
cnSGW-C Rolling Software Update

• Feature Summary and Revision History, on page 1
• Introduction, on page 1
• Updating cnSGW-C, on page 2
• Rolling Upgrade Optimization, on page 13

Feature Summary and Revision History

Summary Data
Table 1: Summary Data

cnSGW-CApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Documentation

Revision History
Table 2: Revision History

ReleaseRevision Details

2021.02.0First introduced.

Introduction
The cnSGW-C has a three-tier architecture consisting of Protocol, Service, and Session. Each tier includes a
set of microservices (pods) for a specific functionality. Within these tiers, there exists a Kubernetes Cluster

cnSGW-C Rolling Software Update
1

comprising of Kubernetes (K8s) master, and worker nodes (including Operation and Management (OAM)
nodes).

For high availability and fault tolerance, a minimum of two K8s worker nodes are configured for each tier.
You can have multiple replicas for each worker node. Kubernetes orchestrates the pods using the StatefulSets
controller. The pods require a minimum of two replicas for fault tolerance.

The following figure depicts cnSGW-C K8s cluster with 12 nodes.

• Three master nodes

• Three OAM worker nodes

• Two Protocol worker nodes

• Two Service worker nodes

• Two Session (data store) worker nodes

Figure 1: cnSGW-C Kubernetes Cluster

The cnSGW-C Kubernetes cluster comprises of the following nodes:

• The OAM worker nodes host the Ops Center pods for configuration management and metrics pods for
statistics and Key Performance Indicators (KPIs).

• The Protocol worker nodes host the cnSGW-C protocol-related pods for service-based interfaces (N11,
N7, N10, N40) and UDP-based protocol interfaces (N4, S5/S8).

• The Service worker nodes host the cnSGW-C application-related pods that perform session management
processing.

• The Session worker nodes host the database-related pods that store subscriber session data.

Updating cnSGW-C
The rolling software update is a process of updating or migrating the build from an older to a newer version
or updating the patch for the prescribed deployment set of application pods.

Rolling update takes place with zero downtime by incrementally updating the pod instances with the new
ones.

cnSGW-C Rolling Software Update
2

cnSGW-C Rolling Software Update
Updating cnSGW-C

The applications must be available when new versions are expected to be deployed with the new build versions
or patches.

Note

Update Scope

The rolling update feature is supported from an older to the newer versions within the same major release.

• Assumptions:When updating, it is assumed that the following has not been changed between the versions:

• Features supported in the old and the new versions.

• Configuration addition, deletion, or modification of the existing CLI behavior.

• Interface change within the peer or across the pods.

• Recommendations:

• Configuration changes are not recommended during the update process.

• All configuration changes should be done after the update process is complete.

• Failure Handling: The system should be downgraded manually to an older healthy build following the
downgrade process for:

• Failure during the process such as crash, and pods deployment failures.

• Failure after the successful update such as new events or procedures.

Rolling Software Update Using the SMI Cluster Manager
The cnSGW-C software update or in-service update procedure utilizes the K8s rolling strategy to update the
pod images. In this strategy, the pods of a StatefulSet are updated sequentially to ensure that the ongoing
process remains unaffected. Initially, a rolling update on a StatefulSet causes a single pod instance to terminate.
A pod with an updated image replaces the terminated pod. This process continues until all the replicas of the
StatefulSet are updated. The terminating pods exit gracefully after competing all the ongoing processes. Other
in-service pods continue to receive and process the traffic to provide a seamless software update. You can
control the software update process through the Ops Center CLI.

Each pod needs a minimum of two pods for high availability. In a worst-case scenario, the processing capacity
of the pod may briefly reduce to 50% while the software update is in-progress.

Note

The following figure illustrates a cnSGW-C rolling update for cnSGW-C REST endpoint pods (two replicas)
on Protocol worker nodes along with cnSGW-C Service pods (three replicas) on Service worker nodes.

cnSGW-C Rolling Software Update
3

cnSGW-C Rolling Software Update
Rolling Software Update Using the SMI Cluster Manager

Figure 2: cnSGW-C Rolling Update

Prerequisites
The prerequisites for upgrading cnSGW-C are:

• All the nodes that include all the pods in the node that are up and running.

• A patch version of the cnSGW-C software.

Major versions do not support rolling update.Note

Trigger rolling update only when the CPU usage of the nodes is less than 50%.Important

cnSGW-C Rolling Software Update
4

cnSGW-C Rolling Software Update
Prerequisites

• Intra-site HA support.

cnSGW-C Health Check

Perform a health check to ensure that all the services are running and the nodes are in the ready state.

To perform health check, use the following configuration:

• Log in to the master node and use the following configuration:

kubectl get pods -n smi
kubectl get nodes
kubectl get pod --all-namespaces -o wide
kubectl get pods -n cnsgw-wsp -o wide
kubectl get pods -n cee-wsp -o wide
kubectl get pods -n smi-vips -o wide
helm list
kubectl get pods -A | wc -l

Make sure that all the services are running and nodes are in the ready state before you proceed.Important

Backing Up the Deployment File

To create a backup configuration, logs, and deployment files, use the following configuration:

1. Log in to the SMI Cluster Manager Node as an Ubuntu user.

2. Create a new directory for deployment.

Example:

test@smicnsgw-cm01:~$ mkdir -p "temp_$(date +'%m%d%Y_T%H%M')" && cd "$_"

3. Back up the working files into the newly created deployment directory.

4. Untar the cnsgw deployment file.

Example:

test@smi1cnsgw01-cm01:~/temp_08072019_T1651$ tar -xzvf cnsgw.2020.01.0-1.SPA.tgz
./
./cnsgw_REL_KEY-CCO_RELEASE.cer
./cisco_x509_verify_release.py
./cnsgw.2020.01.0-1.tar
./cnsgw.2020.01.0-1.tar.signature.SPA
./cnsgw.2020.01.0-1.tar.SPA.README

5. Verify the downloaded image.

Example:

test@smi1cnsgw01-cm01:~/temp_08072019_T1651$ cat cnsgw.2020.01.0-1.tar.SPA.README

Follow the procedure mentioned in the SPA.README file to verify the build before proceeding to the next
step.

Important

cnSGW-C Rolling Software Update
5

cnSGW-C Rolling Software Update
cnSGW-C Health Check

Backing Up the Ops Center Configuration

To back up the Ops Center configurations, use the following configuration:

1. Log in to the SMI Cluster Manager node as an Ubuntu user.

2. Back up the SMI Ops Center configuration to the /home/ubuntu/smiops.backup file, using the following
configuration:

ssh -p <port_number> admin@$(kubectl get svc -n smi | grep
'.*netconf.*<port_number>' | awk '{ print $4 }') "show run | nomore"
> smiops.backup_$(date +'%m%d%Y_T%H%M')

3. Back up the CEEOps Center configuration to the /home/ubuntu/ceeops.backup file, using the following
configuration:

ssh admin@<cee-vip> "show run | nomore" > ceeops.backup_$(date
+'%m%d%Y_T%H%M')

4. Back up the cnSGW-C Ops Center configuration to the /home/ubuntu/cnSGWops.backup file, using
the following configuration:

ssh admin@<cnSGW-vip> "show run | nomore" > cnSGWops.backup_$(date
+'%m%d%Y_T%H%M')

Back Up CEE and cnSGW-C Ops Center Configuration

To back up the CEE and Ops Center configuration from the master node, use the following configuration:

1. Log in to the master node as an Ubuntu user.

2. Create a directory to backup the configuration files, using the following configuration:

mkdir backups_$(date +'%m%d%Y_T%H%M') && cd "$_"

3. Back up the cnSGW-C Ops Center configuration and verify the line count of the backup files, using the
following configuration:

ssh -p <port_number> admin@$(kubectl get svc -n $(kubectl get namespaces
| grep -oP 'cnSGW-(\d+|\w+)') | grep <port_number> | awk '{ print $3
}') "show run | nomore" > cnSGWops.backup_$(date +'%m%d%Y_T%H%M') &&
wc -l cnSGWops.backup_$(date +'%m%d%Y_T%H%M')

Example:

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ ssh -p 2024 admin@$(kubectl get svc -n
$(kubectl get namespaces | grep -oP 'cnSGW-(\d+|\w+)') | grep <port_number> | awk '{
print $3 }') "show run | nomore" > cnSGWops.backup_$(date +'%m%d%Y_T%H%M') && wc -l
cnSGWops.backup_$(date +'%m%d%Y_T%H%M')
admin@<ipv4address>'s password: cnSGW-OPS-PASSWORD
334 cnSGWops.backup

4. Back up the CEEOps Center configuration and verify the line count of the backup files, using the following
configuration:

ssh -p <port_number> admin@$(kubectl get svc -n $(kubectl get namespaces
| grep -oP 'cee-(\d+|\w+)') | grep <port_number> | awk '{ print $3
}') "show run | nomore" > ceeops.backup_$(date +'%m%d%Y_T%H%M') && wc
-l ceeops.backup_$(date +'%m%d%Y_T%H%M')

Example:

cnSGW-C Rolling Software Update
6

cnSGW-C Rolling Software Update
Backing Up the Ops Center Configuration

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ ssh -p <port_number> admin@$(kubectl get
svc -n $(kubectl get namespaces | grep -oP 'cee-(\d+|\w+)') | grep <port_number> | awk
'{ print $3 }') "show run | nomore" > ceeops.backup_$(date +'%m%d%Y_T%H%M') && wc -l
ceeops.backup_$(date +'%m%d%Y_T%H%M')
admin@<ipv4address>'s password: CEE-OPS-PASSWORD
233 ceeops.backup

5. Move the SMI Ops Center backup file (from the SMI Cluster Manager) to the backup directory, using
the following configuration:

scp $(grep cm01 /etc/hosts | awk '{ print $1
}'):/home/ubuntu/smiops.backup_$(date +'%m%d%Y_T%H%M') .

Example:

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ scp $(grep cm01 /etc/hosts | awk '{ print
$1 }'):/home/ubuntu/smiops.backup_$(date +'%m%d%Y_T%H%M') .
ubuntu@<ipv4address>'s password: SMI-CM-PASSWORD
smiops.backup 100% 9346 22.3MB/s

00:00

6. Verify the line count of the backup files.

Example:

ubuntu@pocnSGW-mas01:~/backups_09182019_T2141$ wc -l *
233 ceeops.backup
334 cnSGWops.backup
361 smiops.backup
928 total

Staging a New cnSGW-C Image

To stage a new cnSGW-C image before initiating the update, use the following configuration:

1. Download and verify the new cnSGW-C image.

2. Log in to the SMI Cluster Manager node as an Ubuntu user.

3. Copy the image to the uploads directory.

sudo mv <cnSGW_new_image.tar> /data/software/uploads

The SMI uses the new image present in the uploads directory to update.Note

4. Verify whether the image is picked up by the SMI for processing from the uploads directory.

sleep 30; ls /data/software/uploads

Example:

ubuntu@pocnSGW-cm01:~/temp_08072019_T1651$ sleep 30; ls /data/software/uploads
ubuntu@pocnSGW-cm01:~/temp_08072019_T1651$

5. Verify whether the images were successfully picked up and processed.

Example:

auser@unknown:$ sudo du -sh /data/software/packages/*
1.6G /data/software/packages/cee.2019.07
5.3G /data/software/packages/cnSGW.2019.08-04
16K /data/software/packages/sample

cnSGW-C Rolling Software Update
7

cnSGW-C Rolling Software Update
Staging a New cnSGW-C Image

The SMI must unpack the images into the packages directory successfully to complete the staging.Note

Triggering the Rolling Software Upgrade
cnSGW-C utilizes the SMI Cluster Manager to perform a rolling software update.

To update cnSGW-C using SMI Cluster Manager, use the following configurations:

Before you begin, ensure that cnSGW-C is up and running with the current version of the software.Important

1. Log in to the SMI Cluster Manager Ops Center.

2. Download the latest tarall from the URL.

software-packages download url

NOTES:

• software-packages download url—Specifies the software packages to be downloaded through
HTTP/HTTPS.

Example:
SMI Cluster Manager# software-packages download <url>

3. Verify whether the tarall is loaded.

software-packages list

NOTES:

• software-packages list —Specifies the list of available software packages.

Example:
SMI Cluster Manager# software-packages list
[cnSGW-2019-08-21]
[sample]

4. Update the product repository URL with the latest version of the product chart.

If the repository URL contains multiple versions, the Ops Center automatically selects the latest version.Note

configure
cluster cluster_name

ops-centers app_name cnSGW_instance_name

repository url

exit
exit

Example:

cnSGW-C Rolling Software Update
8

cnSGW-C Rolling Software Update
Triggering the Rolling Software Upgrade

SMI Cluster Manager# config
SMI Cluster Manager(config)# clusters test2
SMI Cluster Manager(config-clusters-test2)# ops-centers cnSGW data
SMI Cluster Manager(config-ops-centers-cnSGW/data)# repository <url>
SMI Cluster Manager(config-ops-centers-cnSGW/data)# exit
SMI Cluster Manager(config-clusters-test2)# exit

5. To update to the latest version of the product chart, run the cluster sync command using the following
command:

clusters cluster_name actions sync run

Example:
SMI Cluster Manager# clusters test2 actions sync run

NOTES:

• cluster —Specifies the K8s cluster.

• cluster_name —Specifies the name of the cluster.

• ops-centers app_name instance_name —Specifies the product Ops Center and instance. app_name is
the application name. instance_name is the name of the instance.

• repository url—Specifies the local registry URL for downloading the charts.

• actions —Specifies the actions performed on the cluster.

• sync run —Triggers the cluster synchronization.

• The cluster synchronization updates the cnSGW-C Ops Center, which in turn updates the application
pods (through helm sync command) one at a time automatically.

• When you trigger rolling upgrade on a specific pod, the cnSGW-C avoids routing new calls to that pod.

• The cnSGW-C honors in-progress call by waiting for 30 seconds before restarting the pod where rolling
upgrade is initiated. Also, the cnSGW-C establishes all the in-progress calls completely within 30 seconds
during the upgrade period (maximum call-setup time is 10 seconds).

Important

Monitoring the Update Procedure
To monitor the status update through SMI Cluster Manager Ops Center, use the following configurations:

config
clusters cluster_name actions sync run debug true
clusters cluster_name actions sync logs
monitor sync-logs cluster_name

clusters cluster_name actions sync status
exit

Example:

SMI Cluster Manager# clusters test1 actions sync run
SMI Cluster Manager# clusters test1 actions sync run debug true
SMI Cluster Manager# clusters test1 actions sync logs

cnSGW-C Rolling Software Update
9

cnSGW-C Rolling Software Update
Monitoring the Update Procedure

SMI Cluster Manager# monitor sync-logs test1
SMI Cluster Manager# clusters test1 actions sync status

NOTES:

• clusters cluster_name—Specifies the information about the nodes to be deployed. cluster_name is the
name of the cluster.

• actions—Specifies the actions performed on the cluster.

• sync run—Triggers the cluster synchronization.

• sync logs—Shows the current cluster synchronization logs.

• sync status —Shows the current status of the cluster synchronization.

• debug true—Enters the debug mode.

• monitor sync logs—Monitors the cluster synchronization process.

You can view the pod details after the upgrade through the CEE Ops Center. For more information on pod
details, see Viewing the Pod Details, on page 10 section.

Important

Viewing the Pod Details
To view the details of the current pods through CEE Ops Center, use the following command in the CEE Ops
Center CLI:

cluster pods instance_name pod_name detail

NOTES:

• cluster pods—Specifies the current pods in the cluster.

• instance_name—Specifies the name of the instance.

• pod_name—Specifies the name of the pod.

• detail—Displays the details of the specified pod.

The following example displays the details of the pod named alertmanager-0 in the cnSGW-data instance.

Example:

cee# cluster pods cnSGW-data alertmanager-0 detail
details apiVersion: "v1"
kind: "Pod"
metadata:
annotations:
alermanager.io/scrape: "true"
cni.projectcalico.org/podIP: "<ipv4address/subnet>"
config-hash: "5532425ef5fd02add051cb759730047390b1bce51da862d13597dbb38dfbde86"

creationTimestamp: "2020-02-26T06:09:13Z"
generateName: "alertmanager-"
labels:
component: "alertmanager"
controller-revision-hash: "alertmanager-67cdb95f8b"
statefulset.kubernetes.io/pod-name: "alertmanager-0"

name: "alertmanager-0"

cnSGW-C Rolling Software Update
10

cnSGW-C Rolling Software Update
Viewing the Pod Details

namespace: "cnSGW"
ownerReferences:
- apiVersion: "apps/v1"
kind: "StatefulSet"
blockOwnerDeletion: true
controller: true
name: "alertmanager"
uid: "82a11da4-585e-11ea-bc06-0050569ca70e"

resourceVersion: "1654031"
selfLink: "/api/v1/namespaces/cnSGW/pods/alertmanager-0"
uid: "82aee5d0-585e-11ea-bc06-0050569ca70e"

spec:
containers:
- args:
- "/alertmanager/alertmanager"
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--storage.path=/alertmanager/data"
- "--cluster.advertise-address=$(POD_IP):6783"
env:
- name: "POD_IP"
valueFrom:
fieldRef:
apiVersion: "v1"
fieldPath: "status.podIP"

image: "<path_to_docker_image>"
imagePullPolicy: "IfNotPresent"
name: "alertmanager"
ports:
- containerPort: 9093
name: "web"
protocol: "TCP"

resources: {}
terminationMessagePath: "/dev/termination-log"
terminationMessagePolicy: "File"
volumeMounts:
- mountPath: "/etc/alertmanager/"
name: "alertmanager-config"

- mountPath: "/alertmanager/data/"
name: "alertmanager-store"

- mountPath: "/var/run/secrets/kubernetes.io/serviceaccount"
name: "default-token-kbjnx"
readOnly: true

dnsPolicy: "ClusterFirst"
enableServiceLinks: true
hostname: "alertmanager-0"
nodeName: "for-smi-cdl-1b-worker94d84de255"
priority: 0
restartPolicy: "Always"
schedulerName: "default-scheduler"
securityContext:
fsGroup: 0
runAsUser: 0

serviceAccount: "default"
serviceAccountName: "default"
subdomain: "alertmanager-service"
terminationGracePeriodSeconds: 30
tolerations:
- effect: "NoExecute"
key: "node-role.kubernetes.io/oam"
operator: "Equal"
value: "true"

- effect: "NoExecute"
key: "node.kubernetes.io/not-ready"
operator: "Exists"

cnSGW-C Rolling Software Update
11

cnSGW-C Rolling Software Update
Viewing the Pod Details

tolerationSeconds: 300
- effect: "NoExecute"
key: "node.kubernetes.io/unreachable"
operator: "Exists"
tolerationSeconds: 300

volumes:
- configMap:

defaultMode: 420
name: "alertmanager"

name: "alertmanager-config"
- emptyDir: {}
name: "alertmanager-store"

- name: "default-token-kbjnx"
secret:
defaultMode: 420
secretName: "default-token-kbjnx"

status:
conditions:
- lastTransitionTime: "2020-02-26T06:09:02Z"
status: "True"
type: "Initialized"

- lastTransitionTime: "2020-02-26T06:09:06Z"
status: "True"
type: "Ready"

- lastTransitionTime: "2020-02-26T06:09:06Z"
status: "True"
type: "ContainersReady"

- lastTransitionTime: "2020-02-26T06:09:13Z"
status: "True"
type: "PodScheduled"

containerStatuses:
- containerID: "docker://821ed1a272d37e3b4c4c9c1ec69b671a3c3fe6eb4b42108edf44709b9c698ccd"

image: "<path_to_docker_image>"
imageID: "docker-pullable://<path_to_docker_image>"
lastState: {}
name: "alertmanager"
ready: true
restartCount: 0
state:
running:
startedAt: "2020-02-26T06:09:05Z"

hostIP: "<host_ipv4address>"
phase: "Running"
podIP: "<pod_ipv4address>"
qosClass: "BestEffort"
startTime: "2020-02-26T06:09:02Z"

cee#

Rolling Software Update on Non-SMI Cluster
To configure the helm repository, use the following configuration:

• Log in to cnSGW-C Ops Center and use the following configuration:
config
helm default-repository cn
helm repository cn
access-token
smf-deployer.gen:AKCp5ekcX7DcBhuAmMZYfGLaHvH3E4Syr9TQDp1gjzcSjYrqsrGbXSYs5X2XYij3d9n9VfWQe

url <old-build/new-build>
exit

cnSGW-C Rolling Software Update
12

cnSGW-C Rolling Software Update
Rolling Software Update on Non-SMI Cluster

Validating the Update

The health check, current helm charts, and subscriber/peer/session information help in understanding whether
the rolling update process is successful.

To validate the update, use the following steps:

1. All pods that are deployed should be in the running state before and after an update.
kubectl get pods -n cn

2. Helm charts should reflect charts from the appropriate build.

To check the helm charts currently deployed, use the following command in the cnSGW-C Ops Center.
show helm charts
show running-config helm repository

3. Check subscriber, session, or peer information for retention validation, using the following configuration:
show subscriber namespace sgw count all
show peers all

Rolling Upgrade Optimization
Table 3: Feature History

DescriptionRelease InformationFeature Name

For the protocol (PFCP) pods,
Converged Core Gateway
introduces a session-level response
messages cache at the service pod
for handling the retransmitted
requests. This optimization helps in
reduced session and Call Events Per
Second (CEPS) loss during the
upgrade procedure.

2024.04.0Rolling Upgrade Optimization for
Protocol PFCP Pods

cnSGW-C Rolling Software Update
13

cnSGW-C Rolling Software Update
Rolling Upgrade Optimization

DescriptionRelease InformationFeature Name

Converged Core Gateway provides
the rolling upgrade optimization
support for the following pods:

• Radius endpoint pod

• Diameter endpoint pod

• UDP proxy pod

• GTPP endpoint pod

This optimization is an
enhancement to the existing
optimization.

This feature uses the existing CLI
command supported-features [
app-rx-retx-cache | app-tx-retx |
rolling-upgrade-all |
rolling-upgrade-enhancement-infra
] in the converged core profile.

2024.03.0Rolling Upgrade Optimization for
Endpoint Pods

Converged Core Gateway provides
the following support:

• Retry mechanism at service
and protocol pods during
upgrades

• Configuration-based rolling
upgrade enhancements

This optimization helps in reduced
session and Call Events Per Second
(CEPS) loss during the upgrade
procedure. The configurable rolling
upgrade enhancements enable
smooth rollout of the changes.

This feature introduces the newCLI
command supported-features [
app-rx-retx-cache | app-tx-retx |
rolling-upgrade-all |
rolling-upgrade-enhancement-infra
] in the converged core profile.

Default Setting: Disabled –
Configuration Required

2024.02.0Rolling Upgrade Optimization

Converged Core Gateway (CCG) software version 2024.02.0 and higher support rolling upgrade with additional
optimizations. Rolling upgrade lets you perform graceful upgrade of all pods with minimal impact on sessions

cnSGW-C Rolling Software Update
14

cnSGW-C Rolling Software Update
Rolling Upgrade Optimization

and CEPS. The additional optimizations provide an operational flexibility by allowing you an option to enable
or disable rolling upgrade features through the CLI command for the upgrade process, as required.

This feature supports the following application-level enhancements:

• Retry mechanisms at protocol pods during service pods upgrade.

• Handling of transient sessions or transactions at service pods and protocol pods during their upgrades.

• Handling of topology and IPC mechanism changes to detect pods that are restarting or inactive. For
inactive pods, the retry option is attempted toward other instances of pods.

You can configure the rolling upgrade enhancements through the supported-features [app-rx-retx-cache
| app-tx-retx | rolling-upgrade-all | rolling-upgrade-enhancement-infra] CLI command.

• It is recommended that you do not enable or disable the rolling upgrade features at run time to prevent
an impact on the existing sessions.

• It is highly recommended that you use only the rolling-upgrade-all option as all the other command
options are available only for debugging purpose.

Important

Feature Description
Converged Core Gateway (CCG) software version 2024.02.0 and higher supports rolling upgrade with
additional optimizations. Rolling upgrade lets you perform graceful upgrade of all pods with minimal impact
on sessions and CEPS.

This feature supports the following application-level enhancements:

• Retry mechanisms at protocol pods during service pods upgrade.

• Handling of transient sessions or transactions at service pods and protocol pods during their upgrades.

• Handling of topology and IPC mechanism changes to detect pods that are restarting or inactive. For
inactive pods, the retry option is attempted toward other instances of pods.

You can configure the rolling upgrade enhancements through the supported-features [app-rx-retx-cache
| app-tx-retx | rolling-upgrade-all | rolling-upgrade-enhancement-infra] CLI command.

• It is recommended that you do not enable or disable the rolling upgrade features at run time to prevent
an impact on the existing sessions.

• It is highly recommended that you use only the rolling-upgrade-all option as all the other command
options are available only for debugging purpose.

Important

How Rolling Upgrade Optimization Works
This section describes upgrades of various pods and the rolling upgrade procedure.

cnSGW-C Rolling Software Update
15

cnSGW-C Rolling Software Update
Feature Description

Pod Upgrades

Service Pod

Peer pods are made aware of the upgrade or restart of a particular pod so that the transactions from/to that
pod are handled gracefully.

The following section describes the handling of incoming and outgoing messages on a service pod:

Incoming Messages

• During an upgrade, the state of a service pod is communicated to other pods through the topology update.
If no affinity exists for the session, the pod is not selected for forwarding new messages.

• For a session, if a service pod doesn't have a context, which is the first message for a user after a cache
timeout, an Application Stop message is communicated to the protocol pod. This pod redirects messages
to other service pod instances.

• If a service pod has a context for the session with no pending procedures or transactions for the session
or user, an Application Stop message is communicated to the protocol pod. This pod redirects messages
to other service pod instances. However, before communication to the protocol pod, the forceful Sync
of Session State is done toward CDL. In addition, the affinity entry is removed for the session or user.

Outgoing Messages

• After completion of a call flow or a procedure for a session or user, if a service pod receives an upgrade
or restart indication, then synchronization of the session or PDU state with CDL is performed. In addition,
the affinity entry is removed for the service or user to disallow the triggering of further messages toward
the service pod instance.

• For the existing call flows, which are in progress, the transactions are handled on the best-effort basis
for call completion.

Protocol Pod

This section describes the handling of messages on the REST endpoint, GTPC endpoint, and protocol (PFCP)
endpoint pods.

REST Endpoint Pod

The following section describes the handling of incoming and outgoing messages on the REST endpoint pod.

Incoming Messages

• For new TCP connections the ingress K8 service doesn't select a specific REST endpoint pod during an
upgrade or restart. These requests are forwarded to other instances.

• After receiving an upgrade or restart indication, a GOAWAY frame is sent on the existing connections.
By sending this frame, the new messages are sent on a new connection from the peer node.

Outgoing Messages

• After receiving the outgoing request messages from service pods, the Application Stop indication is
communicated back to the service pod. With this communication, a service pod can select another REST
endpoint instance to trigger the messages.

cnSGW-C Rolling Software Update
16

cnSGW-C Rolling Software Update
Pod Upgrades

• For outgoing responses for the existing transient messages, the best effort is made to complete the
transactions.

GTPC Endpoint Pod

Incoming Messages

Session level response messages cache is added at service pod to support handling of incoming request
messages during GTPC endpoint pod restart. Service pods store response messages buffers based on the
sequence number, source IP address, source port, and request message type.

• If there is a response message loss on wire due to GTPC endpoint pod restart, then peer retries the request
message. This message is responded using a session level response message cache.

• Even if a response message isn’t generated at a service pod, the message is detected as retransmission
at the service and handled accordingly.

Outgoing Messages

The outgoing request messages during GTPC endpoint pod restart are handled in the following way:

• The service pod sets the request timeout interval and the number of retransmissions while doing BGIPC.
The timeout interval and the number of transmissions are based on the N3 T3 defined for S5, S11, and
S5E interfaces.

• Instead of the GTPC endpoint pod, the service pod sets the source port and sequence number.

• This mechanism helps in retransmission of the outgoing message when a response message is lost during
pod restart. The service pod generates the sequence number and port. In this case, there's no ambiguity
of messages on the wire for the peer also to detect the message as retransmission.

Node Manager Pod

One instance of a node manager pod is available to serve the calls during upgrades. The readiness probe and
the timer are also configured for the upgrade scenario. In case a pod is inactive, the service pods retry the
other node manager pod instances.

CDL Pod

CDL pods have multiple replicas for the service continuity during the upgrade process. Multiple connection
streams are available towards CDL endpoints to minimize failures during upgrade and restart processes. In
case of errors for these processes, the retry mechanism is also implemented towards another CDL endpoint
connection.

Upgrading Software to Version with Rolling Upgrade Optimization Support
This section describes how to perform the rolling upgrade and to enable the rolling upgrade enhancements.

cnSGW-C Rolling Software Update
17

cnSGW-C Rolling Software Update
Node Manager Pod

Review these important guidelines associated with the rolling upgrade procedure.

• The rolling upgrade optimization feature should only be used when you are upgrading from Release
2024.02.0 or later.

If you are upgrading to Release 2024.02.0 or later from a version that is prior to Release 2024.02.0,
perform the shut-start upgrade first.

• After the upgrade, make sure you enable the rolling upgrade enhancements using CLI command. Then,
the subsequent rolling upgrades to future releases will include the available optimizations.

Important

Rolling Upgrade Considerations

Both the racks (Rack 1 and Rack 2) of are in a sunny day scenario and are on a version that is prior to Release
2024.02.0.

To perform the rolling strategy, follow these steps:

1. Move Rack 1 to a rainy day scenario and keep Rack 2 active for both the GR instances.

2. Move the GR instances on Rack 1 to Standby_ERROR.

3. Shutdown Rack 1.

4. Perform cluster sync, through sync-phase ops-center, for Rack 1 to move to Release 2024.02.

5. Apply the recommended configurations to enable the rolling upgrade enhancements.

The recommended configuration for rolling upgrade is as follows:

config
profile converged-core converged_core_profile_name

supported-features [rolling-upgrade-all]
end

6. Start Rack 1.

7. Wait for 30 minutes for completion of CDL reconciliation.

8. Switch the GR instances to Primary to make Rack 1 active.

9. Shutdown Rack 2.

10. Continue with Steps 4–6 for Rack 2.

11. Make the Rack 1 and Rack 2 configurations for a sunny day scenario.

Limitations
This feature has the following limitations:

• During a rolling upgrade, service pods restart one at a time. This upgrade leads to a skewed redistribution
of sessions. The service pod that restarts first has the higher number of sessions. Similarly, the service
pod that restarted last has the least number of sessions. Such redistribution of sessions can lead to a
temporary spike in the memory requirement for some service pods. The system works as expected after
the sessions are removed from the local cache of a service pod.

cnSGW-C Rolling Software Update
18

cnSGW-C Rolling Software Update
Limitations

• Ongoing procedures in service pods continue during the rolling upgrade. However, the best effort
mechanism is implemented for their successful completion.

Configuring the Supported Features for Rolling Upgrade
To enable the supported features for a rolling upgrade, use the following sample configuration:

config
profile converged-core cc_profile_name

supported-features [app-rx-retx-cache | app-tx-retx |
rolling-upgrade-all | rolling-upgrade-enhancement-infra]

end

NOTES:

• profile converged-core cc_profile_name: Specify the name of the converged core profile. This keyword
allows you to enter the converged core profile configuration mode.

• supported-features [app-rx-retx-cache | app-tx-retx | rolling-upgrade-all |
rolling-upgrade-enhancement-infra]: Specify one of the following options to enable the supported
features for the rolling upgrade.

• app-rx-retx-cache: Enable retransmission cache for inbound messages at application.

• app-tx-retx: Enable retransmission for outbound messages at application.

• rolling-upgrade-all: Enable all the rolling upgrade features that are available through
rolling-upgrade-enhancement-infra, app-rx-retx-cache, and app-tx-retxrolling keyword options.
By default, the rolling upgrade features are disabled.

rolling-upgrade-all is the only recommended option.

• rolling-upgrade-enhancement-infra: Enable infra-level features.

• It is recommended that you do not enable or disable the rolling upgrade
features at run time to prevent an impact on the existing sessions.

• It is highly recommended that you use only the rolling-upgrade-all option
as all the other command options are available only for debugging purpose.

Important

Verifying Rolling Upgrade Optimization
Use the show running-config profile amf-services command to verify the supported features for a rolling
upgrade.

The following is an example output of the show running-config amf-services command.
show running-config profile amf-services
amf-services am1

supported-features [rolling-upgrade-all]
exit

cnSGW-C Rolling Software Update
19

cnSGW-C Rolling Software Update
Configuring the Supported Features for Rolling Upgrade

OAM Support

Bulk Statistics
The following statistics are supported for the rolling upgrade optimization feature.

IPC retry statistics:

The "ipc_request_total" statistics is updated with an additional label "retry_cause" for the cause of a retry
attempt.

CDL statistics:

The following statistics are added for the CDL operations:

• cdl_request_total

• cdl_response_total

• cdl_request_seconds_total

• cdl_request_duration_histogram_total

These CDL statistics are updated with the following filters:

• retry: Used to view the retry messages

• method_name: Used to view the CDL force sync update

In the previous releases, CDL statistics were visible through RPC statistics with the filter rpc_name as
STREAM_SESSION_DB. From Release 2024.02 onwards, CDL statistics are available only using the
preceding CDL statistics.

Note

Application stop counter:

The "application_stop_action" statistics is added to view actions on App-infra. Some examples of these actions
are session cache removal and affinity removal.

cnSGW-C Rolling Software Update
20

cnSGW-C Rolling Software Update
OAM Support

	cnSGW-C Rolling Software Update
	Feature Summary and Revision History
	Summary Data
	Revision History

	Introduction
	Updating cnSGW-C
	Rolling Software Update Using the SMI Cluster Manager
	Prerequisites
	cnSGW-C Health Check
	Backing Up the Deployment File
	Backing Up the Ops Center Configuration
	Back Up CEE and cnSGW-C Ops Center Configuration
	Staging a New cnSGW-C Image

	Triggering the Rolling Software Upgrade
	Monitoring the Update Procedure
	Viewing the Pod Details

	Rolling Software Update on Non-SMI Cluster

	Rolling Upgrade Optimization
	Feature Description
	How Rolling Upgrade Optimization Works
	Pod Upgrades
	Service Pod
	Protocol Pod
	Node Manager Pod
	CDL Pod

	Upgrading Software to Version with Rolling Upgrade Optimization Support

	Limitations
	Configuring the Supported Features for Rolling Upgrade
	Verifying Rolling Upgrade Optimization

	OAM Support
	Bulk Statistics

