
Pods and Services Reference

• Feature Summary and Revision History, on page 1
• Feature Description, on page 1
• Associating Pods to the Nodes, on page 10
• Viewing the Pod Details and Status, on page 10

Feature Summary and Revision History

Summary Data
Table 1: Summary Data

cnSGW-CApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Enabled - Always-onFeature Default Setting

Not ApplicableRelated Documentation

Revision History
ReleaseRevision Details

2020.07First introduced

Feature Description
cnSGW-C is built on the Kubernetes cluster strategy, adopting the native concepts of containerization, high
availability, scalability, modularity, and ease of deployment. cnSGW-C uses the components, such as pods
and services offered by Kubernetes.

Pods and Services Reference
1



Depending on your deployment environment, the cnSGW-C deploys the pods on the configured virtual
machines(VM) that you have configured. Pods operate through the services that are responsible for the intrapod
communications. If the machine hosting the pods fail or experiences network disruption, the pods are terminated
or deleted. However, this situation is transient and k8s, create new pods to replace the invalid pods.

The following workflow provides high-level information about:

• Host machines

• Associated pods and services

• Interaction among pods

The representation might defer based on your deployment infrastructure.

Figure 1: Communication Workflow of Pods

Kubernetes deployment includes the kubectl command-line tool to manage the Kubernetes resources in the
cluster. You can manage the pods, nodes, and services.

For generic information on the Kubernetes concepts, see the Kubernetes documentation.

Pods
A pod is a process that runs on Kubernetes cluster. Pod encapsulates a granular unit known as a container. A
pod can contains one or more containers.

Kubernetes deploys one or multiple pods on a single node which can be a physical or a virtual machine. Each
pod has a discrete identity with an internal IP address and port number. The containers within the pod shares
the storage and network resources.

Pods and Services Reference
2

Pods and Services Reference
Pods



The following tables list the cnSGW-C and Common Execution Environment (CEE) pod names and the hosts
on which they are deployed depending on the labels that you assign. See the following table for information
on how to assign the labels.

Table 2: cnSGW-C Pods

Host NameDescriptionPod Name

OAMFunctions as confDAPI pod for the
cnSGW-C Ops Center.

api-sgw-ops-center

OAM

Currently not supported.Note

Operates to support smart licensing
feature.

base-entitlement-sgw

ProtocolOperates to support dynamic
routing for L3 route management
and BFD monitoring.

bgpspeaker

ProtocolOperates to support cache system
information that is used by other
pods as applicable.

cache-pod

SessionProvides an interface to the CDL.cdl-ep-session-c1

SessionPreserves the mapping of keys to
the session pods.

cdl-index-session-c1

SessionOperates as the CDL session pod
to store the session data.

cdl-slot-session-c1

OAMContains the documentation.documentation

OAMHosts the etcd for the cnSGW-C
OAM application to store
information such as pod instances,
leader information, endpoints.

etcd-sgw-etcd-cluster

ProtocolOperates to support cache, ETCD
replication across sites, and site role
management.

georeplication

OAMContains the default dashboard of
app-infra metrics in Grafana.

grafana-dashboard-app-infra

OAMContains the default dashboard of
CDL metrics in Grafana.

grafana-dashboard-cdl

OAMContains the default dashboard of
cnSGW-C service metrics in
Grafana.

grafana-dashboard-sgw

ProtocolOperates as GTPC endpoint of
cnSGW-C.

gtpc-ep-n0

ProtocolHosts the Kafka details for the CDL
replication.

kafka

Pods and Services Reference
3

Pods and Services Reference
Pods



Host NameDescriptionPod Name

ProtocolOperates as Lawful Intercept
endpoint of cnSGW-C.

li-ep-n0

OAMOperates as the pod to facilitate
Ops Center actions, such as show
commands, configuration
commands, monitor protocol
monitor subscriber.

oam-pod

OAMActs as the cnSGW-C Ops Center.ops-center-sgw-ops-center

OAMOperates as the utility pod for the
cnSGW-C Ops Center.

smart-agent-sgw-ops-center

ServicePerforms node level interactions,
such as Sxa link establishment and
management (heartbeat).

It generates unique identifiers, such
as UE IP address and SEID.

nodemgr-n0

ProtocolOperates as encoder and decoder
of application protocols (PFCP,
whose underlying transport
protocol is UDP).

protocol-n0

ProtocolcnSGW-C uses REST-EP as
Notification client.

rest-ep-n0

ServiceContains main business logic of
cnSGW-C.

service-n0

ProtocolOperates as proxy for all UDP
messages. Owns UDP client and
server functionalities.

udp-proxy

OAMOperates as the utility pod for the
cnSGW-C Ops Center.

swift-sgw-ops-center

OAMAssists Kafka for topology
management.

zookeeper

CEE Pods

For details, see the “CEE pods” topic from the UCC Common Execution Environment - Configuration and
Administration Guide.

UDP Proxy Pod

Feature Description
The cnSGW-C has UDP interfaces towards the UP (Sxa), MME (S11), and PGW (S5 or S8). With the help
of the protocol layer pods, the messages are encoded, decoded, and exchanged on these UDP interfaces.

Pods and Services Reference
4

Pods and Services Reference
UDP Proxy Pod

https://www.cisco.com/c/en/us/support/wireless/ultra-cloud-core-subscriber-microservices-infrastructure/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/wireless/ultra-cloud-core-subscriber-microservices-infrastructure/products-installation-and-configuration-guides-list.html


For achieving the functionalities mentioned on the 3GPP specifications:

• It is mandatory for the protocol layer pods to receive the original source and destination IP address and
port number. But the original IP and UDP header is not preserved when the incoming packets arrive at
the UDP service in the Kubernetes (K8s) cluster.

• Similarly, for the outgoing messages, the source IP set to the external IP address of the UDP service
(published to the peer node) is mandatory. But the source IP is selected as per the egress interface when
different instances of protocol layer pods send outgoing messages from different nodes of the K8s cluster.

The protocol layer pod spawns on the node, which has the physical interface configured with the external IP
address to achieve the conditions mentioned earlier. However, spawning the protocol layer pods has the
following consequences:

• It is not possible to achieve the node level HA (High Availability) as the protocol pods are spawned on
the same node of the K8s cluster. Any failure to that node may result in loss of service.

• The protocol pods must include their own UDP client and server functionalities. In addition, each protocol
layer pod may require labeling of the K8s nodes with the affinity rules. This restricts the scaling
requirements of the protocol layer pods.

The cnSGW-C addresses these issues with the introduction of a new K8s pod called udp-proxy. The primary
objectives of this pod are:

• The udp-proxy pod acts as a proxy for all kinds of UDPmessages. It also owns the UDP client and server
functionalities.

• The protocol pods perform the individual protocol (PFCP, GTP, Radius) encoding and decoding, and
provide the UDP payload to the udp-proxy pod. The udp-proxy pod sends the UDP payload out after it
receives the payload from the protocol pods.

• The udp-proxy pod opens the UDP sockets on a virtual IP (VIP) instead of a physical IP. This ensures
that the udp-proxy pod does not have any strict affinity to a specific K8s node (VM), thus enabling node
level HA for the UDP proxy.

One instance of the udp-proxy pod is spawned by default in all the worker nodes in the K8s cluster.

The UDP proxy for cnSGW-C feature has functional relationship with the Virtual IP Address feature.

Note

Architecture

The udp-proxy pod is placed in the worker nodes in the K8s cluster.

1. Each of the K8s worker node contains one instance of the udp-proxy pod. However, only one of the K8s
worker node owns the virtual IP at any time. The worker node that owns the virtual IP remains in the
active mode while all the other worker nodes remain in the standby mode.

2. The active udp-proxy pod binds to the virtual IP and the designated ports for listening to the UDPmessages
from the peer nodes (UPF and SGW).

3. The UDP payload received from the peer nodes are forwarded to one instance of the protocol, gtp-ep, or
radius-ep pods. The payload is forwarded either on the same node or different node for further processing.

Pods and Services Reference
5

Pods and Services Reference
Architecture



4. The response message from the protocol, gtp-ep, or radius-ep pods is forwarded back to the active instance
of the udp-proxy pod. The udp-proxy pod sends the response message back to the corresponding peer
nodes.

5. The cnSGW-C-initiated messages are encoded at the protocol, gtp-ep, or radius-ep pods. In addition, the
UDP payload is sent to the udp-proxy pod. Eventually, the udp-proxy pod comprises of the complete IP
payload and sends the message to the peer. When the response from the peer is received, the UDP payload
is sent back to the same protocol pod from which the message originated.

Protocol Pod Selection for Peer-Initiated Messages

When the udp-proxy pod receives the peer node (for instance UPF) initiated messages, it is load-balanced
across the protocol instances to select any instance of the protocol pod. An entry of this instance number is
stored along with the source IP and source port number of the peer node. This ensures that the messages form
the same source IP and source port are sent to the same instance that was selected earlier.

High Availability for the UDP Proxy

The UDP proxy's HA model is based on the keepalived virtual IP concepts. A VIP is designated to the N4
interface during the deployment. Also, a keepalived instance manages the VIP and ensures that the IP address
of the VIP is created as the secondary address of an interface in one of the worker nodes of the K8s cluster.

The udp-proxy instance on this worker node binds to the VIP and assumes the role of the active udp-proxy
pod. All udp-proxy instances in the other worker nodes remain in the standby mode.

Services
The cnSGW-C configuration is composed of several microservices that run on a set of discrete pods. These
Microservices are deployed during the cnSGW-C deployment. cnSGW-C uses these services to enable
communication between the pods. When interacting with another pod, the service identifies the pod's IP
address to initiate the transaction and acts as an endpoint for the pod.

The following table describes the cnSGW-C services and the pod on which they run.

Table 3: cnSGW-C Services and Pods

DescriptionPod NameService Name

Operates to support smart licensing
feature.

base-entitlement-sgwbase-entitlement-sgw

Operates to support dynamic
routing for L3 route management
and BFD monitoring.

bgpspeakerbgpspeaker-pod

Responsible for the CDL session.cdl-ep-session-c1datastore-ep-session

Responsible for sending the
notifications from the CDL to the
sgw-service through smf-rest-ep.

cnSGW-C uses
REST-EP pod as
notification client.

Note

smf-rest-epdatastore-notification-ep

Pods and Services Reference
6

Pods and Services Reference
Protocol Pod Selection for Peer-Initiated Messages



DescriptionPod NameService Name

Responsible for the secure CDL
connection.

cdl-ep-session-c1datastore-tls-ep-session

Responsible for the cnSGW-C
documents.

documentationdocumentation

Responsible for pod discovery
within the namespace.

etcd-sgw-etcd-cluster-0,

etcd-sgw-etcd-cluster-1,

etcd-sgw-etcd-cluster-2

etcd

Responsible for synchronization of
data among the etcd cluster.

etcd-sgw-etcd-cluster-0etcd-sgw-etcd-cluster-0

Responsible for synchronization of
data among the etcd cluster.

etcd-sgw-etcd-cluster-1etcd-sgw-etcd-cluster-1

Responsible for synchronization of
data among the etcd cluster.

etcd-sgw-etcd-cluster-2etcd-sgw-etcd-cluster-2

Responsible for the default
dashboard of app-infra metrics in
Grafana.

grafana-dashboard-app-infragrafana-dashboard-app-infra

Responsible for the default
dashboard of CDL metrics in
Grafana.

grafana-dashboard-cdlgrafana-dashboard-cdl

Responsible for the default
dashboard of cnSGW-C service
metrics in Grafana.

grafana-dashboard-sgwgrafana-dashboard-sgw

Responsible for inter-pod
communication with GTP-C pod.

gtpc-ep-n0gtpc-ep

Manages the Ops Center API.api-sgw-ops-centerhelm-api-sgw-ops-center

Processes the Kafka messages.kafkakafka

Responsible for lawful-intercept
interactions.

li-ep-n0li-ep

Responsible for leveraging Ops
Center credentials by other
applications like Grafana.

ops-center-sgw-ops-centerlocal-ldap-proxy-sgw-ops-center

Responsible to facilitate Exec
commands on the Ops Center.

oam-podoam-pod

Manages the cnSGW-C Ops
Center.

ops-center-sgw-ops-centerops-center-sgw-ops-center

To access cnSGW-C Ops Center
with external IP address.

ops-center-sgw-ops-centerops-center-sgw-ops-center-expose-cli

Responsible for the cnSGW-COps
Center API.

smart-agent-sgw-ops-centersmart-agent-sgw-ops-center

Pods and Services Reference
7

Pods and Services Reference
Services



DescriptionPod NameService Name

Responsible for inter-pod
communication with smf-nodemgr
pod.

smf-nodemgrsmf-nodemgr

Responsible for inter-pod
communication with smf-protocol
pod.

smf-protocolsmf-protocol

Responsible for inter-pod
communication with cnSGW-C
service pod.

sgw-servicesgw-service

Operates as the utility pod for the
cnSGW-C Ops Center.

swiftswift-sgw-ops-center

Assists Kafka for topology
management.

zookeeperzookeeper

Assists Kafka for topology
management.

zookeeperzookeeper-service

Open Ports and Services
The cnSGW-C uses different ports for communication. The following table describes the default open ports
and the associated services.

Table 4: Open Ports and Services

UsageServiceTypePort

SMI uses TCP port to communicate with the virtual machines.SSHtcp22

DNS port.domaintcp53

SMI uses TCP port for providingWeb access to CLI, Documentation,
and TAC.

HTTPtcp80

Open Network Computing Remote Procedure Call.rpcbindtcp111

Border Gateway Protocol (BGP)bgptcp179

SMI uses TCP port for providingWeb access to CLI, Documentation,
and TAC.

SSL/HTTPtcp443

CoreOS etcd client communication.etcd-clienttcp2379

SMI uses port to communicate with the Kubernetes API server.httptcp6443

speaker, used by Grafana.unknowntcp7472

Kafka connects REST interface.us-srvtcp8083

udp-proxyunknowntcp8850

Pods and Services Reference
8

Pods and Services Reference
Open Ports and Services



UsageServiceTypePort

udp-proxyunknowntcp8879

SMI uses TCP port to communicate with the Node Exporter.

Node Exporter is a Prometheus exporter for hardware and OSmetrics
with pluggable metric collectors.

It allows you to measure various machine resources, such as memory,
disk, and CPU utilization.

jetdirecttcp9100

SMI uses TCP port to communicate with Kubelet.

Kubelet is the lowest level component in Kubernetes. It is responsible
for what is running on an individual machine.

It is a process watcher or supervisor focused on active container. It
ensures the specified containers are up and running.

SSL/HTTPtcp10250

SMI uses TCP port to interact with the Kube scheduler.

Kube scheduler is the default scheduler for Kubernetes and runs as
part of the control plane. A scheduler watches for newly created pods
that have no node assigned.

For every pod that the scheduler discovers, the scheduler becomes
responsible for finding the best node for that pod to run on.

-tcp10251

SMI uses this TCP port to interact with the Kube controller.

The Kubernetes controller manager is a daemon that embeds the core
control loops shipped with Kubernetes. The controller is a control
loop that watches the shared state of the cluster through the API server
and makes changes to move the current state to the desired state.

apollo-relaytcp10252

SMI uses TCP port to interact with the Kube proxy.

Kube proxy is a network proxy that runs on each node in your cluster.
Kube proxy maintains network rules on nodes. These network rules
allow network communication to your pods from network sessions
inside or outside of your cluster.

HTTP-10256

gRPC service listen port.unknowntcp50051

DNS portdomain ISC
BIND (Fake
version:

9.11.3-

1ubuntu1.9-

Ubuntu)

udp53

Open Network Computing Remote Procedure Callrpcbinudp111

GTP controlgtpcudp2123

Pods and Services Reference
9

Pods and Services Reference
Open Ports and Services



UsageServiceTypePort

Packet Forwarding Control Protocol (PFCP)pfcpudp8805

Associating Pods to the Nodes
This section describes how to associate a pod to the node.

After configuring a cluster, you can associate the pods to the nodes through labels. This association enables
the pods to get deployed on the appropriate node, based on the key-value pair.

Labels are required for the pods to identify the nodes where they must be deployed and to run the services.
For example, when you configure the protocol-layer label with the required key-value pair, the pods are
deployed on the nodes that match the key-value pair.

1. To associate pods to the nodes through the labels, use the following configuration:

config
k8
label
cdl-layer
key key_value

value value

oam-layer
key key_value

value value

protocol-layer
key key_value

value value

service-layer
key key_value

value value

end

NOTES:

• If you don't configure the labels, cnSGW-C assumes the labels with the default key-value pair.

• label { cdl-layer { key key_value | value value }—Configures the key value pair for CDL.

• oam-layer { key key_value | value value }—Configures the key value pair for OAM layer.

• protocol-layer { key key_value | value value }—Configures the key value pair for protocol layer.

• service-layer { key key_value | value value }—Configures the key value pair for the service layer.

Viewing the Pod Details and Status
If the service requires additional pods, cnSGW-C creates and deploys the pods. You can view the list of
available pods in your deployment through the cnSGW-C Ops Center.

Pods and Services Reference
10

Pods and Services Reference
Associating Pods to the Nodes



You can run the kubectl command from the master node to manage the Kubernetes resources.

Pod Details
1. To view the comprehensive pod details, use the following command.

kubectl get pods -n sgw pod_name -o yaml

The output of this command provides the pod details in YAML format with the following information:

• The IP address of the host where the pod is deployed.

• The service and the application that is running on the pod.

• The ID and the name of the container within the pod.

• The IP address of the pod.

• The present state and phase of the pod.

• The start time from which pod is in the present state.

Use the following command to view the summary of the pod details.

kubectl get pods -n sgw_namespace -o wide

States
The following table describes the state of a pod.

Table 5: Pod States

DescriptionState

The pod is healthy and deployed on a node.

It contains one or more containers.

Running

The application is in the process of creating the
container images for the pod.

Pending

Indicates that all the containers in the pod are
successfully terminated. These pods cann't be
restarted.

Succeeded

One ore more containers in the pod have failed the
termination process. The failure occurred as the
container either exited with non-zero status or the
system terminated the container.

Failed

Pods and Services Reference
11

Pods and Services Reference
Pod Details



Pods and Services Reference
12

Pods and Services Reference
States


	Pods and Services Reference
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	Pods
	UDP Proxy Pod
	Feature Description
	Architecture
	Protocol Pod Selection for Peer-Initiated Messages
	High Availability for the UDP Proxy


	Services
	Open Ports and Services

	Associating Pods to the Nodes
	Viewing the Pod Details and Status
	Pod Details
	States



