops Center using the cn-ops-center command, to label the new node.

Enter cluster label node node_name pod-list pod-list to label the node for specific pod scaling.

Example
cluster label node dev-perf-worker-4 pod-list {sgw-service|smf-service}

2. Enter into the configuration mode and increase the replica count under the endpoint service (for SMF) or
increase the replica count for sgw-service.

3. Wait for the system status to be 100%.

4. Clear the node label for specific pod scaling using the cluster unlabel node node_name pod-list pod-list

example
cluster unlabel node dev-perf-worker-4 pod-list {sgw-service|smf-service}

5. Verify the node labels status using the show cluster label command.

dev-perf/smf] smf# show cluster label
NAME STATUS

Pods and Services Reference
18

Pods and Services Reference
Addition and scaling of runtime servers in converged core process

--
dev-perf-master-1
dev-perf-master-2
dev-perf-master-3
dev-perf-worker-1
dev-perf-worker-2
dev-perf-worker-3
dev-perf-worker-4 smf-service,sgw-service

All-in-One deployment models
Table 8: Feature history

DescriptionRelease
information

Feature name

AIO models are designed to support low footprint
deployments for SMF.

Deploying the AIO models allows the network
operators to deploy high capacity deployments in the
resource-optimized way.

2025.04.0Low footprint deployments for
SMF using AIO models

All-in-One (AIO) models are low footprint converged core deployment models that allow the network operator
to support increased UEs with increased capacity hardware.

Thesee are the two AIO deployment models:

• AIO: AIO deployment model provides full functionality with optimized resource allocation. This model
is optimized for high throughput and session density on single-node deployments.

• AIO-small: AIO-small deployment model is resource-optimized for smaller hardware footprints and
maintaining functionality.

This table shows the details of the AIO deployment models for SMF.

Table 9: Specifications for AIO deployment models

AIO-smallAIOSpecifications

Up to 400,000 SMF sessionsUp to 1 million SMF sessionsCapacity

Single node or partial node
deployment with 32+ CPU cores

Single node deployment with 128+
CPU cores.

Recommended for

90% 4G sessions and 10% 5G
sessions.

90% 4G sessions and 10% 5G
sessions.

Traffic mix

Suitable for testing, development,
or smaller production deployments.

Suitable for production
environments with high throughput
requirements.

Suitability

Pods and Services Reference
19

Pods and Services Reference
All-in-One deployment models

High Avaliability is not supported in this AIOModel. Any protocol layer pod restart will have significant call
or ceps loss.

Note

Configure AIO deployment models
Before you begin

These are the prerequisites to deploying the AIO models:

• Cluster Manager Configuration

• Cluster manager must deploy the single-node cluster.

• All the required network configurations must be in place.

• The node labels must be properly configured for pod placement.

• Network Configuration

• All the required Virtual IPs (VIPs) must be configured.

• The network connectivity must be established between the components.

• Proper DNS resolution must be configured.

• Operations Center Configuration

• Both CEE and SMF operations center must be configured with "single-node true" parameter.

• Proper monitoring and alerting must be set up.

These steps allow the network operator to deploy AIO models for SMF.

Procedure

Use the CLI deployment model { aio | aio-small } in the global configuration mode.

Example:

[smf] smf#config
[smf] smf(config)# deployment model aio
[smf] smf(config)# end

Pods and Services Reference
20

Pods and Services Reference
Configure AIO deployment models

	Pods and Services Reference
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	Pods
	Replicas
	UDP Proxy Pod
	Feature Description
	Architecture
	Protocol Pod Selection for Peer-Initiated Messages
	High Availability for the UDP Proxy

	Node Monitoring Pod
	Configure Node Monitoring Pod
	Configuration Example
	Configuration Verification

	Services
	Open Ports and Services

	Associating Pods to the Nodes
	Viewing the Pod Details and Status
	States

	GTPC Protocol Endpoint Merge with UDP Proxy Bypass
	Feature Description

	UDP Proxy Functionality Merge into Protocol Micro-services
	Feature Description
	How it Works

	Runtime pod scales for server additions
	Addition and scaling of runtime servers in converged core process

	All-in-One deployment models
	Configure AIO deployment models

