
Policy Tracing and Execution Analyzer

• Feature Summary and Revision History, on page 1
• Feature Description, on page 1
• How it Works, on page 2
• Configuration Support for the Policy Traces, on page 2

Feature Summary and Revision History

Summary Data
Table 1: Summary Data

PCFApplicable Products or Functional Area

SMIApplicable Platform(s)

Enabled – Configuration required to disableFeature Default Setting

Not ApplicableRelated Documentation

Revision History
Table 2: Revision History

ReleaseRevision Details

2020.01.0First introduced.

Feature Description
PCF comes with a set of utilities to actively monitor and trace policy execution. These utilities interact with
the core Policy Server and the Mongo database to trigger and store traces for specific conditions.

Policy Tracing and Execution Analyzer
1

How it Works
This section describes how this feature works.

Architecture
Cisco PCF comes with a trace pod to actively monitor and trace the policy execution. The utilities in this pod
interact with the Policy Engine pods and the Mongo database pods to trigger and store traces for specific
conditions.

The policy tracing and execution analyzer is a three-tier architecture:

• Tier 1—Command-line utilities to manage the policy trace generation and extract policy traces.

• Tier 2—Policy server creation of policy traces using triggers that are defined in Tier 1.

• Tier 3—Storage of the policy traces in a MongoDB.

Configuration Support for the Policy Traces
This section describes how you configure the policy traces.

Configuration support of the policy traces involves the following steps:

1. Setting Up the Trace Database

2. Configuring the Trace Microservice Pod

3. Executing the Tracing Scripts

Setting Up the Trace Database
This section describes how to configure the database and port where you want to store the traces.

1. Log in to Policy Builder.

2. From left pane, select your system and click the appropriate cluster.

3. From right pane, select the check box for Trace Database.

The following table provides the parameter descriptions under Trace Database check box.

Table 3: Trace Database Parameters

DescriptionParameter

The name of theMongo database cluster that holds the trace information
which allows debugging of specific sessions and subscribers based on
the unique primary keys.

Primary Database IP Address

Policy Tracing and Execution Analyzer
2

Policy Tracing and Execution Analyzer
How it Works

DescriptionParameter

The IP address of the database that provides fail over support for the
primary database.

This is the mirror of the database that is specified in the Primary IP
Address field. Use this only for replication or replica pairs architecture.
This field is present but deprecated to maintain the downward
compatibility.

Secondary Database IP
Address

Port number of the database that stores the trace data.

Default value is 27017.

Database Port

Configuring the Trace Microservice Pod
PCF hosts the tracing-specific commands on the trace microservice pod that is available under the /usr/local/bin
directory.

To determine the trace pod, use the following configuration:

config
kubectl -n pcf namespace [get pods | grep trace]
end

Sample output of the command:
luser@for-cn-dev-10c-masterb92844ec32:~$ kubectl -n pcf get pods | grep trace
traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc 1/1 Running 0 40m
luser@for-cn-dev-10c-masterb92844ec32:~$

Executing the Tracing Scripts
Tracing logs assist you in backtracking the steps that you or the system has performed to accomplish a task.
This information is useful when you want to conduct forensics of the unexpected outcomes.

PCF provides two scripts that let you obtain the tracing information:

• trace_ids.sh: Manages the rules for activating and deactivating traces within the system.

• trace.sh: Allows retrieval of the real-time and historical traces.

The execution of the tracing scripts involves the following steps:

1. Managing the Trace Rules

2. Managing the Trace Results

Managing the Trace Rules
The trace_ids.sh script fetches the real-time and historical traces. This script resides in /usr/local/bin/
of the Tracing Pod that you have configured.

See Configuring the Trace Microservice Pod, on page 3 for procedure to set up a Pod.

Policy Tracing and Execution Analyzer
3

Policy Tracing and Execution Analyzer
Configuring the Trace Microservice Pod

The Execute the trace_ids.sh script with -h arguments produces a help text describing the capabilities of the
script.

The trace_ids.sh script starts a selective trace and outputs it to a standard out.

1. To specify the audit ID tracing, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc

-- trace_ids.sh -i specific id

2. To remove trace for specific audit ID, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc

-- trace_ids.sh -r specific id

3. To remove trace for all IDs, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace_ids.sh -x

4. To list all the IDs under trace, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace_ids.sh -l

Adding a specific audit ID for tracing requires running the command with the -i argument and passing in
a specific ID. The Policy Server matches the incoming session with the ID provided and compares this
against the following network session attributes:

• Credential ID

• Framed IPv6 Prefix

• IMSI

• MAC Address

• MSISDN

• User ID

If an exact match is found, then the transactions are traced.

Spaces and special characters are not supported in the audit IDs.Note

• Removing a specific audit ID from active tracing requires specifying the -r argument with ID to
remove.

• Removing all IDs requires sending in the -x argument. This step purges all the IDs from the database.

• Listing all IDs requires sending in the -l argument.

Example output:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace_ids.sh

Policy Tracing and Execution Analyzer
4

Policy Tracing and Execution Analyzer
Managing the Trace Rules

-s mongo-admin-0 -p 27017 -t admin -d policy_trace -i 2001

Run the trace_ids.sh with -h arguments produces a help text describing the capabilities of the script as
follows:
kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc -- trace_ids.sh
-h
/usr/local/bin/trace_ids.sh: option requires an argument -- h
usage:
/usr/local/bin/trace_ids.sh -i specific id

/usr/local/bin/trace_ids.sh -r specific id
/usr/local/bin/trace_ids.sh -x
/usr/local/bin/trace_ids.sh -l
/usr/local/bin/trace_ids.sh -s mongo service name
/usr/local/bin/trace_ids.sh -p mongo service port
/usr/local/bin/trace_ids.sh -t mongo replica set
/usr/local/bin/trace_ids.sh -d mongo database name

This script starts a selectve trace and outputs it to standard out.
1. Add Specific Audit Id Tracing /usr/local/bin/trace_ids.sh -i specific id
2. Remove Trace for Specific Audit Id /usr/local/bin/trace_ids.sh -r specific id
3. Remove Trace for All Ids /usr/local/bin/trace_ids.sh -x
4. List All Ids under Trace /usr/local/bin/trace_ids.sh -l
5. K8 mongo service name -s (default: mongo-admin-0)
6. Mongo port -p (default: 27017)
7. Replica set name -t (default: admin)
8. Trace database name -d (default: policy_trace)
9. /usr/local/bin/trace_ids.sh -h displays this help

Managing the Trace Results
The trace.sh script that initiates selective trace process resides in /usr/local/bin/ of the Tracing Pod
that you have configured.

See Configuring the Trace Microservice Pod, on page 3 for procedure to set up a pod.

1. To specify the audit ID tracing, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace.sh -i specific_id

Specifying the -i argument for a specific ID causes a real-time policy trace to be generated while the
script is running. You can redirect this to a specific output file using standard Linux commands.

2. To dump all traces for the specific audit ID, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace.sh -x specific_id

Specifying the -x argument with a specific ID, dumps all historical traces for a given ID. You can redirect
this to a specific output file using standard Linux commands.

3. To trace all, use the following configuration:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
– trace.sh -a

Specifying the -a argument causes all traces to output in the real-time policy trace while the script is
running. You can redirect this to a specific output file using standard Linux commands.

4. To trace all the errors, use the following configuration:

Policy Tracing and Execution Analyzer
5

Policy Tracing and Execution Analyzer
Managing the Trace Results

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace.sh -e

Specifying the -e argument causes all traces that are triggered by an error to output in real-time policy
trace while the script is running. You can redirect this to a specific output file using standard Linux
commands.

Example output:

kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc
-- trace.sh -s mongo-admin-0
-p 27017 -t admin -d policy_trace -x 1234567890

5. Execute the trace.sh script with -h arguments to produce a help text describing the capabilities of the
script as follows:
kubectl -n pcf exec -it traceid-pcf-pcf-engine-app-pcf-75b6dc6c4-hc7qc -- trace.sh -h
/usr/local/bin/trace.sh: option requires an argument -- h usage:

/usr/local/bin/trace.sh -i specific_id
/usr/local/bin/trace.sh -x specific_id
/usr/local/bin/trace.sh -a
/usr/local/bin/trace.sh -e
/usr/local/bin/trace.sh -s mongo_service_name
/usr/local/bin/trace.sh -p mongo_service_port
/usr/local/bin/trace.sh -t mongo_replica_set
/usr/local/bin/trace.sh -d mongo_database_name
/usr/local/bin/trace.sh -h

This script starts a selectve trace and outputs it to standard out.
1. Specific Audit Id Tracing /usr/local/bin/trace.sh -i specific_id
2. Dump All Traces for Specific Audit Id /usr/local/bin/trace.sh -x specific_id
3. Trace All /usr/local/bin/trace.sh -a
4. Trace All Errors /usr/local/bin/trace.sh -e
5. K8 mongo service name -s (default: mongo-admin-0)
6. Mongo port -p (default: 27017)
7. Replica set name -t (default: admin)
8. Trace database name -d (default: policy_trace)
9. /usr/local/bin/trace.sh -h displays this help

Policy Tracing and Execution Analyzer
6

Policy Tracing and Execution Analyzer
Managing the Trace Results

	Policy Tracing and Execution Analyzer
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works
	Architecture

	Configuration Support for the Policy Traces
	Setting Up the Trace Database
	Configuring the Trace Microservice Pod
	Executing the Tracing Scripts
	Managing the Trace Rules
	Managing the Trace Results

